1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_alloc.h"
17#include "xfs_btree.h"
18#include "xfs_bmap_btree.h"
19#include "xfs_bmap.h"
20#include "xfs_error.h"
21#include "xfs_quota.h"
22#include "xfs_trace.h"
23#include "xfs_rmap.h"
24#include "xfs_ag.h"
25
26static struct kmem_cache	*xfs_bmbt_cur_cache;
27
28/*
29 * Convert on-disk form of btree root to in-memory form.
30 */
31void
32xfs_bmdr_to_bmbt(
33	struct xfs_inode	*ip,
34	xfs_bmdr_block_t	*dblock,
35	int			dblocklen,
36	struct xfs_btree_block	*rblock,
37	int			rblocklen)
38{
39	struct xfs_mount	*mp = ip->i_mount;
40	int			dmxr;
41	xfs_bmbt_key_t		*fkp;
42	__be64			*fpp;
43	xfs_bmbt_key_t		*tkp;
44	__be64			*tpp;
45
46	xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL,
47				 XFS_BTNUM_BMAP, 0, 0, ip->i_ino,
48				 XFS_BTREE_LONG_PTRS);
49	rblock->bb_level = dblock->bb_level;
50	ASSERT(be16_to_cpu(rblock->bb_level) > 0);
51	rblock->bb_numrecs = dblock->bb_numrecs;
52	dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
53	fkp = XFS_BMDR_KEY_ADDR(dblock, 1);
54	tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
55	fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
56	tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
57	dmxr = be16_to_cpu(dblock->bb_numrecs);
58	memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
59	memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
60}
61
62void
63xfs_bmbt_disk_get_all(
64	const struct xfs_bmbt_rec *rec,
65	struct xfs_bmbt_irec	*irec)
66{
67	uint64_t		l0 = get_unaligned_be64(&rec->l0);
68	uint64_t		l1 = get_unaligned_be64(&rec->l1);
69
70	irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
71	irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21);
72	irec->br_blockcount = l1 & xfs_mask64lo(21);
73	if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN))
74		irec->br_state = XFS_EXT_UNWRITTEN;
75	else
76		irec->br_state = XFS_EXT_NORM;
77}
78
79/*
80 * Extract the blockcount field from an on disk bmap extent record.
81 */
82xfs_filblks_t
83xfs_bmbt_disk_get_blockcount(
84	const struct xfs_bmbt_rec	*r)
85{
86	return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21));
87}
88
89/*
90 * Extract the startoff field from a disk format bmap extent record.
91 */
92xfs_fileoff_t
93xfs_bmbt_disk_get_startoff(
94	const struct xfs_bmbt_rec	*r)
95{
96	return ((xfs_fileoff_t)be64_to_cpu(r->l0) &
97		 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
98}
99
100/*
101 * Set all the fields in a bmap extent record from the uncompressed form.
102 */
103void
104xfs_bmbt_disk_set_all(
105	struct xfs_bmbt_rec	*r,
106	struct xfs_bmbt_irec	*s)
107{
108	int			extent_flag = (s->br_state != XFS_EXT_NORM);
109
110	ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN);
111	ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)));
112	ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)));
113	ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)));
114
115	put_unaligned_be64(
116		((xfs_bmbt_rec_base_t)extent_flag << 63) |
117		 ((xfs_bmbt_rec_base_t)s->br_startoff << 9) |
118		 ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0);
119	put_unaligned_be64(
120		((xfs_bmbt_rec_base_t)s->br_startblock << 21) |
121		 ((xfs_bmbt_rec_base_t)s->br_blockcount &
122		  (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1);
123}
124
125/*
126 * Convert in-memory form of btree root to on-disk form.
127 */
128void
129xfs_bmbt_to_bmdr(
130	struct xfs_mount	*mp,
131	struct xfs_btree_block	*rblock,
132	int			rblocklen,
133	xfs_bmdr_block_t	*dblock,
134	int			dblocklen)
135{
136	int			dmxr;
137	xfs_bmbt_key_t		*fkp;
138	__be64			*fpp;
139	xfs_bmbt_key_t		*tkp;
140	__be64			*tpp;
141
142	if (xfs_has_crc(mp)) {
143		ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC));
144		ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid,
145		       &mp->m_sb.sb_meta_uuid));
146		ASSERT(rblock->bb_u.l.bb_blkno ==
147		       cpu_to_be64(XFS_BUF_DADDR_NULL));
148	} else
149		ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC));
150	ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK));
151	ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK));
152	ASSERT(rblock->bb_level != 0);
153	dblock->bb_level = rblock->bb_level;
154	dblock->bb_numrecs = rblock->bb_numrecs;
155	dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
156	fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
157	tkp = XFS_BMDR_KEY_ADDR(dblock, 1);
158	fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
159	tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
160	dmxr = be16_to_cpu(dblock->bb_numrecs);
161	memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
162	memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
163}
164
165STATIC struct xfs_btree_cur *
166xfs_bmbt_dup_cursor(
167	struct xfs_btree_cur	*cur)
168{
169	struct xfs_btree_cur	*new;
170
171	new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp,
172			cur->bc_ino.ip, cur->bc_ino.whichfork);
173
174	/*
175	 * Copy the firstblock, dfops, and flags values,
176	 * since init cursor doesn't get them.
177	 */
178	new->bc_ino.flags = cur->bc_ino.flags;
179
180	return new;
181}
182
183STATIC void
184xfs_bmbt_update_cursor(
185	struct xfs_btree_cur	*src,
186	struct xfs_btree_cur	*dst)
187{
188	ASSERT((dst->bc_tp->t_highest_agno != NULLAGNUMBER) ||
189	       (dst->bc_ino.ip->i_diflags & XFS_DIFLAG_REALTIME));
190
191	dst->bc_ino.allocated += src->bc_ino.allocated;
192	dst->bc_tp->t_highest_agno = src->bc_tp->t_highest_agno;
193
194	src->bc_ino.allocated = 0;
195}
196
197STATIC int
198xfs_bmbt_alloc_block(
199	struct xfs_btree_cur		*cur,
200	const union xfs_btree_ptr	*start,
201	union xfs_btree_ptr		*new,
202	int				*stat)
203{
204	struct xfs_alloc_arg	args;
205	int			error;
206
207	memset(&args, 0, sizeof(args));
208	args.tp = cur->bc_tp;
209	args.mp = cur->bc_mp;
210	xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_ino.ip->i_ino,
211			cur->bc_ino.whichfork);
212	args.minlen = args.maxlen = args.prod = 1;
213	args.wasdel = cur->bc_ino.flags & XFS_BTCUR_BMBT_WASDEL;
214	if (!args.wasdel && args.tp->t_blk_res == 0)
215		return -ENOSPC;
216
217	/*
218	 * If we are coming here from something like unwritten extent
219	 * conversion, there has been no data extent allocation already done, so
220	 * we have to ensure that we attempt to locate the entire set of bmbt
221	 * allocations in the same AG, as xfs_bmapi_write() would have reserved.
222	 */
223	if (cur->bc_tp->t_highest_agno == NULLAGNUMBER)
224		args.minleft = xfs_bmapi_minleft(cur->bc_tp, cur->bc_ino.ip,
225					cur->bc_ino.whichfork);
226
227	error = xfs_alloc_vextent_start_ag(&args, be64_to_cpu(start->l));
228	if (error)
229		return error;
230
231	if (args.fsbno == NULLFSBLOCK && args.minleft) {
232		/*
233		 * Could not find an AG with enough free space to satisfy
234		 * a full btree split.  Try again and if
235		 * successful activate the lowspace algorithm.
236		 */
237		args.minleft = 0;
238		error = xfs_alloc_vextent_start_ag(&args, 0);
239		if (error)
240			return error;
241		cur->bc_tp->t_flags |= XFS_TRANS_LOWMODE;
242	}
243	if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) {
244		*stat = 0;
245		return 0;
246	}
247
248	ASSERT(args.len == 1);
249	cur->bc_ino.allocated++;
250	cur->bc_ino.ip->i_nblocks++;
251	xfs_trans_log_inode(args.tp, cur->bc_ino.ip, XFS_ILOG_CORE);
252	xfs_trans_mod_dquot_byino(args.tp, cur->bc_ino.ip,
253			XFS_TRANS_DQ_BCOUNT, 1L);
254
255	new->l = cpu_to_be64(args.fsbno);
256
257	*stat = 1;
258	return 0;
259}
260
261STATIC int
262xfs_bmbt_free_block(
263	struct xfs_btree_cur	*cur,
264	struct xfs_buf		*bp)
265{
266	struct xfs_mount	*mp = cur->bc_mp;
267	struct xfs_inode	*ip = cur->bc_ino.ip;
268	struct xfs_trans	*tp = cur->bc_tp;
269	xfs_fsblock_t		fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
270	struct xfs_owner_info	oinfo;
271	int			error;
272
273	xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_ino.whichfork);
274	error = xfs_free_extent_later(cur->bc_tp, fsbno, 1, &oinfo,
275			XFS_AG_RESV_NONE);
276	if (error)
277		return error;
278
279	ip->i_nblocks--;
280	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
281	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L);
282	return 0;
283}
284
285STATIC int
286xfs_bmbt_get_minrecs(
287	struct xfs_btree_cur	*cur,
288	int			level)
289{
290	if (level == cur->bc_nlevels - 1) {
291		struct xfs_ifork	*ifp;
292
293		ifp = xfs_ifork_ptr(cur->bc_ino.ip,
294				    cur->bc_ino.whichfork);
295
296		return xfs_bmbt_maxrecs(cur->bc_mp,
297					ifp->if_broot_bytes, level == 0) / 2;
298	}
299
300	return cur->bc_mp->m_bmap_dmnr[level != 0];
301}
302
303int
304xfs_bmbt_get_maxrecs(
305	struct xfs_btree_cur	*cur,
306	int			level)
307{
308	if (level == cur->bc_nlevels - 1) {
309		struct xfs_ifork	*ifp;
310
311		ifp = xfs_ifork_ptr(cur->bc_ino.ip,
312				    cur->bc_ino.whichfork);
313
314		return xfs_bmbt_maxrecs(cur->bc_mp,
315					ifp->if_broot_bytes, level == 0);
316	}
317
318	return cur->bc_mp->m_bmap_dmxr[level != 0];
319
320}
321
322/*
323 * Get the maximum records we could store in the on-disk format.
324 *
325 * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but
326 * for the root node this checks the available space in the dinode fork
327 * so that we can resize the in-memory buffer to match it.  After a
328 * resize to the maximum size this function returns the same value
329 * as xfs_bmbt_get_maxrecs for the root node, too.
330 */
331STATIC int
332xfs_bmbt_get_dmaxrecs(
333	struct xfs_btree_cur	*cur,
334	int			level)
335{
336	if (level != cur->bc_nlevels - 1)
337		return cur->bc_mp->m_bmap_dmxr[level != 0];
338	return xfs_bmdr_maxrecs(cur->bc_ino.forksize, level == 0);
339}
340
341STATIC void
342xfs_bmbt_init_key_from_rec(
343	union xfs_btree_key		*key,
344	const union xfs_btree_rec	*rec)
345{
346	key->bmbt.br_startoff =
347		cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt));
348}
349
350STATIC void
351xfs_bmbt_init_high_key_from_rec(
352	union xfs_btree_key		*key,
353	const union xfs_btree_rec	*rec)
354{
355	key->bmbt.br_startoff = cpu_to_be64(
356			xfs_bmbt_disk_get_startoff(&rec->bmbt) +
357			xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1);
358}
359
360STATIC void
361xfs_bmbt_init_rec_from_cur(
362	struct xfs_btree_cur	*cur,
363	union xfs_btree_rec	*rec)
364{
365	xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b);
366}
367
368STATIC void
369xfs_bmbt_init_ptr_from_cur(
370	struct xfs_btree_cur	*cur,
371	union xfs_btree_ptr	*ptr)
372{
373	ptr->l = 0;
374}
375
376STATIC int64_t
377xfs_bmbt_key_diff(
378	struct xfs_btree_cur		*cur,
379	const union xfs_btree_key	*key)
380{
381	return (int64_t)be64_to_cpu(key->bmbt.br_startoff) -
382				      cur->bc_rec.b.br_startoff;
383}
384
385STATIC int64_t
386xfs_bmbt_diff_two_keys(
387	struct xfs_btree_cur		*cur,
388	const union xfs_btree_key	*k1,
389	const union xfs_btree_key	*k2,
390	const union xfs_btree_key	*mask)
391{
392	uint64_t			a = be64_to_cpu(k1->bmbt.br_startoff);
393	uint64_t			b = be64_to_cpu(k2->bmbt.br_startoff);
394
395	ASSERT(!mask || mask->bmbt.br_startoff);
396
397	/*
398	 * Note: This routine previously casted a and b to int64 and subtracted
399	 * them to generate a result.  This lead to problems if b was the
400	 * "maximum" key value (all ones) being signed incorrectly, hence this
401	 * somewhat less efficient version.
402	 */
403	if (a > b)
404		return 1;
405	if (b > a)
406		return -1;
407	return 0;
408}
409
410static xfs_failaddr_t
411xfs_bmbt_verify(
412	struct xfs_buf		*bp)
413{
414	struct xfs_mount	*mp = bp->b_mount;
415	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
416	xfs_failaddr_t		fa;
417	unsigned int		level;
418
419	if (!xfs_verify_magic(bp, block->bb_magic))
420		return __this_address;
421
422	if (xfs_has_crc(mp)) {
423		/*
424		 * XXX: need a better way of verifying the owner here. Right now
425		 * just make sure there has been one set.
426		 */
427		fa = xfs_btree_lblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
428		if (fa)
429			return fa;
430	}
431
432	/*
433	 * numrecs and level verification.
434	 *
435	 * We don't know what fork we belong to, so just verify that the level
436	 * is less than the maximum of the two. Later checks will be more
437	 * precise.
438	 */
439	level = be16_to_cpu(block->bb_level);
440	if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1]))
441		return __this_address;
442
443	return xfs_btree_lblock_verify(bp, mp->m_bmap_dmxr[level != 0]);
444}
445
446static void
447xfs_bmbt_read_verify(
448	struct xfs_buf	*bp)
449{
450	xfs_failaddr_t	fa;
451
452	if (!xfs_btree_lblock_verify_crc(bp))
453		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
454	else {
455		fa = xfs_bmbt_verify(bp);
456		if (fa)
457			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
458	}
459
460	if (bp->b_error)
461		trace_xfs_btree_corrupt(bp, _RET_IP_);
462}
463
464static void
465xfs_bmbt_write_verify(
466	struct xfs_buf	*bp)
467{
468	xfs_failaddr_t	fa;
469
470	fa = xfs_bmbt_verify(bp);
471	if (fa) {
472		trace_xfs_btree_corrupt(bp, _RET_IP_);
473		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
474		return;
475	}
476	xfs_btree_lblock_calc_crc(bp);
477}
478
479const struct xfs_buf_ops xfs_bmbt_buf_ops = {
480	.name = "xfs_bmbt",
481	.magic = { cpu_to_be32(XFS_BMAP_MAGIC),
482		   cpu_to_be32(XFS_BMAP_CRC_MAGIC) },
483	.verify_read = xfs_bmbt_read_verify,
484	.verify_write = xfs_bmbt_write_verify,
485	.verify_struct = xfs_bmbt_verify,
486};
487
488
489STATIC int
490xfs_bmbt_keys_inorder(
491	struct xfs_btree_cur		*cur,
492	const union xfs_btree_key	*k1,
493	const union xfs_btree_key	*k2)
494{
495	return be64_to_cpu(k1->bmbt.br_startoff) <
496		be64_to_cpu(k2->bmbt.br_startoff);
497}
498
499STATIC int
500xfs_bmbt_recs_inorder(
501	struct xfs_btree_cur		*cur,
502	const union xfs_btree_rec	*r1,
503	const union xfs_btree_rec	*r2)
504{
505	return xfs_bmbt_disk_get_startoff(&r1->bmbt) +
506		xfs_bmbt_disk_get_blockcount(&r1->bmbt) <=
507		xfs_bmbt_disk_get_startoff(&r2->bmbt);
508}
509
510STATIC enum xbtree_key_contig
511xfs_bmbt_keys_contiguous(
512	struct xfs_btree_cur		*cur,
513	const union xfs_btree_key	*key1,
514	const union xfs_btree_key	*key2,
515	const union xfs_btree_key	*mask)
516{
517	ASSERT(!mask || mask->bmbt.br_startoff);
518
519	return xbtree_key_contig(be64_to_cpu(key1->bmbt.br_startoff),
520				 be64_to_cpu(key2->bmbt.br_startoff));
521}
522
523static const struct xfs_btree_ops xfs_bmbt_ops = {
524	.rec_len		= sizeof(xfs_bmbt_rec_t),
525	.key_len		= sizeof(xfs_bmbt_key_t),
526
527	.dup_cursor		= xfs_bmbt_dup_cursor,
528	.update_cursor		= xfs_bmbt_update_cursor,
529	.alloc_block		= xfs_bmbt_alloc_block,
530	.free_block		= xfs_bmbt_free_block,
531	.get_maxrecs		= xfs_bmbt_get_maxrecs,
532	.get_minrecs		= xfs_bmbt_get_minrecs,
533	.get_dmaxrecs		= xfs_bmbt_get_dmaxrecs,
534	.init_key_from_rec	= xfs_bmbt_init_key_from_rec,
535	.init_high_key_from_rec	= xfs_bmbt_init_high_key_from_rec,
536	.init_rec_from_cur	= xfs_bmbt_init_rec_from_cur,
537	.init_ptr_from_cur	= xfs_bmbt_init_ptr_from_cur,
538	.key_diff		= xfs_bmbt_key_diff,
539	.diff_two_keys		= xfs_bmbt_diff_two_keys,
540	.buf_ops		= &xfs_bmbt_buf_ops,
541	.keys_inorder		= xfs_bmbt_keys_inorder,
542	.recs_inorder		= xfs_bmbt_recs_inorder,
543	.keys_contiguous	= xfs_bmbt_keys_contiguous,
544};
545
546/*
547 * Allocate a new bmap btree cursor.
548 */
549struct xfs_btree_cur *				/* new bmap btree cursor */
550xfs_bmbt_init_cursor(
551	struct xfs_mount	*mp,		/* file system mount point */
552	struct xfs_trans	*tp,		/* transaction pointer */
553	struct xfs_inode	*ip,		/* inode owning the btree */
554	int			whichfork)	/* data or attr fork */
555{
556	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
557	struct xfs_btree_cur	*cur;
558	ASSERT(whichfork != XFS_COW_FORK);
559
560	cur = xfs_btree_alloc_cursor(mp, tp, XFS_BTNUM_BMAP,
561			mp->m_bm_maxlevels[whichfork], xfs_bmbt_cur_cache);
562	cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1;
563	cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2);
564
565	cur->bc_ops = &xfs_bmbt_ops;
566	cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE;
567	if (xfs_has_crc(mp))
568		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
569
570	cur->bc_ino.forksize = xfs_inode_fork_size(ip, whichfork);
571	cur->bc_ino.ip = ip;
572	cur->bc_ino.allocated = 0;
573	cur->bc_ino.flags = 0;
574	cur->bc_ino.whichfork = whichfork;
575
576	return cur;
577}
578
579/* Calculate number of records in a block mapping btree block. */
580static inline unsigned int
581xfs_bmbt_block_maxrecs(
582	unsigned int		blocklen,
583	bool			leaf)
584{
585	if (leaf)
586		return blocklen / sizeof(xfs_bmbt_rec_t);
587	return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t));
588}
589
590/*
591 * Calculate number of records in a bmap btree block.
592 */
593int
594xfs_bmbt_maxrecs(
595	struct xfs_mount	*mp,
596	int			blocklen,
597	int			leaf)
598{
599	blocklen -= XFS_BMBT_BLOCK_LEN(mp);
600	return xfs_bmbt_block_maxrecs(blocklen, leaf);
601}
602
603/*
604 * Calculate the maximum possible height of the btree that the on-disk format
605 * supports. This is used for sizing structures large enough to support every
606 * possible configuration of a filesystem that might get mounted.
607 */
608unsigned int
609xfs_bmbt_maxlevels_ondisk(void)
610{
611	unsigned int		minrecs[2];
612	unsigned int		blocklen;
613
614	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
615		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
616
617	minrecs[0] = xfs_bmbt_block_maxrecs(blocklen, true) / 2;
618	minrecs[1] = xfs_bmbt_block_maxrecs(blocklen, false) / 2;
619
620	/* One extra level for the inode root. */
621	return xfs_btree_compute_maxlevels(minrecs,
622			XFS_MAX_EXTCNT_DATA_FORK_LARGE) + 1;
623}
624
625/*
626 * Calculate number of records in a bmap btree inode root.
627 */
628int
629xfs_bmdr_maxrecs(
630	int			blocklen,
631	int			leaf)
632{
633	blocklen -= sizeof(xfs_bmdr_block_t);
634
635	if (leaf)
636		return blocklen / sizeof(xfs_bmdr_rec_t);
637	return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t));
638}
639
640/*
641 * Change the owner of a btree format fork fo the inode passed in. Change it to
642 * the owner of that is passed in so that we can change owners before or after
643 * we switch forks between inodes. The operation that the caller is doing will
644 * determine whether is needs to change owner before or after the switch.
645 *
646 * For demand paged transactional modification, the fork switch should be done
647 * after reading in all the blocks, modifying them and pinning them in the
648 * transaction. For modification when the buffers are already pinned in memory,
649 * the fork switch can be done before changing the owner as we won't need to
650 * validate the owner until the btree buffers are unpinned and writes can occur
651 * again.
652 *
653 * For recovery based ownership change, there is no transactional context and
654 * so a buffer list must be supplied so that we can record the buffers that we
655 * modified for the caller to issue IO on.
656 */
657int
658xfs_bmbt_change_owner(
659	struct xfs_trans	*tp,
660	struct xfs_inode	*ip,
661	int			whichfork,
662	xfs_ino_t		new_owner,
663	struct list_head	*buffer_list)
664{
665	struct xfs_btree_cur	*cur;
666	int			error;
667
668	ASSERT(tp || buffer_list);
669	ASSERT(!(tp && buffer_list));
670	ASSERT(xfs_ifork_ptr(ip, whichfork)->if_format == XFS_DINODE_FMT_BTREE);
671
672	cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork);
673	cur->bc_ino.flags |= XFS_BTCUR_BMBT_INVALID_OWNER;
674
675	error = xfs_btree_change_owner(cur, new_owner, buffer_list);
676	xfs_btree_del_cursor(cur, error);
677	return error;
678}
679
680/* Calculate the bmap btree size for some records. */
681unsigned long long
682xfs_bmbt_calc_size(
683	struct xfs_mount	*mp,
684	unsigned long long	len)
685{
686	return xfs_btree_calc_size(mp->m_bmap_dmnr, len);
687}
688
689int __init
690xfs_bmbt_init_cur_cache(void)
691{
692	xfs_bmbt_cur_cache = kmem_cache_create("xfs_bmbt_cur",
693			xfs_btree_cur_sizeof(xfs_bmbt_maxlevels_ondisk()),
694			0, 0, NULL);
695
696	if (!xfs_bmbt_cur_cache)
697		return -ENOMEM;
698	return 0;
699}
700
701void
702xfs_bmbt_destroy_cur_cache(void)
703{
704	kmem_cache_destroy(xfs_bmbt_cur_cache);
705	xfs_bmbt_cur_cache = NULL;
706}
707