1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * Copyright (C) 2010 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7#include "xfs.h"
8#include "xfs_fs.h"
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_mount.h"
14#include "xfs_da_format.h"
15#include "xfs_da_btree.h"
16#include "xfs_inode.h"
17#include "xfs_bmap_btree.h"
18#include "xfs_quota.h"
19#include "xfs_trans.h"
20#include "xfs_qm.h"
21#include "xfs_trans_space.h"
22
23#define _ALLOC	true
24#define _FREE	false
25
26/*
27 * A buffer has a format structure overhead in the log in addition
28 * to the data, so we need to take this into account when reserving
29 * space in a transaction for a buffer.  Round the space required up
30 * to a multiple of 128 bytes so that we don't change the historical
31 * reservation that has been used for this overhead.
32 */
33STATIC uint
34xfs_buf_log_overhead(void)
35{
36	return round_up(sizeof(struct xlog_op_header) +
37			sizeof(struct xfs_buf_log_format), 128);
38}
39
40/*
41 * Calculate out transaction log reservation per item in bytes.
42 *
43 * The nbufs argument is used to indicate the number of items that
44 * will be changed in a transaction.  size is used to tell how many
45 * bytes should be reserved per item.
46 */
47STATIC uint
48xfs_calc_buf_res(
49	uint		nbufs,
50	uint		size)
51{
52	return nbufs * (size + xfs_buf_log_overhead());
53}
54
55/*
56 * Per-extent log reservation for the btree changes involved in freeing or
57 * allocating an extent.  In classic XFS there were two trees that will be
58 * modified (bnobt + cntbt).  With rmap enabled, there are three trees
59 * (rmapbt).  The number of blocks reserved is based on the formula:
60 *
61 * num trees * ((2 blocks/level * max depth) - 1)
62 *
63 * Keep in mind that max depth is calculated separately for each type of tree.
64 */
65uint
66xfs_allocfree_block_count(
67	struct xfs_mount *mp,
68	uint		num_ops)
69{
70	uint		blocks;
71
72	blocks = num_ops * 2 * (2 * mp->m_alloc_maxlevels - 1);
73	if (xfs_has_rmapbt(mp))
74		blocks += num_ops * (2 * mp->m_rmap_maxlevels - 1);
75
76	return blocks;
77}
78
79/*
80 * Per-extent log reservation for refcount btree changes.  These are never done
81 * in the same transaction as an allocation or a free, so we compute them
82 * separately.
83 */
84static unsigned int
85xfs_refcountbt_block_count(
86	struct xfs_mount	*mp,
87	unsigned int		num_ops)
88{
89	return num_ops * (2 * mp->m_refc_maxlevels - 1);
90}
91
92/*
93 * Logging inodes is really tricksy. They are logged in memory format,
94 * which means that what we write into the log doesn't directly translate into
95 * the amount of space they use on disk.
96 *
97 * Case in point - btree format forks in memory format use more space than the
98 * on-disk format. In memory, the buffer contains a normal btree block header so
99 * the btree code can treat it as though it is just another generic buffer.
100 * However, when we write it to the inode fork, we don't write all of this
101 * header as it isn't needed. e.g. the root is only ever in the inode, so
102 * there's no need for sibling pointers which would waste 16 bytes of space.
103 *
104 * Hence when we have an inode with a maximally sized btree format fork, then
105 * amount of information we actually log is greater than the size of the inode
106 * on disk. Hence we need an inode reservation function that calculates all this
107 * correctly. So, we log:
108 *
109 * - 4 log op headers for object
110 *	- for the ilf, the inode core and 2 forks
111 * - inode log format object
112 * - the inode core
113 * - two inode forks containing bmap btree root blocks.
114 *	- the btree data contained by both forks will fit into the inode size,
115 *	  hence when combined with the inode core above, we have a total of the
116 *	  actual inode size.
117 *	- the BMBT headers need to be accounted separately, as they are
118 *	  additional to the records and pointers that fit inside the inode
119 *	  forks.
120 */
121STATIC uint
122xfs_calc_inode_res(
123	struct xfs_mount	*mp,
124	uint			ninodes)
125{
126	return ninodes *
127		(4 * sizeof(struct xlog_op_header) +
128		 sizeof(struct xfs_inode_log_format) +
129		 mp->m_sb.sb_inodesize +
130		 2 * XFS_BMBT_BLOCK_LEN(mp));
131}
132
133/*
134 * Inode btree record insertion/removal modifies the inode btree and free space
135 * btrees (since the inobt does not use the agfl). This requires the following
136 * reservation:
137 *
138 * the inode btree: max depth * blocksize
139 * the allocation btrees: 2 trees * (max depth - 1) * block size
140 *
141 * The caller must account for SB and AG header modifications, etc.
142 */
143STATIC uint
144xfs_calc_inobt_res(
145	struct xfs_mount	*mp)
146{
147	return xfs_calc_buf_res(M_IGEO(mp)->inobt_maxlevels,
148			XFS_FSB_TO_B(mp, 1)) +
149				xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
150			XFS_FSB_TO_B(mp, 1));
151}
152
153/*
154 * The free inode btree is a conditional feature. The behavior differs slightly
155 * from that of the traditional inode btree in that the finobt tracks records
156 * for inode chunks with at least one free inode. A record can be removed from
157 * the tree during individual inode allocation. Therefore the finobt
158 * reservation is unconditional for both the inode chunk allocation and
159 * individual inode allocation (modify) cases.
160 *
161 * Behavior aside, the reservation for finobt modification is equivalent to the
162 * traditional inobt: cover a full finobt shape change plus block allocation.
163 */
164STATIC uint
165xfs_calc_finobt_res(
166	struct xfs_mount	*mp)
167{
168	if (!xfs_has_finobt(mp))
169		return 0;
170
171	return xfs_calc_inobt_res(mp);
172}
173
174/*
175 * Calculate the reservation required to allocate or free an inode chunk. This
176 * includes:
177 *
178 * the allocation btrees: 2 trees * (max depth - 1) * block size
179 * the inode chunk: m_ino_geo.ialloc_blks * N
180 *
181 * The size N of the inode chunk reservation depends on whether it is for
182 * allocation or free and which type of create transaction is in use. An inode
183 * chunk free always invalidates the buffers and only requires reservation for
184 * headers (N == 0). An inode chunk allocation requires a chunk sized
185 * reservation on v4 and older superblocks to initialize the chunk. No chunk
186 * reservation is required for allocation on v5 supers, which use ordered
187 * buffers to initialize.
188 */
189STATIC uint
190xfs_calc_inode_chunk_res(
191	struct xfs_mount	*mp,
192	bool			alloc)
193{
194	uint			res, size = 0;
195
196	res = xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
197			       XFS_FSB_TO_B(mp, 1));
198	if (alloc) {
199		/* icreate tx uses ordered buffers */
200		if (xfs_has_v3inodes(mp))
201			return res;
202		size = XFS_FSB_TO_B(mp, 1);
203	}
204
205	res += xfs_calc_buf_res(M_IGEO(mp)->ialloc_blks, size);
206	return res;
207}
208
209/*
210 * Per-extent log reservation for the btree changes involved in freeing or
211 * allocating a realtime extent.  We have to be able to log as many rtbitmap
212 * blocks as needed to mark inuse XFS_BMBT_MAX_EXTLEN blocks' worth of realtime
213 * extents, as well as the realtime summary block.
214 */
215static unsigned int
216xfs_rtalloc_block_count(
217	struct xfs_mount	*mp,
218	unsigned int		num_ops)
219{
220	unsigned int		blksz = XFS_FSB_TO_B(mp, 1);
221	unsigned int		rtbmp_bytes;
222
223	rtbmp_bytes = (XFS_MAX_BMBT_EXTLEN / mp->m_sb.sb_rextsize) / NBBY;
224	return (howmany(rtbmp_bytes, blksz) + 1) * num_ops;
225}
226
227/*
228 * Various log reservation values.
229 *
230 * These are based on the size of the file system block because that is what
231 * most transactions manipulate.  Each adds in an additional 128 bytes per
232 * item logged to try to account for the overhead of the transaction mechanism.
233 *
234 * Note:  Most of the reservations underestimate the number of allocation
235 * groups into which they could free extents in the xfs_defer_finish() call.
236 * This is because the number in the worst case is quite high and quite
237 * unusual.  In order to fix this we need to change xfs_defer_finish() to free
238 * extents in only a single AG at a time.  This will require changes to the
239 * EFI code as well, however, so that the EFI for the extents not freed is
240 * logged again in each transaction.  See SGI PV #261917.
241 *
242 * Reservation functions here avoid a huge stack in xfs_trans_init due to
243 * register overflow from temporaries in the calculations.
244 */
245
246/*
247 * Compute the log reservation required to handle the refcount update
248 * transaction.  Refcount updates are always done via deferred log items.
249 *
250 * This is calculated as:
251 * Data device refcount updates (t1):
252 *    the agfs of the ags containing the blocks: nr_ops * sector size
253 *    the refcount btrees: nr_ops * 1 trees * (2 * max depth - 1) * block size
254 */
255static unsigned int
256xfs_calc_refcountbt_reservation(
257	struct xfs_mount	*mp,
258	unsigned int		nr_ops)
259{
260	unsigned int		blksz = XFS_FSB_TO_B(mp, 1);
261
262	if (!xfs_has_reflink(mp))
263		return 0;
264
265	return xfs_calc_buf_res(nr_ops, mp->m_sb.sb_sectsize) +
266	       xfs_calc_buf_res(xfs_refcountbt_block_count(mp, nr_ops), blksz);
267}
268
269/*
270 * In a write transaction we can allocate a maximum of 2
271 * extents.  This gives (t1):
272 *    the inode getting the new extents: inode size
273 *    the inode's bmap btree: max depth * block size
274 *    the agfs of the ags from which the extents are allocated: 2 * sector
275 *    the superblock free block counter: sector size
276 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
277 * Or, if we're writing to a realtime file (t2):
278 *    the inode getting the new extents: inode size
279 *    the inode's bmap btree: max depth * block size
280 *    the agfs of the ags from which the extents are allocated: 2 * sector
281 *    the superblock free block counter: sector size
282 *    the realtime bitmap: ((XFS_BMBT_MAX_EXTLEN / rtextsize) / NBBY) bytes
283 *    the realtime summary: 1 block
284 *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
285 * And the bmap_finish transaction can free bmap blocks in a join (t3):
286 *    the agfs of the ags containing the blocks: 2 * sector size
287 *    the agfls of the ags containing the blocks: 2 * sector size
288 *    the super block free block counter: sector size
289 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
290 * And any refcount updates that happen in a separate transaction (t4).
291 */
292STATIC uint
293xfs_calc_write_reservation(
294	struct xfs_mount	*mp,
295	bool			for_minlogsize)
296{
297	unsigned int		t1, t2, t3, t4;
298	unsigned int		blksz = XFS_FSB_TO_B(mp, 1);
299
300	t1 = xfs_calc_inode_res(mp, 1) +
301	     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), blksz) +
302	     xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
303	     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2), blksz);
304
305	if (xfs_has_realtime(mp)) {
306		t2 = xfs_calc_inode_res(mp, 1) +
307		     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
308				     blksz) +
309		     xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
310		     xfs_calc_buf_res(xfs_rtalloc_block_count(mp, 1), blksz) +
311		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1), blksz);
312	} else {
313		t2 = 0;
314	}
315
316	t3 = xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
317	     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2), blksz);
318
319	/*
320	 * In the early days of reflink, we included enough reservation to log
321	 * two refcountbt splits for each transaction.  The codebase runs
322	 * refcountbt updates in separate transactions now, so to compute the
323	 * minimum log size, add the refcountbtree splits back to t1 and t3 and
324	 * do not account them separately as t4.  Reflink did not support
325	 * realtime when the reservations were established, so no adjustment to
326	 * t2 is needed.
327	 */
328	if (for_minlogsize) {
329		unsigned int	adj = 0;
330
331		if (xfs_has_reflink(mp))
332			adj = xfs_calc_buf_res(
333					xfs_refcountbt_block_count(mp, 2),
334					blksz);
335		t1 += adj;
336		t3 += adj;
337		return XFS_DQUOT_LOGRES(mp) + max3(t1, t2, t3);
338	}
339
340	t4 = xfs_calc_refcountbt_reservation(mp, 1);
341	return XFS_DQUOT_LOGRES(mp) + max(t4, max3(t1, t2, t3));
342}
343
344unsigned int
345xfs_calc_write_reservation_minlogsize(
346	struct xfs_mount	*mp)
347{
348	return xfs_calc_write_reservation(mp, true);
349}
350
351/*
352 * In truncating a file we free up to two extents at once.  We can modify (t1):
353 *    the inode being truncated: inode size
354 *    the inode's bmap btree: (max depth + 1) * block size
355 * And the bmap_finish transaction can free the blocks and bmap blocks (t2):
356 *    the agf for each of the ags: 4 * sector size
357 *    the agfl for each of the ags: 4 * sector size
358 *    the super block to reflect the freed blocks: sector size
359 *    worst case split in allocation btrees per extent assuming 4 extents:
360 *		4 exts * 2 trees * (2 * max depth - 1) * block size
361 * Or, if it's a realtime file (t3):
362 *    the agf for each of the ags: 2 * sector size
363 *    the agfl for each of the ags: 2 * sector size
364 *    the super block to reflect the freed blocks: sector size
365 *    the realtime bitmap:
366 *		2 exts * ((XFS_BMBT_MAX_EXTLEN / rtextsize) / NBBY) bytes
367 *    the realtime summary: 2 exts * 1 block
368 *    worst case split in allocation btrees per extent assuming 2 extents:
369 *		2 exts * 2 trees * (2 * max depth - 1) * block size
370 * And any refcount updates that happen in a separate transaction (t4).
371 */
372STATIC uint
373xfs_calc_itruncate_reservation(
374	struct xfs_mount	*mp,
375	bool			for_minlogsize)
376{
377	unsigned int		t1, t2, t3, t4;
378	unsigned int		blksz = XFS_FSB_TO_B(mp, 1);
379
380	t1 = xfs_calc_inode_res(mp, 1) +
381	     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1, blksz);
382
383	t2 = xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
384	     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 4), blksz);
385
386	if (xfs_has_realtime(mp)) {
387		t3 = xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
388		     xfs_calc_buf_res(xfs_rtalloc_block_count(mp, 2), blksz) +
389		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2), blksz);
390	} else {
391		t3 = 0;
392	}
393
394	/*
395	 * In the early days of reflink, we included enough reservation to log
396	 * four refcountbt splits in the same transaction as bnobt/cntbt
397	 * updates.  The codebase runs refcountbt updates in separate
398	 * transactions now, so to compute the minimum log size, add the
399	 * refcount btree splits back here and do not compute them separately
400	 * as t4.  Reflink did not support realtime when the reservations were
401	 * established, so do not adjust t3.
402	 */
403	if (for_minlogsize) {
404		if (xfs_has_reflink(mp))
405			t2 += xfs_calc_buf_res(
406					xfs_refcountbt_block_count(mp, 4),
407					blksz);
408
409		return XFS_DQUOT_LOGRES(mp) + max3(t1, t2, t3);
410	}
411
412	t4 = xfs_calc_refcountbt_reservation(mp, 2);
413	return XFS_DQUOT_LOGRES(mp) + max(t4, max3(t1, t2, t3));
414}
415
416unsigned int
417xfs_calc_itruncate_reservation_minlogsize(
418	struct xfs_mount	*mp)
419{
420	return xfs_calc_itruncate_reservation(mp, true);
421}
422
423/*
424 * In renaming a files we can modify:
425 *    the five inodes involved: 5 * inode size
426 *    the two directory btrees: 2 * (max depth + v2) * dir block size
427 *    the two directory bmap btrees: 2 * max depth * block size
428 * And the bmap_finish transaction can free dir and bmap blocks (two sets
429 *	of bmap blocks) giving:
430 *    the agf for the ags in which the blocks live: 3 * sector size
431 *    the agfl for the ags in which the blocks live: 3 * sector size
432 *    the superblock for the free block count: sector size
433 *    the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
434 */
435STATIC uint
436xfs_calc_rename_reservation(
437	struct xfs_mount	*mp)
438{
439	return XFS_DQUOT_LOGRES(mp) +
440		max((xfs_calc_inode_res(mp, 5) +
441		     xfs_calc_buf_res(2 * XFS_DIROP_LOG_COUNT(mp),
442				      XFS_FSB_TO_B(mp, 1))),
443		    (xfs_calc_buf_res(7, mp->m_sb.sb_sectsize) +
444		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 3),
445				      XFS_FSB_TO_B(mp, 1))));
446}
447
448/*
449 * For removing an inode from unlinked list at first, we can modify:
450 *    the agi hash list and counters: sector size
451 *    the on disk inode before ours in the agi hash list: inode cluster size
452 *    the on disk inode in the agi hash list: inode cluster size
453 */
454STATIC uint
455xfs_calc_iunlink_remove_reservation(
456	struct xfs_mount        *mp)
457{
458	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
459	       2 * M_IGEO(mp)->inode_cluster_size;
460}
461
462/*
463 * For creating a link to an inode:
464 *    the parent directory inode: inode size
465 *    the linked inode: inode size
466 *    the directory btree could split: (max depth + v2) * dir block size
467 *    the directory bmap btree could join or split: (max depth + v2) * blocksize
468 * And the bmap_finish transaction can free some bmap blocks giving:
469 *    the agf for the ag in which the blocks live: sector size
470 *    the agfl for the ag in which the blocks live: sector size
471 *    the superblock for the free block count: sector size
472 *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
473 */
474STATIC uint
475xfs_calc_link_reservation(
476	struct xfs_mount	*mp)
477{
478	return XFS_DQUOT_LOGRES(mp) +
479		xfs_calc_iunlink_remove_reservation(mp) +
480		max((xfs_calc_inode_res(mp, 2) +
481		     xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
482				      XFS_FSB_TO_B(mp, 1))),
483		    (xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
484		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
485				      XFS_FSB_TO_B(mp, 1))));
486}
487
488/*
489 * For adding an inode to unlinked list we can modify:
490 *    the agi hash list: sector size
491 *    the on disk inode: inode cluster size
492 */
493STATIC uint
494xfs_calc_iunlink_add_reservation(xfs_mount_t *mp)
495{
496	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
497			M_IGEO(mp)->inode_cluster_size;
498}
499
500/*
501 * For removing a directory entry we can modify:
502 *    the parent directory inode: inode size
503 *    the removed inode: inode size
504 *    the directory btree could join: (max depth + v2) * dir block size
505 *    the directory bmap btree could join or split: (max depth + v2) * blocksize
506 * And the bmap_finish transaction can free the dir and bmap blocks giving:
507 *    the agf for the ag in which the blocks live: 2 * sector size
508 *    the agfl for the ag in which the blocks live: 2 * sector size
509 *    the superblock for the free block count: sector size
510 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
511 */
512STATIC uint
513xfs_calc_remove_reservation(
514	struct xfs_mount	*mp)
515{
516	return XFS_DQUOT_LOGRES(mp) +
517		xfs_calc_iunlink_add_reservation(mp) +
518		max((xfs_calc_inode_res(mp, 2) +
519		     xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
520				      XFS_FSB_TO_B(mp, 1))),
521		    (xfs_calc_buf_res(4, mp->m_sb.sb_sectsize) +
522		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2),
523				      XFS_FSB_TO_B(mp, 1))));
524}
525
526/*
527 * For create, break it in to the two cases that the transaction
528 * covers. We start with the modify case - allocation done by modification
529 * of the state of existing inodes - and the allocation case.
530 */
531
532/*
533 * For create we can modify:
534 *    the parent directory inode: inode size
535 *    the new inode: inode size
536 *    the inode btree entry: block size
537 *    the superblock for the nlink flag: sector size
538 *    the directory btree: (max depth + v2) * dir block size
539 *    the directory inode's bmap btree: (max depth + v2) * block size
540 *    the finobt (record modification and allocation btrees)
541 */
542STATIC uint
543xfs_calc_create_resv_modify(
544	struct xfs_mount	*mp)
545{
546	return xfs_calc_inode_res(mp, 2) +
547		xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
548		(uint)XFS_FSB_TO_B(mp, 1) +
549		xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp), XFS_FSB_TO_B(mp, 1)) +
550		xfs_calc_finobt_res(mp);
551}
552
553/*
554 * For icreate we can allocate some inodes giving:
555 *    the agi and agf of the ag getting the new inodes: 2 * sectorsize
556 *    the superblock for the nlink flag: sector size
557 *    the inode chunk (allocation, optional init)
558 *    the inobt (record insertion)
559 *    the finobt (optional, record insertion)
560 */
561STATIC uint
562xfs_calc_icreate_resv_alloc(
563	struct xfs_mount	*mp)
564{
565	return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
566		mp->m_sb.sb_sectsize +
567		xfs_calc_inode_chunk_res(mp, _ALLOC) +
568		xfs_calc_inobt_res(mp) +
569		xfs_calc_finobt_res(mp);
570}
571
572STATIC uint
573xfs_calc_icreate_reservation(xfs_mount_t *mp)
574{
575	return XFS_DQUOT_LOGRES(mp) +
576		max(xfs_calc_icreate_resv_alloc(mp),
577		    xfs_calc_create_resv_modify(mp));
578}
579
580STATIC uint
581xfs_calc_create_tmpfile_reservation(
582	struct xfs_mount        *mp)
583{
584	uint	res = XFS_DQUOT_LOGRES(mp);
585
586	res += xfs_calc_icreate_resv_alloc(mp);
587	return res + xfs_calc_iunlink_add_reservation(mp);
588}
589
590/*
591 * Making a new directory is the same as creating a new file.
592 */
593STATIC uint
594xfs_calc_mkdir_reservation(
595	struct xfs_mount	*mp)
596{
597	return xfs_calc_icreate_reservation(mp);
598}
599
600
601/*
602 * Making a new symplink is the same as creating a new file, but
603 * with the added blocks for remote symlink data which can be up to 1kB in
604 * length (XFS_SYMLINK_MAXLEN).
605 */
606STATIC uint
607xfs_calc_symlink_reservation(
608	struct xfs_mount	*mp)
609{
610	return xfs_calc_icreate_reservation(mp) +
611	       xfs_calc_buf_res(1, XFS_SYMLINK_MAXLEN);
612}
613
614/*
615 * In freeing an inode we can modify:
616 *    the inode being freed: inode size
617 *    the super block free inode counter, AGF and AGFL: sector size
618 *    the on disk inode (agi unlinked list removal)
619 *    the inode chunk (invalidated, headers only)
620 *    the inode btree
621 *    the finobt (record insertion, removal or modification)
622 *
623 * Note that the inode chunk res. includes an allocfree res. for freeing of the
624 * inode chunk. This is technically extraneous because the inode chunk free is
625 * deferred (it occurs after a transaction roll). Include the extra reservation
626 * anyways since we've had reports of ifree transaction overruns due to too many
627 * agfl fixups during inode chunk frees.
628 */
629STATIC uint
630xfs_calc_ifree_reservation(
631	struct xfs_mount	*mp)
632{
633	return XFS_DQUOT_LOGRES(mp) +
634		xfs_calc_inode_res(mp, 1) +
635		xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
636		xfs_calc_iunlink_remove_reservation(mp) +
637		xfs_calc_inode_chunk_res(mp, _FREE) +
638		xfs_calc_inobt_res(mp) +
639		xfs_calc_finobt_res(mp);
640}
641
642/*
643 * When only changing the inode we log the inode and possibly the superblock
644 * We also add a bit of slop for the transaction stuff.
645 */
646STATIC uint
647xfs_calc_ichange_reservation(
648	struct xfs_mount	*mp)
649{
650	return XFS_DQUOT_LOGRES(mp) +
651		xfs_calc_inode_res(mp, 1) +
652		xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
653
654}
655
656/*
657 * Growing the data section of the filesystem.
658 *	superblock
659 *	agi and agf
660 *	allocation btrees
661 */
662STATIC uint
663xfs_calc_growdata_reservation(
664	struct xfs_mount	*mp)
665{
666	return xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
667		xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
668				 XFS_FSB_TO_B(mp, 1));
669}
670
671/*
672 * Growing the rt section of the filesystem.
673 * In the first set of transactions (ALLOC) we allocate space to the
674 * bitmap or summary files.
675 *	superblock: sector size
676 *	agf of the ag from which the extent is allocated: sector size
677 *	bmap btree for bitmap/summary inode: max depth * blocksize
678 *	bitmap/summary inode: inode size
679 *	allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
680 */
681STATIC uint
682xfs_calc_growrtalloc_reservation(
683	struct xfs_mount	*mp)
684{
685	return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
686		xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
687				 XFS_FSB_TO_B(mp, 1)) +
688		xfs_calc_inode_res(mp, 1) +
689		xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
690				 XFS_FSB_TO_B(mp, 1));
691}
692
693/*
694 * Growing the rt section of the filesystem.
695 * In the second set of transactions (ZERO) we zero the new metadata blocks.
696 *	one bitmap/summary block: blocksize
697 */
698STATIC uint
699xfs_calc_growrtzero_reservation(
700	struct xfs_mount	*mp)
701{
702	return xfs_calc_buf_res(1, mp->m_sb.sb_blocksize);
703}
704
705/*
706 * Growing the rt section of the filesystem.
707 * In the third set of transactions (FREE) we update metadata without
708 * allocating any new blocks.
709 *	superblock: sector size
710 *	bitmap inode: inode size
711 *	summary inode: inode size
712 *	one bitmap block: blocksize
713 *	summary blocks: new summary size
714 */
715STATIC uint
716xfs_calc_growrtfree_reservation(
717	struct xfs_mount	*mp)
718{
719	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
720		xfs_calc_inode_res(mp, 2) +
721		xfs_calc_buf_res(1, mp->m_sb.sb_blocksize) +
722		xfs_calc_buf_res(1, mp->m_rsumsize);
723}
724
725/*
726 * Logging the inode modification timestamp on a synchronous write.
727 *	inode
728 */
729STATIC uint
730xfs_calc_swrite_reservation(
731	struct xfs_mount	*mp)
732{
733	return xfs_calc_inode_res(mp, 1);
734}
735
736/*
737 * Logging the inode mode bits when writing a setuid/setgid file
738 *	inode
739 */
740STATIC uint
741xfs_calc_writeid_reservation(
742	struct xfs_mount	*mp)
743{
744	return xfs_calc_inode_res(mp, 1);
745}
746
747/*
748 * Converting the inode from non-attributed to attributed.
749 *	the inode being converted: inode size
750 *	agf block and superblock (for block allocation)
751 *	the new block (directory sized)
752 *	bmap blocks for the new directory block
753 *	allocation btrees
754 */
755STATIC uint
756xfs_calc_addafork_reservation(
757	struct xfs_mount	*mp)
758{
759	return XFS_DQUOT_LOGRES(mp) +
760		xfs_calc_inode_res(mp, 1) +
761		xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
762		xfs_calc_buf_res(1, mp->m_dir_geo->blksize) +
763		xfs_calc_buf_res(XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1,
764				 XFS_FSB_TO_B(mp, 1)) +
765		xfs_calc_buf_res(xfs_allocfree_block_count(mp, 1),
766				 XFS_FSB_TO_B(mp, 1));
767}
768
769/*
770 * Removing the attribute fork of a file
771 *    the inode being truncated: inode size
772 *    the inode's bmap btree: max depth * block size
773 * And the bmap_finish transaction can free the blocks and bmap blocks:
774 *    the agf for each of the ags: 4 * sector size
775 *    the agfl for each of the ags: 4 * sector size
776 *    the super block to reflect the freed blocks: sector size
777 *    worst case split in allocation btrees per extent assuming 4 extents:
778 *		4 exts * 2 trees * (2 * max depth - 1) * block size
779 */
780STATIC uint
781xfs_calc_attrinval_reservation(
782	struct xfs_mount	*mp)
783{
784	return max((xfs_calc_inode_res(mp, 1) +
785		    xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
786				     XFS_FSB_TO_B(mp, 1))),
787		   (xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
788		    xfs_calc_buf_res(xfs_allocfree_block_count(mp, 4),
789				     XFS_FSB_TO_B(mp, 1))));
790}
791
792/*
793 * Setting an attribute at mount time.
794 *	the inode getting the attribute
795 *	the superblock for allocations
796 *	the agfs extents are allocated from
797 *	the attribute btree * max depth
798 *	the inode allocation btree
799 * Since attribute transaction space is dependent on the size of the attribute,
800 * the calculation is done partially at mount time and partially at runtime(see
801 * below).
802 */
803STATIC uint
804xfs_calc_attrsetm_reservation(
805	struct xfs_mount	*mp)
806{
807	return XFS_DQUOT_LOGRES(mp) +
808		xfs_calc_inode_res(mp, 1) +
809		xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
810		xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH, XFS_FSB_TO_B(mp, 1));
811}
812
813/*
814 * Setting an attribute at runtime, transaction space unit per block.
815 * 	the superblock for allocations: sector size
816 *	the inode bmap btree could join or split: max depth * block size
817 * Since the runtime attribute transaction space is dependent on the total
818 * blocks needed for the 1st bmap, here we calculate out the space unit for
819 * one block so that the caller could figure out the total space according
820 * to the attibute extent length in blocks by:
821 *	ext * M_RES(mp)->tr_attrsetrt.tr_logres
822 */
823STATIC uint
824xfs_calc_attrsetrt_reservation(
825	struct xfs_mount	*mp)
826{
827	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
828		xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
829				 XFS_FSB_TO_B(mp, 1));
830}
831
832/*
833 * Removing an attribute.
834 *    the inode: inode size
835 *    the attribute btree could join: max depth * block size
836 *    the inode bmap btree could join or split: max depth * block size
837 * And the bmap_finish transaction can free the attr blocks freed giving:
838 *    the agf for the ag in which the blocks live: 2 * sector size
839 *    the agfl for the ag in which the blocks live: 2 * sector size
840 *    the superblock for the free block count: sector size
841 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
842 */
843STATIC uint
844xfs_calc_attrrm_reservation(
845	struct xfs_mount	*mp)
846{
847	return XFS_DQUOT_LOGRES(mp) +
848		max((xfs_calc_inode_res(mp, 1) +
849		     xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH,
850				      XFS_FSB_TO_B(mp, 1)) +
851		     (uint)XFS_FSB_TO_B(mp,
852					XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
853		     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), 0)),
854		    (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
855		     xfs_calc_buf_res(xfs_allocfree_block_count(mp, 2),
856				      XFS_FSB_TO_B(mp, 1))));
857}
858
859/*
860 * Clearing a bad agino number in an agi hash bucket.
861 */
862STATIC uint
863xfs_calc_clear_agi_bucket_reservation(
864	struct xfs_mount	*mp)
865{
866	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
867}
868
869/*
870 * Adjusting quota limits.
871 *    the disk quota buffer: sizeof(struct xfs_disk_dquot)
872 */
873STATIC uint
874xfs_calc_qm_setqlim_reservation(void)
875{
876	return xfs_calc_buf_res(1, sizeof(struct xfs_disk_dquot));
877}
878
879/*
880 * Allocating quota on disk if needed.
881 *	the write transaction log space for quota file extent allocation
882 *	the unit of quota allocation: one system block size
883 */
884STATIC uint
885xfs_calc_qm_dqalloc_reservation(
886	struct xfs_mount	*mp,
887	bool			for_minlogsize)
888{
889	return xfs_calc_write_reservation(mp, for_minlogsize) +
890		xfs_calc_buf_res(1,
891			XFS_FSB_TO_B(mp, XFS_DQUOT_CLUSTER_SIZE_FSB) - 1);
892}
893
894unsigned int
895xfs_calc_qm_dqalloc_reservation_minlogsize(
896	struct xfs_mount	*mp)
897{
898	return xfs_calc_qm_dqalloc_reservation(mp, true);
899}
900
901/*
902 * Syncing the incore super block changes to disk.
903 *     the super block to reflect the changes: sector size
904 */
905STATIC uint
906xfs_calc_sb_reservation(
907	struct xfs_mount	*mp)
908{
909	return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
910}
911
912void
913xfs_trans_resv_calc(
914	struct xfs_mount	*mp,
915	struct xfs_trans_resv	*resp)
916{
917	int			logcount_adj = 0;
918
919	/*
920	 * The following transactions are logged in physical format and
921	 * require a permanent reservation on space.
922	 */
923	resp->tr_write.tr_logres = xfs_calc_write_reservation(mp, false);
924	resp->tr_write.tr_logcount = XFS_WRITE_LOG_COUNT;
925	resp->tr_write.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
926
927	resp->tr_itruncate.tr_logres = xfs_calc_itruncate_reservation(mp, false);
928	resp->tr_itruncate.tr_logcount = XFS_ITRUNCATE_LOG_COUNT;
929	resp->tr_itruncate.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
930
931	resp->tr_rename.tr_logres = xfs_calc_rename_reservation(mp);
932	resp->tr_rename.tr_logcount = XFS_RENAME_LOG_COUNT;
933	resp->tr_rename.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
934
935	resp->tr_link.tr_logres = xfs_calc_link_reservation(mp);
936	resp->tr_link.tr_logcount = XFS_LINK_LOG_COUNT;
937	resp->tr_link.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
938
939	resp->tr_remove.tr_logres = xfs_calc_remove_reservation(mp);
940	resp->tr_remove.tr_logcount = XFS_REMOVE_LOG_COUNT;
941	resp->tr_remove.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
942
943	resp->tr_symlink.tr_logres = xfs_calc_symlink_reservation(mp);
944	resp->tr_symlink.tr_logcount = XFS_SYMLINK_LOG_COUNT;
945	resp->tr_symlink.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
946
947	resp->tr_create.tr_logres = xfs_calc_icreate_reservation(mp);
948	resp->tr_create.tr_logcount = XFS_CREATE_LOG_COUNT;
949	resp->tr_create.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
950
951	resp->tr_create_tmpfile.tr_logres =
952			xfs_calc_create_tmpfile_reservation(mp);
953	resp->tr_create_tmpfile.tr_logcount = XFS_CREATE_TMPFILE_LOG_COUNT;
954	resp->tr_create_tmpfile.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
955
956	resp->tr_mkdir.tr_logres = xfs_calc_mkdir_reservation(mp);
957	resp->tr_mkdir.tr_logcount = XFS_MKDIR_LOG_COUNT;
958	resp->tr_mkdir.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
959
960	resp->tr_ifree.tr_logres = xfs_calc_ifree_reservation(mp);
961	resp->tr_ifree.tr_logcount = XFS_INACTIVE_LOG_COUNT;
962	resp->tr_ifree.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
963
964	resp->tr_addafork.tr_logres = xfs_calc_addafork_reservation(mp);
965	resp->tr_addafork.tr_logcount = XFS_ADDAFORK_LOG_COUNT;
966	resp->tr_addafork.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
967
968	resp->tr_attrinval.tr_logres = xfs_calc_attrinval_reservation(mp);
969	resp->tr_attrinval.tr_logcount = XFS_ATTRINVAL_LOG_COUNT;
970	resp->tr_attrinval.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
971
972	resp->tr_attrsetm.tr_logres = xfs_calc_attrsetm_reservation(mp);
973	resp->tr_attrsetm.tr_logcount = XFS_ATTRSET_LOG_COUNT;
974	resp->tr_attrsetm.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
975
976	resp->tr_attrrm.tr_logres = xfs_calc_attrrm_reservation(mp);
977	resp->tr_attrrm.tr_logcount = XFS_ATTRRM_LOG_COUNT;
978	resp->tr_attrrm.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
979
980	resp->tr_growrtalloc.tr_logres = xfs_calc_growrtalloc_reservation(mp);
981	resp->tr_growrtalloc.tr_logcount = XFS_DEFAULT_PERM_LOG_COUNT;
982	resp->tr_growrtalloc.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
983
984	resp->tr_qm_dqalloc.tr_logres = xfs_calc_qm_dqalloc_reservation(mp,
985			false);
986	resp->tr_qm_dqalloc.tr_logcount = XFS_WRITE_LOG_COUNT;
987	resp->tr_qm_dqalloc.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
988
989	/*
990	 * The following transactions are logged in logical format with
991	 * a default log count.
992	 */
993	resp->tr_qm_setqlim.tr_logres = xfs_calc_qm_setqlim_reservation();
994	resp->tr_qm_setqlim.tr_logcount = XFS_DEFAULT_LOG_COUNT;
995
996	resp->tr_sb.tr_logres = xfs_calc_sb_reservation(mp);
997	resp->tr_sb.tr_logcount = XFS_DEFAULT_LOG_COUNT;
998
999	/* growdata requires permanent res; it can free space to the last AG */
1000	resp->tr_growdata.tr_logres = xfs_calc_growdata_reservation(mp);
1001	resp->tr_growdata.tr_logcount = XFS_DEFAULT_PERM_LOG_COUNT;
1002	resp->tr_growdata.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
1003
1004	/* The following transaction are logged in logical format */
1005	resp->tr_ichange.tr_logres = xfs_calc_ichange_reservation(mp);
1006	resp->tr_fsyncts.tr_logres = xfs_calc_swrite_reservation(mp);
1007	resp->tr_writeid.tr_logres = xfs_calc_writeid_reservation(mp);
1008	resp->tr_attrsetrt.tr_logres = xfs_calc_attrsetrt_reservation(mp);
1009	resp->tr_clearagi.tr_logres = xfs_calc_clear_agi_bucket_reservation(mp);
1010	resp->tr_growrtzero.tr_logres = xfs_calc_growrtzero_reservation(mp);
1011	resp->tr_growrtfree.tr_logres = xfs_calc_growrtfree_reservation(mp);
1012
1013	/*
1014	 * Add one logcount for BUI items that appear with rmap or reflink,
1015	 * one logcount for refcount intent items, and one logcount for rmap
1016	 * intent items.
1017	 */
1018	if (xfs_has_reflink(mp) || xfs_has_rmapbt(mp))
1019		logcount_adj++;
1020	if (xfs_has_reflink(mp))
1021		logcount_adj++;
1022	if (xfs_has_rmapbt(mp))
1023		logcount_adj++;
1024
1025	resp->tr_itruncate.tr_logcount += logcount_adj;
1026	resp->tr_write.tr_logcount += logcount_adj;
1027	resp->tr_qm_dqalloc.tr_logcount += logcount_adj;
1028}
1029