1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * Copyright (c) 2013 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7#ifndef __XFS_DA_FORMAT_H__
8#define __XFS_DA_FORMAT_H__
9
10/*
11 * This structure is common to both leaf nodes and non-leaf nodes in the Btree.
12 *
13 * It is used to manage a doubly linked list of all blocks at the same
14 * level in the Btree, and to identify which type of block this is.
15 */
16#define XFS_DA_NODE_MAGIC	0xfebe	/* magic number: non-leaf blocks */
17#define XFS_ATTR_LEAF_MAGIC	0xfbee	/* magic number: attribute leaf blks */
18#define XFS_DIR2_LEAF1_MAGIC	0xd2f1	/* magic number: v2 dirlf single blks */
19#define XFS_DIR2_LEAFN_MAGIC	0xd2ff	/* magic number: v2 dirlf multi blks */
20
21typedef struct xfs_da_blkinfo {
22	__be32		forw;			/* previous block in list */
23	__be32		back;			/* following block in list */
24	__be16		magic;			/* validity check on block */
25	__be16		pad;			/* unused */
26} xfs_da_blkinfo_t;
27
28/*
29 * CRC enabled directory structure types
30 *
31 * The headers change size for the additional verification information, but
32 * otherwise the tree layouts and contents are unchanged. Hence the da btree
33 * code can use the struct xfs_da_blkinfo for manipulating the tree links and
34 * magic numbers without modification for both v2 and v3 nodes.
35 */
36#define XFS_DA3_NODE_MAGIC	0x3ebe	/* magic number: non-leaf blocks */
37#define XFS_ATTR3_LEAF_MAGIC	0x3bee	/* magic number: attribute leaf blks */
38#define XFS_DIR3_LEAF1_MAGIC	0x3df1	/* magic number: v3 dirlf single blks */
39#define XFS_DIR3_LEAFN_MAGIC	0x3dff	/* magic number: v3 dirlf multi blks */
40
41struct xfs_da3_blkinfo {
42	/*
43	 * the node link manipulation code relies on the fact that the first
44	 * element of this structure is the struct xfs_da_blkinfo so it can
45	 * ignore the differences in the rest of the structures.
46	 */
47	struct xfs_da_blkinfo	hdr;
48	__be32			crc;	/* CRC of block */
49	__be64			blkno;	/* first block of the buffer */
50	__be64			lsn;	/* sequence number of last write */
51	uuid_t			uuid;	/* filesystem we belong to */
52	__be64			owner;	/* inode that owns the block */
53};
54
55/*
56 * This is the structure of the root and intermediate nodes in the Btree.
57 * The leaf nodes are defined above.
58 *
59 * Entries are not packed.
60 *
61 * Since we have duplicate keys, use a binary search but always follow
62 * all match in the block, not just the first match found.
63 */
64#define XFS_DA_NODE_MAXDEPTH	5	/* max depth of Btree */
65
66typedef struct xfs_da_node_hdr {
67	struct xfs_da_blkinfo	info;	/* block type, links, etc. */
68	__be16			__count; /* count of active entries */
69	__be16			__level; /* level above leaves (leaf == 0) */
70} xfs_da_node_hdr_t;
71
72struct xfs_da3_node_hdr {
73	struct xfs_da3_blkinfo	info;	/* block type, links, etc. */
74	__be16			__count; /* count of active entries */
75	__be16			__level; /* level above leaves (leaf == 0) */
76	__be32			__pad32;
77};
78
79#define XFS_DA3_NODE_CRC_OFF	(offsetof(struct xfs_da3_node_hdr, info.crc))
80
81typedef struct xfs_da_node_entry {
82	__be32	hashval;	/* hash value for this descendant */
83	__be32	before;		/* Btree block before this key */
84} xfs_da_node_entry_t;
85
86typedef struct xfs_da_intnode {
87	struct xfs_da_node_hdr	hdr;
88	struct xfs_da_node_entry __btree[];
89} xfs_da_intnode_t;
90
91struct xfs_da3_intnode {
92	struct xfs_da3_node_hdr	hdr;
93	struct xfs_da_node_entry __btree[];
94};
95
96/*
97 * Directory version 2.
98 *
99 * There are 4 possible formats:
100 *  - shortform - embedded into the inode
101 *  - single block - data with embedded leaf at the end
102 *  - multiple data blocks, single leaf+freeindex block
103 *  - data blocks, node and leaf blocks (btree), freeindex blocks
104 *
105 * Note: many node blocks structures and constants are shared with the attr
106 * code and defined in xfs_da_btree.h.
107 */
108
109#define	XFS_DIR2_BLOCK_MAGIC	0x58443242	/* XD2B: single block dirs */
110#define	XFS_DIR2_DATA_MAGIC	0x58443244	/* XD2D: multiblock dirs */
111#define	XFS_DIR2_FREE_MAGIC	0x58443246	/* XD2F: free index blocks */
112
113/*
114 * Directory Version 3 With CRCs.
115 *
116 * The tree formats are the same as for version 2 directories.  The difference
117 * is in the block header and dirent formats. In many cases the v3 structures
118 * use v2 definitions as they are no different and this makes code sharing much
119 * easier.
120 *
121 * Also, the xfs_dir3_*() functions handle both v2 and v3 formats - if the
122 * format is v2 then they switch to the existing v2 code, or the format is v3
123 * they implement the v3 functionality. This means the existing dir2 is a mix of
124 * xfs_dir2/xfs_dir3 calls and functions. The xfs_dir3 functions are called
125 * where there is a difference in the formats, otherwise the code is unchanged.
126 *
127 * Where it is possible, the code decides what to do based on the magic numbers
128 * in the blocks rather than feature bits in the superblock. This means the code
129 * is as independent of the external XFS code as possible as doesn't require
130 * passing struct xfs_mount pointers into places where it isn't really
131 * necessary.
132 *
133 * Version 3 includes:
134 *
135 *	- a larger block header for CRC and identification purposes and so the
136 *	offsets of all the structures inside the blocks are different.
137 *
138 *	- new magic numbers to be able to detect the v2/v3 types on the fly.
139 */
140
141#define	XFS_DIR3_BLOCK_MAGIC	0x58444233	/* XDB3: single block dirs */
142#define	XFS_DIR3_DATA_MAGIC	0x58444433	/* XDD3: multiblock dirs */
143#define	XFS_DIR3_FREE_MAGIC	0x58444633	/* XDF3: free index blocks */
144
145/*
146 * Dirents in version 3 directories have a file type field. Additions to this
147 * list are an on-disk format change, requiring feature bits. Valid values
148 * are as follows:
149 */
150#define XFS_DIR3_FT_UNKNOWN		0
151#define XFS_DIR3_FT_REG_FILE		1
152#define XFS_DIR3_FT_DIR			2
153#define XFS_DIR3_FT_CHRDEV		3
154#define XFS_DIR3_FT_BLKDEV		4
155#define XFS_DIR3_FT_FIFO		5
156#define XFS_DIR3_FT_SOCK		6
157#define XFS_DIR3_FT_SYMLINK		7
158#define XFS_DIR3_FT_WHT			8
159
160#define XFS_DIR3_FT_MAX			9
161
162/*
163 * Byte offset in data block and shortform entry.
164 */
165typedef uint16_t	xfs_dir2_data_off_t;
166#define	NULLDATAOFF	0xffffU
167typedef uint		xfs_dir2_data_aoff_t;	/* argument form */
168
169/*
170 * Offset in data space of a data entry.
171 */
172typedef uint32_t	xfs_dir2_dataptr_t;
173#define	XFS_DIR2_MAX_DATAPTR	((xfs_dir2_dataptr_t)0xffffffff)
174#define	XFS_DIR2_NULL_DATAPTR	((xfs_dir2_dataptr_t)0)
175
176/*
177 * Byte offset in a directory.
178 */
179typedef	xfs_off_t	xfs_dir2_off_t;
180
181/*
182 * Directory block number (logical dirblk in file)
183 */
184typedef uint32_t	xfs_dir2_db_t;
185
186#define XFS_INO32_SIZE	4
187#define XFS_INO64_SIZE	8
188#define XFS_INO64_DIFF	(XFS_INO64_SIZE - XFS_INO32_SIZE)
189
190#define	XFS_DIR2_MAX_SHORT_INUM	((xfs_ino_t)0xffffffffULL)
191
192/*
193 * Directory layout when stored internal to an inode.
194 *
195 * Small directories are packed as tightly as possible so as to fit into the
196 * literal area of the inode.  These "shortform" directories consist of a
197 * single xfs_dir2_sf_hdr header followed by zero or more xfs_dir2_sf_entry
198 * structures.  Due the different inode number storage size and the variable
199 * length name field in the xfs_dir2_sf_entry all these structure are
200 * variable length, and the accessors in this file should be used to iterate
201 * over them.
202 */
203typedef struct xfs_dir2_sf_hdr {
204	uint8_t			count;		/* count of entries */
205	uint8_t			i8count;	/* count of 8-byte inode #s */
206	uint8_t			parent[8];	/* parent dir inode number */
207} __packed xfs_dir2_sf_hdr_t;
208
209typedef struct xfs_dir2_sf_entry {
210	__u8			namelen;	/* actual name length */
211	__u8			offset[2];	/* saved offset */
212	__u8			name[];		/* name, variable size */
213	/*
214	 * A single byte containing the file type field follows the inode
215	 * number for version 3 directory entries.
216	 *
217	 * A 64-bit or 32-bit inode number follows here, at a variable offset
218	 * after the name.
219	 */
220} __packed xfs_dir2_sf_entry_t;
221
222static inline int xfs_dir2_sf_hdr_size(int i8count)
223{
224	return sizeof(struct xfs_dir2_sf_hdr) -
225		(i8count == 0) * XFS_INO64_DIFF;
226}
227
228static inline xfs_dir2_data_aoff_t
229xfs_dir2_sf_get_offset(xfs_dir2_sf_entry_t *sfep)
230{
231	return get_unaligned_be16(sfep->offset);
232}
233
234static inline void
235xfs_dir2_sf_put_offset(xfs_dir2_sf_entry_t *sfep, xfs_dir2_data_aoff_t off)
236{
237	put_unaligned_be16(off, sfep->offset);
238}
239
240static inline struct xfs_dir2_sf_entry *
241xfs_dir2_sf_firstentry(struct xfs_dir2_sf_hdr *hdr)
242{
243	return (struct xfs_dir2_sf_entry *)
244		((char *)hdr + xfs_dir2_sf_hdr_size(hdr->i8count));
245}
246
247/*
248 * Data block structures.
249 *
250 * A pure data block looks like the following drawing on disk:
251 *
252 *    +-------------------------------------------------+
253 *    | xfs_dir2_data_hdr_t                             |
254 *    +-------------------------------------------------+
255 *    | xfs_dir2_data_entry_t OR xfs_dir2_data_unused_t |
256 *    | xfs_dir2_data_entry_t OR xfs_dir2_data_unused_t |
257 *    | xfs_dir2_data_entry_t OR xfs_dir2_data_unused_t |
258 *    | ...                                             |
259 *    +-------------------------------------------------+
260 *    | unused space                                    |
261 *    +-------------------------------------------------+
262 *
263 * As all the entries are variable size structures the accessors below should
264 * be used to iterate over them.
265 *
266 * In addition to the pure data blocks for the data and node formats,
267 * most structures are also used for the combined data/freespace "block"
268 * format below.
269 */
270
271#define	XFS_DIR2_DATA_ALIGN_LOG	3		/* i.e., 8 bytes */
272#define	XFS_DIR2_DATA_ALIGN	(1 << XFS_DIR2_DATA_ALIGN_LOG)
273#define	XFS_DIR2_DATA_FREE_TAG	0xffff
274#define	XFS_DIR2_DATA_FD_COUNT	3
275
276/*
277 * Directory address space divided into sections,
278 * spaces separated by 32GB.
279 */
280#define	XFS_DIR2_MAX_SPACES	3
281#define	XFS_DIR2_SPACE_SIZE	(1ULL << (32 + XFS_DIR2_DATA_ALIGN_LOG))
282#define	XFS_DIR2_DATA_SPACE	0
283#define	XFS_DIR2_DATA_OFFSET	(XFS_DIR2_DATA_SPACE * XFS_DIR2_SPACE_SIZE)
284
285/*
286 * Describe a free area in the data block.
287 *
288 * The freespace will be formatted as a xfs_dir2_data_unused_t.
289 */
290typedef struct xfs_dir2_data_free {
291	__be16			offset;		/* start of freespace */
292	__be16			length;		/* length of freespace */
293} xfs_dir2_data_free_t;
294
295/*
296 * Header for the data blocks.
297 *
298 * The code knows that XFS_DIR2_DATA_FD_COUNT is 3.
299 */
300typedef struct xfs_dir2_data_hdr {
301	__be32			magic;		/* XFS_DIR2_DATA_MAGIC or */
302						/* XFS_DIR2_BLOCK_MAGIC */
303	xfs_dir2_data_free_t	bestfree[XFS_DIR2_DATA_FD_COUNT];
304} xfs_dir2_data_hdr_t;
305
306/*
307 * define a structure for all the verification fields we are adding to the
308 * directory block structures. This will be used in several structures.
309 * The magic number must be the first entry to align with all the dir2
310 * structures so we determine how to decode them just by the magic number.
311 */
312struct xfs_dir3_blk_hdr {
313	__be32			magic;	/* magic number */
314	__be32			crc;	/* CRC of block */
315	__be64			blkno;	/* first block of the buffer */
316	__be64			lsn;	/* sequence number of last write */
317	uuid_t			uuid;	/* filesystem we belong to */
318	__be64			owner;	/* inode that owns the block */
319};
320
321struct xfs_dir3_data_hdr {
322	struct xfs_dir3_blk_hdr	hdr;
323	xfs_dir2_data_free_t	best_free[XFS_DIR2_DATA_FD_COUNT];
324	__be32			pad;	/* 64 bit alignment */
325};
326
327#define XFS_DIR3_DATA_CRC_OFF  offsetof(struct xfs_dir3_data_hdr, hdr.crc)
328
329/*
330 * Active entry in a data block.
331 *
332 * Aligned to 8 bytes.  After the variable length name field there is a
333 * 2 byte tag field, which can be accessed using xfs_dir3_data_entry_tag_p.
334 *
335 * For dir3 structures, there is file type field between the name and the tag.
336 * This can only be manipulated by helper functions. It is packed hard against
337 * the end of the name so any padding for rounding is between the file type and
338 * the tag.
339 */
340typedef struct xfs_dir2_data_entry {
341	__be64			inumber;	/* inode number */
342	__u8			namelen;	/* name length */
343	__u8			name[];		/* name bytes, no null */
344     /* __u8			filetype; */	/* type of inode we point to */
345     /*	__be16                  tag; */		/* starting offset of us */
346} xfs_dir2_data_entry_t;
347
348/*
349 * Unused entry in a data block.
350 *
351 * Aligned to 8 bytes.  Tag appears as the last 2 bytes and must be accessed
352 * using xfs_dir2_data_unused_tag_p.
353 */
354typedef struct xfs_dir2_data_unused {
355	__be16			freetag;	/* XFS_DIR2_DATA_FREE_TAG */
356	__be16			length;		/* total free length */
357						/* variable offset */
358	__be16			tag;		/* starting offset of us */
359} xfs_dir2_data_unused_t;
360
361/*
362 * Pointer to a freespace's tag word.
363 */
364static inline __be16 *
365xfs_dir2_data_unused_tag_p(struct xfs_dir2_data_unused *dup)
366{
367	return (__be16 *)((char *)dup +
368			be16_to_cpu(dup->length) - sizeof(__be16));
369}
370
371/*
372 * Leaf block structures.
373 *
374 * A pure leaf block looks like the following drawing on disk:
375 *
376 *    +---------------------------+
377 *    | xfs_dir2_leaf_hdr_t       |
378 *    +---------------------------+
379 *    | xfs_dir2_leaf_entry_t     |
380 *    | xfs_dir2_leaf_entry_t     |
381 *    | xfs_dir2_leaf_entry_t     |
382 *    | xfs_dir2_leaf_entry_t     |
383 *    | ...                       |
384 *    +---------------------------+
385 *    | xfs_dir2_data_off_t       |
386 *    | xfs_dir2_data_off_t       |
387 *    | xfs_dir2_data_off_t       |
388 *    | ...                       |
389 *    +---------------------------+
390 *    | xfs_dir2_leaf_tail_t      |
391 *    +---------------------------+
392 *
393 * The xfs_dir2_data_off_t members (bests) and tail are at the end of the block
394 * for single-leaf (magic = XFS_DIR2_LEAF1_MAGIC) blocks only, but not present
395 * for directories with separate leaf nodes and free space blocks
396 * (magic = XFS_DIR2_LEAFN_MAGIC).
397 *
398 * As all the entries are variable size structures the accessors below should
399 * be used to iterate over them.
400 */
401
402/*
403 * Offset of the leaf/node space.  First block in this space
404 * is the btree root.
405 */
406#define	XFS_DIR2_LEAF_SPACE	1
407#define	XFS_DIR2_LEAF_OFFSET	(XFS_DIR2_LEAF_SPACE * XFS_DIR2_SPACE_SIZE)
408
409/*
410 * Leaf block header.
411 */
412typedef struct xfs_dir2_leaf_hdr {
413	xfs_da_blkinfo_t	info;		/* header for da routines */
414	__be16			count;		/* count of entries */
415	__be16			stale;		/* count of stale entries */
416} xfs_dir2_leaf_hdr_t;
417
418struct xfs_dir3_leaf_hdr {
419	struct xfs_da3_blkinfo	info;		/* header for da routines */
420	__be16			count;		/* count of entries */
421	__be16			stale;		/* count of stale entries */
422	__be32			pad;		/* 64 bit alignment */
423};
424
425/*
426 * Leaf block entry.
427 */
428typedef struct xfs_dir2_leaf_entry {
429	__be32			hashval;	/* hash value of name */
430	__be32			address;	/* address of data entry */
431} xfs_dir2_leaf_entry_t;
432
433/*
434 * Leaf block tail.
435 */
436typedef struct xfs_dir2_leaf_tail {
437	__be32			bestcount;
438} xfs_dir2_leaf_tail_t;
439
440/*
441 * Leaf block.
442 */
443typedef struct xfs_dir2_leaf {
444	xfs_dir2_leaf_hdr_t	hdr;			/* leaf header */
445	xfs_dir2_leaf_entry_t	__ents[];		/* entries */
446} xfs_dir2_leaf_t;
447
448struct xfs_dir3_leaf {
449	struct xfs_dir3_leaf_hdr	hdr;		/* leaf header */
450	struct xfs_dir2_leaf_entry	__ents[];	/* entries */
451};
452
453#define XFS_DIR3_LEAF_CRC_OFF  offsetof(struct xfs_dir3_leaf_hdr, info.crc)
454
455/*
456 * Get address of the bests array in the single-leaf block.
457 */
458static inline __be16 *
459xfs_dir2_leaf_bests_p(struct xfs_dir2_leaf_tail *ltp)
460{
461	return (__be16 *)ltp - be32_to_cpu(ltp->bestcount);
462}
463
464/*
465 * Free space block definitions for the node format.
466 */
467
468/*
469 * Offset of the freespace index.
470 */
471#define	XFS_DIR2_FREE_SPACE	2
472#define	XFS_DIR2_FREE_OFFSET	(XFS_DIR2_FREE_SPACE * XFS_DIR2_SPACE_SIZE)
473
474typedef	struct xfs_dir2_free_hdr {
475	__be32			magic;		/* XFS_DIR2_FREE_MAGIC */
476	__be32			firstdb;	/* db of first entry */
477	__be32			nvalid;		/* count of valid entries */
478	__be32			nused;		/* count of used entries */
479} xfs_dir2_free_hdr_t;
480
481typedef struct xfs_dir2_free {
482	xfs_dir2_free_hdr_t	hdr;		/* block header */
483	__be16			bests[];	/* best free counts */
484						/* unused entries are -1 */
485} xfs_dir2_free_t;
486
487struct xfs_dir3_free_hdr {
488	struct xfs_dir3_blk_hdr	hdr;
489	__be32			firstdb;	/* db of first entry */
490	__be32			nvalid;		/* count of valid entries */
491	__be32			nused;		/* count of used entries */
492	__be32			pad;		/* 64 bit alignment */
493};
494
495struct xfs_dir3_free {
496	struct xfs_dir3_free_hdr hdr;
497	__be16			bests[];	/* best free counts */
498						/* unused entries are -1 */
499};
500
501#define XFS_DIR3_FREE_CRC_OFF  offsetof(struct xfs_dir3_free, hdr.hdr.crc)
502
503/*
504 * Single block format.
505 *
506 * The single block format looks like the following drawing on disk:
507 *
508 *    +-------------------------------------------------+
509 *    | xfs_dir2_data_hdr_t                             |
510 *    +-------------------------------------------------+
511 *    | xfs_dir2_data_entry_t OR xfs_dir2_data_unused_t |
512 *    | xfs_dir2_data_entry_t OR xfs_dir2_data_unused_t |
513 *    | xfs_dir2_data_entry_t OR xfs_dir2_data_unused_t :
514 *    | ...                                             |
515 *    +-------------------------------------------------+
516 *    | unused space                                    |
517 *    +-------------------------------------------------+
518 *    | ...                                             |
519 *    | xfs_dir2_leaf_entry_t                           |
520 *    | xfs_dir2_leaf_entry_t                           |
521 *    +-------------------------------------------------+
522 *    | xfs_dir2_block_tail_t                           |
523 *    +-------------------------------------------------+
524 *
525 * As all the entries are variable size structures the accessors below should
526 * be used to iterate over them.
527 */
528
529typedef struct xfs_dir2_block_tail {
530	__be32		count;			/* count of leaf entries */
531	__be32		stale;			/* count of stale lf entries */
532} xfs_dir2_block_tail_t;
533
534/*
535 * Pointer to the leaf entries embedded in a data block (1-block format)
536 */
537static inline struct xfs_dir2_leaf_entry *
538xfs_dir2_block_leaf_p(struct xfs_dir2_block_tail *btp)
539{
540	return ((struct xfs_dir2_leaf_entry *)btp) - be32_to_cpu(btp->count);
541}
542
543
544/*
545 * Attribute storage layout
546 *
547 * Attribute lists are structured around Btrees where all the data
548 * elements are in the leaf nodes.  Attribute names are hashed into an int,
549 * then that int is used as the index into the Btree.  Since the hashval
550 * of an attribute name may not be unique, we may have duplicate keys.  The
551 * internal links in the Btree are logical block offsets into the file.
552 *
553 * Struct leaf_entry's are packed from the top.  Name/values grow from the
554 * bottom but are not packed.  The freemap contains run-length-encoded entries
555 * for the free bytes after the leaf_entry's, but only the N largest such,
556 * smaller runs are dropped.  When the freemap doesn't show enough space
557 * for an allocation, we compact the name/value area and try again.  If we
558 * still don't have enough space, then we have to split the block.  The
559 * name/value structs (both local and remote versions) must be 32bit aligned.
560 *
561 * Since we have duplicate hash keys, for each key that matches, compare
562 * the actual name string.  The root and intermediate node search always
563 * takes the first-in-the-block key match found, so we should only have
564 * to work "forw"ard.  If none matches, continue with the "forw"ard leaf
565 * nodes until the hash key changes or the attribute name is found.
566 *
567 * We store the fact that an attribute is a ROOT/USER/SECURE attribute in
568 * the leaf_entry.  The namespaces are independent only because we also look
569 * at the namespace bit when we are looking for a matching attribute name.
570 *
571 * We also store an "incomplete" bit in the leaf_entry.  It shows that an
572 * attribute is in the middle of being created and should not be shown to
573 * the user if we crash during the time that the bit is set.  We clear the
574 * bit when we have finished setting up the attribute.  We do this because
575 * we cannot create some large attributes inside a single transaction, and we
576 * need some indication that we weren't finished if we crash in the middle.
577 */
578#define XFS_ATTR_LEAF_MAPSIZE	3	/* how many freespace slots */
579
580/*
581 * Entries are packed toward the top as tight as possible.
582 */
583struct xfs_attr_shortform {
584	struct xfs_attr_sf_hdr {	/* constant-structure header block */
585		__be16	totsize;	/* total bytes in shortform list */
586		__u8	count;	/* count of active entries */
587		__u8	padding;
588	} hdr;
589	struct xfs_attr_sf_entry {
590		uint8_t namelen;	/* actual length of name (no NULL) */
591		uint8_t valuelen;	/* actual length of value (no NULL) */
592		uint8_t flags;	/* flags bits (see xfs_attr_leaf.h) */
593		uint8_t nameval[];	/* name & value bytes concatenated */
594	} list[];			/* variable sized array */
595};
596
597typedef struct xfs_attr_leaf_map {	/* RLE map of free bytes */
598	__be16	base;			  /* base of free region */
599	__be16	size;			  /* length of free region */
600} xfs_attr_leaf_map_t;
601
602typedef struct xfs_attr_leaf_hdr {	/* constant-structure header block */
603	xfs_da_blkinfo_t info;		/* block type, links, etc. */
604	__be16	count;			/* count of active leaf_entry's */
605	__be16	usedbytes;		/* num bytes of names/values stored */
606	__be16	firstused;		/* first used byte in name area */
607	__u8	holes;			/* != 0 if blk needs compaction */
608	__u8	pad1;
609	xfs_attr_leaf_map_t freemap[XFS_ATTR_LEAF_MAPSIZE];
610					/* N largest free regions */
611} xfs_attr_leaf_hdr_t;
612
613typedef struct xfs_attr_leaf_entry {	/* sorted on key, not name */
614	__be32	hashval;		/* hash value of name */
615	__be16	nameidx;		/* index into buffer of name/value */
616	__u8	flags;			/* LOCAL/ROOT/SECURE/INCOMPLETE flag */
617	__u8	pad2;			/* unused pad byte */
618} xfs_attr_leaf_entry_t;
619
620typedef struct xfs_attr_leaf_name_local {
621	__be16	valuelen;		/* number of bytes in value */
622	__u8	namelen;		/* length of name bytes */
623	/*
624	 * In Linux 6.5 this flex array was converted from nameval[1] to
625	 * nameval[].  Be very careful here about extra padding at the end;
626	 * see xfs_attr_leaf_entsize_local() for details.
627	 */
628	__u8	nameval[];		/* name/value bytes */
629} xfs_attr_leaf_name_local_t;
630
631typedef struct xfs_attr_leaf_name_remote {
632	__be32	valueblk;		/* block number of value bytes */
633	__be32	valuelen;		/* number of bytes in value */
634	__u8	namelen;		/* length of name bytes */
635	/*
636	 * In Linux 6.5 this flex array was converted from name[1] to name[].
637	 * Be very careful here about extra padding at the end; see
638	 * xfs_attr_leaf_entsize_remote() for details.
639	 */
640	__u8	name[];			/* name bytes */
641} xfs_attr_leaf_name_remote_t;
642
643typedef struct xfs_attr_leafblock {
644	xfs_attr_leaf_hdr_t	hdr;	/* constant-structure header block */
645	xfs_attr_leaf_entry_t	entries[];	/* sorted on key, not name */
646	/*
647	 * The rest of the block contains the following structures after the
648	 * leaf entries, growing from the bottom up. The variables are never
649	 * referenced and definining them can actually make gcc optimize away
650	 * accesses to the 'entries' array above index 0 so don't do that.
651	 *
652	 * xfs_attr_leaf_name_local_t namelist;
653	 * xfs_attr_leaf_name_remote_t valuelist;
654	 */
655} xfs_attr_leafblock_t;
656
657/*
658 * CRC enabled leaf structures. Called "version 3" structures to match the
659 * version number of the directory and dablk structures for this feature, and
660 * attr2 is already taken by the variable inode attribute fork size feature.
661 */
662struct xfs_attr3_leaf_hdr {
663	struct xfs_da3_blkinfo	info;
664	__be16			count;
665	__be16			usedbytes;
666	__be16			firstused;
667	__u8			holes;
668	__u8			pad1;
669	struct xfs_attr_leaf_map freemap[XFS_ATTR_LEAF_MAPSIZE];
670	__be32			pad2;		/* 64 bit alignment */
671};
672
673#define XFS_ATTR3_LEAF_CRC_OFF	(offsetof(struct xfs_attr3_leaf_hdr, info.crc))
674
675struct xfs_attr3_leafblock {
676	struct xfs_attr3_leaf_hdr	hdr;
677	struct xfs_attr_leaf_entry	entries[];
678
679	/*
680	 * The rest of the block contains the following structures after the
681	 * leaf entries, growing from the bottom up. The variables are never
682	 * referenced, the locations accessed purely from helper functions.
683	 *
684	 * struct xfs_attr_leaf_name_local
685	 * struct xfs_attr_leaf_name_remote
686	 */
687};
688
689/*
690 * Special value to represent fs block size in the leaf header firstused field.
691 * Only used when block size overflows the 2-bytes available on disk.
692 */
693#define XFS_ATTR3_LEAF_NULLOFF	0
694
695/*
696 * Flags used in the leaf_entry[i].flags field.
697 */
698#define	XFS_ATTR_LOCAL_BIT	0	/* attr is stored locally */
699#define	XFS_ATTR_ROOT_BIT	1	/* limit access to trusted attrs */
700#define	XFS_ATTR_SECURE_BIT	2	/* limit access to secure attrs */
701#define	XFS_ATTR_INCOMPLETE_BIT	7	/* attr in middle of create/delete */
702#define XFS_ATTR_LOCAL		(1u << XFS_ATTR_LOCAL_BIT)
703#define XFS_ATTR_ROOT		(1u << XFS_ATTR_ROOT_BIT)
704#define XFS_ATTR_SECURE		(1u << XFS_ATTR_SECURE_BIT)
705#define XFS_ATTR_INCOMPLETE	(1u << XFS_ATTR_INCOMPLETE_BIT)
706#define XFS_ATTR_NSP_ONDISK_MASK	(XFS_ATTR_ROOT | XFS_ATTR_SECURE)
707
708/*
709 * Alignment for namelist and valuelist entries (since they are mixed
710 * there can be only one alignment value)
711 */
712#define	XFS_ATTR_LEAF_NAME_ALIGN	((uint)sizeof(xfs_dablk_t))
713
714static inline int
715xfs_attr3_leaf_hdr_size(struct xfs_attr_leafblock *leafp)
716{
717	if (leafp->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC))
718		return sizeof(struct xfs_attr3_leaf_hdr);
719	return sizeof(struct xfs_attr_leaf_hdr);
720}
721
722static inline struct xfs_attr_leaf_entry *
723xfs_attr3_leaf_entryp(xfs_attr_leafblock_t *leafp)
724{
725	if (leafp->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC))
726		return &((struct xfs_attr3_leafblock *)leafp)->entries[0];
727	return &leafp->entries[0];
728}
729
730/*
731 * Cast typed pointers for "local" and "remote" name/value structs.
732 */
733static inline char *
734xfs_attr3_leaf_name(xfs_attr_leafblock_t *leafp, int idx)
735{
736	struct xfs_attr_leaf_entry *entries = xfs_attr3_leaf_entryp(leafp);
737
738	return &((char *)leafp)[be16_to_cpu(entries[idx].nameidx)];
739}
740
741static inline xfs_attr_leaf_name_remote_t *
742xfs_attr3_leaf_name_remote(xfs_attr_leafblock_t *leafp, int idx)
743{
744	return (xfs_attr_leaf_name_remote_t *)xfs_attr3_leaf_name(leafp, idx);
745}
746
747static inline xfs_attr_leaf_name_local_t *
748xfs_attr3_leaf_name_local(xfs_attr_leafblock_t *leafp, int idx)
749{
750	return (xfs_attr_leaf_name_local_t *)xfs_attr3_leaf_name(leafp, idx);
751}
752
753/*
754 * Calculate total bytes used (including trailing pad for alignment) for
755 * a "local" name/value structure, a "remote" name/value structure, and
756 * a pointer which might be either.
757 */
758static inline int xfs_attr_leaf_entsize_remote(int nlen)
759{
760	/*
761	 * Prior to Linux 6.5, struct xfs_attr_leaf_name_remote ended with
762	 * name[1], which was used as a flexarray.  The layout of this struct
763	 * is 9 bytes of fixed-length fields followed by a __u8 flex array at
764	 * offset 9.
765	 *
766	 * On most architectures, struct xfs_attr_leaf_name_remote had two
767	 * bytes of implicit padding at the end of the struct to make the
768	 * struct length 12.  After converting name[1] to name[], there are
769	 * three implicit padding bytes and the struct size remains 12.
770	 * However, there are compiler configurations that do not add implicit
771	 * padding at all (m68k) and have been broken for years.
772	 *
773	 * This entsize computation historically added (the xattr name length)
774	 * to (the padded struct length - 1) and rounded that sum up to the
775	 * nearest multiple of 4 (NAME_ALIGN).  IOWs, round_up(11 + nlen, 4).
776	 * This is encoded in the ondisk format, so we cannot change this.
777	 *
778	 * Compute the entsize from offsetof of the flexarray and manually
779	 * adding bytes for the implicit padding.
780	 */
781	const size_t remotesize =
782			offsetof(struct xfs_attr_leaf_name_remote, name) + 2;
783
784	return round_up(remotesize + nlen, XFS_ATTR_LEAF_NAME_ALIGN);
785}
786
787static inline int xfs_attr_leaf_entsize_local(int nlen, int vlen)
788{
789	/*
790	 * Prior to Linux 6.5, struct xfs_attr_leaf_name_local ended with
791	 * nameval[1], which was used as a flexarray.  The layout of this
792	 * struct is 3 bytes of fixed-length fields followed by a __u8 flex
793	 * array at offset 3.
794	 *
795	 * struct xfs_attr_leaf_name_local had zero bytes of implicit padding
796	 * at the end of the struct to make the struct length 4.  On most
797	 * architectures, after converting nameval[1] to nameval[], there is
798	 * one implicit padding byte and the struct size remains 4.  However,
799	 * there are compiler configurations that do not add implicit padding
800	 * at all (m68k) and would break.
801	 *
802	 * This entsize computation historically added (the xattr name and
803	 * value length) to (the padded struct length - 1) and rounded that sum
804	 * up to the nearest multiple of 4 (NAME_ALIGN).  IOWs, the formula is
805	 * round_up(3 + nlen + vlen, 4).  This is encoded in the ondisk format,
806	 * so we cannot change this.
807	 *
808	 * Compute the entsize from offsetof of the flexarray and manually
809	 * adding bytes for the implicit padding.
810	 */
811	const size_t localsize =
812			offsetof(struct xfs_attr_leaf_name_local, nameval);
813
814	return round_up(localsize + nlen + vlen, XFS_ATTR_LEAF_NAME_ALIGN);
815}
816
817static inline int xfs_attr_leaf_entsize_local_max(int bsize)
818{
819	return (((bsize) >> 1) + ((bsize) >> 2));
820}
821
822
823
824/*
825 * Remote attribute block format definition
826 *
827 * There is one of these headers per filesystem block in a remote attribute.
828 * This is done to ensure there is a 1:1 mapping between the attribute value
829 * length and the number of blocks needed to store the attribute. This makes the
830 * verification of a buffer a little more complex, but greatly simplifies the
831 * allocation, reading and writing of these attributes as we don't have to guess
832 * the number of blocks needed to store the attribute data.
833 */
834#define XFS_ATTR3_RMT_MAGIC	0x5841524d	/* XARM */
835
836struct xfs_attr3_rmt_hdr {
837	__be32	rm_magic;
838	__be32	rm_offset;
839	__be32	rm_bytes;
840	__be32	rm_crc;
841	uuid_t	rm_uuid;
842	__be64	rm_owner;
843	__be64	rm_blkno;
844	__be64	rm_lsn;
845};
846
847#define XFS_ATTR3_RMT_CRC_OFF	offsetof(struct xfs_attr3_rmt_hdr, rm_crc)
848
849#define XFS_ATTR3_RMT_BUF_SPACE(mp, bufsize)	\
850	((bufsize) - (xfs_has_crc((mp)) ? \
851			sizeof(struct xfs_attr3_rmt_hdr) : 0))
852
853/* Number of bytes in a directory block. */
854static inline unsigned int xfs_dir2_dirblock_bytes(struct xfs_sb *sbp)
855{
856	return 1 << (sbp->sb_blocklog + sbp->sb_dirblklog);
857}
858
859xfs_failaddr_t xfs_da3_blkinfo_verify(struct xfs_buf *bp,
860				      struct xfs_da3_blkinfo *hdr3);
861
862#endif /* __XFS_DA_FORMAT_H__ */
863