1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_btree.h"
14#include "xfs_btree_staging.h"
15#include "xfs_alloc_btree.h"
16#include "xfs_alloc.h"
17#include "xfs_extent_busy.h"
18#include "xfs_error.h"
19#include "xfs_trace.h"
20#include "xfs_trans.h"
21#include "xfs_ag.h"
22
23static struct kmem_cache	*xfs_allocbt_cur_cache;
24
25STATIC struct xfs_btree_cur *
26xfs_allocbt_dup_cursor(
27	struct xfs_btree_cur	*cur)
28{
29	return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
30			cur->bc_ag.agbp, cur->bc_ag.pag, cur->bc_btnum);
31}
32
33STATIC void
34xfs_allocbt_set_root(
35	struct xfs_btree_cur		*cur,
36	const union xfs_btree_ptr	*ptr,
37	int				inc)
38{
39	struct xfs_buf		*agbp = cur->bc_ag.agbp;
40	struct xfs_agf		*agf = agbp->b_addr;
41	int			btnum = cur->bc_btnum;
42
43	ASSERT(ptr->s != 0);
44
45	agf->agf_roots[btnum] = ptr->s;
46	be32_add_cpu(&agf->agf_levels[btnum], inc);
47	cur->bc_ag.pag->pagf_levels[btnum] += inc;
48
49	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
50}
51
52STATIC int
53xfs_allocbt_alloc_block(
54	struct xfs_btree_cur		*cur,
55	const union xfs_btree_ptr	*start,
56	union xfs_btree_ptr		*new,
57	int				*stat)
58{
59	int			error;
60	xfs_agblock_t		bno;
61
62	/* Allocate the new block from the freelist. If we can't, give up.  */
63	error = xfs_alloc_get_freelist(cur->bc_ag.pag, cur->bc_tp,
64			cur->bc_ag.agbp, &bno, 1);
65	if (error)
66		return error;
67
68	if (bno == NULLAGBLOCK) {
69		*stat = 0;
70		return 0;
71	}
72
73	atomic64_inc(&cur->bc_mp->m_allocbt_blks);
74	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.pag, bno, 1, false);
75
76	new->s = cpu_to_be32(bno);
77
78	*stat = 1;
79	return 0;
80}
81
82STATIC int
83xfs_allocbt_free_block(
84	struct xfs_btree_cur	*cur,
85	struct xfs_buf		*bp)
86{
87	struct xfs_buf		*agbp = cur->bc_ag.agbp;
88	xfs_agblock_t		bno;
89	int			error;
90
91	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
92	error = xfs_alloc_put_freelist(cur->bc_ag.pag, cur->bc_tp, agbp, NULL,
93			bno, 1);
94	if (error)
95		return error;
96
97	atomic64_dec(&cur->bc_mp->m_allocbt_blks);
98	xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
99			      XFS_EXTENT_BUSY_SKIP_DISCARD);
100	return 0;
101}
102
103/*
104 * Update the longest extent in the AGF
105 */
106STATIC void
107xfs_allocbt_update_lastrec(
108	struct xfs_btree_cur		*cur,
109	const struct xfs_btree_block	*block,
110	const union xfs_btree_rec	*rec,
111	int				ptr,
112	int				reason)
113{
114	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
115	struct xfs_perag	*pag;
116	__be32			len;
117	int			numrecs;
118
119	ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
120
121	switch (reason) {
122	case LASTREC_UPDATE:
123		/*
124		 * If this is the last leaf block and it's the last record,
125		 * then update the size of the longest extent in the AG.
126		 */
127		if (ptr != xfs_btree_get_numrecs(block))
128			return;
129		len = rec->alloc.ar_blockcount;
130		break;
131	case LASTREC_INSREC:
132		if (be32_to_cpu(rec->alloc.ar_blockcount) <=
133		    be32_to_cpu(agf->agf_longest))
134			return;
135		len = rec->alloc.ar_blockcount;
136		break;
137	case LASTREC_DELREC:
138		numrecs = xfs_btree_get_numrecs(block);
139		if (ptr <= numrecs)
140			return;
141		ASSERT(ptr == numrecs + 1);
142
143		if (numrecs) {
144			xfs_alloc_rec_t *rrp;
145
146			rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
147			len = rrp->ar_blockcount;
148		} else {
149			len = 0;
150		}
151
152		break;
153	default:
154		ASSERT(0);
155		return;
156	}
157
158	agf->agf_longest = len;
159	pag = cur->bc_ag.agbp->b_pag;
160	pag->pagf_longest = be32_to_cpu(len);
161	xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
162}
163
164STATIC int
165xfs_allocbt_get_minrecs(
166	struct xfs_btree_cur	*cur,
167	int			level)
168{
169	return cur->bc_mp->m_alloc_mnr[level != 0];
170}
171
172STATIC int
173xfs_allocbt_get_maxrecs(
174	struct xfs_btree_cur	*cur,
175	int			level)
176{
177	return cur->bc_mp->m_alloc_mxr[level != 0];
178}
179
180STATIC void
181xfs_allocbt_init_key_from_rec(
182	union xfs_btree_key		*key,
183	const union xfs_btree_rec	*rec)
184{
185	key->alloc.ar_startblock = rec->alloc.ar_startblock;
186	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
187}
188
189STATIC void
190xfs_bnobt_init_high_key_from_rec(
191	union xfs_btree_key		*key,
192	const union xfs_btree_rec	*rec)
193{
194	__u32				x;
195
196	x = be32_to_cpu(rec->alloc.ar_startblock);
197	x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
198	key->alloc.ar_startblock = cpu_to_be32(x);
199	key->alloc.ar_blockcount = 0;
200}
201
202STATIC void
203xfs_cntbt_init_high_key_from_rec(
204	union xfs_btree_key		*key,
205	const union xfs_btree_rec	*rec)
206{
207	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
208	key->alloc.ar_startblock = 0;
209}
210
211STATIC void
212xfs_allocbt_init_rec_from_cur(
213	struct xfs_btree_cur	*cur,
214	union xfs_btree_rec	*rec)
215{
216	rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
217	rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
218}
219
220STATIC void
221xfs_allocbt_init_ptr_from_cur(
222	struct xfs_btree_cur	*cur,
223	union xfs_btree_ptr	*ptr)
224{
225	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
226
227	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
228
229	ptr->s = agf->agf_roots[cur->bc_btnum];
230}
231
232STATIC int64_t
233xfs_bnobt_key_diff(
234	struct xfs_btree_cur		*cur,
235	const union xfs_btree_key	*key)
236{
237	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
238	const struct xfs_alloc_rec	*kp = &key->alloc;
239
240	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
241}
242
243STATIC int64_t
244xfs_cntbt_key_diff(
245	struct xfs_btree_cur		*cur,
246	const union xfs_btree_key	*key)
247{
248	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
249	const struct xfs_alloc_rec	*kp = &key->alloc;
250	int64_t				diff;
251
252	diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
253	if (diff)
254		return diff;
255
256	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
257}
258
259STATIC int64_t
260xfs_bnobt_diff_two_keys(
261	struct xfs_btree_cur		*cur,
262	const union xfs_btree_key	*k1,
263	const union xfs_btree_key	*k2,
264	const union xfs_btree_key	*mask)
265{
266	ASSERT(!mask || mask->alloc.ar_startblock);
267
268	return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
269			be32_to_cpu(k2->alloc.ar_startblock);
270}
271
272STATIC int64_t
273xfs_cntbt_diff_two_keys(
274	struct xfs_btree_cur		*cur,
275	const union xfs_btree_key	*k1,
276	const union xfs_btree_key	*k2,
277	const union xfs_btree_key	*mask)
278{
279	int64_t				diff;
280
281	ASSERT(!mask || (mask->alloc.ar_blockcount &&
282			 mask->alloc.ar_startblock));
283
284	diff =  be32_to_cpu(k1->alloc.ar_blockcount) -
285		be32_to_cpu(k2->alloc.ar_blockcount);
286	if (diff)
287		return diff;
288
289	return  be32_to_cpu(k1->alloc.ar_startblock) -
290		be32_to_cpu(k2->alloc.ar_startblock);
291}
292
293static xfs_failaddr_t
294xfs_allocbt_verify(
295	struct xfs_buf		*bp)
296{
297	struct xfs_mount	*mp = bp->b_mount;
298	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
299	struct xfs_perag	*pag = bp->b_pag;
300	xfs_failaddr_t		fa;
301	unsigned int		level;
302	xfs_btnum_t		btnum = XFS_BTNUM_BNOi;
303
304	if (!xfs_verify_magic(bp, block->bb_magic))
305		return __this_address;
306
307	if (xfs_has_crc(mp)) {
308		fa = xfs_btree_sblock_v5hdr_verify(bp);
309		if (fa)
310			return fa;
311	}
312
313	/*
314	 * The perag may not be attached during grow operations or fully
315	 * initialized from the AGF during log recovery. Therefore we can only
316	 * check against maximum tree depth from those contexts.
317	 *
318	 * Otherwise check against the per-tree limit. Peek at one of the
319	 * verifier magic values to determine the type of tree we're verifying
320	 * against.
321	 */
322	level = be16_to_cpu(block->bb_level);
323	if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
324		btnum = XFS_BTNUM_CNTi;
325	if (pag && xfs_perag_initialised_agf(pag)) {
326		if (level >= pag->pagf_levels[btnum])
327			return __this_address;
328	} else if (level >= mp->m_alloc_maxlevels)
329		return __this_address;
330
331	return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
332}
333
334static void
335xfs_allocbt_read_verify(
336	struct xfs_buf	*bp)
337{
338	xfs_failaddr_t	fa;
339
340	if (!xfs_btree_sblock_verify_crc(bp))
341		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
342	else {
343		fa = xfs_allocbt_verify(bp);
344		if (fa)
345			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
346	}
347
348	if (bp->b_error)
349		trace_xfs_btree_corrupt(bp, _RET_IP_);
350}
351
352static void
353xfs_allocbt_write_verify(
354	struct xfs_buf	*bp)
355{
356	xfs_failaddr_t	fa;
357
358	fa = xfs_allocbt_verify(bp);
359	if (fa) {
360		trace_xfs_btree_corrupt(bp, _RET_IP_);
361		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
362		return;
363	}
364	xfs_btree_sblock_calc_crc(bp);
365
366}
367
368const struct xfs_buf_ops xfs_bnobt_buf_ops = {
369	.name = "xfs_bnobt",
370	.magic = { cpu_to_be32(XFS_ABTB_MAGIC),
371		   cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
372	.verify_read = xfs_allocbt_read_verify,
373	.verify_write = xfs_allocbt_write_verify,
374	.verify_struct = xfs_allocbt_verify,
375};
376
377const struct xfs_buf_ops xfs_cntbt_buf_ops = {
378	.name = "xfs_cntbt",
379	.magic = { cpu_to_be32(XFS_ABTC_MAGIC),
380		   cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
381	.verify_read = xfs_allocbt_read_verify,
382	.verify_write = xfs_allocbt_write_verify,
383	.verify_struct = xfs_allocbt_verify,
384};
385
386STATIC int
387xfs_bnobt_keys_inorder(
388	struct xfs_btree_cur		*cur,
389	const union xfs_btree_key	*k1,
390	const union xfs_btree_key	*k2)
391{
392	return be32_to_cpu(k1->alloc.ar_startblock) <
393	       be32_to_cpu(k2->alloc.ar_startblock);
394}
395
396STATIC int
397xfs_bnobt_recs_inorder(
398	struct xfs_btree_cur		*cur,
399	const union xfs_btree_rec	*r1,
400	const union xfs_btree_rec	*r2)
401{
402	return be32_to_cpu(r1->alloc.ar_startblock) +
403		be32_to_cpu(r1->alloc.ar_blockcount) <=
404		be32_to_cpu(r2->alloc.ar_startblock);
405}
406
407STATIC int
408xfs_cntbt_keys_inorder(
409	struct xfs_btree_cur		*cur,
410	const union xfs_btree_key	*k1,
411	const union xfs_btree_key	*k2)
412{
413	return be32_to_cpu(k1->alloc.ar_blockcount) <
414		be32_to_cpu(k2->alloc.ar_blockcount) ||
415		(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
416		 be32_to_cpu(k1->alloc.ar_startblock) <
417		 be32_to_cpu(k2->alloc.ar_startblock));
418}
419
420STATIC int
421xfs_cntbt_recs_inorder(
422	struct xfs_btree_cur		*cur,
423	const union xfs_btree_rec	*r1,
424	const union xfs_btree_rec	*r2)
425{
426	return be32_to_cpu(r1->alloc.ar_blockcount) <
427		be32_to_cpu(r2->alloc.ar_blockcount) ||
428		(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
429		 be32_to_cpu(r1->alloc.ar_startblock) <
430		 be32_to_cpu(r2->alloc.ar_startblock));
431}
432
433STATIC enum xbtree_key_contig
434xfs_allocbt_keys_contiguous(
435	struct xfs_btree_cur		*cur,
436	const union xfs_btree_key	*key1,
437	const union xfs_btree_key	*key2,
438	const union xfs_btree_key	*mask)
439{
440	ASSERT(!mask || mask->alloc.ar_startblock);
441
442	return xbtree_key_contig(be32_to_cpu(key1->alloc.ar_startblock),
443				 be32_to_cpu(key2->alloc.ar_startblock));
444}
445
446static const struct xfs_btree_ops xfs_bnobt_ops = {
447	.rec_len		= sizeof(xfs_alloc_rec_t),
448	.key_len		= sizeof(xfs_alloc_key_t),
449
450	.dup_cursor		= xfs_allocbt_dup_cursor,
451	.set_root		= xfs_allocbt_set_root,
452	.alloc_block		= xfs_allocbt_alloc_block,
453	.free_block		= xfs_allocbt_free_block,
454	.update_lastrec		= xfs_allocbt_update_lastrec,
455	.get_minrecs		= xfs_allocbt_get_minrecs,
456	.get_maxrecs		= xfs_allocbt_get_maxrecs,
457	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
458	.init_high_key_from_rec	= xfs_bnobt_init_high_key_from_rec,
459	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
460	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
461	.key_diff		= xfs_bnobt_key_diff,
462	.buf_ops		= &xfs_bnobt_buf_ops,
463	.diff_two_keys		= xfs_bnobt_diff_two_keys,
464	.keys_inorder		= xfs_bnobt_keys_inorder,
465	.recs_inorder		= xfs_bnobt_recs_inorder,
466	.keys_contiguous	= xfs_allocbt_keys_contiguous,
467};
468
469static const struct xfs_btree_ops xfs_cntbt_ops = {
470	.rec_len		= sizeof(xfs_alloc_rec_t),
471	.key_len		= sizeof(xfs_alloc_key_t),
472
473	.dup_cursor		= xfs_allocbt_dup_cursor,
474	.set_root		= xfs_allocbt_set_root,
475	.alloc_block		= xfs_allocbt_alloc_block,
476	.free_block		= xfs_allocbt_free_block,
477	.update_lastrec		= xfs_allocbt_update_lastrec,
478	.get_minrecs		= xfs_allocbt_get_minrecs,
479	.get_maxrecs		= xfs_allocbt_get_maxrecs,
480	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
481	.init_high_key_from_rec	= xfs_cntbt_init_high_key_from_rec,
482	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
483	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
484	.key_diff		= xfs_cntbt_key_diff,
485	.buf_ops		= &xfs_cntbt_buf_ops,
486	.diff_two_keys		= xfs_cntbt_diff_two_keys,
487	.keys_inorder		= xfs_cntbt_keys_inorder,
488	.recs_inorder		= xfs_cntbt_recs_inorder,
489	.keys_contiguous	= NULL, /* not needed right now */
490};
491
492/* Allocate most of a new allocation btree cursor. */
493STATIC struct xfs_btree_cur *
494xfs_allocbt_init_common(
495	struct xfs_mount	*mp,
496	struct xfs_trans	*tp,
497	struct xfs_perag	*pag,
498	xfs_btnum_t		btnum)
499{
500	struct xfs_btree_cur	*cur;
501
502	ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
503
504	cur = xfs_btree_alloc_cursor(mp, tp, btnum, mp->m_alloc_maxlevels,
505			xfs_allocbt_cur_cache);
506	cur->bc_ag.abt.active = false;
507
508	if (btnum == XFS_BTNUM_CNT) {
509		cur->bc_ops = &xfs_cntbt_ops;
510		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
511		cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
512	} else {
513		cur->bc_ops = &xfs_bnobt_ops;
514		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
515	}
516
517	cur->bc_ag.pag = xfs_perag_hold(pag);
518
519	if (xfs_has_crc(mp))
520		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
521
522	return cur;
523}
524
525/*
526 * Allocate a new allocation btree cursor.
527 */
528struct xfs_btree_cur *			/* new alloc btree cursor */
529xfs_allocbt_init_cursor(
530	struct xfs_mount	*mp,		/* file system mount point */
531	struct xfs_trans	*tp,		/* transaction pointer */
532	struct xfs_buf		*agbp,		/* buffer for agf structure */
533	struct xfs_perag	*pag,
534	xfs_btnum_t		btnum)		/* btree identifier */
535{
536	struct xfs_agf		*agf = agbp->b_addr;
537	struct xfs_btree_cur	*cur;
538
539	cur = xfs_allocbt_init_common(mp, tp, pag, btnum);
540	if (btnum == XFS_BTNUM_CNT)
541		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
542	else
543		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
544
545	cur->bc_ag.agbp = agbp;
546
547	return cur;
548}
549
550/* Create a free space btree cursor with a fake root for staging. */
551struct xfs_btree_cur *
552xfs_allocbt_stage_cursor(
553	struct xfs_mount	*mp,
554	struct xbtree_afakeroot	*afake,
555	struct xfs_perag	*pag,
556	xfs_btnum_t		btnum)
557{
558	struct xfs_btree_cur	*cur;
559
560	cur = xfs_allocbt_init_common(mp, NULL, pag, btnum);
561	xfs_btree_stage_afakeroot(cur, afake);
562	return cur;
563}
564
565/*
566 * Install a new free space btree root.  Caller is responsible for invalidating
567 * and freeing the old btree blocks.
568 */
569void
570xfs_allocbt_commit_staged_btree(
571	struct xfs_btree_cur	*cur,
572	struct xfs_trans	*tp,
573	struct xfs_buf		*agbp)
574{
575	struct xfs_agf		*agf = agbp->b_addr;
576	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
577
578	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
579
580	agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
581	agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
582	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
583
584	if (cur->bc_btnum == XFS_BTNUM_BNO) {
585		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
586	} else {
587		cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
588		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
589	}
590}
591
592/* Calculate number of records in an alloc btree block. */
593static inline unsigned int
594xfs_allocbt_block_maxrecs(
595	unsigned int		blocklen,
596	bool			leaf)
597{
598	if (leaf)
599		return blocklen / sizeof(xfs_alloc_rec_t);
600	return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
601}
602
603/*
604 * Calculate number of records in an alloc btree block.
605 */
606int
607xfs_allocbt_maxrecs(
608	struct xfs_mount	*mp,
609	int			blocklen,
610	int			leaf)
611{
612	blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
613	return xfs_allocbt_block_maxrecs(blocklen, leaf);
614}
615
616/* Free space btrees are at their largest when every other block is free. */
617#define XFS_MAX_FREESP_RECORDS	((XFS_MAX_AG_BLOCKS + 1) / 2)
618
619/* Compute the max possible height for free space btrees. */
620unsigned int
621xfs_allocbt_maxlevels_ondisk(void)
622{
623	unsigned int		minrecs[2];
624	unsigned int		blocklen;
625
626	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
627		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
628
629	minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
630	minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
631
632	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
633}
634
635/* Calculate the freespace btree size for some records. */
636xfs_extlen_t
637xfs_allocbt_calc_size(
638	struct xfs_mount	*mp,
639	unsigned long long	len)
640{
641	return xfs_btree_calc_size(mp->m_alloc_mnr, len);
642}
643
644int __init
645xfs_allocbt_init_cur_cache(void)
646{
647	xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
648			xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
649			0, 0, NULL);
650
651	if (!xfs_allocbt_cur_cache)
652		return -ENOMEM;
653	return 0;
654}
655
656void
657xfs_allocbt_destroy_cur_cache(void)
658{
659	kmem_cache_destroy(xfs_allocbt_cur_cache);
660	xfs_allocbt_cur_cache = NULL;
661}
662