xref: /kernel/linux/linux-6.6/fs/verity/verify.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Data verification functions, i.e. hooks for ->readahead()
4 *
5 * Copyright 2019 Google LLC
6 */
7
8#include "fsverity_private.h"
9
10#include <crypto/hash.h>
11#include <linux/bio.h>
12
13static struct workqueue_struct *fsverity_read_workqueue;
14
15/*
16 * Returns true if the hash block with index @hblock_idx in the tree, located in
17 * @hpage, has already been verified.
18 */
19static bool is_hash_block_verified(struct fsverity_info *vi, struct page *hpage,
20				   unsigned long hblock_idx)
21{
22	bool verified;
23	unsigned int blocks_per_page;
24	unsigned int i;
25
26	/*
27	 * When the Merkle tree block size and page size are the same, then the
28	 * ->hash_block_verified bitmap isn't allocated, and we use PG_checked
29	 * to directly indicate whether the page's block has been verified.
30	 *
31	 * Using PG_checked also guarantees that we re-verify hash pages that
32	 * get evicted and re-instantiated from the backing storage, as new
33	 * pages always start out with PG_checked cleared.
34	 */
35	if (!vi->hash_block_verified)
36		return PageChecked(hpage);
37
38	/*
39	 * When the Merkle tree block size and page size differ, we use a bitmap
40	 * to indicate whether each hash block has been verified.
41	 *
42	 * However, we still need to ensure that hash pages that get evicted and
43	 * re-instantiated from the backing storage are re-verified.  To do
44	 * this, we use PG_checked again, but now it doesn't really mean
45	 * "checked".  Instead, now it just serves as an indicator for whether
46	 * the hash page is newly instantiated or not.
47	 *
48	 * The first thread that sees PG_checked=0 must clear the corresponding
49	 * bitmap bits, then set PG_checked=1.  This requires a spinlock.  To
50	 * avoid having to take this spinlock in the common case of
51	 * PG_checked=1, we start with an opportunistic lockless read.
52	 */
53	if (PageChecked(hpage)) {
54		/*
55		 * A read memory barrier is needed here to give ACQUIRE
56		 * semantics to the above PageChecked() test.
57		 */
58		smp_rmb();
59		return test_bit(hblock_idx, vi->hash_block_verified);
60	}
61	spin_lock(&vi->hash_page_init_lock);
62	if (PageChecked(hpage)) {
63		verified = test_bit(hblock_idx, vi->hash_block_verified);
64	} else {
65		blocks_per_page = vi->tree_params.blocks_per_page;
66		hblock_idx = round_down(hblock_idx, blocks_per_page);
67		for (i = 0; i < blocks_per_page; i++)
68			clear_bit(hblock_idx + i, vi->hash_block_verified);
69		/*
70		 * A write memory barrier is needed here to give RELEASE
71		 * semantics to the below SetPageChecked() operation.
72		 */
73		smp_wmb();
74		SetPageChecked(hpage);
75		verified = false;
76	}
77	spin_unlock(&vi->hash_page_init_lock);
78	return verified;
79}
80
81/*
82 * Verify a single data block against the file's Merkle tree.
83 *
84 * In principle, we need to verify the entire path to the root node.  However,
85 * for efficiency the filesystem may cache the hash blocks.  Therefore we need
86 * only ascend the tree until an already-verified hash block is seen, and then
87 * verify the path to that block.
88 *
89 * Return: %true if the data block is valid, else %false.
90 */
91static bool
92verify_data_block(struct inode *inode, struct fsverity_info *vi,
93		  const void *data, u64 data_pos, unsigned long max_ra_pages)
94{
95	const struct merkle_tree_params *params = &vi->tree_params;
96	const unsigned int hsize = params->digest_size;
97	int level;
98	u8 _want_hash[FS_VERITY_MAX_DIGEST_SIZE];
99	const u8 *want_hash;
100	u8 real_hash[FS_VERITY_MAX_DIGEST_SIZE];
101	/* The hash blocks that are traversed, indexed by level */
102	struct {
103		/* Page containing the hash block */
104		struct page *page;
105		/* Mapped address of the hash block (will be within @page) */
106		const void *addr;
107		/* Index of the hash block in the tree overall */
108		unsigned long index;
109		/* Byte offset of the wanted hash relative to @addr */
110		unsigned int hoffset;
111	} hblocks[FS_VERITY_MAX_LEVELS];
112	/*
113	 * The index of the previous level's block within that level; also the
114	 * index of that block's hash within the current level.
115	 */
116	u64 hidx = data_pos >> params->log_blocksize;
117
118	/* Up to 1 + FS_VERITY_MAX_LEVELS pages may be mapped at once */
119	BUILD_BUG_ON(1 + FS_VERITY_MAX_LEVELS > KM_MAX_IDX);
120
121	if (unlikely(data_pos >= inode->i_size)) {
122		/*
123		 * This can happen in the data page spanning EOF when the Merkle
124		 * tree block size is less than the page size.  The Merkle tree
125		 * doesn't cover data blocks fully past EOF.  But the entire
126		 * page spanning EOF can be visible to userspace via a mmap, and
127		 * any part past EOF should be all zeroes.  Therefore, we need
128		 * to verify that any data blocks fully past EOF are all zeroes.
129		 */
130		if (memchr_inv(data, 0, params->block_size)) {
131			fsverity_err(inode,
132				     "FILE CORRUPTED!  Data past EOF is not zeroed");
133			return false;
134		}
135		return true;
136	}
137
138#ifdef CONFIG_SECURITY_CODE_SIGN
139	if (data_pos >= vi->verified_data_size) {
140		pr_debug_ratelimited("Data[%lu] out of verity range %lu\n",
141			data_pos, vi->verified_data_size);
142		return true;
143	}
144#endif
145	/*
146	 * Starting at the leaf level, ascend the tree saving hash blocks along
147	 * the way until we find a hash block that has already been verified, or
148	 * until we reach the root.
149	 */
150	for (level = 0; level < params->num_levels; level++) {
151		unsigned long next_hidx;
152		unsigned long hblock_idx;
153		pgoff_t hpage_idx;
154		unsigned int hblock_offset_in_page;
155		unsigned int hoffset;
156		struct page *hpage;
157		const void *haddr;
158
159		/*
160		 * The index of the block in the current level; also the index
161		 * of that block's hash within the next level.
162		 */
163		next_hidx = hidx >> params->log_arity;
164
165		/* Index of the hash block in the tree overall */
166		hblock_idx = params->level_start[level] + next_hidx;
167
168		/* Index of the hash page in the tree overall */
169		hpage_idx = hblock_idx >> params->log_blocks_per_page;
170
171		/* Byte offset of the hash block within the page */
172		hblock_offset_in_page =
173			(hblock_idx << params->log_blocksize) & ~PAGE_MASK;
174
175		/* Byte offset of the hash within the block */
176		hoffset = (hidx << params->log_digestsize) &
177			  (params->block_size - 1);
178
179		hpage = inode->i_sb->s_vop->read_merkle_tree_page(inode,
180				hpage_idx, level == 0 ? min(max_ra_pages,
181					params->tree_pages - hpage_idx) : 0);
182		if (IS_ERR(hpage)) {
183			fsverity_err(inode,
184				     "Error %ld reading Merkle tree page %lu",
185				     PTR_ERR(hpage), hpage_idx);
186			goto error;
187		}
188		haddr = kmap_local_page(hpage) + hblock_offset_in_page;
189		if (is_hash_block_verified(vi, hpage, hblock_idx)) {
190			memcpy(_want_hash, haddr + hoffset, hsize);
191			want_hash = _want_hash;
192			kunmap_local(haddr);
193			put_page(hpage);
194			goto descend;
195		}
196		hblocks[level].page = hpage;
197		hblocks[level].addr = haddr;
198		hblocks[level].index = hblock_idx;
199		hblocks[level].hoffset = hoffset;
200		hidx = next_hidx;
201	}
202
203	want_hash = vi->root_hash;
204descend:
205	/* Descend the tree verifying hash blocks. */
206	for (; level > 0; level--) {
207		struct page *hpage = hblocks[level - 1].page;
208		const void *haddr = hblocks[level - 1].addr;
209		unsigned long hblock_idx = hblocks[level - 1].index;
210		unsigned int hoffset = hblocks[level - 1].hoffset;
211
212		if (fsverity_hash_block(params, inode, haddr, real_hash) != 0)
213			goto error;
214		if (memcmp(want_hash, real_hash, hsize) != 0)
215			goto corrupted;
216		/*
217		 * Mark the hash block as verified.  This must be atomic and
218		 * idempotent, as the same hash block might be verified by
219		 * multiple threads concurrently.
220		 */
221		if (vi->hash_block_verified)
222			set_bit(hblock_idx, vi->hash_block_verified);
223		else
224			SetPageChecked(hpage);
225		memcpy(_want_hash, haddr + hoffset, hsize);
226		want_hash = _want_hash;
227		kunmap_local(haddr);
228		put_page(hpage);
229	}
230
231	/* Finally, verify the data block. */
232	if (fsverity_hash_block(params, inode, data, real_hash) != 0)
233		goto error;
234	if (memcmp(want_hash, real_hash, hsize) != 0)
235		goto corrupted;
236	return true;
237
238corrupted:
239	fsverity_err(inode,
240		     "FILE CORRUPTED! pos=%llu, level=%d, want_hash=%s:%*phN, real_hash=%s:%*phN",
241		     data_pos, level - 1,
242		     params->hash_alg->name, hsize, want_hash,
243		     params->hash_alg->name, hsize, real_hash);
244error:
245	for (; level > 0; level--) {
246		kunmap_local(hblocks[level - 1].addr);
247		put_page(hblocks[level - 1].page);
248	}
249	return false;
250}
251
252static bool
253verify_data_blocks(struct folio *data_folio, size_t len, size_t offset,
254		   unsigned long max_ra_pages)
255{
256	struct inode *inode = data_folio->mapping->host;
257	struct fsverity_info *vi = inode->i_verity_info;
258	const unsigned int block_size = vi->tree_params.block_size;
259	u64 pos = (u64)data_folio->index << PAGE_SHIFT;
260
261	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offset, block_size)))
262		return false;
263	if (WARN_ON_ONCE(!folio_test_locked(data_folio) ||
264			 folio_test_uptodate(data_folio)))
265		return false;
266	do {
267		void *data;
268		bool valid;
269
270		data = kmap_local_folio(data_folio, offset);
271		valid = verify_data_block(inode, vi, data, pos + offset,
272					  max_ra_pages);
273		kunmap_local(data);
274		if (!valid)
275			return false;
276		offset += block_size;
277		len -= block_size;
278	} while (len);
279	return true;
280}
281
282/**
283 * fsverity_verify_blocks() - verify data in a folio
284 * @folio: the folio containing the data to verify
285 * @len: the length of the data to verify in the folio
286 * @offset: the offset of the data to verify in the folio
287 *
288 * Verify data that has just been read from a verity file.  The data must be
289 * located in a pagecache folio that is still locked and not yet uptodate.  The
290 * length and offset of the data must be Merkle tree block size aligned.
291 *
292 * Return: %true if the data is valid, else %false.
293 */
294bool fsverity_verify_blocks(struct folio *folio, size_t len, size_t offset)
295{
296	return verify_data_blocks(folio, len, offset, 0);
297}
298EXPORT_SYMBOL_GPL(fsverity_verify_blocks);
299
300#ifdef CONFIG_BLOCK
301/**
302 * fsverity_verify_bio() - verify a 'read' bio that has just completed
303 * @bio: the bio to verify
304 *
305 * Verify the bio's data against the file's Merkle tree.  All bio data segments
306 * must be aligned to the file's Merkle tree block size.  If any data fails
307 * verification, then bio->bi_status is set to an error status.
308 *
309 * This is a helper function for use by the ->readahead() method of filesystems
310 * that issue bios to read data directly into the page cache.  Filesystems that
311 * populate the page cache without issuing bios (e.g. non block-based
312 * filesystems) must instead call fsverity_verify_page() directly on each page.
313 * All filesystems must also call fsverity_verify_page() on holes.
314 */
315void fsverity_verify_bio(struct bio *bio)
316{
317	struct folio_iter fi;
318	unsigned long max_ra_pages = 0;
319
320	if (bio->bi_opf & REQ_RAHEAD) {
321		/*
322		 * If this bio is for data readahead, then we also do readahead
323		 * of the first (largest) level of the Merkle tree.  Namely,
324		 * when a Merkle tree page is read, we also try to piggy-back on
325		 * some additional pages -- up to 1/4 the number of data pages.
326		 *
327		 * This improves sequential read performance, as it greatly
328		 * reduces the number of I/O requests made to the Merkle tree.
329		 */
330		max_ra_pages = bio->bi_iter.bi_size >> (PAGE_SHIFT + 2);
331	}
332
333	bio_for_each_folio_all(fi, bio) {
334		if (!verify_data_blocks(fi.folio, fi.length, fi.offset,
335					max_ra_pages)) {
336			bio->bi_status = BLK_STS_IOERR;
337			break;
338		}
339	}
340}
341EXPORT_SYMBOL_GPL(fsverity_verify_bio);
342#endif /* CONFIG_BLOCK */
343
344/**
345 * fsverity_get_verified_data_size() - get verified data size of a verity file
346 * @inode: the file's inode
347 *
348 * Return: verified data size
349 */
350u64 fsverity_get_verified_data_size(const struct inode *inode)
351{
352#ifdef CONFIG_SECURITY_CODE_SIGN
353	return fsverity_get_info(inode)->verified_data_size;
354#else
355	return inode->i_size;
356#endif
357}
358
359/**
360 * fsverity_enqueue_verify_work() - enqueue work on the fs-verity workqueue
361 * @work: the work to enqueue
362 *
363 * Enqueue verification work for asynchronous processing.
364 */
365void fsverity_enqueue_verify_work(struct work_struct *work)
366{
367	queue_work(fsverity_read_workqueue, work);
368}
369EXPORT_SYMBOL_GPL(fsverity_enqueue_verify_work);
370
371void __init fsverity_init_workqueue(void)
372{
373	/*
374	 * Use a high-priority workqueue to prioritize verification work, which
375	 * blocks reads from completing, over regular application tasks.
376	 *
377	 * For performance reasons, don't use an unbound workqueue.  Using an
378	 * unbound workqueue for crypto operations causes excessive scheduler
379	 * latency on ARM64.
380	 */
381	fsverity_read_workqueue = alloc_workqueue("fsverity_read_queue",
382						  WQ_HIGHPRI,
383						  num_online_cpus());
384	if (!fsverity_read_workqueue)
385		panic("failed to allocate fsverity_read_queue");
386}
387