1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_btree.h"
16#include "xfs_ialloc.h"
17#include "xfs_ialloc_btree.h"
18#include "xfs_alloc.h"
19#include "xfs_errortag.h"
20#include "xfs_error.h"
21#include "xfs_bmap.h"
22#include "xfs_trans.h"
23#include "xfs_buf_item.h"
24#include "xfs_icreate_item.h"
25#include "xfs_icache.h"
26#include "xfs_trace.h"
27#include "xfs_log.h"
28#include "xfs_rmap.h"
29#include "xfs_ag.h"
30
31/*
32 * Lookup a record by ino in the btree given by cur.
33 */
34int					/* error */
35xfs_inobt_lookup(
36	struct xfs_btree_cur	*cur,	/* btree cursor */
37	xfs_agino_t		ino,	/* starting inode of chunk */
38	xfs_lookup_t		dir,	/* <=, >=, == */
39	int			*stat)	/* success/failure */
40{
41	cur->bc_rec.i.ir_startino = ino;
42	cur->bc_rec.i.ir_holemask = 0;
43	cur->bc_rec.i.ir_count = 0;
44	cur->bc_rec.i.ir_freecount = 0;
45	cur->bc_rec.i.ir_free = 0;
46	return xfs_btree_lookup(cur, dir, stat);
47}
48
49/*
50 * Update the record referred to by cur to the value given.
51 * This either works (return 0) or gets an EFSCORRUPTED error.
52 */
53STATIC int				/* error */
54xfs_inobt_update(
55	struct xfs_btree_cur	*cur,	/* btree cursor */
56	xfs_inobt_rec_incore_t	*irec)	/* btree record */
57{
58	union xfs_btree_rec	rec;
59
60	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61	if (xfs_has_sparseinodes(cur->bc_mp)) {
62		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65	} else {
66		/* ir_holemask/ir_count not supported on-disk */
67		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68	}
69	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70	return xfs_btree_update(cur, &rec);
71}
72
73/* Convert on-disk btree record to incore inobt record. */
74void
75xfs_inobt_btrec_to_irec(
76	struct xfs_mount		*mp,
77	const union xfs_btree_rec	*rec,
78	struct xfs_inobt_rec_incore	*irec)
79{
80	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81	if (xfs_has_sparseinodes(mp)) {
82		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85	} else {
86		/*
87		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88		 * values for full inode chunks.
89		 */
90		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91		irec->ir_count = XFS_INODES_PER_CHUNK;
92		irec->ir_freecount =
93				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94	}
95	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96}
97
98/* Simple checks for inode records. */
99xfs_failaddr_t
100xfs_inobt_check_irec(
101	struct xfs_btree_cur			*cur,
102	const struct xfs_inobt_rec_incore	*irec)
103{
104	uint64_t			realfree;
105
106	/* Record has to be properly aligned within the AG. */
107	if (!xfs_verify_agino(cur->bc_ag.pag, irec->ir_startino))
108		return __this_address;
109	if (!xfs_verify_agino(cur->bc_ag.pag,
110				irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
111		return __this_address;
112	if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
113	    irec->ir_count > XFS_INODES_PER_CHUNK)
114		return __this_address;
115	if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
116		return __this_address;
117
118	/* if there are no holes, return the first available offset */
119	if (!xfs_inobt_issparse(irec->ir_holemask))
120		realfree = irec->ir_free;
121	else
122		realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
123	if (hweight64(realfree) != irec->ir_freecount)
124		return __this_address;
125
126	return NULL;
127}
128
129static inline int
130xfs_inobt_complain_bad_rec(
131	struct xfs_btree_cur		*cur,
132	xfs_failaddr_t			fa,
133	const struct xfs_inobt_rec_incore *irec)
134{
135	struct xfs_mount		*mp = cur->bc_mp;
136
137	xfs_warn(mp,
138		"%s Inode BTree record corruption in AG %d detected at %pS!",
139		cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free",
140		cur->bc_ag.pag->pag_agno, fa);
141	xfs_warn(mp,
142"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
143		irec->ir_startino, irec->ir_count, irec->ir_freecount,
144		irec->ir_free, irec->ir_holemask);
145	return -EFSCORRUPTED;
146}
147
148/*
149 * Get the data from the pointed-to record.
150 */
151int
152xfs_inobt_get_rec(
153	struct xfs_btree_cur		*cur,
154	struct xfs_inobt_rec_incore	*irec,
155	int				*stat)
156{
157	struct xfs_mount		*mp = cur->bc_mp;
158	union xfs_btree_rec		*rec;
159	xfs_failaddr_t			fa;
160	int				error;
161
162	error = xfs_btree_get_rec(cur, &rec, stat);
163	if (error || *stat == 0)
164		return error;
165
166	xfs_inobt_btrec_to_irec(mp, rec, irec);
167	fa = xfs_inobt_check_irec(cur, irec);
168	if (fa)
169		return xfs_inobt_complain_bad_rec(cur, fa, irec);
170
171	return 0;
172}
173
174/*
175 * Insert a single inobt record. Cursor must already point to desired location.
176 */
177int
178xfs_inobt_insert_rec(
179	struct xfs_btree_cur	*cur,
180	uint16_t		holemask,
181	uint8_t			count,
182	int32_t			freecount,
183	xfs_inofree_t		free,
184	int			*stat)
185{
186	cur->bc_rec.i.ir_holemask = holemask;
187	cur->bc_rec.i.ir_count = count;
188	cur->bc_rec.i.ir_freecount = freecount;
189	cur->bc_rec.i.ir_free = free;
190	return xfs_btree_insert(cur, stat);
191}
192
193/*
194 * Insert records describing a newly allocated inode chunk into the inobt.
195 */
196STATIC int
197xfs_inobt_insert(
198	struct xfs_perag	*pag,
199	struct xfs_trans	*tp,
200	struct xfs_buf		*agbp,
201	xfs_agino_t		newino,
202	xfs_agino_t		newlen,
203	xfs_btnum_t		btnum)
204{
205	struct xfs_btree_cur	*cur;
206	xfs_agino_t		thisino;
207	int			i;
208	int			error;
209
210	cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum);
211
212	for (thisino = newino;
213	     thisino < newino + newlen;
214	     thisino += XFS_INODES_PER_CHUNK) {
215		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
216		if (error) {
217			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
218			return error;
219		}
220		ASSERT(i == 0);
221
222		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
223					     XFS_INODES_PER_CHUNK,
224					     XFS_INODES_PER_CHUNK,
225					     XFS_INOBT_ALL_FREE, &i);
226		if (error) {
227			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
228			return error;
229		}
230		ASSERT(i == 1);
231	}
232
233	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
234
235	return 0;
236}
237
238/*
239 * Verify that the number of free inodes in the AGI is correct.
240 */
241#ifdef DEBUG
242static int
243xfs_check_agi_freecount(
244	struct xfs_btree_cur	*cur)
245{
246	if (cur->bc_nlevels == 1) {
247		xfs_inobt_rec_incore_t rec;
248		int		freecount = 0;
249		int		error;
250		int		i;
251
252		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
253		if (error)
254			return error;
255
256		do {
257			error = xfs_inobt_get_rec(cur, &rec, &i);
258			if (error)
259				return error;
260
261			if (i) {
262				freecount += rec.ir_freecount;
263				error = xfs_btree_increment(cur, 0, &i);
264				if (error)
265					return error;
266			}
267		} while (i == 1);
268
269		if (!xfs_is_shutdown(cur->bc_mp))
270			ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
271	}
272	return 0;
273}
274#else
275#define xfs_check_agi_freecount(cur)	0
276#endif
277
278/*
279 * Initialise a new set of inodes. When called without a transaction context
280 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
281 * than logging them (which in a transaction context puts them into the AIL
282 * for writeback rather than the xfsbufd queue).
283 */
284int
285xfs_ialloc_inode_init(
286	struct xfs_mount	*mp,
287	struct xfs_trans	*tp,
288	struct list_head	*buffer_list,
289	int			icount,
290	xfs_agnumber_t		agno,
291	xfs_agblock_t		agbno,
292	xfs_agblock_t		length,
293	unsigned int		gen)
294{
295	struct xfs_buf		*fbuf;
296	struct xfs_dinode	*free;
297	int			nbufs;
298	int			version;
299	int			i, j;
300	xfs_daddr_t		d;
301	xfs_ino_t		ino = 0;
302	int			error;
303
304	/*
305	 * Loop over the new block(s), filling in the inodes.  For small block
306	 * sizes, manipulate the inodes in buffers  which are multiples of the
307	 * blocks size.
308	 */
309	nbufs = length / M_IGEO(mp)->blocks_per_cluster;
310
311	/*
312	 * Figure out what version number to use in the inodes we create.  If
313	 * the superblock version has caught up to the one that supports the new
314	 * inode format, then use the new inode version.  Otherwise use the old
315	 * version so that old kernels will continue to be able to use the file
316	 * system.
317	 *
318	 * For v3 inodes, we also need to write the inode number into the inode,
319	 * so calculate the first inode number of the chunk here as
320	 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
321	 * across multiple filesystem blocks (such as a cluster) and so cannot
322	 * be used in the cluster buffer loop below.
323	 *
324	 * Further, because we are writing the inode directly into the buffer
325	 * and calculating a CRC on the entire inode, we have ot log the entire
326	 * inode so that the entire range the CRC covers is present in the log.
327	 * That means for v3 inode we log the entire buffer rather than just the
328	 * inode cores.
329	 */
330	if (xfs_has_v3inodes(mp)) {
331		version = 3;
332		ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
333
334		/*
335		 * log the initialisation that is about to take place as an
336		 * logical operation. This means the transaction does not
337		 * need to log the physical changes to the inode buffers as log
338		 * recovery will know what initialisation is actually needed.
339		 * Hence we only need to log the buffers as "ordered" buffers so
340		 * they track in the AIL as if they were physically logged.
341		 */
342		if (tp)
343			xfs_icreate_log(tp, agno, agbno, icount,
344					mp->m_sb.sb_inodesize, length, gen);
345	} else
346		version = 2;
347
348	for (j = 0; j < nbufs; j++) {
349		/*
350		 * Get the block.
351		 */
352		d = XFS_AGB_TO_DADDR(mp, agno, agbno +
353				(j * M_IGEO(mp)->blocks_per_cluster));
354		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
355				mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
356				XBF_UNMAPPED, &fbuf);
357		if (error)
358			return error;
359
360		/* Initialize the inode buffers and log them appropriately. */
361		fbuf->b_ops = &xfs_inode_buf_ops;
362		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
363		for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
364			int	ioffset = i << mp->m_sb.sb_inodelog;
365
366			free = xfs_make_iptr(mp, fbuf, i);
367			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
368			free->di_version = version;
369			free->di_gen = cpu_to_be32(gen);
370			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
371
372			if (version == 3) {
373				free->di_ino = cpu_to_be64(ino);
374				ino++;
375				uuid_copy(&free->di_uuid,
376					  &mp->m_sb.sb_meta_uuid);
377				xfs_dinode_calc_crc(mp, free);
378			} else if (tp) {
379				/* just log the inode core */
380				xfs_trans_log_buf(tp, fbuf, ioffset,
381					  ioffset + XFS_DINODE_SIZE(mp) - 1);
382			}
383		}
384
385		if (tp) {
386			/*
387			 * Mark the buffer as an inode allocation buffer so it
388			 * sticks in AIL at the point of this allocation
389			 * transaction. This ensures the they are on disk before
390			 * the tail of the log can be moved past this
391			 * transaction (i.e. by preventing relogging from moving
392			 * it forward in the log).
393			 */
394			xfs_trans_inode_alloc_buf(tp, fbuf);
395			if (version == 3) {
396				/*
397				 * Mark the buffer as ordered so that they are
398				 * not physically logged in the transaction but
399				 * still tracked in the AIL as part of the
400				 * transaction and pin the log appropriately.
401				 */
402				xfs_trans_ordered_buf(tp, fbuf);
403			}
404		} else {
405			fbuf->b_flags |= XBF_DONE;
406			xfs_buf_delwri_queue(fbuf, buffer_list);
407			xfs_buf_relse(fbuf);
408		}
409	}
410	return 0;
411}
412
413/*
414 * Align startino and allocmask for a recently allocated sparse chunk such that
415 * they are fit for insertion (or merge) into the on-disk inode btrees.
416 *
417 * Background:
418 *
419 * When enabled, sparse inode support increases the inode alignment from cluster
420 * size to inode chunk size. This means that the minimum range between two
421 * non-adjacent inode records in the inobt is large enough for a full inode
422 * record. This allows for cluster sized, cluster aligned block allocation
423 * without need to worry about whether the resulting inode record overlaps with
424 * another record in the tree. Without this basic rule, we would have to deal
425 * with the consequences of overlap by potentially undoing recent allocations in
426 * the inode allocation codepath.
427 *
428 * Because of this alignment rule (which is enforced on mount), there are two
429 * inobt possibilities for newly allocated sparse chunks. One is that the
430 * aligned inode record for the chunk covers a range of inodes not already
431 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
432 * other is that a record already exists at the aligned startino that considers
433 * the newly allocated range as sparse. In the latter case, record content is
434 * merged in hope that sparse inode chunks fill to full chunks over time.
435 */
436STATIC void
437xfs_align_sparse_ino(
438	struct xfs_mount		*mp,
439	xfs_agino_t			*startino,
440	uint16_t			*allocmask)
441{
442	xfs_agblock_t			agbno;
443	xfs_agblock_t			mod;
444	int				offset;
445
446	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
447	mod = agbno % mp->m_sb.sb_inoalignmt;
448	if (!mod)
449		return;
450
451	/* calculate the inode offset and align startino */
452	offset = XFS_AGB_TO_AGINO(mp, mod);
453	*startino -= offset;
454
455	/*
456	 * Since startino has been aligned down, left shift allocmask such that
457	 * it continues to represent the same physical inodes relative to the
458	 * new startino.
459	 */
460	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
461}
462
463/*
464 * Determine whether the source inode record can merge into the target. Both
465 * records must be sparse, the inode ranges must match and there must be no
466 * allocation overlap between the records.
467 */
468STATIC bool
469__xfs_inobt_can_merge(
470	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
471	struct xfs_inobt_rec_incore	*srec)	/* src record */
472{
473	uint64_t			talloc;
474	uint64_t			salloc;
475
476	/* records must cover the same inode range */
477	if (trec->ir_startino != srec->ir_startino)
478		return false;
479
480	/* both records must be sparse */
481	if (!xfs_inobt_issparse(trec->ir_holemask) ||
482	    !xfs_inobt_issparse(srec->ir_holemask))
483		return false;
484
485	/* both records must track some inodes */
486	if (!trec->ir_count || !srec->ir_count)
487		return false;
488
489	/* can't exceed capacity of a full record */
490	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
491		return false;
492
493	/* verify there is no allocation overlap */
494	talloc = xfs_inobt_irec_to_allocmask(trec);
495	salloc = xfs_inobt_irec_to_allocmask(srec);
496	if (talloc & salloc)
497		return false;
498
499	return true;
500}
501
502/*
503 * Merge the source inode record into the target. The caller must call
504 * __xfs_inobt_can_merge() to ensure the merge is valid.
505 */
506STATIC void
507__xfs_inobt_rec_merge(
508	struct xfs_inobt_rec_incore	*trec,	/* target */
509	struct xfs_inobt_rec_incore	*srec)	/* src */
510{
511	ASSERT(trec->ir_startino == srec->ir_startino);
512
513	/* combine the counts */
514	trec->ir_count += srec->ir_count;
515	trec->ir_freecount += srec->ir_freecount;
516
517	/*
518	 * Merge the holemask and free mask. For both fields, 0 bits refer to
519	 * allocated inodes. We combine the allocated ranges with bitwise AND.
520	 */
521	trec->ir_holemask &= srec->ir_holemask;
522	trec->ir_free &= srec->ir_free;
523}
524
525/*
526 * Insert a new sparse inode chunk into the associated inode btree. The inode
527 * record for the sparse chunk is pre-aligned to a startino that should match
528 * any pre-existing sparse inode record in the tree. This allows sparse chunks
529 * to fill over time.
530 *
531 * This function supports two modes of handling preexisting records depending on
532 * the merge flag. If merge is true, the provided record is merged with the
533 * existing record and updated in place. The merged record is returned in nrec.
534 * If merge is false, an existing record is replaced with the provided record.
535 * If no preexisting record exists, the provided record is always inserted.
536 *
537 * It is considered corruption if a merge is requested and not possible. Given
538 * the sparse inode alignment constraints, this should never happen.
539 */
540STATIC int
541xfs_inobt_insert_sprec(
542	struct xfs_perag		*pag,
543	struct xfs_trans		*tp,
544	struct xfs_buf			*agbp,
545	int				btnum,
546	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
547	bool				merge)	/* merge or replace */
548{
549	struct xfs_mount		*mp = pag->pag_mount;
550	struct xfs_btree_cur		*cur;
551	int				error;
552	int				i;
553	struct xfs_inobt_rec_incore	rec;
554
555	cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum);
556
557	/* the new record is pre-aligned so we know where to look */
558	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
559	if (error)
560		goto error;
561	/* if nothing there, insert a new record and return */
562	if (i == 0) {
563		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
564					     nrec->ir_count, nrec->ir_freecount,
565					     nrec->ir_free, &i);
566		if (error)
567			goto error;
568		if (XFS_IS_CORRUPT(mp, i != 1)) {
569			error = -EFSCORRUPTED;
570			goto error;
571		}
572
573		goto out;
574	}
575
576	/*
577	 * A record exists at this startino. Merge or replace the record
578	 * depending on what we've been asked to do.
579	 */
580	if (merge) {
581		error = xfs_inobt_get_rec(cur, &rec, &i);
582		if (error)
583			goto error;
584		if (XFS_IS_CORRUPT(mp, i != 1)) {
585			error = -EFSCORRUPTED;
586			goto error;
587		}
588		if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
589			error = -EFSCORRUPTED;
590			goto error;
591		}
592
593		/*
594		 * This should never fail. If we have coexisting records that
595		 * cannot merge, something is seriously wrong.
596		 */
597		if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
598			error = -EFSCORRUPTED;
599			goto error;
600		}
601
602		trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
603					 rec.ir_holemask, nrec->ir_startino,
604					 nrec->ir_holemask);
605
606		/* merge to nrec to output the updated record */
607		__xfs_inobt_rec_merge(nrec, &rec);
608
609		trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
610					  nrec->ir_holemask);
611
612		error = xfs_inobt_rec_check_count(mp, nrec);
613		if (error)
614			goto error;
615	}
616
617	error = xfs_inobt_update(cur, nrec);
618	if (error)
619		goto error;
620
621out:
622	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
623	return 0;
624error:
625	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
626	return error;
627}
628
629/*
630 * Allocate new inodes in the allocation group specified by agbp.  Returns 0 if
631 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
632 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
633 * inode count threshold, or the usual negative error code for other errors.
634 */
635STATIC int
636xfs_ialloc_ag_alloc(
637	struct xfs_perag	*pag,
638	struct xfs_trans	*tp,
639	struct xfs_buf		*agbp)
640{
641	struct xfs_agi		*agi;
642	struct xfs_alloc_arg	args;
643	int			error;
644	xfs_agino_t		newino;		/* new first inode's number */
645	xfs_agino_t		newlen;		/* new number of inodes */
646	int			isaligned = 0;	/* inode allocation at stripe */
647						/* unit boundary */
648	/* init. to full chunk */
649	struct xfs_inobt_rec_incore rec;
650	struct xfs_ino_geometry	*igeo = M_IGEO(tp->t_mountp);
651	uint16_t		allocmask = (uint16_t) -1;
652	int			do_sparse = 0;
653
654	memset(&args, 0, sizeof(args));
655	args.tp = tp;
656	args.mp = tp->t_mountp;
657	args.fsbno = NULLFSBLOCK;
658	args.oinfo = XFS_RMAP_OINFO_INODES;
659	args.pag = pag;
660
661#ifdef DEBUG
662	/* randomly do sparse inode allocations */
663	if (xfs_has_sparseinodes(tp->t_mountp) &&
664	    igeo->ialloc_min_blks < igeo->ialloc_blks)
665		do_sparse = get_random_u32_below(2);
666#endif
667
668	/*
669	 * Locking will ensure that we don't have two callers in here
670	 * at one time.
671	 */
672	newlen = igeo->ialloc_inos;
673	if (igeo->maxicount &&
674	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
675							igeo->maxicount)
676		return -ENOSPC;
677	args.minlen = args.maxlen = igeo->ialloc_blks;
678	/*
679	 * First try to allocate inodes contiguous with the last-allocated
680	 * chunk of inodes.  If the filesystem is striped, this will fill
681	 * an entire stripe unit with inodes.
682	 */
683	agi = agbp->b_addr;
684	newino = be32_to_cpu(agi->agi_newino);
685	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
686		     igeo->ialloc_blks;
687	if (do_sparse)
688		goto sparse_alloc;
689	if (likely(newino != NULLAGINO &&
690		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
691		args.prod = 1;
692
693		/*
694		 * We need to take into account alignment here to ensure that
695		 * we don't modify the free list if we fail to have an exact
696		 * block. If we don't have an exact match, and every oher
697		 * attempt allocation attempt fails, we'll end up cancelling
698		 * a dirty transaction and shutting down.
699		 *
700		 * For an exact allocation, alignment must be 1,
701		 * however we need to take cluster alignment into account when
702		 * fixing up the freelist. Use the minalignslop field to
703		 * indicate that extra blocks might be required for alignment,
704		 * but not to use them in the actual exact allocation.
705		 */
706		args.alignment = 1;
707		args.minalignslop = igeo->cluster_align - 1;
708
709		/* Allow space for the inode btree to split. */
710		args.minleft = igeo->inobt_maxlevels;
711		error = xfs_alloc_vextent_exact_bno(&args,
712				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
713						args.agbno));
714		if (error)
715			return error;
716
717		/*
718		 * This request might have dirtied the transaction if the AG can
719		 * satisfy the request, but the exact block was not available.
720		 * If the allocation did fail, subsequent requests will relax
721		 * the exact agbno requirement and increase the alignment
722		 * instead. It is critical that the total size of the request
723		 * (len + alignment + slop) does not increase from this point
724		 * on, so reset minalignslop to ensure it is not included in
725		 * subsequent requests.
726		 */
727		args.minalignslop = 0;
728	}
729
730	if (unlikely(args.fsbno == NULLFSBLOCK)) {
731		/*
732		 * Set the alignment for the allocation.
733		 * If stripe alignment is turned on then align at stripe unit
734		 * boundary.
735		 * If the cluster size is smaller than a filesystem block
736		 * then we're doing I/O for inodes in filesystem block size
737		 * pieces, so don't need alignment anyway.
738		 */
739		isaligned = 0;
740		if (igeo->ialloc_align) {
741			ASSERT(!xfs_has_noalign(args.mp));
742			args.alignment = args.mp->m_dalign;
743			isaligned = 1;
744		} else
745			args.alignment = igeo->cluster_align;
746		/*
747		 * Allocate a fixed-size extent of inodes.
748		 */
749		args.prod = 1;
750		/*
751		 * Allow space for the inode btree to split.
752		 */
753		args.minleft = igeo->inobt_maxlevels;
754		error = xfs_alloc_vextent_near_bno(&args,
755				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
756						be32_to_cpu(agi->agi_root)));
757		if (error)
758			return error;
759	}
760
761	/*
762	 * If stripe alignment is turned on, then try again with cluster
763	 * alignment.
764	 */
765	if (isaligned && args.fsbno == NULLFSBLOCK) {
766		args.alignment = igeo->cluster_align;
767		error = xfs_alloc_vextent_near_bno(&args,
768				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
769						be32_to_cpu(agi->agi_root)));
770		if (error)
771			return error;
772	}
773
774	/*
775	 * Finally, try a sparse allocation if the filesystem supports it and
776	 * the sparse allocation length is smaller than a full chunk.
777	 */
778	if (xfs_has_sparseinodes(args.mp) &&
779	    igeo->ialloc_min_blks < igeo->ialloc_blks &&
780	    args.fsbno == NULLFSBLOCK) {
781sparse_alloc:
782		args.alignment = args.mp->m_sb.sb_spino_align;
783		args.prod = 1;
784
785		args.minlen = igeo->ialloc_min_blks;
786		args.maxlen = args.minlen;
787
788		/*
789		 * The inode record will be aligned to full chunk size. We must
790		 * prevent sparse allocation from AG boundaries that result in
791		 * invalid inode records, such as records that start at agbno 0
792		 * or extend beyond the AG.
793		 *
794		 * Set min agbno to the first aligned, non-zero agbno and max to
795		 * the last aligned agbno that is at least one full chunk from
796		 * the end of the AG.
797		 */
798		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
799		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
800					    args.mp->m_sb.sb_inoalignmt) -
801				 igeo->ialloc_blks;
802
803		error = xfs_alloc_vextent_near_bno(&args,
804				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
805						be32_to_cpu(agi->agi_root)));
806		if (error)
807			return error;
808
809		newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
810		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
811		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
812	}
813
814	if (args.fsbno == NULLFSBLOCK)
815		return -EAGAIN;
816
817	ASSERT(args.len == args.minlen);
818
819	/*
820	 * Stamp and write the inode buffers.
821	 *
822	 * Seed the new inode cluster with a random generation number. This
823	 * prevents short-term reuse of generation numbers if a chunk is
824	 * freed and then immediately reallocated. We use random numbers
825	 * rather than a linear progression to prevent the next generation
826	 * number from being easily guessable.
827	 */
828	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
829			args.agbno, args.len, get_random_u32());
830
831	if (error)
832		return error;
833	/*
834	 * Convert the results.
835	 */
836	newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
837
838	if (xfs_inobt_issparse(~allocmask)) {
839		/*
840		 * We've allocated a sparse chunk. Align the startino and mask.
841		 */
842		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
843
844		rec.ir_startino = newino;
845		rec.ir_holemask = ~allocmask;
846		rec.ir_count = newlen;
847		rec.ir_freecount = newlen;
848		rec.ir_free = XFS_INOBT_ALL_FREE;
849
850		/*
851		 * Insert the sparse record into the inobt and allow for a merge
852		 * if necessary. If a merge does occur, rec is updated to the
853		 * merged record.
854		 */
855		error = xfs_inobt_insert_sprec(pag, tp, agbp,
856				XFS_BTNUM_INO, &rec, true);
857		if (error == -EFSCORRUPTED) {
858			xfs_alert(args.mp,
859	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
860				  XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
861						   rec.ir_startino),
862				  rec.ir_holemask, rec.ir_count);
863			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
864		}
865		if (error)
866			return error;
867
868		/*
869		 * We can't merge the part we've just allocated as for the inobt
870		 * due to finobt semantics. The original record may or may not
871		 * exist independent of whether physical inodes exist in this
872		 * sparse chunk.
873		 *
874		 * We must update the finobt record based on the inobt record.
875		 * rec contains the fully merged and up to date inobt record
876		 * from the previous call. Set merge false to replace any
877		 * existing record with this one.
878		 */
879		if (xfs_has_finobt(args.mp)) {
880			error = xfs_inobt_insert_sprec(pag, tp, agbp,
881				       XFS_BTNUM_FINO, &rec, false);
882			if (error)
883				return error;
884		}
885	} else {
886		/* full chunk - insert new records to both btrees */
887		error = xfs_inobt_insert(pag, tp, agbp, newino, newlen,
888					 XFS_BTNUM_INO);
889		if (error)
890			return error;
891
892		if (xfs_has_finobt(args.mp)) {
893			error = xfs_inobt_insert(pag, tp, agbp, newino,
894						 newlen, XFS_BTNUM_FINO);
895			if (error)
896				return error;
897		}
898	}
899
900	/*
901	 * Update AGI counts and newino.
902	 */
903	be32_add_cpu(&agi->agi_count, newlen);
904	be32_add_cpu(&agi->agi_freecount, newlen);
905	pag->pagi_freecount += newlen;
906	pag->pagi_count += newlen;
907	agi->agi_newino = cpu_to_be32(newino);
908
909	/*
910	 * Log allocation group header fields
911	 */
912	xfs_ialloc_log_agi(tp, agbp,
913		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
914	/*
915	 * Modify/log superblock values for inode count and inode free count.
916	 */
917	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
918	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
919	return 0;
920}
921
922/*
923 * Try to retrieve the next record to the left/right from the current one.
924 */
925STATIC int
926xfs_ialloc_next_rec(
927	struct xfs_btree_cur	*cur,
928	xfs_inobt_rec_incore_t	*rec,
929	int			*done,
930	int			left)
931{
932	int                     error;
933	int			i;
934
935	if (left)
936		error = xfs_btree_decrement(cur, 0, &i);
937	else
938		error = xfs_btree_increment(cur, 0, &i);
939
940	if (error)
941		return error;
942	*done = !i;
943	if (i) {
944		error = xfs_inobt_get_rec(cur, rec, &i);
945		if (error)
946			return error;
947		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
948			return -EFSCORRUPTED;
949	}
950
951	return 0;
952}
953
954STATIC int
955xfs_ialloc_get_rec(
956	struct xfs_btree_cur	*cur,
957	xfs_agino_t		agino,
958	xfs_inobt_rec_incore_t	*rec,
959	int			*done)
960{
961	int                     error;
962	int			i;
963
964	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
965	if (error)
966		return error;
967	*done = !i;
968	if (i) {
969		error = xfs_inobt_get_rec(cur, rec, &i);
970		if (error)
971			return error;
972		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
973			return -EFSCORRUPTED;
974	}
975
976	return 0;
977}
978
979/*
980 * Return the offset of the first free inode in the record. If the inode chunk
981 * is sparsely allocated, we convert the record holemask to inode granularity
982 * and mask off the unallocated regions from the inode free mask.
983 */
984STATIC int
985xfs_inobt_first_free_inode(
986	struct xfs_inobt_rec_incore	*rec)
987{
988	xfs_inofree_t			realfree;
989
990	/* if there are no holes, return the first available offset */
991	if (!xfs_inobt_issparse(rec->ir_holemask))
992		return xfs_lowbit64(rec->ir_free);
993
994	realfree = xfs_inobt_irec_to_allocmask(rec);
995	realfree &= rec->ir_free;
996
997	return xfs_lowbit64(realfree);
998}
999
1000/*
1001 * Allocate an inode using the inobt-only algorithm.
1002 */
1003STATIC int
1004xfs_dialloc_ag_inobt(
1005	struct xfs_perag	*pag,
1006	struct xfs_trans	*tp,
1007	struct xfs_buf		*agbp,
1008	xfs_ino_t		parent,
1009	xfs_ino_t		*inop)
1010{
1011	struct xfs_mount	*mp = tp->t_mountp;
1012	struct xfs_agi		*agi = agbp->b_addr;
1013	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1014	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1015	struct xfs_btree_cur	*cur, *tcur;
1016	struct xfs_inobt_rec_incore rec, trec;
1017	xfs_ino_t		ino;
1018	int			error;
1019	int			offset;
1020	int			i, j;
1021	int			searchdistance = 10;
1022
1023	ASSERT(xfs_perag_initialised_agi(pag));
1024	ASSERT(xfs_perag_allows_inodes(pag));
1025	ASSERT(pag->pagi_freecount > 0);
1026
1027 restart_pagno:
1028	cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1029	/*
1030	 * If pagino is 0 (this is the root inode allocation) use newino.
1031	 * This must work because we've just allocated some.
1032	 */
1033	if (!pagino)
1034		pagino = be32_to_cpu(agi->agi_newino);
1035
1036	error = xfs_check_agi_freecount(cur);
1037	if (error)
1038		goto error0;
1039
1040	/*
1041	 * If in the same AG as the parent, try to get near the parent.
1042	 */
1043	if (pagno == pag->pag_agno) {
1044		int		doneleft;	/* done, to the left */
1045		int		doneright;	/* done, to the right */
1046
1047		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1048		if (error)
1049			goto error0;
1050		if (XFS_IS_CORRUPT(mp, i != 1)) {
1051			error = -EFSCORRUPTED;
1052			goto error0;
1053		}
1054
1055		error = xfs_inobt_get_rec(cur, &rec, &j);
1056		if (error)
1057			goto error0;
1058		if (XFS_IS_CORRUPT(mp, j != 1)) {
1059			error = -EFSCORRUPTED;
1060			goto error0;
1061		}
1062
1063		if (rec.ir_freecount > 0) {
1064			/*
1065			 * Found a free inode in the same chunk
1066			 * as the parent, done.
1067			 */
1068			goto alloc_inode;
1069		}
1070
1071
1072		/*
1073		 * In the same AG as parent, but parent's chunk is full.
1074		 */
1075
1076		/* duplicate the cursor, search left & right simultaneously */
1077		error = xfs_btree_dup_cursor(cur, &tcur);
1078		if (error)
1079			goto error0;
1080
1081		/*
1082		 * Skip to last blocks looked up if same parent inode.
1083		 */
1084		if (pagino != NULLAGINO &&
1085		    pag->pagl_pagino == pagino &&
1086		    pag->pagl_leftrec != NULLAGINO &&
1087		    pag->pagl_rightrec != NULLAGINO) {
1088			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1089						   &trec, &doneleft);
1090			if (error)
1091				goto error1;
1092
1093			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1094						   &rec, &doneright);
1095			if (error)
1096				goto error1;
1097		} else {
1098			/* search left with tcur, back up 1 record */
1099			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1100			if (error)
1101				goto error1;
1102
1103			/* search right with cur, go forward 1 record. */
1104			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1105			if (error)
1106				goto error1;
1107		}
1108
1109		/*
1110		 * Loop until we find an inode chunk with a free inode.
1111		 */
1112		while (--searchdistance > 0 && (!doneleft || !doneright)) {
1113			int	useleft;  /* using left inode chunk this time */
1114
1115			/* figure out the closer block if both are valid. */
1116			if (!doneleft && !doneright) {
1117				useleft = pagino -
1118				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1119				  rec.ir_startino - pagino;
1120			} else {
1121				useleft = !doneleft;
1122			}
1123
1124			/* free inodes to the left? */
1125			if (useleft && trec.ir_freecount) {
1126				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1127				cur = tcur;
1128
1129				pag->pagl_leftrec = trec.ir_startino;
1130				pag->pagl_rightrec = rec.ir_startino;
1131				pag->pagl_pagino = pagino;
1132				rec = trec;
1133				goto alloc_inode;
1134			}
1135
1136			/* free inodes to the right? */
1137			if (!useleft && rec.ir_freecount) {
1138				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1139
1140				pag->pagl_leftrec = trec.ir_startino;
1141				pag->pagl_rightrec = rec.ir_startino;
1142				pag->pagl_pagino = pagino;
1143				goto alloc_inode;
1144			}
1145
1146			/* get next record to check */
1147			if (useleft) {
1148				error = xfs_ialloc_next_rec(tcur, &trec,
1149								 &doneleft, 1);
1150			} else {
1151				error = xfs_ialloc_next_rec(cur, &rec,
1152								 &doneright, 0);
1153			}
1154			if (error)
1155				goto error1;
1156		}
1157
1158		if (searchdistance <= 0) {
1159			/*
1160			 * Not in range - save last search
1161			 * location and allocate a new inode
1162			 */
1163			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1164			pag->pagl_leftrec = trec.ir_startino;
1165			pag->pagl_rightrec = rec.ir_startino;
1166			pag->pagl_pagino = pagino;
1167
1168		} else {
1169			/*
1170			 * We've reached the end of the btree. because
1171			 * we are only searching a small chunk of the
1172			 * btree each search, there is obviously free
1173			 * inodes closer to the parent inode than we
1174			 * are now. restart the search again.
1175			 */
1176			pag->pagl_pagino = NULLAGINO;
1177			pag->pagl_leftrec = NULLAGINO;
1178			pag->pagl_rightrec = NULLAGINO;
1179			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1180			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1181			goto restart_pagno;
1182		}
1183	}
1184
1185	/*
1186	 * In a different AG from the parent.
1187	 * See if the most recently allocated block has any free.
1188	 */
1189	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1190		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1191					 XFS_LOOKUP_EQ, &i);
1192		if (error)
1193			goto error0;
1194
1195		if (i == 1) {
1196			error = xfs_inobt_get_rec(cur, &rec, &j);
1197			if (error)
1198				goto error0;
1199
1200			if (j == 1 && rec.ir_freecount > 0) {
1201				/*
1202				 * The last chunk allocated in the group
1203				 * still has a free inode.
1204				 */
1205				goto alloc_inode;
1206			}
1207		}
1208	}
1209
1210	/*
1211	 * None left in the last group, search the whole AG
1212	 */
1213	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1214	if (error)
1215		goto error0;
1216	if (XFS_IS_CORRUPT(mp, i != 1)) {
1217		error = -EFSCORRUPTED;
1218		goto error0;
1219	}
1220
1221	for (;;) {
1222		error = xfs_inobt_get_rec(cur, &rec, &i);
1223		if (error)
1224			goto error0;
1225		if (XFS_IS_CORRUPT(mp, i != 1)) {
1226			error = -EFSCORRUPTED;
1227			goto error0;
1228		}
1229		if (rec.ir_freecount > 0)
1230			break;
1231		error = xfs_btree_increment(cur, 0, &i);
1232		if (error)
1233			goto error0;
1234		if (XFS_IS_CORRUPT(mp, i != 1)) {
1235			error = -EFSCORRUPTED;
1236			goto error0;
1237		}
1238	}
1239
1240alloc_inode:
1241	offset = xfs_inobt_first_free_inode(&rec);
1242	ASSERT(offset >= 0);
1243	ASSERT(offset < XFS_INODES_PER_CHUNK);
1244	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1245				   XFS_INODES_PER_CHUNK) == 0);
1246	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1247	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1248	rec.ir_freecount--;
1249	error = xfs_inobt_update(cur, &rec);
1250	if (error)
1251		goto error0;
1252	be32_add_cpu(&agi->agi_freecount, -1);
1253	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1254	pag->pagi_freecount--;
1255
1256	error = xfs_check_agi_freecount(cur);
1257	if (error)
1258		goto error0;
1259
1260	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1261	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1262	*inop = ino;
1263	return 0;
1264error1:
1265	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1266error0:
1267	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1268	return error;
1269}
1270
1271/*
1272 * Use the free inode btree to allocate an inode based on distance from the
1273 * parent. Note that the provided cursor may be deleted and replaced.
1274 */
1275STATIC int
1276xfs_dialloc_ag_finobt_near(
1277	xfs_agino_t			pagino,
1278	struct xfs_btree_cur		**ocur,
1279	struct xfs_inobt_rec_incore	*rec)
1280{
1281	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1282	struct xfs_btree_cur		*rcur;	/* right search cursor */
1283	struct xfs_inobt_rec_incore	rrec;
1284	int				error;
1285	int				i, j;
1286
1287	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1288	if (error)
1289		return error;
1290
1291	if (i == 1) {
1292		error = xfs_inobt_get_rec(lcur, rec, &i);
1293		if (error)
1294			return error;
1295		if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1296			return -EFSCORRUPTED;
1297
1298		/*
1299		 * See if we've landed in the parent inode record. The finobt
1300		 * only tracks chunks with at least one free inode, so record
1301		 * existence is enough.
1302		 */
1303		if (pagino >= rec->ir_startino &&
1304		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1305			return 0;
1306	}
1307
1308	error = xfs_btree_dup_cursor(lcur, &rcur);
1309	if (error)
1310		return error;
1311
1312	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1313	if (error)
1314		goto error_rcur;
1315	if (j == 1) {
1316		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1317		if (error)
1318			goto error_rcur;
1319		if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1320			error = -EFSCORRUPTED;
1321			goto error_rcur;
1322		}
1323	}
1324
1325	if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1326		error = -EFSCORRUPTED;
1327		goto error_rcur;
1328	}
1329	if (i == 1 && j == 1) {
1330		/*
1331		 * Both the left and right records are valid. Choose the closer
1332		 * inode chunk to the target.
1333		 */
1334		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1335		    (rrec.ir_startino - pagino)) {
1336			*rec = rrec;
1337			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1338			*ocur = rcur;
1339		} else {
1340			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1341		}
1342	} else if (j == 1) {
1343		/* only the right record is valid */
1344		*rec = rrec;
1345		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1346		*ocur = rcur;
1347	} else if (i == 1) {
1348		/* only the left record is valid */
1349		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1350	}
1351
1352	return 0;
1353
1354error_rcur:
1355	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1356	return error;
1357}
1358
1359/*
1360 * Use the free inode btree to find a free inode based on a newino hint. If
1361 * the hint is NULL, find the first free inode in the AG.
1362 */
1363STATIC int
1364xfs_dialloc_ag_finobt_newino(
1365	struct xfs_agi			*agi,
1366	struct xfs_btree_cur		*cur,
1367	struct xfs_inobt_rec_incore	*rec)
1368{
1369	int error;
1370	int i;
1371
1372	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1373		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1374					 XFS_LOOKUP_EQ, &i);
1375		if (error)
1376			return error;
1377		if (i == 1) {
1378			error = xfs_inobt_get_rec(cur, rec, &i);
1379			if (error)
1380				return error;
1381			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1382				return -EFSCORRUPTED;
1383			return 0;
1384		}
1385	}
1386
1387	/*
1388	 * Find the first inode available in the AG.
1389	 */
1390	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1391	if (error)
1392		return error;
1393	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1394		return -EFSCORRUPTED;
1395
1396	error = xfs_inobt_get_rec(cur, rec, &i);
1397	if (error)
1398		return error;
1399	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1400		return -EFSCORRUPTED;
1401
1402	return 0;
1403}
1404
1405/*
1406 * Update the inobt based on a modification made to the finobt. Also ensure that
1407 * the records from both trees are equivalent post-modification.
1408 */
1409STATIC int
1410xfs_dialloc_ag_update_inobt(
1411	struct xfs_btree_cur		*cur,	/* inobt cursor */
1412	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1413	int				offset) /* inode offset */
1414{
1415	struct xfs_inobt_rec_incore	rec;
1416	int				error;
1417	int				i;
1418
1419	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1420	if (error)
1421		return error;
1422	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1423		return -EFSCORRUPTED;
1424
1425	error = xfs_inobt_get_rec(cur, &rec, &i);
1426	if (error)
1427		return error;
1428	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1429		return -EFSCORRUPTED;
1430	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1431				   XFS_INODES_PER_CHUNK) == 0);
1432
1433	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1434	rec.ir_freecount--;
1435
1436	if (XFS_IS_CORRUPT(cur->bc_mp,
1437			   rec.ir_free != frec->ir_free ||
1438			   rec.ir_freecount != frec->ir_freecount))
1439		return -EFSCORRUPTED;
1440
1441	return xfs_inobt_update(cur, &rec);
1442}
1443
1444/*
1445 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1446 * back to the inobt search algorithm.
1447 *
1448 * The caller selected an AG for us, and made sure that free inodes are
1449 * available.
1450 */
1451static int
1452xfs_dialloc_ag(
1453	struct xfs_perag	*pag,
1454	struct xfs_trans	*tp,
1455	struct xfs_buf		*agbp,
1456	xfs_ino_t		parent,
1457	xfs_ino_t		*inop)
1458{
1459	struct xfs_mount		*mp = tp->t_mountp;
1460	struct xfs_agi			*agi = agbp->b_addr;
1461	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1462	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1463	struct xfs_btree_cur		*cur;	/* finobt cursor */
1464	struct xfs_btree_cur		*icur;	/* inobt cursor */
1465	struct xfs_inobt_rec_incore	rec;
1466	xfs_ino_t			ino;
1467	int				error;
1468	int				offset;
1469	int				i;
1470
1471	if (!xfs_has_finobt(mp))
1472		return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
1473
1474	/*
1475	 * If pagino is 0 (this is the root inode allocation) use newino.
1476	 * This must work because we've just allocated some.
1477	 */
1478	if (!pagino)
1479		pagino = be32_to_cpu(agi->agi_newino);
1480
1481	cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO);
1482
1483	error = xfs_check_agi_freecount(cur);
1484	if (error)
1485		goto error_cur;
1486
1487	/*
1488	 * The search algorithm depends on whether we're in the same AG as the
1489	 * parent. If so, find the closest available inode to the parent. If
1490	 * not, consider the agi hint or find the first free inode in the AG.
1491	 */
1492	if (pag->pag_agno == pagno)
1493		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1494	else
1495		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1496	if (error)
1497		goto error_cur;
1498
1499	offset = xfs_inobt_first_free_inode(&rec);
1500	ASSERT(offset >= 0);
1501	ASSERT(offset < XFS_INODES_PER_CHUNK);
1502	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1503				   XFS_INODES_PER_CHUNK) == 0);
1504	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1505
1506	/*
1507	 * Modify or remove the finobt record.
1508	 */
1509	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1510	rec.ir_freecount--;
1511	if (rec.ir_freecount)
1512		error = xfs_inobt_update(cur, &rec);
1513	else
1514		error = xfs_btree_delete(cur, &i);
1515	if (error)
1516		goto error_cur;
1517
1518	/*
1519	 * The finobt has now been updated appropriately. We haven't updated the
1520	 * agi and superblock yet, so we can create an inobt cursor and validate
1521	 * the original freecount. If all is well, make the equivalent update to
1522	 * the inobt using the finobt record and offset information.
1523	 */
1524	icur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1525
1526	error = xfs_check_agi_freecount(icur);
1527	if (error)
1528		goto error_icur;
1529
1530	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1531	if (error)
1532		goto error_icur;
1533
1534	/*
1535	 * Both trees have now been updated. We must update the perag and
1536	 * superblock before we can check the freecount for each btree.
1537	 */
1538	be32_add_cpu(&agi->agi_freecount, -1);
1539	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1540	pag->pagi_freecount--;
1541
1542	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1543
1544	error = xfs_check_agi_freecount(icur);
1545	if (error)
1546		goto error_icur;
1547	error = xfs_check_agi_freecount(cur);
1548	if (error)
1549		goto error_icur;
1550
1551	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1552	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1553	*inop = ino;
1554	return 0;
1555
1556error_icur:
1557	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1558error_cur:
1559	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1560	return error;
1561}
1562
1563static int
1564xfs_dialloc_roll(
1565	struct xfs_trans	**tpp,
1566	struct xfs_buf		*agibp)
1567{
1568	struct xfs_trans	*tp = *tpp;
1569	struct xfs_dquot_acct	*dqinfo;
1570	int			error;
1571
1572	/*
1573	 * Hold to on to the agibp across the commit so no other allocation can
1574	 * come in and take the free inodes we just allocated for our caller.
1575	 */
1576	xfs_trans_bhold(tp, agibp);
1577
1578	/*
1579	 * We want the quota changes to be associated with the next transaction,
1580	 * NOT this one. So, detach the dqinfo from this and attach it to the
1581	 * next transaction.
1582	 */
1583	dqinfo = tp->t_dqinfo;
1584	tp->t_dqinfo = NULL;
1585
1586	error = xfs_trans_roll(&tp);
1587
1588	/* Re-attach the quota info that we detached from prev trx. */
1589	tp->t_dqinfo = dqinfo;
1590
1591	/*
1592	 * Join the buffer even on commit error so that the buffer is released
1593	 * when the caller cancels the transaction and doesn't have to handle
1594	 * this error case specially.
1595	 */
1596	xfs_trans_bjoin(tp, agibp);
1597	*tpp = tp;
1598	return error;
1599}
1600
1601static bool
1602xfs_dialloc_good_ag(
1603	struct xfs_perag	*pag,
1604	struct xfs_trans	*tp,
1605	umode_t			mode,
1606	int			flags,
1607	bool			ok_alloc)
1608{
1609	struct xfs_mount	*mp = tp->t_mountp;
1610	xfs_extlen_t		ineed;
1611	xfs_extlen_t		longest = 0;
1612	int			needspace;
1613	int			error;
1614
1615	if (!pag)
1616		return false;
1617	if (!xfs_perag_allows_inodes(pag))
1618		return false;
1619
1620	if (!xfs_perag_initialised_agi(pag)) {
1621		error = xfs_ialloc_read_agi(pag, tp, NULL);
1622		if (error)
1623			return false;
1624	}
1625
1626	if (pag->pagi_freecount)
1627		return true;
1628	if (!ok_alloc)
1629		return false;
1630
1631	if (!xfs_perag_initialised_agf(pag)) {
1632		error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1633		if (error)
1634			return false;
1635	}
1636
1637	/*
1638	 * Check that there is enough free space for the file plus a chunk of
1639	 * inodes if we need to allocate some. If this is the first pass across
1640	 * the AGs, take into account the potential space needed for alignment
1641	 * of inode chunks when checking the longest contiguous free space in
1642	 * the AG - this prevents us from getting ENOSPC because we have free
1643	 * space larger than ialloc_blks but alignment constraints prevent us
1644	 * from using it.
1645	 *
1646	 * If we can't find an AG with space for full alignment slack to be
1647	 * taken into account, we must be near ENOSPC in all AGs.  Hence we
1648	 * don't include alignment for the second pass and so if we fail
1649	 * allocation due to alignment issues then it is most likely a real
1650	 * ENOSPC condition.
1651	 *
1652	 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1653	 * reservations that xfs_alloc_fix_freelist() now does via
1654	 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1655	 * be more than large enough for the check below to succeed, but
1656	 * xfs_alloc_space_available() will fail because of the non-zero
1657	 * metadata reservation and hence we won't actually be able to allocate
1658	 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1659	 * because of this.
1660	 */
1661	ineed = M_IGEO(mp)->ialloc_min_blks;
1662	if (flags && ineed > 1)
1663		ineed += M_IGEO(mp)->cluster_align;
1664	longest = pag->pagf_longest;
1665	if (!longest)
1666		longest = pag->pagf_flcount > 0;
1667	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1668
1669	if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1670		return false;
1671	return true;
1672}
1673
1674static int
1675xfs_dialloc_try_ag(
1676	struct xfs_perag	*pag,
1677	struct xfs_trans	**tpp,
1678	xfs_ino_t		parent,
1679	xfs_ino_t		*new_ino,
1680	bool			ok_alloc)
1681{
1682	struct xfs_buf		*agbp;
1683	xfs_ino_t		ino;
1684	int			error;
1685
1686	/*
1687	 * Then read in the AGI buffer and recheck with the AGI buffer
1688	 * lock held.
1689	 */
1690	error = xfs_ialloc_read_agi(pag, *tpp, &agbp);
1691	if (error)
1692		return error;
1693
1694	if (!pag->pagi_freecount) {
1695		if (!ok_alloc) {
1696			error = -EAGAIN;
1697			goto out_release;
1698		}
1699
1700		error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1701		if (error < 0)
1702			goto out_release;
1703
1704		/*
1705		 * We successfully allocated space for an inode cluster in this
1706		 * AG.  Roll the transaction so that we can allocate one of the
1707		 * new inodes.
1708		 */
1709		ASSERT(pag->pagi_freecount > 0);
1710		error = xfs_dialloc_roll(tpp, agbp);
1711		if (error)
1712			goto out_release;
1713	}
1714
1715	/* Allocate an inode in the found AG */
1716	error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1717	if (!error)
1718		*new_ino = ino;
1719	return error;
1720
1721out_release:
1722	xfs_trans_brelse(*tpp, agbp);
1723	return error;
1724}
1725
1726/*
1727 * Allocate an on-disk inode.
1728 *
1729 * Mode is used to tell whether the new inode is a directory and hence where to
1730 * locate it. The on-disk inode that is allocated will be returned in @new_ino
1731 * on success, otherwise an error will be set to indicate the failure (e.g.
1732 * -ENOSPC).
1733 */
1734int
1735xfs_dialloc(
1736	struct xfs_trans	**tpp,
1737	xfs_ino_t		parent,
1738	umode_t			mode,
1739	xfs_ino_t		*new_ino)
1740{
1741	struct xfs_mount	*mp = (*tpp)->t_mountp;
1742	xfs_agnumber_t		agno;
1743	int			error = 0;
1744	xfs_agnumber_t		start_agno;
1745	struct xfs_perag	*pag;
1746	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1747	bool			ok_alloc = true;
1748	bool			low_space = false;
1749	int			flags;
1750	xfs_ino_t		ino = NULLFSINO;
1751
1752	/*
1753	 * Directories, symlinks, and regular files frequently allocate at least
1754	 * one block, so factor that potential expansion when we examine whether
1755	 * an AG has enough space for file creation.
1756	 */
1757	if (S_ISDIR(mode))
1758		start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) %
1759				mp->m_maxagi;
1760	else {
1761		start_agno = XFS_INO_TO_AGNO(mp, parent);
1762		if (start_agno >= mp->m_maxagi)
1763			start_agno = 0;
1764	}
1765
1766	/*
1767	 * If we have already hit the ceiling of inode blocks then clear
1768	 * ok_alloc so we scan all available agi structures for a free
1769	 * inode.
1770	 *
1771	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1772	 * which will sacrifice the preciseness but improve the performance.
1773	 */
1774	if (igeo->maxicount &&
1775	    percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1776							> igeo->maxicount) {
1777		ok_alloc = false;
1778	}
1779
1780	/*
1781	 * If we are near to ENOSPC, we want to prefer allocation from AGs that
1782	 * have free inodes in them rather than use up free space allocating new
1783	 * inode chunks. Hence we turn off allocation for the first non-blocking
1784	 * pass through the AGs if we are near ENOSPC to consume free inodes
1785	 * that we can immediately allocate, but then we allow allocation on the
1786	 * second pass if we fail to find an AG with free inodes in it.
1787	 */
1788	if (percpu_counter_read_positive(&mp->m_fdblocks) <
1789			mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1790		ok_alloc = false;
1791		low_space = true;
1792	}
1793
1794	/*
1795	 * Loop until we find an allocation group that either has free inodes
1796	 * or in which we can allocate some inodes.  Iterate through the
1797	 * allocation groups upward, wrapping at the end.
1798	 */
1799	flags = XFS_ALLOC_FLAG_TRYLOCK;
1800retry:
1801	for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1802		if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1803			error = xfs_dialloc_try_ag(pag, tpp, parent,
1804					&ino, ok_alloc);
1805			if (error != -EAGAIN)
1806				break;
1807			error = 0;
1808		}
1809
1810		if (xfs_is_shutdown(mp)) {
1811			error = -EFSCORRUPTED;
1812			break;
1813		}
1814	}
1815	if (pag)
1816		xfs_perag_rele(pag);
1817	if (error)
1818		return error;
1819	if (ino == NULLFSINO) {
1820		if (flags) {
1821			flags = 0;
1822			if (low_space)
1823				ok_alloc = true;
1824			goto retry;
1825		}
1826		return -ENOSPC;
1827	}
1828	*new_ino = ino;
1829	return 0;
1830}
1831
1832/*
1833 * Free the blocks of an inode chunk. We must consider that the inode chunk
1834 * might be sparse and only free the regions that are allocated as part of the
1835 * chunk.
1836 */
1837static int
1838xfs_difree_inode_chunk(
1839	struct xfs_trans		*tp,
1840	xfs_agnumber_t			agno,
1841	struct xfs_inobt_rec_incore	*rec)
1842{
1843	struct xfs_mount		*mp = tp->t_mountp;
1844	xfs_agblock_t			sagbno = XFS_AGINO_TO_AGBNO(mp,
1845							rec->ir_startino);
1846	int				startidx, endidx;
1847	int				nextbit;
1848	xfs_agblock_t			agbno;
1849	int				contigblk;
1850	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1851
1852	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1853		/* not sparse, calculate extent info directly */
1854		return xfs_free_extent_later(tp,
1855				XFS_AGB_TO_FSB(mp, agno, sagbno),
1856				M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
1857				XFS_AG_RESV_NONE);
1858	}
1859
1860	/* holemask is only 16-bits (fits in an unsigned long) */
1861	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1862	holemask[0] = rec->ir_holemask;
1863
1864	/*
1865	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1866	 * holemask and convert the start/end index of each range to an extent.
1867	 * We start with the start and end index both pointing at the first 0 in
1868	 * the mask.
1869	 */
1870	startidx = endidx = find_first_zero_bit(holemask,
1871						XFS_INOBT_HOLEMASK_BITS);
1872	nextbit = startidx + 1;
1873	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1874		int error;
1875
1876		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1877					     nextbit);
1878		/*
1879		 * If the next zero bit is contiguous, update the end index of
1880		 * the current range and continue.
1881		 */
1882		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1883		    nextbit == endidx + 1) {
1884			endidx = nextbit;
1885			goto next;
1886		}
1887
1888		/*
1889		 * nextbit is not contiguous with the current end index. Convert
1890		 * the current start/end to an extent and add it to the free
1891		 * list.
1892		 */
1893		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1894				  mp->m_sb.sb_inopblock;
1895		contigblk = ((endidx - startidx + 1) *
1896			     XFS_INODES_PER_HOLEMASK_BIT) /
1897			    mp->m_sb.sb_inopblock;
1898
1899		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1900		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1901		error = xfs_free_extent_later(tp,
1902				XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
1903				&XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE);
1904		if (error)
1905			return error;
1906
1907		/* reset range to current bit and carry on... */
1908		startidx = endidx = nextbit;
1909
1910next:
1911		nextbit++;
1912	}
1913	return 0;
1914}
1915
1916STATIC int
1917xfs_difree_inobt(
1918	struct xfs_perag		*pag,
1919	struct xfs_trans		*tp,
1920	struct xfs_buf			*agbp,
1921	xfs_agino_t			agino,
1922	struct xfs_icluster		*xic,
1923	struct xfs_inobt_rec_incore	*orec)
1924{
1925	struct xfs_mount		*mp = pag->pag_mount;
1926	struct xfs_agi			*agi = agbp->b_addr;
1927	struct xfs_btree_cur		*cur;
1928	struct xfs_inobt_rec_incore	rec;
1929	int				ilen;
1930	int				error;
1931	int				i;
1932	int				off;
1933
1934	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1935	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1936
1937	/*
1938	 * Initialize the cursor.
1939	 */
1940	cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1941
1942	error = xfs_check_agi_freecount(cur);
1943	if (error)
1944		goto error0;
1945
1946	/*
1947	 * Look for the entry describing this inode.
1948	 */
1949	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1950		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1951			__func__, error);
1952		goto error0;
1953	}
1954	if (XFS_IS_CORRUPT(mp, i != 1)) {
1955		error = -EFSCORRUPTED;
1956		goto error0;
1957	}
1958	error = xfs_inobt_get_rec(cur, &rec, &i);
1959	if (error) {
1960		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1961			__func__, error);
1962		goto error0;
1963	}
1964	if (XFS_IS_CORRUPT(mp, i != 1)) {
1965		error = -EFSCORRUPTED;
1966		goto error0;
1967	}
1968	/*
1969	 * Get the offset in the inode chunk.
1970	 */
1971	off = agino - rec.ir_startino;
1972	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1973	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1974	/*
1975	 * Mark the inode free & increment the count.
1976	 */
1977	rec.ir_free |= XFS_INOBT_MASK(off);
1978	rec.ir_freecount++;
1979
1980	/*
1981	 * When an inode chunk is free, it becomes eligible for removal. Don't
1982	 * remove the chunk if the block size is large enough for multiple inode
1983	 * chunks (that might not be free).
1984	 */
1985	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
1986	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1987		xic->deleted = true;
1988		xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
1989				rec.ir_startino);
1990		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1991
1992		/*
1993		 * Remove the inode cluster from the AGI B+Tree, adjust the
1994		 * AGI and Superblock inode counts, and mark the disk space
1995		 * to be freed when the transaction is committed.
1996		 */
1997		ilen = rec.ir_freecount;
1998		be32_add_cpu(&agi->agi_count, -ilen);
1999		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2000		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2001		pag->pagi_freecount -= ilen - 1;
2002		pag->pagi_count -= ilen;
2003		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2004		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2005
2006		if ((error = xfs_btree_delete(cur, &i))) {
2007			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2008				__func__, error);
2009			goto error0;
2010		}
2011
2012		error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
2013		if (error)
2014			goto error0;
2015	} else {
2016		xic->deleted = false;
2017
2018		error = xfs_inobt_update(cur, &rec);
2019		if (error) {
2020			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2021				__func__, error);
2022			goto error0;
2023		}
2024
2025		/*
2026		 * Change the inode free counts and log the ag/sb changes.
2027		 */
2028		be32_add_cpu(&agi->agi_freecount, 1);
2029		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2030		pag->pagi_freecount++;
2031		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2032	}
2033
2034	error = xfs_check_agi_freecount(cur);
2035	if (error)
2036		goto error0;
2037
2038	*orec = rec;
2039	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2040	return 0;
2041
2042error0:
2043	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2044	return error;
2045}
2046
2047/*
2048 * Free an inode in the free inode btree.
2049 */
2050STATIC int
2051xfs_difree_finobt(
2052	struct xfs_perag		*pag,
2053	struct xfs_trans		*tp,
2054	struct xfs_buf			*agbp,
2055	xfs_agino_t			agino,
2056	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2057{
2058	struct xfs_mount		*mp = pag->pag_mount;
2059	struct xfs_btree_cur		*cur;
2060	struct xfs_inobt_rec_incore	rec;
2061	int				offset = agino - ibtrec->ir_startino;
2062	int				error;
2063	int				i;
2064
2065	cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO);
2066
2067	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2068	if (error)
2069		goto error;
2070	if (i == 0) {
2071		/*
2072		 * If the record does not exist in the finobt, we must have just
2073		 * freed an inode in a previously fully allocated chunk. If not,
2074		 * something is out of sync.
2075		 */
2076		if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2077			error = -EFSCORRUPTED;
2078			goto error;
2079		}
2080
2081		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2082					     ibtrec->ir_count,
2083					     ibtrec->ir_freecount,
2084					     ibtrec->ir_free, &i);
2085		if (error)
2086			goto error;
2087		ASSERT(i == 1);
2088
2089		goto out;
2090	}
2091
2092	/*
2093	 * Read and update the existing record. We could just copy the ibtrec
2094	 * across here, but that would defeat the purpose of having redundant
2095	 * metadata. By making the modifications independently, we can catch
2096	 * corruptions that we wouldn't see if we just copied from one record
2097	 * to another.
2098	 */
2099	error = xfs_inobt_get_rec(cur, &rec, &i);
2100	if (error)
2101		goto error;
2102	if (XFS_IS_CORRUPT(mp, i != 1)) {
2103		error = -EFSCORRUPTED;
2104		goto error;
2105	}
2106
2107	rec.ir_free |= XFS_INOBT_MASK(offset);
2108	rec.ir_freecount++;
2109
2110	if (XFS_IS_CORRUPT(mp,
2111			   rec.ir_free != ibtrec->ir_free ||
2112			   rec.ir_freecount != ibtrec->ir_freecount)) {
2113		error = -EFSCORRUPTED;
2114		goto error;
2115	}
2116
2117	/*
2118	 * The content of inobt records should always match between the inobt
2119	 * and finobt. The lifecycle of records in the finobt is different from
2120	 * the inobt in that the finobt only tracks records with at least one
2121	 * free inode. Hence, if all of the inodes are free and we aren't
2122	 * keeping inode chunks permanently on disk, remove the record.
2123	 * Otherwise, update the record with the new information.
2124	 *
2125	 * Note that we currently can't free chunks when the block size is large
2126	 * enough for multiple chunks. Leave the finobt record to remain in sync
2127	 * with the inobt.
2128	 */
2129	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2130	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2131		error = xfs_btree_delete(cur, &i);
2132		if (error)
2133			goto error;
2134		ASSERT(i == 1);
2135	} else {
2136		error = xfs_inobt_update(cur, &rec);
2137		if (error)
2138			goto error;
2139	}
2140
2141out:
2142	error = xfs_check_agi_freecount(cur);
2143	if (error)
2144		goto error;
2145
2146	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2147	return 0;
2148
2149error:
2150	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2151	return error;
2152}
2153
2154/*
2155 * Free disk inode.  Carefully avoids touching the incore inode, all
2156 * manipulations incore are the caller's responsibility.
2157 * The on-disk inode is not changed by this operation, only the
2158 * btree (free inode mask) is changed.
2159 */
2160int
2161xfs_difree(
2162	struct xfs_trans	*tp,
2163	struct xfs_perag	*pag,
2164	xfs_ino_t		inode,
2165	struct xfs_icluster	*xic)
2166{
2167	/* REFERENCED */
2168	xfs_agblock_t		agbno;	/* block number containing inode */
2169	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2170	xfs_agino_t		agino;	/* allocation group inode number */
2171	int			error;	/* error return value */
2172	struct xfs_mount	*mp = tp->t_mountp;
2173	struct xfs_inobt_rec_incore rec;/* btree record */
2174
2175	/*
2176	 * Break up inode number into its components.
2177	 */
2178	if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2179		xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2180			__func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2181		ASSERT(0);
2182		return -EINVAL;
2183	}
2184	agino = XFS_INO_TO_AGINO(mp, inode);
2185	if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino))  {
2186		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2187			__func__, (unsigned long long)inode,
2188			(unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2189		ASSERT(0);
2190		return -EINVAL;
2191	}
2192	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2193	if (agbno >= mp->m_sb.sb_agblocks)  {
2194		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2195			__func__, agbno, mp->m_sb.sb_agblocks);
2196		ASSERT(0);
2197		return -EINVAL;
2198	}
2199	/*
2200	 * Get the allocation group header.
2201	 */
2202	error = xfs_ialloc_read_agi(pag, tp, &agbp);
2203	if (error) {
2204		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2205			__func__, error);
2206		return error;
2207	}
2208
2209	/*
2210	 * Fix up the inode allocation btree.
2211	 */
2212	error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2213	if (error)
2214		goto error0;
2215
2216	/*
2217	 * Fix up the free inode btree.
2218	 */
2219	if (xfs_has_finobt(mp)) {
2220		error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2221		if (error)
2222			goto error0;
2223	}
2224
2225	return 0;
2226
2227error0:
2228	return error;
2229}
2230
2231STATIC int
2232xfs_imap_lookup(
2233	struct xfs_perag	*pag,
2234	struct xfs_trans	*tp,
2235	xfs_agino_t		agino,
2236	xfs_agblock_t		agbno,
2237	xfs_agblock_t		*chunk_agbno,
2238	xfs_agblock_t		*offset_agbno,
2239	int			flags)
2240{
2241	struct xfs_mount	*mp = pag->pag_mount;
2242	struct xfs_inobt_rec_incore rec;
2243	struct xfs_btree_cur	*cur;
2244	struct xfs_buf		*agbp;
2245	int			error;
2246	int			i;
2247
2248	error = xfs_ialloc_read_agi(pag, tp, &agbp);
2249	if (error) {
2250		xfs_alert(mp,
2251			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2252			__func__, error, pag->pag_agno);
2253		return error;
2254	}
2255
2256	/*
2257	 * Lookup the inode record for the given agino. If the record cannot be
2258	 * found, then it's an invalid inode number and we should abort. Once
2259	 * we have a record, we need to ensure it contains the inode number
2260	 * we are looking up.
2261	 */
2262	cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
2263	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2264	if (!error) {
2265		if (i)
2266			error = xfs_inobt_get_rec(cur, &rec, &i);
2267		if (!error && i == 0)
2268			error = -EINVAL;
2269	}
2270
2271	xfs_trans_brelse(tp, agbp);
2272	xfs_btree_del_cursor(cur, error);
2273	if (error)
2274		return error;
2275
2276	/* check that the returned record contains the required inode */
2277	if (rec.ir_startino > agino ||
2278	    rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2279		return -EINVAL;
2280
2281	/* for untrusted inodes check it is allocated first */
2282	if ((flags & XFS_IGET_UNTRUSTED) &&
2283	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2284		return -EINVAL;
2285
2286	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2287	*offset_agbno = agbno - *chunk_agbno;
2288	return 0;
2289}
2290
2291/*
2292 * Return the location of the inode in imap, for mapping it into a buffer.
2293 */
2294int
2295xfs_imap(
2296	struct xfs_perag	*pag,
2297	struct xfs_trans	*tp,
2298	xfs_ino_t		ino,	/* inode to locate */
2299	struct xfs_imap		*imap,	/* location map structure */
2300	uint			flags)	/* flags for inode btree lookup */
2301{
2302	struct xfs_mount	*mp = pag->pag_mount;
2303	xfs_agblock_t		agbno;	/* block number of inode in the alloc group */
2304	xfs_agino_t		agino;	/* inode number within alloc group */
2305	xfs_agblock_t		chunk_agbno;	/* first block in inode chunk */
2306	xfs_agblock_t		cluster_agbno;	/* first block in inode cluster */
2307	int			error;	/* error code */
2308	int			offset;	/* index of inode in its buffer */
2309	xfs_agblock_t		offset_agbno;	/* blks from chunk start to inode */
2310
2311	ASSERT(ino != NULLFSINO);
2312
2313	/*
2314	 * Split up the inode number into its parts.
2315	 */
2316	agino = XFS_INO_TO_AGINO(mp, ino);
2317	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2318	if (agbno >= mp->m_sb.sb_agblocks ||
2319	    ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2320		error = -EINVAL;
2321#ifdef DEBUG
2322		/*
2323		 * Don't output diagnostic information for untrusted inodes
2324		 * as they can be invalid without implying corruption.
2325		 */
2326		if (flags & XFS_IGET_UNTRUSTED)
2327			return error;
2328		if (agbno >= mp->m_sb.sb_agblocks) {
2329			xfs_alert(mp,
2330		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2331				__func__, (unsigned long long)agbno,
2332				(unsigned long)mp->m_sb.sb_agblocks);
2333		}
2334		if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2335			xfs_alert(mp,
2336		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2337				__func__, ino,
2338				XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2339		}
2340		xfs_stack_trace();
2341#endif /* DEBUG */
2342		return error;
2343	}
2344
2345	/*
2346	 * For bulkstat and handle lookups, we have an untrusted inode number
2347	 * that we have to verify is valid. We cannot do this just by reading
2348	 * the inode buffer as it may have been unlinked and removed leaving
2349	 * inodes in stale state on disk. Hence we have to do a btree lookup
2350	 * in all cases where an untrusted inode number is passed.
2351	 */
2352	if (flags & XFS_IGET_UNTRUSTED) {
2353		error = xfs_imap_lookup(pag, tp, agino, agbno,
2354					&chunk_agbno, &offset_agbno, flags);
2355		if (error)
2356			return error;
2357		goto out_map;
2358	}
2359
2360	/*
2361	 * If the inode cluster size is the same as the blocksize or
2362	 * smaller we get to the buffer by simple arithmetics.
2363	 */
2364	if (M_IGEO(mp)->blocks_per_cluster == 1) {
2365		offset = XFS_INO_TO_OFFSET(mp, ino);
2366		ASSERT(offset < mp->m_sb.sb_inopblock);
2367
2368		imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2369		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2370		imap->im_boffset = (unsigned short)(offset <<
2371							mp->m_sb.sb_inodelog);
2372		return 0;
2373	}
2374
2375	/*
2376	 * If the inode chunks are aligned then use simple maths to
2377	 * find the location. Otherwise we have to do a btree
2378	 * lookup to find the location.
2379	 */
2380	if (M_IGEO(mp)->inoalign_mask) {
2381		offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2382		chunk_agbno = agbno - offset_agbno;
2383	} else {
2384		error = xfs_imap_lookup(pag, tp, agino, agbno,
2385					&chunk_agbno, &offset_agbno, flags);
2386		if (error)
2387			return error;
2388	}
2389
2390out_map:
2391	ASSERT(agbno >= chunk_agbno);
2392	cluster_agbno = chunk_agbno +
2393		((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2394		 M_IGEO(mp)->blocks_per_cluster);
2395	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2396		XFS_INO_TO_OFFSET(mp, ino);
2397
2398	imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2399	imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2400	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2401
2402	/*
2403	 * If the inode number maps to a block outside the bounds
2404	 * of the file system then return NULL rather than calling
2405	 * read_buf and panicing when we get an error from the
2406	 * driver.
2407	 */
2408	if ((imap->im_blkno + imap->im_len) >
2409	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2410		xfs_alert(mp,
2411	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2412			__func__, (unsigned long long) imap->im_blkno,
2413			(unsigned long long) imap->im_len,
2414			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2415		return -EINVAL;
2416	}
2417	return 0;
2418}
2419
2420/*
2421 * Log specified fields for the ag hdr (inode section). The growth of the agi
2422 * structure over time requires that we interpret the buffer as two logical
2423 * regions delineated by the end of the unlinked list. This is due to the size
2424 * of the hash table and its location in the middle of the agi.
2425 *
2426 * For example, a request to log a field before agi_unlinked and a field after
2427 * agi_unlinked could cause us to log the entire hash table and use an excessive
2428 * amount of log space. To avoid this behavior, log the region up through
2429 * agi_unlinked in one call and the region after agi_unlinked through the end of
2430 * the structure in another.
2431 */
2432void
2433xfs_ialloc_log_agi(
2434	struct xfs_trans	*tp,
2435	struct xfs_buf		*bp,
2436	uint32_t		fields)
2437{
2438	int			first;		/* first byte number */
2439	int			last;		/* last byte number */
2440	static const short	offsets[] = {	/* field starting offsets */
2441					/* keep in sync with bit definitions */
2442		offsetof(xfs_agi_t, agi_magicnum),
2443		offsetof(xfs_agi_t, agi_versionnum),
2444		offsetof(xfs_agi_t, agi_seqno),
2445		offsetof(xfs_agi_t, agi_length),
2446		offsetof(xfs_agi_t, agi_count),
2447		offsetof(xfs_agi_t, agi_root),
2448		offsetof(xfs_agi_t, agi_level),
2449		offsetof(xfs_agi_t, agi_freecount),
2450		offsetof(xfs_agi_t, agi_newino),
2451		offsetof(xfs_agi_t, agi_dirino),
2452		offsetof(xfs_agi_t, agi_unlinked),
2453		offsetof(xfs_agi_t, agi_free_root),
2454		offsetof(xfs_agi_t, agi_free_level),
2455		offsetof(xfs_agi_t, agi_iblocks),
2456		sizeof(xfs_agi_t)
2457	};
2458#ifdef DEBUG
2459	struct xfs_agi		*agi = bp->b_addr;
2460
2461	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2462#endif
2463
2464	/*
2465	 * Compute byte offsets for the first and last fields in the first
2466	 * region and log the agi buffer. This only logs up through
2467	 * agi_unlinked.
2468	 */
2469	if (fields & XFS_AGI_ALL_BITS_R1) {
2470		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2471				  &first, &last);
2472		xfs_trans_log_buf(tp, bp, first, last);
2473	}
2474
2475	/*
2476	 * Mask off the bits in the first region and calculate the first and
2477	 * last field offsets for any bits in the second region.
2478	 */
2479	fields &= ~XFS_AGI_ALL_BITS_R1;
2480	if (fields) {
2481		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2482				  &first, &last);
2483		xfs_trans_log_buf(tp, bp, first, last);
2484	}
2485}
2486
2487static xfs_failaddr_t
2488xfs_agi_verify(
2489	struct xfs_buf		*bp)
2490{
2491	struct xfs_mount	*mp = bp->b_mount;
2492	struct xfs_agi		*agi = bp->b_addr;
2493	xfs_failaddr_t		fa;
2494	uint32_t		agi_seqno = be32_to_cpu(agi->agi_seqno);
2495	uint32_t		agi_length = be32_to_cpu(agi->agi_length);
2496	int			i;
2497
2498	if (xfs_has_crc(mp)) {
2499		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2500			return __this_address;
2501		if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2502			return __this_address;
2503	}
2504
2505	/*
2506	 * Validate the magic number of the agi block.
2507	 */
2508	if (!xfs_verify_magic(bp, agi->agi_magicnum))
2509		return __this_address;
2510	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2511		return __this_address;
2512
2513	fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
2514	if (fa)
2515		return fa;
2516
2517	if (be32_to_cpu(agi->agi_level) < 1 ||
2518	    be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2519		return __this_address;
2520
2521	if (xfs_has_finobt(mp) &&
2522	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2523	     be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2524		return __this_address;
2525
2526	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2527		if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2528			continue;
2529		if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2530			return __this_address;
2531	}
2532
2533	return NULL;
2534}
2535
2536static void
2537xfs_agi_read_verify(
2538	struct xfs_buf	*bp)
2539{
2540	struct xfs_mount *mp = bp->b_mount;
2541	xfs_failaddr_t	fa;
2542
2543	if (xfs_has_crc(mp) &&
2544	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2545		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2546	else {
2547		fa = xfs_agi_verify(bp);
2548		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2549			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2550	}
2551}
2552
2553static void
2554xfs_agi_write_verify(
2555	struct xfs_buf	*bp)
2556{
2557	struct xfs_mount	*mp = bp->b_mount;
2558	struct xfs_buf_log_item	*bip = bp->b_log_item;
2559	struct xfs_agi		*agi = bp->b_addr;
2560	xfs_failaddr_t		fa;
2561
2562	fa = xfs_agi_verify(bp);
2563	if (fa) {
2564		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2565		return;
2566	}
2567
2568	if (!xfs_has_crc(mp))
2569		return;
2570
2571	if (bip)
2572		agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2573	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2574}
2575
2576const struct xfs_buf_ops xfs_agi_buf_ops = {
2577	.name = "xfs_agi",
2578	.magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2579	.verify_read = xfs_agi_read_verify,
2580	.verify_write = xfs_agi_write_verify,
2581	.verify_struct = xfs_agi_verify,
2582};
2583
2584/*
2585 * Read in the allocation group header (inode allocation section)
2586 */
2587int
2588xfs_read_agi(
2589	struct xfs_perag	*pag,
2590	struct xfs_trans	*tp,
2591	struct xfs_buf		**agibpp)
2592{
2593	struct xfs_mount	*mp = pag->pag_mount;
2594	int			error;
2595
2596	trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2597
2598	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2599			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2600			XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops);
2601	if (error)
2602		return error;
2603	if (tp)
2604		xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2605
2606	xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2607	return 0;
2608}
2609
2610/*
2611 * Read in the agi and initialise the per-ag data. If the caller supplies a
2612 * @agibpp, return the locked AGI buffer to them, otherwise release it.
2613 */
2614int
2615xfs_ialloc_read_agi(
2616	struct xfs_perag	*pag,
2617	struct xfs_trans	*tp,
2618	struct xfs_buf		**agibpp)
2619{
2620	struct xfs_buf		*agibp;
2621	struct xfs_agi		*agi;
2622	int			error;
2623
2624	trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2625
2626	error = xfs_read_agi(pag, tp, &agibp);
2627	if (error)
2628		return error;
2629
2630	agi = agibp->b_addr;
2631	if (!xfs_perag_initialised_agi(pag)) {
2632		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2633		pag->pagi_count = be32_to_cpu(agi->agi_count);
2634		set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2635	}
2636
2637	/*
2638	 * It's possible for these to be out of sync if
2639	 * we are in the middle of a forced shutdown.
2640	 */
2641	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2642		xfs_is_shutdown(pag->pag_mount));
2643	if (agibpp)
2644		*agibpp = agibp;
2645	else
2646		xfs_trans_brelse(tp, agibp);
2647	return 0;
2648}
2649
2650/* How many inodes are backed by inode clusters ondisk? */
2651STATIC int
2652xfs_ialloc_count_ondisk(
2653	struct xfs_btree_cur		*cur,
2654	xfs_agino_t			low,
2655	xfs_agino_t			high,
2656	unsigned int			*allocated)
2657{
2658	struct xfs_inobt_rec_incore	irec;
2659	unsigned int			ret = 0;
2660	int				has_record;
2661	int				error;
2662
2663	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2664	if (error)
2665		return error;
2666
2667	while (has_record) {
2668		unsigned int		i, hole_idx;
2669
2670		error = xfs_inobt_get_rec(cur, &irec, &has_record);
2671		if (error)
2672			return error;
2673		if (irec.ir_startino > high)
2674			break;
2675
2676		for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
2677			if (irec.ir_startino + i < low)
2678				continue;
2679			if (irec.ir_startino + i > high)
2680				break;
2681
2682			hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
2683			if (!(irec.ir_holemask & (1U << hole_idx)))
2684				ret++;
2685		}
2686
2687		error = xfs_btree_increment(cur, 0, &has_record);
2688		if (error)
2689			return error;
2690	}
2691
2692	*allocated = ret;
2693	return 0;
2694}
2695
2696/* Is there an inode record covering a given extent? */
2697int
2698xfs_ialloc_has_inodes_at_extent(
2699	struct xfs_btree_cur	*cur,
2700	xfs_agblock_t		bno,
2701	xfs_extlen_t		len,
2702	enum xbtree_recpacking	*outcome)
2703{
2704	xfs_agino_t		agino;
2705	xfs_agino_t		last_agino;
2706	unsigned int		allocated;
2707	int			error;
2708
2709	agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2710	last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2711
2712	error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
2713	if (error)
2714		return error;
2715
2716	if (allocated == 0)
2717		*outcome = XBTREE_RECPACKING_EMPTY;
2718	else if (allocated == last_agino - agino + 1)
2719		*outcome = XBTREE_RECPACKING_FULL;
2720	else
2721		*outcome = XBTREE_RECPACKING_SPARSE;
2722	return 0;
2723}
2724
2725struct xfs_ialloc_count_inodes {
2726	xfs_agino_t			count;
2727	xfs_agino_t			freecount;
2728};
2729
2730/* Record inode counts across all inobt records. */
2731STATIC int
2732xfs_ialloc_count_inodes_rec(
2733	struct xfs_btree_cur		*cur,
2734	const union xfs_btree_rec	*rec,
2735	void				*priv)
2736{
2737	struct xfs_inobt_rec_incore	irec;
2738	struct xfs_ialloc_count_inodes	*ci = priv;
2739	xfs_failaddr_t			fa;
2740
2741	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2742	fa = xfs_inobt_check_irec(cur, &irec);
2743	if (fa)
2744		return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2745
2746	ci->count += irec.ir_count;
2747	ci->freecount += irec.ir_freecount;
2748
2749	return 0;
2750}
2751
2752/* Count allocated and free inodes under an inobt. */
2753int
2754xfs_ialloc_count_inodes(
2755	struct xfs_btree_cur		*cur,
2756	xfs_agino_t			*count,
2757	xfs_agino_t			*freecount)
2758{
2759	struct xfs_ialloc_count_inodes	ci = {0};
2760	int				error;
2761
2762	ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2763	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2764	if (error)
2765		return error;
2766
2767	*count = ci.count;
2768	*freecount = ci.freecount;
2769	return 0;
2770}
2771
2772/*
2773 * Initialize inode-related geometry information.
2774 *
2775 * Compute the inode btree min and max levels and set maxicount.
2776 *
2777 * Set the inode cluster size.  This may still be overridden by the file
2778 * system block size if it is larger than the chosen cluster size.
2779 *
2780 * For v5 filesystems, scale the cluster size with the inode size to keep a
2781 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2782 * inode alignment value appropriately for larger cluster sizes.
2783 *
2784 * Then compute the inode cluster alignment information.
2785 */
2786void
2787xfs_ialloc_setup_geometry(
2788	struct xfs_mount	*mp)
2789{
2790	struct xfs_sb		*sbp = &mp->m_sb;
2791	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2792	uint64_t		icount;
2793	uint			inodes;
2794
2795	igeo->new_diflags2 = 0;
2796	if (xfs_has_bigtime(mp))
2797		igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2798	if (xfs_has_large_extent_counts(mp))
2799		igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2800
2801	/* Compute inode btree geometry. */
2802	igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2803	igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2804	igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2805	igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2806	igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2807
2808	igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2809			sbp->sb_inopblock);
2810	igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2811
2812	if (sbp->sb_spino_align)
2813		igeo->ialloc_min_blks = sbp->sb_spino_align;
2814	else
2815		igeo->ialloc_min_blks = igeo->ialloc_blks;
2816
2817	/* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2818	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2819	igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2820			inodes);
2821	ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2822
2823	/*
2824	 * Set the maximum inode count for this filesystem, being careful not
2825	 * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
2826	 * users should never get here due to failing sb verification, but
2827	 * certain users (xfs_db) need to be usable even with corrupt metadata.
2828	 */
2829	if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2830		/*
2831		 * Make sure the maximum inode count is a multiple
2832		 * of the units we allocate inodes in.
2833		 */
2834		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2835		do_div(icount, 100);
2836		do_div(icount, igeo->ialloc_blks);
2837		igeo->maxicount = XFS_FSB_TO_INO(mp,
2838				icount * igeo->ialloc_blks);
2839	} else {
2840		igeo->maxicount = 0;
2841	}
2842
2843	/*
2844	 * Compute the desired size of an inode cluster buffer size, which
2845	 * starts at 8K and (on v5 filesystems) scales up with larger inode
2846	 * sizes.
2847	 *
2848	 * Preserve the desired inode cluster size because the sparse inodes
2849	 * feature uses that desired size (not the actual size) to compute the
2850	 * sparse inode alignment.  The mount code validates this value, so we
2851	 * cannot change the behavior.
2852	 */
2853	igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2854	if (xfs_has_v3inodes(mp)) {
2855		int	new_size = igeo->inode_cluster_size_raw;
2856
2857		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2858		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2859			igeo->inode_cluster_size_raw = new_size;
2860	}
2861
2862	/* Calculate inode cluster ratios. */
2863	if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2864		igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2865				igeo->inode_cluster_size_raw);
2866	else
2867		igeo->blocks_per_cluster = 1;
2868	igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2869	igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2870
2871	/* Calculate inode cluster alignment. */
2872	if (xfs_has_align(mp) &&
2873	    mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2874		igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2875	else
2876		igeo->cluster_align = 1;
2877	igeo->inoalign_mask = igeo->cluster_align - 1;
2878	igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2879
2880	/*
2881	 * If we are using stripe alignment, check whether
2882	 * the stripe unit is a multiple of the inode alignment
2883	 */
2884	if (mp->m_dalign && igeo->inoalign_mask &&
2885	    !(mp->m_dalign & igeo->inoalign_mask))
2886		igeo->ialloc_align = mp->m_dalign;
2887	else
2888		igeo->ialloc_align = 0;
2889}
2890
2891/* Compute the location of the root directory inode that is laid out by mkfs. */
2892xfs_ino_t
2893xfs_ialloc_calc_rootino(
2894	struct xfs_mount	*mp,
2895	int			sunit)
2896{
2897	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2898	xfs_agblock_t		first_bno;
2899
2900	/*
2901	 * Pre-calculate the geometry of AG 0.  We know what it looks like
2902	 * because libxfs knows how to create allocation groups now.
2903	 *
2904	 * first_bno is the first block in which mkfs could possibly have
2905	 * allocated the root directory inode, once we factor in the metadata
2906	 * that mkfs formats before it.  Namely, the four AG headers...
2907	 */
2908	first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2909
2910	/* ...the two free space btree roots... */
2911	first_bno += 2;
2912
2913	/* ...the inode btree root... */
2914	first_bno += 1;
2915
2916	/* ...the initial AGFL... */
2917	first_bno += xfs_alloc_min_freelist(mp, NULL);
2918
2919	/* ...the free inode btree root... */
2920	if (xfs_has_finobt(mp))
2921		first_bno++;
2922
2923	/* ...the reverse mapping btree root... */
2924	if (xfs_has_rmapbt(mp))
2925		first_bno++;
2926
2927	/* ...the reference count btree... */
2928	if (xfs_has_reflink(mp))
2929		first_bno++;
2930
2931	/*
2932	 * ...and the log, if it is allocated in the first allocation group.
2933	 *
2934	 * This can happen with filesystems that only have a single
2935	 * allocation group, or very odd geometries created by old mkfs
2936	 * versions on very small filesystems.
2937	 */
2938	if (xfs_ag_contains_log(mp, 0))
2939		 first_bno += mp->m_sb.sb_logblocks;
2940
2941	/*
2942	 * Now round first_bno up to whatever allocation alignment is given
2943	 * by the filesystem or was passed in.
2944	 */
2945	if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
2946		first_bno = roundup(first_bno, sunit);
2947	else if (xfs_has_align(mp) &&
2948			mp->m_sb.sb_inoalignmt > 1)
2949		first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2950
2951	return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2952}
2953
2954/*
2955 * Ensure there are not sparse inode clusters that cross the new EOAG.
2956 *
2957 * This is a no-op for non-spinode filesystems since clusters are always fully
2958 * allocated and checking the bnobt suffices.  However, a spinode filesystem
2959 * could have a record where the upper inodes are free blocks.  If those blocks
2960 * were removed from the filesystem, the inode record would extend beyond EOAG,
2961 * which will be flagged as corruption.
2962 */
2963int
2964xfs_ialloc_check_shrink(
2965	struct xfs_perag	*pag,
2966	struct xfs_trans	*tp,
2967	struct xfs_buf		*agibp,
2968	xfs_agblock_t		new_length)
2969{
2970	struct xfs_inobt_rec_incore rec;
2971	struct xfs_btree_cur	*cur;
2972	xfs_agino_t		agino;
2973	int			has;
2974	int			error;
2975
2976	if (!xfs_has_sparseinodes(pag->pag_mount))
2977		return 0;
2978
2979	cur = xfs_inobt_init_cursor(pag, tp, agibp, XFS_BTNUM_INO);
2980
2981	/* Look up the inobt record that would correspond to the new EOFS. */
2982	agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length);
2983	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
2984	if (error || !has)
2985		goto out;
2986
2987	error = xfs_inobt_get_rec(cur, &rec, &has);
2988	if (error)
2989		goto out;
2990
2991	if (!has) {
2992		error = -EFSCORRUPTED;
2993		goto out;
2994	}
2995
2996	/* If the record covers inodes that would be beyond EOFS, bail out. */
2997	if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
2998		error = -ENOSPC;
2999		goto out;
3000	}
3001out:
3002	xfs_btree_del_cursor(cur, error);
3003	return error;
3004}
3005