162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci * Copyright (c) 2014 Red Hat, Inc.
462306a36Sopenharmony_ci * All Rights Reserved.
562306a36Sopenharmony_ci */
662306a36Sopenharmony_ci#include "xfs.h"
762306a36Sopenharmony_ci#include "xfs_fs.h"
862306a36Sopenharmony_ci#include "xfs_shared.h"
962306a36Sopenharmony_ci#include "xfs_format.h"
1062306a36Sopenharmony_ci#include "xfs_log_format.h"
1162306a36Sopenharmony_ci#include "xfs_trans_resv.h"
1262306a36Sopenharmony_ci#include "xfs_mount.h"
1362306a36Sopenharmony_ci#include "xfs_trans.h"
1462306a36Sopenharmony_ci#include "xfs_alloc.h"
1562306a36Sopenharmony_ci#include "xfs_btree.h"
1662306a36Sopenharmony_ci#include "xfs_btree_staging.h"
1762306a36Sopenharmony_ci#include "xfs_rmap.h"
1862306a36Sopenharmony_ci#include "xfs_rmap_btree.h"
1962306a36Sopenharmony_ci#include "xfs_trace.h"
2062306a36Sopenharmony_ci#include "xfs_error.h"
2162306a36Sopenharmony_ci#include "xfs_extent_busy.h"
2262306a36Sopenharmony_ci#include "xfs_ag.h"
2362306a36Sopenharmony_ci#include "xfs_ag_resv.h"
2462306a36Sopenharmony_ci
2562306a36Sopenharmony_cistatic struct kmem_cache	*xfs_rmapbt_cur_cache;
2662306a36Sopenharmony_ci
2762306a36Sopenharmony_ci/*
2862306a36Sopenharmony_ci * Reverse map btree.
2962306a36Sopenharmony_ci *
3062306a36Sopenharmony_ci * This is a per-ag tree used to track the owner(s) of a given extent. With
3162306a36Sopenharmony_ci * reflink it is possible for there to be multiple owners, which is a departure
3262306a36Sopenharmony_ci * from classic XFS. Owner records for data extents are inserted when the
3362306a36Sopenharmony_ci * extent is mapped and removed when an extent is unmapped.  Owner records for
3462306a36Sopenharmony_ci * all other block types (i.e. metadata) are inserted when an extent is
3562306a36Sopenharmony_ci * allocated and removed when an extent is freed. There can only be one owner
3662306a36Sopenharmony_ci * of a metadata extent, usually an inode or some other metadata structure like
3762306a36Sopenharmony_ci * an AG btree.
3862306a36Sopenharmony_ci *
3962306a36Sopenharmony_ci * The rmap btree is part of the free space management, so blocks for the tree
4062306a36Sopenharmony_ci * are sourced from the agfl. Hence we need transaction reservation support for
4162306a36Sopenharmony_ci * this tree so that the freelist is always large enough. This also impacts on
4262306a36Sopenharmony_ci * the minimum space we need to leave free in the AG.
4362306a36Sopenharmony_ci *
4462306a36Sopenharmony_ci * The tree is ordered by [ag block, owner, offset]. This is a large key size,
4562306a36Sopenharmony_ci * but it is the only way to enforce unique keys when a block can be owned by
4662306a36Sopenharmony_ci * multiple files at any offset. There's no need to order/search by extent
4762306a36Sopenharmony_ci * size for online updating/management of the tree. It is intended that most
4862306a36Sopenharmony_ci * reverse lookups will be to find the owner(s) of a particular block, or to
4962306a36Sopenharmony_ci * try to recover tree and file data from corrupt primary metadata.
5062306a36Sopenharmony_ci */
5162306a36Sopenharmony_ci
5262306a36Sopenharmony_cistatic struct xfs_btree_cur *
5362306a36Sopenharmony_cixfs_rmapbt_dup_cursor(
5462306a36Sopenharmony_ci	struct xfs_btree_cur	*cur)
5562306a36Sopenharmony_ci{
5662306a36Sopenharmony_ci	return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
5762306a36Sopenharmony_ci				cur->bc_ag.agbp, cur->bc_ag.pag);
5862306a36Sopenharmony_ci}
5962306a36Sopenharmony_ci
6062306a36Sopenharmony_ciSTATIC void
6162306a36Sopenharmony_cixfs_rmapbt_set_root(
6262306a36Sopenharmony_ci	struct xfs_btree_cur		*cur,
6362306a36Sopenharmony_ci	const union xfs_btree_ptr	*ptr,
6462306a36Sopenharmony_ci	int				inc)
6562306a36Sopenharmony_ci{
6662306a36Sopenharmony_ci	struct xfs_buf		*agbp = cur->bc_ag.agbp;
6762306a36Sopenharmony_ci	struct xfs_agf		*agf = agbp->b_addr;
6862306a36Sopenharmony_ci	int			btnum = cur->bc_btnum;
6962306a36Sopenharmony_ci
7062306a36Sopenharmony_ci	ASSERT(ptr->s != 0);
7162306a36Sopenharmony_ci
7262306a36Sopenharmony_ci	agf->agf_roots[btnum] = ptr->s;
7362306a36Sopenharmony_ci	be32_add_cpu(&agf->agf_levels[btnum], inc);
7462306a36Sopenharmony_ci	cur->bc_ag.pag->pagf_levels[btnum] += inc;
7562306a36Sopenharmony_ci
7662306a36Sopenharmony_ci	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
7762306a36Sopenharmony_ci}
7862306a36Sopenharmony_ci
7962306a36Sopenharmony_ciSTATIC int
8062306a36Sopenharmony_cixfs_rmapbt_alloc_block(
8162306a36Sopenharmony_ci	struct xfs_btree_cur		*cur,
8262306a36Sopenharmony_ci	const union xfs_btree_ptr	*start,
8362306a36Sopenharmony_ci	union xfs_btree_ptr		*new,
8462306a36Sopenharmony_ci	int				*stat)
8562306a36Sopenharmony_ci{
8662306a36Sopenharmony_ci	struct xfs_buf		*agbp = cur->bc_ag.agbp;
8762306a36Sopenharmony_ci	struct xfs_agf		*agf = agbp->b_addr;
8862306a36Sopenharmony_ci	struct xfs_perag	*pag = cur->bc_ag.pag;
8962306a36Sopenharmony_ci	int			error;
9062306a36Sopenharmony_ci	xfs_agblock_t		bno;
9162306a36Sopenharmony_ci
9262306a36Sopenharmony_ci	/* Allocate the new block from the freelist. If we can't, give up.  */
9362306a36Sopenharmony_ci	error = xfs_alloc_get_freelist(pag, cur->bc_tp, cur->bc_ag.agbp,
9462306a36Sopenharmony_ci				       &bno, 1);
9562306a36Sopenharmony_ci	if (error)
9662306a36Sopenharmony_ci		return error;
9762306a36Sopenharmony_ci
9862306a36Sopenharmony_ci	trace_xfs_rmapbt_alloc_block(cur->bc_mp, pag->pag_agno, bno, 1);
9962306a36Sopenharmony_ci	if (bno == NULLAGBLOCK) {
10062306a36Sopenharmony_ci		*stat = 0;
10162306a36Sopenharmony_ci		return 0;
10262306a36Sopenharmony_ci	}
10362306a36Sopenharmony_ci
10462306a36Sopenharmony_ci	xfs_extent_busy_reuse(cur->bc_mp, pag, bno, 1, false);
10562306a36Sopenharmony_ci
10662306a36Sopenharmony_ci	new->s = cpu_to_be32(bno);
10762306a36Sopenharmony_ci	be32_add_cpu(&agf->agf_rmap_blocks, 1);
10862306a36Sopenharmony_ci	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
10962306a36Sopenharmony_ci
11062306a36Sopenharmony_ci	xfs_ag_resv_rmapbt_alloc(cur->bc_mp, pag->pag_agno);
11162306a36Sopenharmony_ci
11262306a36Sopenharmony_ci	*stat = 1;
11362306a36Sopenharmony_ci	return 0;
11462306a36Sopenharmony_ci}
11562306a36Sopenharmony_ci
11662306a36Sopenharmony_ciSTATIC int
11762306a36Sopenharmony_cixfs_rmapbt_free_block(
11862306a36Sopenharmony_ci	struct xfs_btree_cur	*cur,
11962306a36Sopenharmony_ci	struct xfs_buf		*bp)
12062306a36Sopenharmony_ci{
12162306a36Sopenharmony_ci	struct xfs_buf		*agbp = cur->bc_ag.agbp;
12262306a36Sopenharmony_ci	struct xfs_agf		*agf = agbp->b_addr;
12362306a36Sopenharmony_ci	struct xfs_perag	*pag = cur->bc_ag.pag;
12462306a36Sopenharmony_ci	xfs_agblock_t		bno;
12562306a36Sopenharmony_ci	int			error;
12662306a36Sopenharmony_ci
12762306a36Sopenharmony_ci	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
12862306a36Sopenharmony_ci	trace_xfs_rmapbt_free_block(cur->bc_mp, pag->pag_agno,
12962306a36Sopenharmony_ci			bno, 1);
13062306a36Sopenharmony_ci	be32_add_cpu(&agf->agf_rmap_blocks, -1);
13162306a36Sopenharmony_ci	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
13262306a36Sopenharmony_ci	error = xfs_alloc_put_freelist(pag, cur->bc_tp, agbp, NULL, bno, 1);
13362306a36Sopenharmony_ci	if (error)
13462306a36Sopenharmony_ci		return error;
13562306a36Sopenharmony_ci
13662306a36Sopenharmony_ci	xfs_extent_busy_insert(cur->bc_tp, pag, bno, 1,
13762306a36Sopenharmony_ci			      XFS_EXTENT_BUSY_SKIP_DISCARD);
13862306a36Sopenharmony_ci
13962306a36Sopenharmony_ci	xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1);
14062306a36Sopenharmony_ci	return 0;
14162306a36Sopenharmony_ci}
14262306a36Sopenharmony_ci
14362306a36Sopenharmony_ciSTATIC int
14462306a36Sopenharmony_cixfs_rmapbt_get_minrecs(
14562306a36Sopenharmony_ci	struct xfs_btree_cur	*cur,
14662306a36Sopenharmony_ci	int			level)
14762306a36Sopenharmony_ci{
14862306a36Sopenharmony_ci	return cur->bc_mp->m_rmap_mnr[level != 0];
14962306a36Sopenharmony_ci}
15062306a36Sopenharmony_ci
15162306a36Sopenharmony_ciSTATIC int
15262306a36Sopenharmony_cixfs_rmapbt_get_maxrecs(
15362306a36Sopenharmony_ci	struct xfs_btree_cur	*cur,
15462306a36Sopenharmony_ci	int			level)
15562306a36Sopenharmony_ci{
15662306a36Sopenharmony_ci	return cur->bc_mp->m_rmap_mxr[level != 0];
15762306a36Sopenharmony_ci}
15862306a36Sopenharmony_ci
15962306a36Sopenharmony_ci/*
16062306a36Sopenharmony_ci * Convert the ondisk record's offset field into the ondisk key's offset field.
16162306a36Sopenharmony_ci * Fork and bmbt are significant parts of the rmap record key, but written
16262306a36Sopenharmony_ci * status is merely a record attribute.
16362306a36Sopenharmony_ci */
16462306a36Sopenharmony_cistatic inline __be64 ondisk_rec_offset_to_key(const union xfs_btree_rec *rec)
16562306a36Sopenharmony_ci{
16662306a36Sopenharmony_ci	return rec->rmap.rm_offset & ~cpu_to_be64(XFS_RMAP_OFF_UNWRITTEN);
16762306a36Sopenharmony_ci}
16862306a36Sopenharmony_ci
16962306a36Sopenharmony_ciSTATIC void
17062306a36Sopenharmony_cixfs_rmapbt_init_key_from_rec(
17162306a36Sopenharmony_ci	union xfs_btree_key		*key,
17262306a36Sopenharmony_ci	const union xfs_btree_rec	*rec)
17362306a36Sopenharmony_ci{
17462306a36Sopenharmony_ci	key->rmap.rm_startblock = rec->rmap.rm_startblock;
17562306a36Sopenharmony_ci	key->rmap.rm_owner = rec->rmap.rm_owner;
17662306a36Sopenharmony_ci	key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
17762306a36Sopenharmony_ci}
17862306a36Sopenharmony_ci
17962306a36Sopenharmony_ci/*
18062306a36Sopenharmony_ci * The high key for a reverse mapping record can be computed by shifting
18162306a36Sopenharmony_ci * the startblock and offset to the highest value that would still map
18262306a36Sopenharmony_ci * to that record.  In practice this means that we add blockcount-1 to
18362306a36Sopenharmony_ci * the startblock for all records, and if the record is for a data/attr
18462306a36Sopenharmony_ci * fork mapping, we add blockcount-1 to the offset too.
18562306a36Sopenharmony_ci */
18662306a36Sopenharmony_ciSTATIC void
18762306a36Sopenharmony_cixfs_rmapbt_init_high_key_from_rec(
18862306a36Sopenharmony_ci	union xfs_btree_key		*key,
18962306a36Sopenharmony_ci	const union xfs_btree_rec	*rec)
19062306a36Sopenharmony_ci{
19162306a36Sopenharmony_ci	uint64_t			off;
19262306a36Sopenharmony_ci	int				adj;
19362306a36Sopenharmony_ci
19462306a36Sopenharmony_ci	adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
19562306a36Sopenharmony_ci
19662306a36Sopenharmony_ci	key->rmap.rm_startblock = rec->rmap.rm_startblock;
19762306a36Sopenharmony_ci	be32_add_cpu(&key->rmap.rm_startblock, adj);
19862306a36Sopenharmony_ci	key->rmap.rm_owner = rec->rmap.rm_owner;
19962306a36Sopenharmony_ci	key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
20062306a36Sopenharmony_ci	if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
20162306a36Sopenharmony_ci	    XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
20262306a36Sopenharmony_ci		return;
20362306a36Sopenharmony_ci	off = be64_to_cpu(key->rmap.rm_offset);
20462306a36Sopenharmony_ci	off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
20562306a36Sopenharmony_ci	key->rmap.rm_offset = cpu_to_be64(off);
20662306a36Sopenharmony_ci}
20762306a36Sopenharmony_ci
20862306a36Sopenharmony_ciSTATIC void
20962306a36Sopenharmony_cixfs_rmapbt_init_rec_from_cur(
21062306a36Sopenharmony_ci	struct xfs_btree_cur	*cur,
21162306a36Sopenharmony_ci	union xfs_btree_rec	*rec)
21262306a36Sopenharmony_ci{
21362306a36Sopenharmony_ci	rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
21462306a36Sopenharmony_ci	rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
21562306a36Sopenharmony_ci	rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
21662306a36Sopenharmony_ci	rec->rmap.rm_offset = cpu_to_be64(
21762306a36Sopenharmony_ci			xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
21862306a36Sopenharmony_ci}
21962306a36Sopenharmony_ci
22062306a36Sopenharmony_ciSTATIC void
22162306a36Sopenharmony_cixfs_rmapbt_init_ptr_from_cur(
22262306a36Sopenharmony_ci	struct xfs_btree_cur	*cur,
22362306a36Sopenharmony_ci	union xfs_btree_ptr	*ptr)
22462306a36Sopenharmony_ci{
22562306a36Sopenharmony_ci	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
22662306a36Sopenharmony_ci
22762306a36Sopenharmony_ci	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
22862306a36Sopenharmony_ci
22962306a36Sopenharmony_ci	ptr->s = agf->agf_roots[cur->bc_btnum];
23062306a36Sopenharmony_ci}
23162306a36Sopenharmony_ci
23262306a36Sopenharmony_ci/*
23362306a36Sopenharmony_ci * Mask the appropriate parts of the ondisk key field for a key comparison.
23462306a36Sopenharmony_ci * Fork and bmbt are significant parts of the rmap record key, but written
23562306a36Sopenharmony_ci * status is merely a record attribute.
23662306a36Sopenharmony_ci */
23762306a36Sopenharmony_cistatic inline uint64_t offset_keymask(uint64_t offset)
23862306a36Sopenharmony_ci{
23962306a36Sopenharmony_ci	return offset & ~XFS_RMAP_OFF_UNWRITTEN;
24062306a36Sopenharmony_ci}
24162306a36Sopenharmony_ci
24262306a36Sopenharmony_ciSTATIC int64_t
24362306a36Sopenharmony_cixfs_rmapbt_key_diff(
24462306a36Sopenharmony_ci	struct xfs_btree_cur		*cur,
24562306a36Sopenharmony_ci	const union xfs_btree_key	*key)
24662306a36Sopenharmony_ci{
24762306a36Sopenharmony_ci	struct xfs_rmap_irec		*rec = &cur->bc_rec.r;
24862306a36Sopenharmony_ci	const struct xfs_rmap_key	*kp = &key->rmap;
24962306a36Sopenharmony_ci	__u64				x, y;
25062306a36Sopenharmony_ci	int64_t				d;
25162306a36Sopenharmony_ci
25262306a36Sopenharmony_ci	d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
25362306a36Sopenharmony_ci	if (d)
25462306a36Sopenharmony_ci		return d;
25562306a36Sopenharmony_ci
25662306a36Sopenharmony_ci	x = be64_to_cpu(kp->rm_owner);
25762306a36Sopenharmony_ci	y = rec->rm_owner;
25862306a36Sopenharmony_ci	if (x > y)
25962306a36Sopenharmony_ci		return 1;
26062306a36Sopenharmony_ci	else if (y > x)
26162306a36Sopenharmony_ci		return -1;
26262306a36Sopenharmony_ci
26362306a36Sopenharmony_ci	x = offset_keymask(be64_to_cpu(kp->rm_offset));
26462306a36Sopenharmony_ci	y = offset_keymask(xfs_rmap_irec_offset_pack(rec));
26562306a36Sopenharmony_ci	if (x > y)
26662306a36Sopenharmony_ci		return 1;
26762306a36Sopenharmony_ci	else if (y > x)
26862306a36Sopenharmony_ci		return -1;
26962306a36Sopenharmony_ci	return 0;
27062306a36Sopenharmony_ci}
27162306a36Sopenharmony_ci
27262306a36Sopenharmony_ciSTATIC int64_t
27362306a36Sopenharmony_cixfs_rmapbt_diff_two_keys(
27462306a36Sopenharmony_ci	struct xfs_btree_cur		*cur,
27562306a36Sopenharmony_ci	const union xfs_btree_key	*k1,
27662306a36Sopenharmony_ci	const union xfs_btree_key	*k2,
27762306a36Sopenharmony_ci	const union xfs_btree_key	*mask)
27862306a36Sopenharmony_ci{
27962306a36Sopenharmony_ci	const struct xfs_rmap_key	*kp1 = &k1->rmap;
28062306a36Sopenharmony_ci	const struct xfs_rmap_key	*kp2 = &k2->rmap;
28162306a36Sopenharmony_ci	int64_t				d;
28262306a36Sopenharmony_ci	__u64				x, y;
28362306a36Sopenharmony_ci
28462306a36Sopenharmony_ci	/* Doesn't make sense to mask off the physical space part */
28562306a36Sopenharmony_ci	ASSERT(!mask || mask->rmap.rm_startblock);
28662306a36Sopenharmony_ci
28762306a36Sopenharmony_ci	d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
28862306a36Sopenharmony_ci		     be32_to_cpu(kp2->rm_startblock);
28962306a36Sopenharmony_ci	if (d)
29062306a36Sopenharmony_ci		return d;
29162306a36Sopenharmony_ci
29262306a36Sopenharmony_ci	if (!mask || mask->rmap.rm_owner) {
29362306a36Sopenharmony_ci		x = be64_to_cpu(kp1->rm_owner);
29462306a36Sopenharmony_ci		y = be64_to_cpu(kp2->rm_owner);
29562306a36Sopenharmony_ci		if (x > y)
29662306a36Sopenharmony_ci			return 1;
29762306a36Sopenharmony_ci		else if (y > x)
29862306a36Sopenharmony_ci			return -1;
29962306a36Sopenharmony_ci	}
30062306a36Sopenharmony_ci
30162306a36Sopenharmony_ci	if (!mask || mask->rmap.rm_offset) {
30262306a36Sopenharmony_ci		/* Doesn't make sense to allow offset but not owner */
30362306a36Sopenharmony_ci		ASSERT(!mask || mask->rmap.rm_owner);
30462306a36Sopenharmony_ci
30562306a36Sopenharmony_ci		x = offset_keymask(be64_to_cpu(kp1->rm_offset));
30662306a36Sopenharmony_ci		y = offset_keymask(be64_to_cpu(kp2->rm_offset));
30762306a36Sopenharmony_ci		if (x > y)
30862306a36Sopenharmony_ci			return 1;
30962306a36Sopenharmony_ci		else if (y > x)
31062306a36Sopenharmony_ci			return -1;
31162306a36Sopenharmony_ci	}
31262306a36Sopenharmony_ci
31362306a36Sopenharmony_ci	return 0;
31462306a36Sopenharmony_ci}
31562306a36Sopenharmony_ci
31662306a36Sopenharmony_cistatic xfs_failaddr_t
31762306a36Sopenharmony_cixfs_rmapbt_verify(
31862306a36Sopenharmony_ci	struct xfs_buf		*bp)
31962306a36Sopenharmony_ci{
32062306a36Sopenharmony_ci	struct xfs_mount	*mp = bp->b_mount;
32162306a36Sopenharmony_ci	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
32262306a36Sopenharmony_ci	struct xfs_perag	*pag = bp->b_pag;
32362306a36Sopenharmony_ci	xfs_failaddr_t		fa;
32462306a36Sopenharmony_ci	unsigned int		level;
32562306a36Sopenharmony_ci
32662306a36Sopenharmony_ci	/*
32762306a36Sopenharmony_ci	 * magic number and level verification
32862306a36Sopenharmony_ci	 *
32962306a36Sopenharmony_ci	 * During growfs operations, we can't verify the exact level or owner as
33062306a36Sopenharmony_ci	 * the perag is not fully initialised and hence not attached to the
33162306a36Sopenharmony_ci	 * buffer.  In this case, check against the maximum tree depth.
33262306a36Sopenharmony_ci	 *
33362306a36Sopenharmony_ci	 * Similarly, during log recovery we will have a perag structure
33462306a36Sopenharmony_ci	 * attached, but the agf information will not yet have been initialised
33562306a36Sopenharmony_ci	 * from the on disk AGF. Again, we can only check against maximum limits
33662306a36Sopenharmony_ci	 * in this case.
33762306a36Sopenharmony_ci	 */
33862306a36Sopenharmony_ci	if (!xfs_verify_magic(bp, block->bb_magic))
33962306a36Sopenharmony_ci		return __this_address;
34062306a36Sopenharmony_ci
34162306a36Sopenharmony_ci	if (!xfs_has_rmapbt(mp))
34262306a36Sopenharmony_ci		return __this_address;
34362306a36Sopenharmony_ci	fa = xfs_btree_sblock_v5hdr_verify(bp);
34462306a36Sopenharmony_ci	if (fa)
34562306a36Sopenharmony_ci		return fa;
34662306a36Sopenharmony_ci
34762306a36Sopenharmony_ci	level = be16_to_cpu(block->bb_level);
34862306a36Sopenharmony_ci	if (pag && xfs_perag_initialised_agf(pag)) {
34962306a36Sopenharmony_ci		if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
35062306a36Sopenharmony_ci			return __this_address;
35162306a36Sopenharmony_ci	} else if (level >= mp->m_rmap_maxlevels)
35262306a36Sopenharmony_ci		return __this_address;
35362306a36Sopenharmony_ci
35462306a36Sopenharmony_ci	return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
35562306a36Sopenharmony_ci}
35662306a36Sopenharmony_ci
35762306a36Sopenharmony_cistatic void
35862306a36Sopenharmony_cixfs_rmapbt_read_verify(
35962306a36Sopenharmony_ci	struct xfs_buf	*bp)
36062306a36Sopenharmony_ci{
36162306a36Sopenharmony_ci	xfs_failaddr_t	fa;
36262306a36Sopenharmony_ci
36362306a36Sopenharmony_ci	if (!xfs_btree_sblock_verify_crc(bp))
36462306a36Sopenharmony_ci		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
36562306a36Sopenharmony_ci	else {
36662306a36Sopenharmony_ci		fa = xfs_rmapbt_verify(bp);
36762306a36Sopenharmony_ci		if (fa)
36862306a36Sopenharmony_ci			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
36962306a36Sopenharmony_ci	}
37062306a36Sopenharmony_ci
37162306a36Sopenharmony_ci	if (bp->b_error)
37262306a36Sopenharmony_ci		trace_xfs_btree_corrupt(bp, _RET_IP_);
37362306a36Sopenharmony_ci}
37462306a36Sopenharmony_ci
37562306a36Sopenharmony_cistatic void
37662306a36Sopenharmony_cixfs_rmapbt_write_verify(
37762306a36Sopenharmony_ci	struct xfs_buf	*bp)
37862306a36Sopenharmony_ci{
37962306a36Sopenharmony_ci	xfs_failaddr_t	fa;
38062306a36Sopenharmony_ci
38162306a36Sopenharmony_ci	fa = xfs_rmapbt_verify(bp);
38262306a36Sopenharmony_ci	if (fa) {
38362306a36Sopenharmony_ci		trace_xfs_btree_corrupt(bp, _RET_IP_);
38462306a36Sopenharmony_ci		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
38562306a36Sopenharmony_ci		return;
38662306a36Sopenharmony_ci	}
38762306a36Sopenharmony_ci	xfs_btree_sblock_calc_crc(bp);
38862306a36Sopenharmony_ci
38962306a36Sopenharmony_ci}
39062306a36Sopenharmony_ci
39162306a36Sopenharmony_ciconst struct xfs_buf_ops xfs_rmapbt_buf_ops = {
39262306a36Sopenharmony_ci	.name			= "xfs_rmapbt",
39362306a36Sopenharmony_ci	.magic			= { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
39462306a36Sopenharmony_ci	.verify_read		= xfs_rmapbt_read_verify,
39562306a36Sopenharmony_ci	.verify_write		= xfs_rmapbt_write_verify,
39662306a36Sopenharmony_ci	.verify_struct		= xfs_rmapbt_verify,
39762306a36Sopenharmony_ci};
39862306a36Sopenharmony_ci
39962306a36Sopenharmony_ciSTATIC int
40062306a36Sopenharmony_cixfs_rmapbt_keys_inorder(
40162306a36Sopenharmony_ci	struct xfs_btree_cur		*cur,
40262306a36Sopenharmony_ci	const union xfs_btree_key	*k1,
40362306a36Sopenharmony_ci	const union xfs_btree_key	*k2)
40462306a36Sopenharmony_ci{
40562306a36Sopenharmony_ci	uint32_t		x;
40662306a36Sopenharmony_ci	uint32_t		y;
40762306a36Sopenharmony_ci	uint64_t		a;
40862306a36Sopenharmony_ci	uint64_t		b;
40962306a36Sopenharmony_ci
41062306a36Sopenharmony_ci	x = be32_to_cpu(k1->rmap.rm_startblock);
41162306a36Sopenharmony_ci	y = be32_to_cpu(k2->rmap.rm_startblock);
41262306a36Sopenharmony_ci	if (x < y)
41362306a36Sopenharmony_ci		return 1;
41462306a36Sopenharmony_ci	else if (x > y)
41562306a36Sopenharmony_ci		return 0;
41662306a36Sopenharmony_ci	a = be64_to_cpu(k1->rmap.rm_owner);
41762306a36Sopenharmony_ci	b = be64_to_cpu(k2->rmap.rm_owner);
41862306a36Sopenharmony_ci	if (a < b)
41962306a36Sopenharmony_ci		return 1;
42062306a36Sopenharmony_ci	else if (a > b)
42162306a36Sopenharmony_ci		return 0;
42262306a36Sopenharmony_ci	a = offset_keymask(be64_to_cpu(k1->rmap.rm_offset));
42362306a36Sopenharmony_ci	b = offset_keymask(be64_to_cpu(k2->rmap.rm_offset));
42462306a36Sopenharmony_ci	if (a <= b)
42562306a36Sopenharmony_ci		return 1;
42662306a36Sopenharmony_ci	return 0;
42762306a36Sopenharmony_ci}
42862306a36Sopenharmony_ci
42962306a36Sopenharmony_ciSTATIC int
43062306a36Sopenharmony_cixfs_rmapbt_recs_inorder(
43162306a36Sopenharmony_ci	struct xfs_btree_cur		*cur,
43262306a36Sopenharmony_ci	const union xfs_btree_rec	*r1,
43362306a36Sopenharmony_ci	const union xfs_btree_rec	*r2)
43462306a36Sopenharmony_ci{
43562306a36Sopenharmony_ci	uint32_t		x;
43662306a36Sopenharmony_ci	uint32_t		y;
43762306a36Sopenharmony_ci	uint64_t		a;
43862306a36Sopenharmony_ci	uint64_t		b;
43962306a36Sopenharmony_ci
44062306a36Sopenharmony_ci	x = be32_to_cpu(r1->rmap.rm_startblock);
44162306a36Sopenharmony_ci	y = be32_to_cpu(r2->rmap.rm_startblock);
44262306a36Sopenharmony_ci	if (x < y)
44362306a36Sopenharmony_ci		return 1;
44462306a36Sopenharmony_ci	else if (x > y)
44562306a36Sopenharmony_ci		return 0;
44662306a36Sopenharmony_ci	a = be64_to_cpu(r1->rmap.rm_owner);
44762306a36Sopenharmony_ci	b = be64_to_cpu(r2->rmap.rm_owner);
44862306a36Sopenharmony_ci	if (a < b)
44962306a36Sopenharmony_ci		return 1;
45062306a36Sopenharmony_ci	else if (a > b)
45162306a36Sopenharmony_ci		return 0;
45262306a36Sopenharmony_ci	a = offset_keymask(be64_to_cpu(r1->rmap.rm_offset));
45362306a36Sopenharmony_ci	b = offset_keymask(be64_to_cpu(r2->rmap.rm_offset));
45462306a36Sopenharmony_ci	if (a <= b)
45562306a36Sopenharmony_ci		return 1;
45662306a36Sopenharmony_ci	return 0;
45762306a36Sopenharmony_ci}
45862306a36Sopenharmony_ci
45962306a36Sopenharmony_ciSTATIC enum xbtree_key_contig
46062306a36Sopenharmony_cixfs_rmapbt_keys_contiguous(
46162306a36Sopenharmony_ci	struct xfs_btree_cur		*cur,
46262306a36Sopenharmony_ci	const union xfs_btree_key	*key1,
46362306a36Sopenharmony_ci	const union xfs_btree_key	*key2,
46462306a36Sopenharmony_ci	const union xfs_btree_key	*mask)
46562306a36Sopenharmony_ci{
46662306a36Sopenharmony_ci	ASSERT(!mask || mask->rmap.rm_startblock);
46762306a36Sopenharmony_ci
46862306a36Sopenharmony_ci	/*
46962306a36Sopenharmony_ci	 * We only support checking contiguity of the physical space component.
47062306a36Sopenharmony_ci	 * If any callers ever need more specificity than that, they'll have to
47162306a36Sopenharmony_ci	 * implement it here.
47262306a36Sopenharmony_ci	 */
47362306a36Sopenharmony_ci	ASSERT(!mask || (!mask->rmap.rm_owner && !mask->rmap.rm_offset));
47462306a36Sopenharmony_ci
47562306a36Sopenharmony_ci	return xbtree_key_contig(be32_to_cpu(key1->rmap.rm_startblock),
47662306a36Sopenharmony_ci				 be32_to_cpu(key2->rmap.rm_startblock));
47762306a36Sopenharmony_ci}
47862306a36Sopenharmony_ci
47962306a36Sopenharmony_cistatic const struct xfs_btree_ops xfs_rmapbt_ops = {
48062306a36Sopenharmony_ci	.rec_len		= sizeof(struct xfs_rmap_rec),
48162306a36Sopenharmony_ci	.key_len		= 2 * sizeof(struct xfs_rmap_key),
48262306a36Sopenharmony_ci
48362306a36Sopenharmony_ci	.dup_cursor		= xfs_rmapbt_dup_cursor,
48462306a36Sopenharmony_ci	.set_root		= xfs_rmapbt_set_root,
48562306a36Sopenharmony_ci	.alloc_block		= xfs_rmapbt_alloc_block,
48662306a36Sopenharmony_ci	.free_block		= xfs_rmapbt_free_block,
48762306a36Sopenharmony_ci	.get_minrecs		= xfs_rmapbt_get_minrecs,
48862306a36Sopenharmony_ci	.get_maxrecs		= xfs_rmapbt_get_maxrecs,
48962306a36Sopenharmony_ci	.init_key_from_rec	= xfs_rmapbt_init_key_from_rec,
49062306a36Sopenharmony_ci	.init_high_key_from_rec	= xfs_rmapbt_init_high_key_from_rec,
49162306a36Sopenharmony_ci	.init_rec_from_cur	= xfs_rmapbt_init_rec_from_cur,
49262306a36Sopenharmony_ci	.init_ptr_from_cur	= xfs_rmapbt_init_ptr_from_cur,
49362306a36Sopenharmony_ci	.key_diff		= xfs_rmapbt_key_diff,
49462306a36Sopenharmony_ci	.buf_ops		= &xfs_rmapbt_buf_ops,
49562306a36Sopenharmony_ci	.diff_two_keys		= xfs_rmapbt_diff_two_keys,
49662306a36Sopenharmony_ci	.keys_inorder		= xfs_rmapbt_keys_inorder,
49762306a36Sopenharmony_ci	.recs_inorder		= xfs_rmapbt_recs_inorder,
49862306a36Sopenharmony_ci	.keys_contiguous	= xfs_rmapbt_keys_contiguous,
49962306a36Sopenharmony_ci};
50062306a36Sopenharmony_ci
50162306a36Sopenharmony_cistatic struct xfs_btree_cur *
50262306a36Sopenharmony_cixfs_rmapbt_init_common(
50362306a36Sopenharmony_ci	struct xfs_mount	*mp,
50462306a36Sopenharmony_ci	struct xfs_trans	*tp,
50562306a36Sopenharmony_ci	struct xfs_perag	*pag)
50662306a36Sopenharmony_ci{
50762306a36Sopenharmony_ci	struct xfs_btree_cur	*cur;
50862306a36Sopenharmony_ci
50962306a36Sopenharmony_ci	/* Overlapping btree; 2 keys per pointer. */
51062306a36Sopenharmony_ci	cur = xfs_btree_alloc_cursor(mp, tp, XFS_BTNUM_RMAP,
51162306a36Sopenharmony_ci			mp->m_rmap_maxlevels, xfs_rmapbt_cur_cache);
51262306a36Sopenharmony_ci	cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
51362306a36Sopenharmony_ci	cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2);
51462306a36Sopenharmony_ci	cur->bc_ops = &xfs_rmapbt_ops;
51562306a36Sopenharmony_ci
51662306a36Sopenharmony_ci	cur->bc_ag.pag = xfs_perag_hold(pag);
51762306a36Sopenharmony_ci	return cur;
51862306a36Sopenharmony_ci}
51962306a36Sopenharmony_ci
52062306a36Sopenharmony_ci/* Create a new reverse mapping btree cursor. */
52162306a36Sopenharmony_cistruct xfs_btree_cur *
52262306a36Sopenharmony_cixfs_rmapbt_init_cursor(
52362306a36Sopenharmony_ci	struct xfs_mount	*mp,
52462306a36Sopenharmony_ci	struct xfs_trans	*tp,
52562306a36Sopenharmony_ci	struct xfs_buf		*agbp,
52662306a36Sopenharmony_ci	struct xfs_perag	*pag)
52762306a36Sopenharmony_ci{
52862306a36Sopenharmony_ci	struct xfs_agf		*agf = agbp->b_addr;
52962306a36Sopenharmony_ci	struct xfs_btree_cur	*cur;
53062306a36Sopenharmony_ci
53162306a36Sopenharmony_ci	cur = xfs_rmapbt_init_common(mp, tp, pag);
53262306a36Sopenharmony_ci	cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
53362306a36Sopenharmony_ci	cur->bc_ag.agbp = agbp;
53462306a36Sopenharmony_ci	return cur;
53562306a36Sopenharmony_ci}
53662306a36Sopenharmony_ci
53762306a36Sopenharmony_ci/* Create a new reverse mapping btree cursor with a fake root for staging. */
53862306a36Sopenharmony_cistruct xfs_btree_cur *
53962306a36Sopenharmony_cixfs_rmapbt_stage_cursor(
54062306a36Sopenharmony_ci	struct xfs_mount	*mp,
54162306a36Sopenharmony_ci	struct xbtree_afakeroot	*afake,
54262306a36Sopenharmony_ci	struct xfs_perag	*pag)
54362306a36Sopenharmony_ci{
54462306a36Sopenharmony_ci	struct xfs_btree_cur	*cur;
54562306a36Sopenharmony_ci
54662306a36Sopenharmony_ci	cur = xfs_rmapbt_init_common(mp, NULL, pag);
54762306a36Sopenharmony_ci	xfs_btree_stage_afakeroot(cur, afake);
54862306a36Sopenharmony_ci	return cur;
54962306a36Sopenharmony_ci}
55062306a36Sopenharmony_ci
55162306a36Sopenharmony_ci/*
55262306a36Sopenharmony_ci * Install a new reverse mapping btree root.  Caller is responsible for
55362306a36Sopenharmony_ci * invalidating and freeing the old btree blocks.
55462306a36Sopenharmony_ci */
55562306a36Sopenharmony_civoid
55662306a36Sopenharmony_cixfs_rmapbt_commit_staged_btree(
55762306a36Sopenharmony_ci	struct xfs_btree_cur	*cur,
55862306a36Sopenharmony_ci	struct xfs_trans	*tp,
55962306a36Sopenharmony_ci	struct xfs_buf		*agbp)
56062306a36Sopenharmony_ci{
56162306a36Sopenharmony_ci	struct xfs_agf		*agf = agbp->b_addr;
56262306a36Sopenharmony_ci	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
56362306a36Sopenharmony_ci
56462306a36Sopenharmony_ci	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
56562306a36Sopenharmony_ci
56662306a36Sopenharmony_ci	agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
56762306a36Sopenharmony_ci	agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
56862306a36Sopenharmony_ci	agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks);
56962306a36Sopenharmony_ci	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS |
57062306a36Sopenharmony_ci				    XFS_AGF_RMAP_BLOCKS);
57162306a36Sopenharmony_ci	xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_rmapbt_ops);
57262306a36Sopenharmony_ci}
57362306a36Sopenharmony_ci
57462306a36Sopenharmony_ci/* Calculate number of records in a reverse mapping btree block. */
57562306a36Sopenharmony_cistatic inline unsigned int
57662306a36Sopenharmony_cixfs_rmapbt_block_maxrecs(
57762306a36Sopenharmony_ci	unsigned int		blocklen,
57862306a36Sopenharmony_ci	bool			leaf)
57962306a36Sopenharmony_ci{
58062306a36Sopenharmony_ci	if (leaf)
58162306a36Sopenharmony_ci		return blocklen / sizeof(struct xfs_rmap_rec);
58262306a36Sopenharmony_ci	return blocklen /
58362306a36Sopenharmony_ci		(2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
58462306a36Sopenharmony_ci}
58562306a36Sopenharmony_ci
58662306a36Sopenharmony_ci/*
58762306a36Sopenharmony_ci * Calculate number of records in an rmap btree block.
58862306a36Sopenharmony_ci */
58962306a36Sopenharmony_ciint
59062306a36Sopenharmony_cixfs_rmapbt_maxrecs(
59162306a36Sopenharmony_ci	int			blocklen,
59262306a36Sopenharmony_ci	int			leaf)
59362306a36Sopenharmony_ci{
59462306a36Sopenharmony_ci	blocklen -= XFS_RMAP_BLOCK_LEN;
59562306a36Sopenharmony_ci	return xfs_rmapbt_block_maxrecs(blocklen, leaf);
59662306a36Sopenharmony_ci}
59762306a36Sopenharmony_ci
59862306a36Sopenharmony_ci/* Compute the max possible height for reverse mapping btrees. */
59962306a36Sopenharmony_ciunsigned int
60062306a36Sopenharmony_cixfs_rmapbt_maxlevels_ondisk(void)
60162306a36Sopenharmony_ci{
60262306a36Sopenharmony_ci	unsigned int		minrecs[2];
60362306a36Sopenharmony_ci	unsigned int		blocklen;
60462306a36Sopenharmony_ci
60562306a36Sopenharmony_ci	blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
60662306a36Sopenharmony_ci
60762306a36Sopenharmony_ci	minrecs[0] = xfs_rmapbt_block_maxrecs(blocklen, true) / 2;
60862306a36Sopenharmony_ci	minrecs[1] = xfs_rmapbt_block_maxrecs(blocklen, false) / 2;
60962306a36Sopenharmony_ci
61062306a36Sopenharmony_ci	/*
61162306a36Sopenharmony_ci	 * Compute the asymptotic maxlevels for an rmapbt on any reflink fs.
61262306a36Sopenharmony_ci	 *
61362306a36Sopenharmony_ci	 * On a reflink filesystem, each AG block can have up to 2^32 (per the
61462306a36Sopenharmony_ci	 * refcount record format) owners, which means that theoretically we
61562306a36Sopenharmony_ci	 * could face up to 2^64 rmap records.  However, we're likely to run
61662306a36Sopenharmony_ci	 * out of blocks in the AG long before that happens, which means that
61762306a36Sopenharmony_ci	 * we must compute the max height based on what the btree will look
61862306a36Sopenharmony_ci	 * like if it consumes almost all the blocks in the AG due to maximal
61962306a36Sopenharmony_ci	 * sharing factor.
62062306a36Sopenharmony_ci	 */
62162306a36Sopenharmony_ci	return xfs_btree_space_to_height(minrecs, XFS_MAX_CRC_AG_BLOCKS);
62262306a36Sopenharmony_ci}
62362306a36Sopenharmony_ci
62462306a36Sopenharmony_ci/* Compute the maximum height of an rmap btree. */
62562306a36Sopenharmony_civoid
62662306a36Sopenharmony_cixfs_rmapbt_compute_maxlevels(
62762306a36Sopenharmony_ci	struct xfs_mount		*mp)
62862306a36Sopenharmony_ci{
62962306a36Sopenharmony_ci	if (!xfs_has_rmapbt(mp)) {
63062306a36Sopenharmony_ci		mp->m_rmap_maxlevels = 0;
63162306a36Sopenharmony_ci		return;
63262306a36Sopenharmony_ci	}
63362306a36Sopenharmony_ci
63462306a36Sopenharmony_ci	if (xfs_has_reflink(mp)) {
63562306a36Sopenharmony_ci		/*
63662306a36Sopenharmony_ci		 * Compute the asymptotic maxlevels for an rmap btree on a
63762306a36Sopenharmony_ci		 * filesystem that supports reflink.
63862306a36Sopenharmony_ci		 *
63962306a36Sopenharmony_ci		 * On a reflink filesystem, each AG block can have up to 2^32
64062306a36Sopenharmony_ci		 * (per the refcount record format) owners, which means that
64162306a36Sopenharmony_ci		 * theoretically we could face up to 2^64 rmap records.
64262306a36Sopenharmony_ci		 * However, we're likely to run out of blocks in the AG long
64362306a36Sopenharmony_ci		 * before that happens, which means that we must compute the
64462306a36Sopenharmony_ci		 * max height based on what the btree will look like if it
64562306a36Sopenharmony_ci		 * consumes almost all the blocks in the AG due to maximal
64662306a36Sopenharmony_ci		 * sharing factor.
64762306a36Sopenharmony_ci		 */
64862306a36Sopenharmony_ci		mp->m_rmap_maxlevels = xfs_btree_space_to_height(mp->m_rmap_mnr,
64962306a36Sopenharmony_ci				mp->m_sb.sb_agblocks);
65062306a36Sopenharmony_ci	} else {
65162306a36Sopenharmony_ci		/*
65262306a36Sopenharmony_ci		 * If there's no block sharing, compute the maximum rmapbt
65362306a36Sopenharmony_ci		 * height assuming one rmap record per AG block.
65462306a36Sopenharmony_ci		 */
65562306a36Sopenharmony_ci		mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
65662306a36Sopenharmony_ci				mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
65762306a36Sopenharmony_ci	}
65862306a36Sopenharmony_ci	ASSERT(mp->m_rmap_maxlevels <= xfs_rmapbt_maxlevels_ondisk());
65962306a36Sopenharmony_ci}
66062306a36Sopenharmony_ci
66162306a36Sopenharmony_ci/* Calculate the refcount btree size for some records. */
66262306a36Sopenharmony_cixfs_extlen_t
66362306a36Sopenharmony_cixfs_rmapbt_calc_size(
66462306a36Sopenharmony_ci	struct xfs_mount	*mp,
66562306a36Sopenharmony_ci	unsigned long long	len)
66662306a36Sopenharmony_ci{
66762306a36Sopenharmony_ci	return xfs_btree_calc_size(mp->m_rmap_mnr, len);
66862306a36Sopenharmony_ci}
66962306a36Sopenharmony_ci
67062306a36Sopenharmony_ci/*
67162306a36Sopenharmony_ci * Calculate the maximum refcount btree size.
67262306a36Sopenharmony_ci */
67362306a36Sopenharmony_cixfs_extlen_t
67462306a36Sopenharmony_cixfs_rmapbt_max_size(
67562306a36Sopenharmony_ci	struct xfs_mount	*mp,
67662306a36Sopenharmony_ci	xfs_agblock_t		agblocks)
67762306a36Sopenharmony_ci{
67862306a36Sopenharmony_ci	/* Bail out if we're uninitialized, which can happen in mkfs. */
67962306a36Sopenharmony_ci	if (mp->m_rmap_mxr[0] == 0)
68062306a36Sopenharmony_ci		return 0;
68162306a36Sopenharmony_ci
68262306a36Sopenharmony_ci	return xfs_rmapbt_calc_size(mp, agblocks);
68362306a36Sopenharmony_ci}
68462306a36Sopenharmony_ci
68562306a36Sopenharmony_ci/*
68662306a36Sopenharmony_ci * Figure out how many blocks to reserve and how many are used by this btree.
68762306a36Sopenharmony_ci */
68862306a36Sopenharmony_ciint
68962306a36Sopenharmony_cixfs_rmapbt_calc_reserves(
69062306a36Sopenharmony_ci	struct xfs_mount	*mp,
69162306a36Sopenharmony_ci	struct xfs_trans	*tp,
69262306a36Sopenharmony_ci	struct xfs_perag	*pag,
69362306a36Sopenharmony_ci	xfs_extlen_t		*ask,
69462306a36Sopenharmony_ci	xfs_extlen_t		*used)
69562306a36Sopenharmony_ci{
69662306a36Sopenharmony_ci	struct xfs_buf		*agbp;
69762306a36Sopenharmony_ci	struct xfs_agf		*agf;
69862306a36Sopenharmony_ci	xfs_agblock_t		agblocks;
69962306a36Sopenharmony_ci	xfs_extlen_t		tree_len;
70062306a36Sopenharmony_ci	int			error;
70162306a36Sopenharmony_ci
70262306a36Sopenharmony_ci	if (!xfs_has_rmapbt(mp))
70362306a36Sopenharmony_ci		return 0;
70462306a36Sopenharmony_ci
70562306a36Sopenharmony_ci	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
70662306a36Sopenharmony_ci	if (error)
70762306a36Sopenharmony_ci		return error;
70862306a36Sopenharmony_ci
70962306a36Sopenharmony_ci	agf = agbp->b_addr;
71062306a36Sopenharmony_ci	agblocks = be32_to_cpu(agf->agf_length);
71162306a36Sopenharmony_ci	tree_len = be32_to_cpu(agf->agf_rmap_blocks);
71262306a36Sopenharmony_ci	xfs_trans_brelse(tp, agbp);
71362306a36Sopenharmony_ci
71462306a36Sopenharmony_ci	/*
71562306a36Sopenharmony_ci	 * The log is permanently allocated, so the space it occupies will
71662306a36Sopenharmony_ci	 * never be available for the kinds of things that would require btree
71762306a36Sopenharmony_ci	 * expansion.  We therefore can pretend the space isn't there.
71862306a36Sopenharmony_ci	 */
71962306a36Sopenharmony_ci	if (xfs_ag_contains_log(mp, pag->pag_agno))
72062306a36Sopenharmony_ci		agblocks -= mp->m_sb.sb_logblocks;
72162306a36Sopenharmony_ci
72262306a36Sopenharmony_ci	/* Reserve 1% of the AG or enough for 1 block per record. */
72362306a36Sopenharmony_ci	*ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
72462306a36Sopenharmony_ci	*used += tree_len;
72562306a36Sopenharmony_ci
72662306a36Sopenharmony_ci	return error;
72762306a36Sopenharmony_ci}
72862306a36Sopenharmony_ci
72962306a36Sopenharmony_ciint __init
73062306a36Sopenharmony_cixfs_rmapbt_init_cur_cache(void)
73162306a36Sopenharmony_ci{
73262306a36Sopenharmony_ci	xfs_rmapbt_cur_cache = kmem_cache_create("xfs_rmapbt_cur",
73362306a36Sopenharmony_ci			xfs_btree_cur_sizeof(xfs_rmapbt_maxlevels_ondisk()),
73462306a36Sopenharmony_ci			0, 0, NULL);
73562306a36Sopenharmony_ci
73662306a36Sopenharmony_ci	if (!xfs_rmapbt_cur_cache)
73762306a36Sopenharmony_ci		return -ENOMEM;
73862306a36Sopenharmony_ci	return 0;
73962306a36Sopenharmony_ci}
74062306a36Sopenharmony_ci
74162306a36Sopenharmony_civoid
74262306a36Sopenharmony_cixfs_rmapbt_destroy_cur_cache(void)
74362306a36Sopenharmony_ci{
74462306a36Sopenharmony_ci	kmem_cache_destroy(xfs_rmapbt_cur_cache);
74562306a36Sopenharmony_ci	xfs_rmapbt_cur_cache = NULL;
74662306a36Sopenharmony_ci}
747