xref: /kernel/linux/linux-6.6/fs/udf/super.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * super.c
4 *
5 * PURPOSE
6 *  Super block routines for the OSTA-UDF(tm) filesystem.
7 *
8 * DESCRIPTION
9 *  OSTA-UDF(tm) = Optical Storage Technology Association
10 *  Universal Disk Format.
11 *
12 *  This code is based on version 2.00 of the UDF specification,
13 *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
14 *    http://www.osta.org/
15 *    https://www.ecma.ch/
16 *    https://www.iso.org/
17 *
18 * COPYRIGHT
19 *  (C) 1998 Dave Boynton
20 *  (C) 1998-2004 Ben Fennema
21 *  (C) 2000 Stelias Computing Inc
22 *
23 * HISTORY
24 *
25 *  09/24/98 dgb  changed to allow compiling outside of kernel, and
26 *                added some debugging.
27 *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
28 *  10/16/98      attempting some multi-session support
29 *  10/17/98      added freespace count for "df"
30 *  11/11/98 gr   added novrs option
31 *  11/26/98 dgb  added fileset,anchor mount options
32 *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
33 *                vol descs. rewrote option handling based on isofs
34 *  12/20/98      find the free space bitmap (if it exists)
35 */
36
37#include "udfdecl.h"
38
39#include <linux/blkdev.h>
40#include <linux/slab.h>
41#include <linux/kernel.h>
42#include <linux/module.h>
43#include <linux/parser.h>
44#include <linux/stat.h>
45#include <linux/cdrom.h>
46#include <linux/nls.h>
47#include <linux/vfs.h>
48#include <linux/vmalloc.h>
49#include <linux/errno.h>
50#include <linux/mount.h>
51#include <linux/seq_file.h>
52#include <linux/bitmap.h>
53#include <linux/crc-itu-t.h>
54#include <linux/log2.h>
55#include <asm/byteorder.h>
56#include <linux/iversion.h>
57
58#include "udf_sb.h"
59#include "udf_i.h"
60
61#include <linux/init.h>
62#include <linux/uaccess.h>
63
64enum {
65	VDS_POS_PRIMARY_VOL_DESC,
66	VDS_POS_UNALLOC_SPACE_DESC,
67	VDS_POS_LOGICAL_VOL_DESC,
68	VDS_POS_IMP_USE_VOL_DESC,
69	VDS_POS_LENGTH
70};
71
72#define VSD_FIRST_SECTOR_OFFSET		32768
73#define VSD_MAX_SECTOR_OFFSET		0x800000
74
75/*
76 * Maximum number of Terminating Descriptor / Logical Volume Integrity
77 * Descriptor redirections. The chosen numbers are arbitrary - just that we
78 * hopefully don't limit any real use of rewritten inode on write-once media
79 * but avoid looping for too long on corrupted media.
80 */
81#define UDF_MAX_TD_NESTING 64
82#define UDF_MAX_LVID_NESTING 1000
83
84enum { UDF_MAX_LINKS = 0xffff };
85/*
86 * We limit filesize to 4TB. This is arbitrary as the on-disk format supports
87 * more but because the file space is described by a linked list of extents,
88 * each of which can have at most 1GB, the creation and handling of extents
89 * gets unusably slow beyond certain point...
90 */
91#define UDF_MAX_FILESIZE (1ULL << 42)
92
93/* These are the "meat" - everything else is stuffing */
94static int udf_fill_super(struct super_block *, void *, int);
95static void udf_put_super(struct super_block *);
96static int udf_sync_fs(struct super_block *, int);
97static int udf_remount_fs(struct super_block *, int *, char *);
98static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
99static void udf_open_lvid(struct super_block *);
100static void udf_close_lvid(struct super_block *);
101static unsigned int udf_count_free(struct super_block *);
102static int udf_statfs(struct dentry *, struct kstatfs *);
103static int udf_show_options(struct seq_file *, struct dentry *);
104
105struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106{
107	struct logicalVolIntegrityDesc *lvid;
108	unsigned int partnum;
109	unsigned int offset;
110
111	if (!UDF_SB(sb)->s_lvid_bh)
112		return NULL;
113	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114	partnum = le32_to_cpu(lvid->numOfPartitions);
115	/* The offset is to skip freeSpaceTable and sizeTable arrays */
116	offset = partnum * 2 * sizeof(uint32_t);
117	return (struct logicalVolIntegrityDescImpUse *)
118					(((uint8_t *)(lvid + 1)) + offset);
119}
120
121/* UDF filesystem type */
122static struct dentry *udf_mount(struct file_system_type *fs_type,
123		      int flags, const char *dev_name, void *data)
124{
125	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
126}
127
128static struct file_system_type udf_fstype = {
129	.owner		= THIS_MODULE,
130	.name		= "udf",
131	.mount		= udf_mount,
132	.kill_sb	= kill_block_super,
133	.fs_flags	= FS_REQUIRES_DEV,
134};
135MODULE_ALIAS_FS("udf");
136
137static struct kmem_cache *udf_inode_cachep;
138
139static struct inode *udf_alloc_inode(struct super_block *sb)
140{
141	struct udf_inode_info *ei;
142	ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
143	if (!ei)
144		return NULL;
145
146	ei->i_unique = 0;
147	ei->i_lenExtents = 0;
148	ei->i_lenStreams = 0;
149	ei->i_next_alloc_block = 0;
150	ei->i_next_alloc_goal = 0;
151	ei->i_strat4096 = 0;
152	ei->i_streamdir = 0;
153	ei->i_hidden = 0;
154	init_rwsem(&ei->i_data_sem);
155	ei->cached_extent.lstart = -1;
156	spin_lock_init(&ei->i_extent_cache_lock);
157	inode_set_iversion(&ei->vfs_inode, 1);
158
159	return &ei->vfs_inode;
160}
161
162static void udf_free_in_core_inode(struct inode *inode)
163{
164	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
165}
166
167static void init_once(void *foo)
168{
169	struct udf_inode_info *ei = foo;
170
171	ei->i_data = NULL;
172	inode_init_once(&ei->vfs_inode);
173}
174
175static int __init init_inodecache(void)
176{
177	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
178					     sizeof(struct udf_inode_info),
179					     0, (SLAB_RECLAIM_ACCOUNT |
180						 SLAB_MEM_SPREAD |
181						 SLAB_ACCOUNT),
182					     init_once);
183	if (!udf_inode_cachep)
184		return -ENOMEM;
185	return 0;
186}
187
188static void destroy_inodecache(void)
189{
190	/*
191	 * Make sure all delayed rcu free inodes are flushed before we
192	 * destroy cache.
193	 */
194	rcu_barrier();
195	kmem_cache_destroy(udf_inode_cachep);
196}
197
198/* Superblock operations */
199static const struct super_operations udf_sb_ops = {
200	.alloc_inode	= udf_alloc_inode,
201	.free_inode	= udf_free_in_core_inode,
202	.write_inode	= udf_write_inode,
203	.evict_inode	= udf_evict_inode,
204	.put_super	= udf_put_super,
205	.sync_fs	= udf_sync_fs,
206	.statfs		= udf_statfs,
207	.remount_fs	= udf_remount_fs,
208	.show_options	= udf_show_options,
209};
210
211struct udf_options {
212	unsigned char novrs;
213	unsigned int blocksize;
214	unsigned int session;
215	unsigned int lastblock;
216	unsigned int anchor;
217	unsigned int flags;
218	umode_t umask;
219	kgid_t gid;
220	kuid_t uid;
221	umode_t fmode;
222	umode_t dmode;
223	struct nls_table *nls_map;
224};
225
226static int __init init_udf_fs(void)
227{
228	int err;
229
230	err = init_inodecache();
231	if (err)
232		goto out1;
233	err = register_filesystem(&udf_fstype);
234	if (err)
235		goto out;
236
237	return 0;
238
239out:
240	destroy_inodecache();
241
242out1:
243	return err;
244}
245
246static void __exit exit_udf_fs(void)
247{
248	unregister_filesystem(&udf_fstype);
249	destroy_inodecache();
250}
251
252static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
253{
254	struct udf_sb_info *sbi = UDF_SB(sb);
255
256	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
257	if (!sbi->s_partmaps) {
258		sbi->s_partitions = 0;
259		return -ENOMEM;
260	}
261
262	sbi->s_partitions = count;
263	return 0;
264}
265
266static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
267{
268	int i;
269	int nr_groups = bitmap->s_nr_groups;
270
271	for (i = 0; i < nr_groups; i++)
272		brelse(bitmap->s_block_bitmap[i]);
273
274	kvfree(bitmap);
275}
276
277static void udf_free_partition(struct udf_part_map *map)
278{
279	int i;
280	struct udf_meta_data *mdata;
281
282	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
283		iput(map->s_uspace.s_table);
284	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
285		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
286	if (map->s_partition_type == UDF_SPARABLE_MAP15)
287		for (i = 0; i < 4; i++)
288			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
289	else if (map->s_partition_type == UDF_METADATA_MAP25) {
290		mdata = &map->s_type_specific.s_metadata;
291		iput(mdata->s_metadata_fe);
292		mdata->s_metadata_fe = NULL;
293
294		iput(mdata->s_mirror_fe);
295		mdata->s_mirror_fe = NULL;
296
297		iput(mdata->s_bitmap_fe);
298		mdata->s_bitmap_fe = NULL;
299	}
300}
301
302static void udf_sb_free_partitions(struct super_block *sb)
303{
304	struct udf_sb_info *sbi = UDF_SB(sb);
305	int i;
306
307	if (!sbi->s_partmaps)
308		return;
309	for (i = 0; i < sbi->s_partitions; i++)
310		udf_free_partition(&sbi->s_partmaps[i]);
311	kfree(sbi->s_partmaps);
312	sbi->s_partmaps = NULL;
313}
314
315static int udf_show_options(struct seq_file *seq, struct dentry *root)
316{
317	struct super_block *sb = root->d_sb;
318	struct udf_sb_info *sbi = UDF_SB(sb);
319
320	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
321		seq_puts(seq, ",nostrict");
322	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
323		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
324	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
325		seq_puts(seq, ",unhide");
326	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
327		seq_puts(seq, ",undelete");
328	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
329		seq_puts(seq, ",noadinicb");
330	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
331		seq_puts(seq, ",shortad");
332	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
333		seq_puts(seq, ",uid=forget");
334	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
335		seq_puts(seq, ",gid=forget");
336	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
337		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
338	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
339		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
340	if (sbi->s_umask != 0)
341		seq_printf(seq, ",umask=%ho", sbi->s_umask);
342	if (sbi->s_fmode != UDF_INVALID_MODE)
343		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
344	if (sbi->s_dmode != UDF_INVALID_MODE)
345		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
346	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
347		seq_printf(seq, ",session=%d", sbi->s_session);
348	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
349		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
350	if (sbi->s_anchor != 0)
351		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
352	if (sbi->s_nls_map)
353		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
354	else
355		seq_puts(seq, ",iocharset=utf8");
356
357	return 0;
358}
359
360/*
361 * udf_parse_options
362 *
363 * PURPOSE
364 *	Parse mount options.
365 *
366 * DESCRIPTION
367 *	The following mount options are supported:
368 *
369 *	gid=		Set the default group.
370 *	umask=		Set the default umask.
371 *	mode=		Set the default file permissions.
372 *	dmode=		Set the default directory permissions.
373 *	uid=		Set the default user.
374 *	bs=		Set the block size.
375 *	unhide		Show otherwise hidden files.
376 *	undelete	Show deleted files in lists.
377 *	adinicb		Embed data in the inode (default)
378 *	noadinicb	Don't embed data in the inode
379 *	shortad		Use short ad's
380 *	longad		Use long ad's (default)
381 *	nostrict	Unset strict conformance
382 *	iocharset=	Set the NLS character set
383 *
384 *	The remaining are for debugging and disaster recovery:
385 *
386 *	novrs		Skip volume sequence recognition
387 *
388 *	The following expect a offset from 0.
389 *
390 *	session=	Set the CDROM session (default= last session)
391 *	anchor=		Override standard anchor location. (default= 256)
392 *	volume=		Override the VolumeDesc location. (unused)
393 *	partition=	Override the PartitionDesc location. (unused)
394 *	lastblock=	Set the last block of the filesystem/
395 *
396 *	The following expect a offset from the partition root.
397 *
398 *	fileset=	Override the fileset block location. (unused)
399 *	rootdir=	Override the root directory location. (unused)
400 *		WARNING: overriding the rootdir to a non-directory may
401 *		yield highly unpredictable results.
402 *
403 * PRE-CONDITIONS
404 *	options		Pointer to mount options string.
405 *	uopts		Pointer to mount options variable.
406 *
407 * POST-CONDITIONS
408 *	<return>	1	Mount options parsed okay.
409 *	<return>	0	Error parsing mount options.
410 *
411 * HISTORY
412 *	July 1, 1997 - Andrew E. Mileski
413 *	Written, tested, and released.
414 */
415
416enum {
417	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
418	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
419	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
420	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
421	Opt_rootdir, Opt_utf8, Opt_iocharset,
422	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
423	Opt_fmode, Opt_dmode
424};
425
426static const match_table_t tokens = {
427	{Opt_novrs,	"novrs"},
428	{Opt_nostrict,	"nostrict"},
429	{Opt_bs,	"bs=%u"},
430	{Opt_unhide,	"unhide"},
431	{Opt_undelete,	"undelete"},
432	{Opt_noadinicb,	"noadinicb"},
433	{Opt_adinicb,	"adinicb"},
434	{Opt_shortad,	"shortad"},
435	{Opt_longad,	"longad"},
436	{Opt_uforget,	"uid=forget"},
437	{Opt_uignore,	"uid=ignore"},
438	{Opt_gforget,	"gid=forget"},
439	{Opt_gignore,	"gid=ignore"},
440	{Opt_gid,	"gid=%u"},
441	{Opt_uid,	"uid=%u"},
442	{Opt_umask,	"umask=%o"},
443	{Opt_session,	"session=%u"},
444	{Opt_lastblock,	"lastblock=%u"},
445	{Opt_anchor,	"anchor=%u"},
446	{Opt_volume,	"volume=%u"},
447	{Opt_partition,	"partition=%u"},
448	{Opt_fileset,	"fileset=%u"},
449	{Opt_rootdir,	"rootdir=%u"},
450	{Opt_utf8,	"utf8"},
451	{Opt_iocharset,	"iocharset=%s"},
452	{Opt_fmode,     "mode=%o"},
453	{Opt_dmode,     "dmode=%o"},
454	{Opt_err,	NULL}
455};
456
457static int udf_parse_options(char *options, struct udf_options *uopt,
458			     bool remount)
459{
460	char *p;
461	int option;
462	unsigned int uv;
463
464	uopt->novrs = 0;
465	uopt->session = 0xFFFFFFFF;
466	uopt->lastblock = 0;
467	uopt->anchor = 0;
468
469	if (!options)
470		return 1;
471
472	while ((p = strsep(&options, ",")) != NULL) {
473		substring_t args[MAX_OPT_ARGS];
474		int token;
475		unsigned n;
476		if (!*p)
477			continue;
478
479		token = match_token(p, tokens, args);
480		switch (token) {
481		case Opt_novrs:
482			uopt->novrs = 1;
483			break;
484		case Opt_bs:
485			if (match_int(&args[0], &option))
486				return 0;
487			n = option;
488			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
489				return 0;
490			uopt->blocksize = n;
491			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
492			break;
493		case Opt_unhide:
494			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
495			break;
496		case Opt_undelete:
497			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
498			break;
499		case Opt_noadinicb:
500			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
501			break;
502		case Opt_adinicb:
503			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
504			break;
505		case Opt_shortad:
506			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
507			break;
508		case Opt_longad:
509			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
510			break;
511		case Opt_gid:
512			if (match_uint(args, &uv))
513				return 0;
514			uopt->gid = make_kgid(current_user_ns(), uv);
515			if (!gid_valid(uopt->gid))
516				return 0;
517			uopt->flags |= (1 << UDF_FLAG_GID_SET);
518			break;
519		case Opt_uid:
520			if (match_uint(args, &uv))
521				return 0;
522			uopt->uid = make_kuid(current_user_ns(), uv);
523			if (!uid_valid(uopt->uid))
524				return 0;
525			uopt->flags |= (1 << UDF_FLAG_UID_SET);
526			break;
527		case Opt_umask:
528			if (match_octal(args, &option))
529				return 0;
530			uopt->umask = option;
531			break;
532		case Opt_nostrict:
533			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
534			break;
535		case Opt_session:
536			if (match_int(args, &option))
537				return 0;
538			uopt->session = option;
539			if (!remount)
540				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
541			break;
542		case Opt_lastblock:
543			if (match_int(args, &option))
544				return 0;
545			uopt->lastblock = option;
546			if (!remount)
547				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
548			break;
549		case Opt_anchor:
550			if (match_int(args, &option))
551				return 0;
552			uopt->anchor = option;
553			break;
554		case Opt_volume:
555		case Opt_partition:
556		case Opt_fileset:
557		case Opt_rootdir:
558			/* Ignored (never implemented properly) */
559			break;
560		case Opt_utf8:
561			if (!remount) {
562				unload_nls(uopt->nls_map);
563				uopt->nls_map = NULL;
564			}
565			break;
566		case Opt_iocharset:
567			if (!remount) {
568				unload_nls(uopt->nls_map);
569				uopt->nls_map = NULL;
570			}
571			/* When nls_map is not loaded then UTF-8 is used */
572			if (!remount && strcmp(args[0].from, "utf8") != 0) {
573				uopt->nls_map = load_nls(args[0].from);
574				if (!uopt->nls_map) {
575					pr_err("iocharset %s not found\n",
576						args[0].from);
577					return 0;
578				}
579			}
580			break;
581		case Opt_uforget:
582			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
583			break;
584		case Opt_uignore:
585		case Opt_gignore:
586			/* These options are superseeded by uid=<number> */
587			break;
588		case Opt_gforget:
589			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
590			break;
591		case Opt_fmode:
592			if (match_octal(args, &option))
593				return 0;
594			uopt->fmode = option & 0777;
595			break;
596		case Opt_dmode:
597			if (match_octal(args, &option))
598				return 0;
599			uopt->dmode = option & 0777;
600			break;
601		default:
602			pr_err("bad mount option \"%s\" or missing value\n", p);
603			return 0;
604		}
605	}
606	return 1;
607}
608
609static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
610{
611	struct udf_options uopt;
612	struct udf_sb_info *sbi = UDF_SB(sb);
613	int error = 0;
614
615	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
616		return -EACCES;
617
618	sync_filesystem(sb);
619
620	uopt.flags = sbi->s_flags;
621	uopt.uid   = sbi->s_uid;
622	uopt.gid   = sbi->s_gid;
623	uopt.umask = sbi->s_umask;
624	uopt.fmode = sbi->s_fmode;
625	uopt.dmode = sbi->s_dmode;
626	uopt.nls_map = NULL;
627
628	if (!udf_parse_options(options, &uopt, true))
629		return -EINVAL;
630
631	write_lock(&sbi->s_cred_lock);
632	sbi->s_flags = uopt.flags;
633	sbi->s_uid   = uopt.uid;
634	sbi->s_gid   = uopt.gid;
635	sbi->s_umask = uopt.umask;
636	sbi->s_fmode = uopt.fmode;
637	sbi->s_dmode = uopt.dmode;
638	write_unlock(&sbi->s_cred_lock);
639
640	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
641		goto out_unlock;
642
643	if (*flags & SB_RDONLY)
644		udf_close_lvid(sb);
645	else
646		udf_open_lvid(sb);
647
648out_unlock:
649	return error;
650}
651
652/*
653 * Check VSD descriptor. Returns -1 in case we are at the end of volume
654 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
655 * we found one of NSR descriptors we are looking for.
656 */
657static int identify_vsd(const struct volStructDesc *vsd)
658{
659	int ret = 0;
660
661	if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
662		switch (vsd->structType) {
663		case 0:
664			udf_debug("ISO9660 Boot Record found\n");
665			break;
666		case 1:
667			udf_debug("ISO9660 Primary Volume Descriptor found\n");
668			break;
669		case 2:
670			udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
671			break;
672		case 3:
673			udf_debug("ISO9660 Volume Partition Descriptor found\n");
674			break;
675		case 255:
676			udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
677			break;
678		default:
679			udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
680			break;
681		}
682	} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
683		; /* ret = 0 */
684	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
685		ret = 1;
686	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
687		ret = 1;
688	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
689		; /* ret = 0 */
690	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
691		; /* ret = 0 */
692	else {
693		/* TEA01 or invalid id : end of volume recognition area */
694		ret = -1;
695	}
696
697	return ret;
698}
699
700/*
701 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
702 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
703 * @return   1 if NSR02 or NSR03 found,
704 *	    -1 if first sector read error, 0 otherwise
705 */
706static int udf_check_vsd(struct super_block *sb)
707{
708	struct volStructDesc *vsd = NULL;
709	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
710	int sectorsize;
711	struct buffer_head *bh = NULL;
712	int nsr = 0;
713	struct udf_sb_info *sbi;
714	loff_t session_offset;
715
716	sbi = UDF_SB(sb);
717	if (sb->s_blocksize < sizeof(struct volStructDesc))
718		sectorsize = sizeof(struct volStructDesc);
719	else
720		sectorsize = sb->s_blocksize;
721
722	session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
723	sector += session_offset;
724
725	udf_debug("Starting at sector %u (%lu byte sectors)\n",
726		  (unsigned int)(sector >> sb->s_blocksize_bits),
727		  sb->s_blocksize);
728	/* Process the sequence (if applicable). The hard limit on the sector
729	 * offset is arbitrary, hopefully large enough so that all valid UDF
730	 * filesystems will be recognised. There is no mention of an upper
731	 * bound to the size of the volume recognition area in the standard.
732	 *  The limit will prevent the code to read all the sectors of a
733	 * specially crafted image (like a bluray disc full of CD001 sectors),
734	 * potentially causing minutes or even hours of uninterruptible I/O
735	 * activity. This actually happened with uninitialised SSD partitions
736	 * (all 0xFF) before the check for the limit and all valid IDs were
737	 * added */
738	for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
739		/* Read a block */
740		bh = sb_bread(sb, sector >> sb->s_blocksize_bits);
741		if (!bh)
742			break;
743
744		vsd = (struct volStructDesc *)(bh->b_data +
745					      (sector & (sb->s_blocksize - 1)));
746		nsr = identify_vsd(vsd);
747		/* Found NSR or end? */
748		if (nsr) {
749			brelse(bh);
750			break;
751		}
752		/*
753		 * Special handling for improperly formatted VRS (e.g., Win10)
754		 * where components are separated by 2048 bytes even though
755		 * sectors are 4K
756		 */
757		if (sb->s_blocksize == 4096) {
758			nsr = identify_vsd(vsd + 1);
759			/* Ignore unknown IDs... */
760			if (nsr < 0)
761				nsr = 0;
762		}
763		brelse(bh);
764	}
765
766	if (nsr > 0)
767		return 1;
768	else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
769		return -1;
770	else
771		return 0;
772}
773
774static int udf_verify_domain_identifier(struct super_block *sb,
775					struct regid *ident, char *dname)
776{
777	struct domainIdentSuffix *suffix;
778
779	if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
780		udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
781		goto force_ro;
782	}
783	if (ident->flags & ENTITYID_FLAGS_DIRTY) {
784		udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
785			 dname);
786		goto force_ro;
787	}
788	suffix = (struct domainIdentSuffix *)ident->identSuffix;
789	if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
790	    (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
791		if (!sb_rdonly(sb)) {
792			udf_warn(sb, "Descriptor for %s marked write protected."
793				 " Forcing read only mount.\n", dname);
794		}
795		goto force_ro;
796	}
797	return 0;
798
799force_ro:
800	if (!sb_rdonly(sb))
801		return -EACCES;
802	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
803	return 0;
804}
805
806static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
807			    struct kernel_lb_addr *root)
808{
809	int ret;
810
811	ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
812	if (ret < 0)
813		return ret;
814
815	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
816	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
817
818	udf_debug("Rootdir at block=%u, partition=%u\n",
819		  root->logicalBlockNum, root->partitionReferenceNum);
820	return 0;
821}
822
823static int udf_find_fileset(struct super_block *sb,
824			    struct kernel_lb_addr *fileset,
825			    struct kernel_lb_addr *root)
826{
827	struct buffer_head *bh;
828	uint16_t ident;
829	int ret;
830
831	if (fileset->logicalBlockNum == 0xFFFFFFFF &&
832	    fileset->partitionReferenceNum == 0xFFFF)
833		return -EINVAL;
834
835	bh = udf_read_ptagged(sb, fileset, 0, &ident);
836	if (!bh)
837		return -EIO;
838	if (ident != TAG_IDENT_FSD) {
839		brelse(bh);
840		return -EINVAL;
841	}
842
843	udf_debug("Fileset at block=%u, partition=%u\n",
844		  fileset->logicalBlockNum, fileset->partitionReferenceNum);
845
846	UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
847	ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
848	brelse(bh);
849	return ret;
850}
851
852/*
853 * Load primary Volume Descriptor Sequence
854 *
855 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
856 * should be tried.
857 */
858static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
859{
860	struct primaryVolDesc *pvoldesc;
861	uint8_t *outstr;
862	struct buffer_head *bh;
863	uint16_t ident;
864	int ret;
865	struct timestamp *ts;
866
867	outstr = kmalloc(128, GFP_NOFS);
868	if (!outstr)
869		return -ENOMEM;
870
871	bh = udf_read_tagged(sb, block, block, &ident);
872	if (!bh) {
873		ret = -EAGAIN;
874		goto out2;
875	}
876
877	if (ident != TAG_IDENT_PVD) {
878		ret = -EIO;
879		goto out_bh;
880	}
881
882	pvoldesc = (struct primaryVolDesc *)bh->b_data;
883
884	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
885			      pvoldesc->recordingDateAndTime);
886	ts = &pvoldesc->recordingDateAndTime;
887	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
888		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
889		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
890
891	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
892	if (ret < 0) {
893		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
894		pr_warn("incorrect volume identification, setting to "
895			"'InvalidName'\n");
896	} else {
897		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
898	}
899	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
900
901	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
902	if (ret < 0) {
903		ret = 0;
904		goto out_bh;
905	}
906	outstr[ret] = 0;
907	udf_debug("volSetIdent[] = '%s'\n", outstr);
908
909	ret = 0;
910out_bh:
911	brelse(bh);
912out2:
913	kfree(outstr);
914	return ret;
915}
916
917struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
918					u32 meta_file_loc, u32 partition_ref)
919{
920	struct kernel_lb_addr addr;
921	struct inode *metadata_fe;
922
923	addr.logicalBlockNum = meta_file_loc;
924	addr.partitionReferenceNum = partition_ref;
925
926	metadata_fe = udf_iget_special(sb, &addr);
927
928	if (IS_ERR(metadata_fe)) {
929		udf_warn(sb, "metadata inode efe not found\n");
930		return metadata_fe;
931	}
932	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
933		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
934		iput(metadata_fe);
935		return ERR_PTR(-EIO);
936	}
937
938	return metadata_fe;
939}
940
941static int udf_load_metadata_files(struct super_block *sb, int partition,
942				   int type1_index)
943{
944	struct udf_sb_info *sbi = UDF_SB(sb);
945	struct udf_part_map *map;
946	struct udf_meta_data *mdata;
947	struct kernel_lb_addr addr;
948	struct inode *fe;
949
950	map = &sbi->s_partmaps[partition];
951	mdata = &map->s_type_specific.s_metadata;
952	mdata->s_phys_partition_ref = type1_index;
953
954	/* metadata address */
955	udf_debug("Metadata file location: block = %u part = %u\n",
956		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
957
958	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
959					 mdata->s_phys_partition_ref);
960	if (IS_ERR(fe)) {
961		/* mirror file entry */
962		udf_debug("Mirror metadata file location: block = %u part = %u\n",
963			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
964
965		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
966						 mdata->s_phys_partition_ref);
967
968		if (IS_ERR(fe)) {
969			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
970			return PTR_ERR(fe);
971		}
972		mdata->s_mirror_fe = fe;
973	} else
974		mdata->s_metadata_fe = fe;
975
976
977	/*
978	 * bitmap file entry
979	 * Note:
980	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
981	*/
982	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
983		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
984		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
985
986		udf_debug("Bitmap file location: block = %u part = %u\n",
987			  addr.logicalBlockNum, addr.partitionReferenceNum);
988
989		fe = udf_iget_special(sb, &addr);
990		if (IS_ERR(fe)) {
991			if (sb_rdonly(sb))
992				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
993			else {
994				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
995				return PTR_ERR(fe);
996			}
997		} else
998			mdata->s_bitmap_fe = fe;
999	}
1000
1001	udf_debug("udf_load_metadata_files Ok\n");
1002	return 0;
1003}
1004
1005int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1006{
1007	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1008	return DIV_ROUND_UP(map->s_partition_len +
1009			    (sizeof(struct spaceBitmapDesc) << 3),
1010			    sb->s_blocksize * 8);
1011}
1012
1013static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1014{
1015	struct udf_bitmap *bitmap;
1016	int nr_groups = udf_compute_nr_groups(sb, index);
1017
1018	bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1019			  GFP_KERNEL);
1020	if (!bitmap)
1021		return NULL;
1022
1023	bitmap->s_nr_groups = nr_groups;
1024	return bitmap;
1025}
1026
1027static int check_partition_desc(struct super_block *sb,
1028				struct partitionDesc *p,
1029				struct udf_part_map *map)
1030{
1031	bool umap, utable, fmap, ftable;
1032	struct partitionHeaderDesc *phd;
1033
1034	switch (le32_to_cpu(p->accessType)) {
1035	case PD_ACCESS_TYPE_READ_ONLY:
1036	case PD_ACCESS_TYPE_WRITE_ONCE:
1037	case PD_ACCESS_TYPE_NONE:
1038		goto force_ro;
1039	}
1040
1041	/* No Partition Header Descriptor? */
1042	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1043	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1044		goto force_ro;
1045
1046	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1047	utable = phd->unallocSpaceTable.extLength;
1048	umap = phd->unallocSpaceBitmap.extLength;
1049	ftable = phd->freedSpaceTable.extLength;
1050	fmap = phd->freedSpaceBitmap.extLength;
1051
1052	/* No allocation info? */
1053	if (!utable && !umap && !ftable && !fmap)
1054		goto force_ro;
1055
1056	/* We don't support blocks that require erasing before overwrite */
1057	if (ftable || fmap)
1058		goto force_ro;
1059	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1060	if (utable && umap)
1061		goto force_ro;
1062
1063	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1064	    map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1065	    map->s_partition_type == UDF_METADATA_MAP25)
1066		goto force_ro;
1067
1068	return 0;
1069force_ro:
1070	if (!sb_rdonly(sb))
1071		return -EACCES;
1072	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1073	return 0;
1074}
1075
1076static int udf_fill_partdesc_info(struct super_block *sb,
1077		struct partitionDesc *p, int p_index)
1078{
1079	struct udf_part_map *map;
1080	struct udf_sb_info *sbi = UDF_SB(sb);
1081	struct partitionHeaderDesc *phd;
1082	int err;
1083
1084	map = &sbi->s_partmaps[p_index];
1085
1086	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1087	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1088
1089	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1090		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1091	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1092		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1093	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1094		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1095	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1096		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1097
1098	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1099		  p_index, map->s_partition_type,
1100		  map->s_partition_root, map->s_partition_len);
1101
1102	err = check_partition_desc(sb, p, map);
1103	if (err)
1104		return err;
1105
1106	/*
1107	 * Skip loading allocation info it we cannot ever write to the fs.
1108	 * This is a correctness thing as we may have decided to force ro mount
1109	 * to avoid allocation info we don't support.
1110	 */
1111	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1112		return 0;
1113
1114	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1115	if (phd->unallocSpaceTable.extLength) {
1116		struct kernel_lb_addr loc = {
1117			.logicalBlockNum = le32_to_cpu(
1118				phd->unallocSpaceTable.extPosition),
1119			.partitionReferenceNum = p_index,
1120		};
1121		struct inode *inode;
1122
1123		inode = udf_iget_special(sb, &loc);
1124		if (IS_ERR(inode)) {
1125			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1126				  p_index);
1127			return PTR_ERR(inode);
1128		}
1129		map->s_uspace.s_table = inode;
1130		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1131		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1132			  p_index, map->s_uspace.s_table->i_ino);
1133	}
1134
1135	if (phd->unallocSpaceBitmap.extLength) {
1136		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1137		if (!bitmap)
1138			return -ENOMEM;
1139		map->s_uspace.s_bitmap = bitmap;
1140		bitmap->s_extPosition = le32_to_cpu(
1141				phd->unallocSpaceBitmap.extPosition);
1142		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1143		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1144			  p_index, bitmap->s_extPosition);
1145	}
1146
1147	return 0;
1148}
1149
1150static void udf_find_vat_block(struct super_block *sb, int p_index,
1151			       int type1_index, sector_t start_block)
1152{
1153	struct udf_sb_info *sbi = UDF_SB(sb);
1154	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1155	sector_t vat_block;
1156	struct kernel_lb_addr ino;
1157	struct inode *inode;
1158
1159	/*
1160	 * VAT file entry is in the last recorded block. Some broken disks have
1161	 * it a few blocks before so try a bit harder...
1162	 */
1163	ino.partitionReferenceNum = type1_index;
1164	for (vat_block = start_block;
1165	     vat_block >= map->s_partition_root &&
1166	     vat_block >= start_block - 3; vat_block--) {
1167		ino.logicalBlockNum = vat_block - map->s_partition_root;
1168		inode = udf_iget_special(sb, &ino);
1169		if (!IS_ERR(inode)) {
1170			sbi->s_vat_inode = inode;
1171			break;
1172		}
1173	}
1174}
1175
1176static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1177{
1178	struct udf_sb_info *sbi = UDF_SB(sb);
1179	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1180	struct buffer_head *bh = NULL;
1181	struct udf_inode_info *vati;
1182	struct virtualAllocationTable20 *vat20;
1183	sector_t blocks = sb_bdev_nr_blocks(sb);
1184
1185	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1186	if (!sbi->s_vat_inode &&
1187	    sbi->s_last_block != blocks - 1) {
1188		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1189			  (unsigned long)sbi->s_last_block,
1190			  (unsigned long)blocks - 1);
1191		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1192	}
1193	if (!sbi->s_vat_inode)
1194		return -EIO;
1195
1196	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1197		map->s_type_specific.s_virtual.s_start_offset = 0;
1198		map->s_type_specific.s_virtual.s_num_entries =
1199			(sbi->s_vat_inode->i_size - 36) >> 2;
1200	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1201		vati = UDF_I(sbi->s_vat_inode);
1202		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1203			int err = 0;
1204
1205			bh = udf_bread(sbi->s_vat_inode, 0, 0, &err);
1206			if (!bh) {
1207				if (!err)
1208					err = -EFSCORRUPTED;
1209				return err;
1210			}
1211			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1212		} else {
1213			vat20 = (struct virtualAllocationTable20 *)
1214							vati->i_data;
1215		}
1216
1217		map->s_type_specific.s_virtual.s_start_offset =
1218			le16_to_cpu(vat20->lengthHeader);
1219		map->s_type_specific.s_virtual.s_num_entries =
1220			(sbi->s_vat_inode->i_size -
1221				map->s_type_specific.s_virtual.
1222					s_start_offset) >> 2;
1223		brelse(bh);
1224	}
1225	return 0;
1226}
1227
1228/*
1229 * Load partition descriptor block
1230 *
1231 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1232 * sequence.
1233 */
1234static int udf_load_partdesc(struct super_block *sb, sector_t block)
1235{
1236	struct buffer_head *bh;
1237	struct partitionDesc *p;
1238	struct udf_part_map *map;
1239	struct udf_sb_info *sbi = UDF_SB(sb);
1240	int i, type1_idx;
1241	uint16_t partitionNumber;
1242	uint16_t ident;
1243	int ret;
1244
1245	bh = udf_read_tagged(sb, block, block, &ident);
1246	if (!bh)
1247		return -EAGAIN;
1248	if (ident != TAG_IDENT_PD) {
1249		ret = 0;
1250		goto out_bh;
1251	}
1252
1253	p = (struct partitionDesc *)bh->b_data;
1254	partitionNumber = le16_to_cpu(p->partitionNumber);
1255
1256	/* First scan for TYPE1 and SPARABLE partitions */
1257	for (i = 0; i < sbi->s_partitions; i++) {
1258		map = &sbi->s_partmaps[i];
1259		udf_debug("Searching map: (%u == %u)\n",
1260			  map->s_partition_num, partitionNumber);
1261		if (map->s_partition_num == partitionNumber &&
1262		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1263		     map->s_partition_type == UDF_SPARABLE_MAP15))
1264			break;
1265	}
1266
1267	if (i >= sbi->s_partitions) {
1268		udf_debug("Partition (%u) not found in partition map\n",
1269			  partitionNumber);
1270		ret = 0;
1271		goto out_bh;
1272	}
1273
1274	ret = udf_fill_partdesc_info(sb, p, i);
1275	if (ret < 0)
1276		goto out_bh;
1277
1278	/*
1279	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1280	 * PHYSICAL partitions are already set up
1281	 */
1282	type1_idx = i;
1283	map = NULL; /* supress 'maybe used uninitialized' warning */
1284	for (i = 0; i < sbi->s_partitions; i++) {
1285		map = &sbi->s_partmaps[i];
1286
1287		if (map->s_partition_num == partitionNumber &&
1288		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1289		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1290		     map->s_partition_type == UDF_METADATA_MAP25))
1291			break;
1292	}
1293
1294	if (i >= sbi->s_partitions) {
1295		ret = 0;
1296		goto out_bh;
1297	}
1298
1299	ret = udf_fill_partdesc_info(sb, p, i);
1300	if (ret < 0)
1301		goto out_bh;
1302
1303	if (map->s_partition_type == UDF_METADATA_MAP25) {
1304		ret = udf_load_metadata_files(sb, i, type1_idx);
1305		if (ret < 0) {
1306			udf_err(sb, "error loading MetaData partition map %d\n",
1307				i);
1308			goto out_bh;
1309		}
1310	} else {
1311		/*
1312		 * If we have a partition with virtual map, we don't handle
1313		 * writing to it (we overwrite blocks instead of relocating
1314		 * them).
1315		 */
1316		if (!sb_rdonly(sb)) {
1317			ret = -EACCES;
1318			goto out_bh;
1319		}
1320		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1321		ret = udf_load_vat(sb, i, type1_idx);
1322		if (ret < 0)
1323			goto out_bh;
1324	}
1325	ret = 0;
1326out_bh:
1327	/* In case loading failed, we handle cleanup in udf_fill_super */
1328	brelse(bh);
1329	return ret;
1330}
1331
1332static int udf_load_sparable_map(struct super_block *sb,
1333				 struct udf_part_map *map,
1334				 struct sparablePartitionMap *spm)
1335{
1336	uint32_t loc;
1337	uint16_t ident;
1338	struct sparingTable *st;
1339	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1340	int i;
1341	struct buffer_head *bh;
1342
1343	map->s_partition_type = UDF_SPARABLE_MAP15;
1344	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1345	if (!is_power_of_2(sdata->s_packet_len)) {
1346		udf_err(sb, "error loading logical volume descriptor: "
1347			"Invalid packet length %u\n",
1348			(unsigned)sdata->s_packet_len);
1349		return -EIO;
1350	}
1351	if (spm->numSparingTables > 4) {
1352		udf_err(sb, "error loading logical volume descriptor: "
1353			"Too many sparing tables (%d)\n",
1354			(int)spm->numSparingTables);
1355		return -EIO;
1356	}
1357	if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1358		udf_err(sb, "error loading logical volume descriptor: "
1359			"Too big sparing table size (%u)\n",
1360			le32_to_cpu(spm->sizeSparingTable));
1361		return -EIO;
1362	}
1363
1364	for (i = 0; i < spm->numSparingTables; i++) {
1365		loc = le32_to_cpu(spm->locSparingTable[i]);
1366		bh = udf_read_tagged(sb, loc, loc, &ident);
1367		if (!bh)
1368			continue;
1369
1370		st = (struct sparingTable *)bh->b_data;
1371		if (ident != 0 ||
1372		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1373			    strlen(UDF_ID_SPARING)) ||
1374		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1375							sb->s_blocksize) {
1376			brelse(bh);
1377			continue;
1378		}
1379
1380		sdata->s_spar_map[i] = bh;
1381	}
1382	map->s_partition_func = udf_get_pblock_spar15;
1383	return 0;
1384}
1385
1386static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1387			       struct kernel_lb_addr *fileset)
1388{
1389	struct logicalVolDesc *lvd;
1390	int i, offset;
1391	uint8_t type;
1392	struct udf_sb_info *sbi = UDF_SB(sb);
1393	struct genericPartitionMap *gpm;
1394	uint16_t ident;
1395	struct buffer_head *bh;
1396	unsigned int table_len;
1397	int ret;
1398
1399	bh = udf_read_tagged(sb, block, block, &ident);
1400	if (!bh)
1401		return -EAGAIN;
1402	BUG_ON(ident != TAG_IDENT_LVD);
1403	lvd = (struct logicalVolDesc *)bh->b_data;
1404	table_len = le32_to_cpu(lvd->mapTableLength);
1405	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1406		udf_err(sb, "error loading logical volume descriptor: "
1407			"Partition table too long (%u > %lu)\n", table_len,
1408			sb->s_blocksize - sizeof(*lvd));
1409		ret = -EIO;
1410		goto out_bh;
1411	}
1412
1413	ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1414					   "logical volume");
1415	if (ret)
1416		goto out_bh;
1417	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1418	if (ret)
1419		goto out_bh;
1420
1421	for (i = 0, offset = 0;
1422	     i < sbi->s_partitions && offset < table_len;
1423	     i++, offset += gpm->partitionMapLength) {
1424		struct udf_part_map *map = &sbi->s_partmaps[i];
1425		gpm = (struct genericPartitionMap *)
1426				&(lvd->partitionMaps[offset]);
1427		type = gpm->partitionMapType;
1428		if (type == 1) {
1429			struct genericPartitionMap1 *gpm1 =
1430				(struct genericPartitionMap1 *)gpm;
1431			map->s_partition_type = UDF_TYPE1_MAP15;
1432			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1433			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1434			map->s_partition_func = NULL;
1435		} else if (type == 2) {
1436			struct udfPartitionMap2 *upm2 =
1437						(struct udfPartitionMap2 *)gpm;
1438			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1439						strlen(UDF_ID_VIRTUAL))) {
1440				u16 suf =
1441					le16_to_cpu(((__le16 *)upm2->partIdent.
1442							identSuffix)[0]);
1443				if (suf < 0x0200) {
1444					map->s_partition_type =
1445							UDF_VIRTUAL_MAP15;
1446					map->s_partition_func =
1447							udf_get_pblock_virt15;
1448				} else {
1449					map->s_partition_type =
1450							UDF_VIRTUAL_MAP20;
1451					map->s_partition_func =
1452							udf_get_pblock_virt20;
1453				}
1454			} else if (!strncmp(upm2->partIdent.ident,
1455						UDF_ID_SPARABLE,
1456						strlen(UDF_ID_SPARABLE))) {
1457				ret = udf_load_sparable_map(sb, map,
1458					(struct sparablePartitionMap *)gpm);
1459				if (ret < 0)
1460					goto out_bh;
1461			} else if (!strncmp(upm2->partIdent.ident,
1462						UDF_ID_METADATA,
1463						strlen(UDF_ID_METADATA))) {
1464				struct udf_meta_data *mdata =
1465					&map->s_type_specific.s_metadata;
1466				struct metadataPartitionMap *mdm =
1467						(struct metadataPartitionMap *)
1468						&(lvd->partitionMaps[offset]);
1469				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1470					  i, type, UDF_ID_METADATA);
1471
1472				map->s_partition_type = UDF_METADATA_MAP25;
1473				map->s_partition_func = udf_get_pblock_meta25;
1474
1475				mdata->s_meta_file_loc   =
1476					le32_to_cpu(mdm->metadataFileLoc);
1477				mdata->s_mirror_file_loc =
1478					le32_to_cpu(mdm->metadataMirrorFileLoc);
1479				mdata->s_bitmap_file_loc =
1480					le32_to_cpu(mdm->metadataBitmapFileLoc);
1481				mdata->s_alloc_unit_size =
1482					le32_to_cpu(mdm->allocUnitSize);
1483				mdata->s_align_unit_size =
1484					le16_to_cpu(mdm->alignUnitSize);
1485				if (mdm->flags & 0x01)
1486					mdata->s_flags |= MF_DUPLICATE_MD;
1487
1488				udf_debug("Metadata Ident suffix=0x%x\n",
1489					  le16_to_cpu(*(__le16 *)
1490						      mdm->partIdent.identSuffix));
1491				udf_debug("Metadata part num=%u\n",
1492					  le16_to_cpu(mdm->partitionNum));
1493				udf_debug("Metadata part alloc unit size=%u\n",
1494					  le32_to_cpu(mdm->allocUnitSize));
1495				udf_debug("Metadata file loc=%u\n",
1496					  le32_to_cpu(mdm->metadataFileLoc));
1497				udf_debug("Mirror file loc=%u\n",
1498					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1499				udf_debug("Bitmap file loc=%u\n",
1500					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1501				udf_debug("Flags: %d %u\n",
1502					  mdata->s_flags, mdm->flags);
1503			} else {
1504				udf_debug("Unknown ident: %s\n",
1505					  upm2->partIdent.ident);
1506				continue;
1507			}
1508			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1509			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1510		}
1511		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1512			  i, map->s_partition_num, type, map->s_volumeseqnum);
1513	}
1514
1515	if (fileset) {
1516		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1517
1518		*fileset = lelb_to_cpu(la->extLocation);
1519		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1520			  fileset->logicalBlockNum,
1521			  fileset->partitionReferenceNum);
1522	}
1523	if (lvd->integritySeqExt.extLength)
1524		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1525	ret = 0;
1526
1527	if (!sbi->s_lvid_bh) {
1528		/* We can't generate unique IDs without a valid LVID */
1529		if (sb_rdonly(sb)) {
1530			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1531		} else {
1532			udf_warn(sb, "Damaged or missing LVID, forcing "
1533				     "readonly mount\n");
1534			ret = -EACCES;
1535		}
1536	}
1537out_bh:
1538	brelse(bh);
1539	return ret;
1540}
1541
1542/*
1543 * Find the prevailing Logical Volume Integrity Descriptor.
1544 */
1545static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1546{
1547	struct buffer_head *bh, *final_bh;
1548	uint16_t ident;
1549	struct udf_sb_info *sbi = UDF_SB(sb);
1550	struct logicalVolIntegrityDesc *lvid;
1551	int indirections = 0;
1552	u32 parts, impuselen;
1553
1554	while (++indirections <= UDF_MAX_LVID_NESTING) {
1555		final_bh = NULL;
1556		while (loc.extLength > 0 &&
1557			(bh = udf_read_tagged(sb, loc.extLocation,
1558					loc.extLocation, &ident))) {
1559			if (ident != TAG_IDENT_LVID) {
1560				brelse(bh);
1561				break;
1562			}
1563
1564			brelse(final_bh);
1565			final_bh = bh;
1566
1567			loc.extLength -= sb->s_blocksize;
1568			loc.extLocation++;
1569		}
1570
1571		if (!final_bh)
1572			return;
1573
1574		brelse(sbi->s_lvid_bh);
1575		sbi->s_lvid_bh = final_bh;
1576
1577		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1578		if (lvid->nextIntegrityExt.extLength == 0)
1579			goto check;
1580
1581		loc = leea_to_cpu(lvid->nextIntegrityExt);
1582	}
1583
1584	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1585		UDF_MAX_LVID_NESTING);
1586out_err:
1587	brelse(sbi->s_lvid_bh);
1588	sbi->s_lvid_bh = NULL;
1589	return;
1590check:
1591	parts = le32_to_cpu(lvid->numOfPartitions);
1592	impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1593	if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1594	    sizeof(struct logicalVolIntegrityDesc) + impuselen +
1595	    2 * parts * sizeof(u32) > sb->s_blocksize) {
1596		udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1597			 "ignoring.\n", parts, impuselen);
1598		goto out_err;
1599	}
1600}
1601
1602/*
1603 * Step for reallocation of table of partition descriptor sequence numbers.
1604 * Must be power of 2.
1605 */
1606#define PART_DESC_ALLOC_STEP 32
1607
1608struct part_desc_seq_scan_data {
1609	struct udf_vds_record rec;
1610	u32 partnum;
1611};
1612
1613struct desc_seq_scan_data {
1614	struct udf_vds_record vds[VDS_POS_LENGTH];
1615	unsigned int size_part_descs;
1616	unsigned int num_part_descs;
1617	struct part_desc_seq_scan_data *part_descs_loc;
1618};
1619
1620static struct udf_vds_record *handle_partition_descriptor(
1621				struct buffer_head *bh,
1622				struct desc_seq_scan_data *data)
1623{
1624	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1625	int partnum;
1626	int i;
1627
1628	partnum = le16_to_cpu(desc->partitionNumber);
1629	for (i = 0; i < data->num_part_descs; i++)
1630		if (partnum == data->part_descs_loc[i].partnum)
1631			return &(data->part_descs_loc[i].rec);
1632	if (data->num_part_descs >= data->size_part_descs) {
1633		struct part_desc_seq_scan_data *new_loc;
1634		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1635
1636		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1637		if (!new_loc)
1638			return ERR_PTR(-ENOMEM);
1639		memcpy(new_loc, data->part_descs_loc,
1640		       data->size_part_descs * sizeof(*new_loc));
1641		kfree(data->part_descs_loc);
1642		data->part_descs_loc = new_loc;
1643		data->size_part_descs = new_size;
1644	}
1645	return &(data->part_descs_loc[data->num_part_descs++].rec);
1646}
1647
1648
1649static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1650		struct buffer_head *bh, struct desc_seq_scan_data *data)
1651{
1652	switch (ident) {
1653	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1654		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1655	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1656		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1657	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1658		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1659	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1660		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1661	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1662		return handle_partition_descriptor(bh, data);
1663	}
1664	return NULL;
1665}
1666
1667/*
1668 * Process a main/reserve volume descriptor sequence.
1669 *   @block		First block of first extent of the sequence.
1670 *   @lastblock		Lastblock of first extent of the sequence.
1671 *   @fileset		There we store extent containing root fileset
1672 *
1673 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1674 * sequence
1675 */
1676static noinline int udf_process_sequence(
1677		struct super_block *sb,
1678		sector_t block, sector_t lastblock,
1679		struct kernel_lb_addr *fileset)
1680{
1681	struct buffer_head *bh = NULL;
1682	struct udf_vds_record *curr;
1683	struct generic_desc *gd;
1684	struct volDescPtr *vdp;
1685	bool done = false;
1686	uint32_t vdsn;
1687	uint16_t ident;
1688	int ret;
1689	unsigned int indirections = 0;
1690	struct desc_seq_scan_data data;
1691	unsigned int i;
1692
1693	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1694	data.size_part_descs = PART_DESC_ALLOC_STEP;
1695	data.num_part_descs = 0;
1696	data.part_descs_loc = kcalloc(data.size_part_descs,
1697				      sizeof(*data.part_descs_loc),
1698				      GFP_KERNEL);
1699	if (!data.part_descs_loc)
1700		return -ENOMEM;
1701
1702	/*
1703	 * Read the main descriptor sequence and find which descriptors
1704	 * are in it.
1705	 */
1706	for (; (!done && block <= lastblock); block++) {
1707		bh = udf_read_tagged(sb, block, block, &ident);
1708		if (!bh)
1709			break;
1710
1711		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1712		gd = (struct generic_desc *)bh->b_data;
1713		vdsn = le32_to_cpu(gd->volDescSeqNum);
1714		switch (ident) {
1715		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1716			if (++indirections > UDF_MAX_TD_NESTING) {
1717				udf_err(sb, "too many Volume Descriptor "
1718					"Pointers (max %u supported)\n",
1719					UDF_MAX_TD_NESTING);
1720				brelse(bh);
1721				ret = -EIO;
1722				goto out;
1723			}
1724
1725			vdp = (struct volDescPtr *)bh->b_data;
1726			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1727			lastblock = le32_to_cpu(
1728				vdp->nextVolDescSeqExt.extLength) >>
1729				sb->s_blocksize_bits;
1730			lastblock += block - 1;
1731			/* For loop is going to increment 'block' again */
1732			block--;
1733			break;
1734		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1735		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1736		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1737		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1738		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1739			curr = get_volume_descriptor_record(ident, bh, &data);
1740			if (IS_ERR(curr)) {
1741				brelse(bh);
1742				ret = PTR_ERR(curr);
1743				goto out;
1744			}
1745			/* Descriptor we don't care about? */
1746			if (!curr)
1747				break;
1748			if (vdsn >= curr->volDescSeqNum) {
1749				curr->volDescSeqNum = vdsn;
1750				curr->block = block;
1751			}
1752			break;
1753		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1754			done = true;
1755			break;
1756		}
1757		brelse(bh);
1758	}
1759	/*
1760	 * Now read interesting descriptors again and process them
1761	 * in a suitable order
1762	 */
1763	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1764		udf_err(sb, "Primary Volume Descriptor not found!\n");
1765		ret = -EAGAIN;
1766		goto out;
1767	}
1768	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1769	if (ret < 0)
1770		goto out;
1771
1772	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1773		ret = udf_load_logicalvol(sb,
1774				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1775				fileset);
1776		if (ret < 0)
1777			goto out;
1778	}
1779
1780	/* Now handle prevailing Partition Descriptors */
1781	for (i = 0; i < data.num_part_descs; i++) {
1782		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1783		if (ret < 0)
1784			goto out;
1785	}
1786	ret = 0;
1787out:
1788	kfree(data.part_descs_loc);
1789	return ret;
1790}
1791
1792/*
1793 * Load Volume Descriptor Sequence described by anchor in bh
1794 *
1795 * Returns <0 on error, 0 on success
1796 */
1797static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1798			     struct kernel_lb_addr *fileset)
1799{
1800	struct anchorVolDescPtr *anchor;
1801	sector_t main_s, main_e, reserve_s, reserve_e;
1802	int ret;
1803
1804	anchor = (struct anchorVolDescPtr *)bh->b_data;
1805
1806	/* Locate the main sequence */
1807	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1808	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1809	main_e = main_e >> sb->s_blocksize_bits;
1810	main_e += main_s - 1;
1811
1812	/* Locate the reserve sequence */
1813	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1814	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1815	reserve_e = reserve_e >> sb->s_blocksize_bits;
1816	reserve_e += reserve_s - 1;
1817
1818	/* Process the main & reserve sequences */
1819	/* responsible for finding the PartitionDesc(s) */
1820	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1821	if (ret != -EAGAIN)
1822		return ret;
1823	udf_sb_free_partitions(sb);
1824	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1825	if (ret < 0) {
1826		udf_sb_free_partitions(sb);
1827		/* No sequence was OK, return -EIO */
1828		if (ret == -EAGAIN)
1829			ret = -EIO;
1830	}
1831	return ret;
1832}
1833
1834/*
1835 * Check whether there is an anchor block in the given block and
1836 * load Volume Descriptor Sequence if so.
1837 *
1838 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1839 * block
1840 */
1841static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1842				  struct kernel_lb_addr *fileset)
1843{
1844	struct buffer_head *bh;
1845	uint16_t ident;
1846	int ret;
1847
1848	bh = udf_read_tagged(sb, block, block, &ident);
1849	if (!bh)
1850		return -EAGAIN;
1851	if (ident != TAG_IDENT_AVDP) {
1852		brelse(bh);
1853		return -EAGAIN;
1854	}
1855	ret = udf_load_sequence(sb, bh, fileset);
1856	brelse(bh);
1857	return ret;
1858}
1859
1860/*
1861 * Search for an anchor volume descriptor pointer.
1862 *
1863 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1864 * of anchors.
1865 */
1866static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock,
1867			    struct kernel_lb_addr *fileset)
1868{
1869	udf_pblk_t last[6];
1870	int i;
1871	struct udf_sb_info *sbi = UDF_SB(sb);
1872	int last_count = 0;
1873	int ret;
1874
1875	/* First try user provided anchor */
1876	if (sbi->s_anchor) {
1877		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1878		if (ret != -EAGAIN)
1879			return ret;
1880	}
1881	/*
1882	 * according to spec, anchor is in either:
1883	 *     block 256
1884	 *     lastblock-256
1885	 *     lastblock
1886	 *  however, if the disc isn't closed, it could be 512.
1887	 */
1888	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1889	if (ret != -EAGAIN)
1890		return ret;
1891	/*
1892	 * The trouble is which block is the last one. Drives often misreport
1893	 * this so we try various possibilities.
1894	 */
1895	last[last_count++] = *lastblock;
1896	if (*lastblock >= 1)
1897		last[last_count++] = *lastblock - 1;
1898	last[last_count++] = *lastblock + 1;
1899	if (*lastblock >= 2)
1900		last[last_count++] = *lastblock - 2;
1901	if (*lastblock >= 150)
1902		last[last_count++] = *lastblock - 150;
1903	if (*lastblock >= 152)
1904		last[last_count++] = *lastblock - 152;
1905
1906	for (i = 0; i < last_count; i++) {
1907		if (last[i] >= sb_bdev_nr_blocks(sb))
1908			continue;
1909		ret = udf_check_anchor_block(sb, last[i], fileset);
1910		if (ret != -EAGAIN) {
1911			if (!ret)
1912				*lastblock = last[i];
1913			return ret;
1914		}
1915		if (last[i] < 256)
1916			continue;
1917		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1918		if (ret != -EAGAIN) {
1919			if (!ret)
1920				*lastblock = last[i];
1921			return ret;
1922		}
1923	}
1924
1925	/* Finally try block 512 in case media is open */
1926	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1927}
1928
1929/*
1930 * Check Volume Structure Descriptor, find Anchor block and load Volume
1931 * Descriptor Sequence.
1932 *
1933 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1934 * block was not found.
1935 */
1936static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1937			int silent, struct kernel_lb_addr *fileset)
1938{
1939	struct udf_sb_info *sbi = UDF_SB(sb);
1940	int nsr = 0;
1941	int ret;
1942
1943	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1944		if (!silent)
1945			udf_warn(sb, "Bad block size\n");
1946		return -EINVAL;
1947	}
1948	sbi->s_last_block = uopt->lastblock;
1949	if (!uopt->novrs) {
1950		/* Check that it is NSR02 compliant */
1951		nsr = udf_check_vsd(sb);
1952		if (!nsr) {
1953			if (!silent)
1954				udf_warn(sb, "No VRS found\n");
1955			return -EINVAL;
1956		}
1957		if (nsr == -1)
1958			udf_debug("Failed to read sector at offset %d. "
1959				  "Assuming open disc. Skipping validity "
1960				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1961		if (!sbi->s_last_block)
1962			sbi->s_last_block = udf_get_last_block(sb);
1963	} else {
1964		udf_debug("Validity check skipped because of novrs option\n");
1965	}
1966
1967	/* Look for anchor block and load Volume Descriptor Sequence */
1968	sbi->s_anchor = uopt->anchor;
1969	ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset);
1970	if (ret < 0) {
1971		if (!silent && ret == -EAGAIN)
1972			udf_warn(sb, "No anchor found\n");
1973		return ret;
1974	}
1975	return 0;
1976}
1977
1978static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
1979{
1980	struct timespec64 ts;
1981
1982	ktime_get_real_ts64(&ts);
1983	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1984	lvid->descTag.descCRC = cpu_to_le16(
1985		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1986			le16_to_cpu(lvid->descTag.descCRCLength)));
1987	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1988}
1989
1990static void udf_open_lvid(struct super_block *sb)
1991{
1992	struct udf_sb_info *sbi = UDF_SB(sb);
1993	struct buffer_head *bh = sbi->s_lvid_bh;
1994	struct logicalVolIntegrityDesc *lvid;
1995	struct logicalVolIntegrityDescImpUse *lvidiu;
1996
1997	if (!bh)
1998		return;
1999	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2000	lvidiu = udf_sb_lvidiu(sb);
2001	if (!lvidiu)
2002		return;
2003
2004	mutex_lock(&sbi->s_alloc_mutex);
2005	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2006	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2007	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2008		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2009	else
2010		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2011
2012	udf_finalize_lvid(lvid);
2013	mark_buffer_dirty(bh);
2014	sbi->s_lvid_dirty = 0;
2015	mutex_unlock(&sbi->s_alloc_mutex);
2016	/* Make opening of filesystem visible on the media immediately */
2017	sync_dirty_buffer(bh);
2018}
2019
2020static void udf_close_lvid(struct super_block *sb)
2021{
2022	struct udf_sb_info *sbi = UDF_SB(sb);
2023	struct buffer_head *bh = sbi->s_lvid_bh;
2024	struct logicalVolIntegrityDesc *lvid;
2025	struct logicalVolIntegrityDescImpUse *lvidiu;
2026
2027	if (!bh)
2028		return;
2029	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2030	lvidiu = udf_sb_lvidiu(sb);
2031	if (!lvidiu)
2032		return;
2033
2034	mutex_lock(&sbi->s_alloc_mutex);
2035	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2036	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2037	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2038		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2039	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2040		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2041	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2042		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2043	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2044		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2045
2046	/*
2047	 * We set buffer uptodate unconditionally here to avoid spurious
2048	 * warnings from mark_buffer_dirty() when previous EIO has marked
2049	 * the buffer as !uptodate
2050	 */
2051	set_buffer_uptodate(bh);
2052	udf_finalize_lvid(lvid);
2053	mark_buffer_dirty(bh);
2054	sbi->s_lvid_dirty = 0;
2055	mutex_unlock(&sbi->s_alloc_mutex);
2056	/* Make closing of filesystem visible on the media immediately */
2057	sync_dirty_buffer(bh);
2058}
2059
2060u64 lvid_get_unique_id(struct super_block *sb)
2061{
2062	struct buffer_head *bh;
2063	struct udf_sb_info *sbi = UDF_SB(sb);
2064	struct logicalVolIntegrityDesc *lvid;
2065	struct logicalVolHeaderDesc *lvhd;
2066	u64 uniqueID;
2067	u64 ret;
2068
2069	bh = sbi->s_lvid_bh;
2070	if (!bh)
2071		return 0;
2072
2073	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2074	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2075
2076	mutex_lock(&sbi->s_alloc_mutex);
2077	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2078	if (!(++uniqueID & 0xFFFFFFFF))
2079		uniqueID += 16;
2080	lvhd->uniqueID = cpu_to_le64(uniqueID);
2081	udf_updated_lvid(sb);
2082	mutex_unlock(&sbi->s_alloc_mutex);
2083
2084	return ret;
2085}
2086
2087static int udf_fill_super(struct super_block *sb, void *options, int silent)
2088{
2089	int ret = -EINVAL;
2090	struct inode *inode = NULL;
2091	struct udf_options uopt;
2092	struct kernel_lb_addr rootdir, fileset;
2093	struct udf_sb_info *sbi;
2094	bool lvid_open = false;
2095
2096	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2097	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2098	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2099	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2100	uopt.umask = 0;
2101	uopt.fmode = UDF_INVALID_MODE;
2102	uopt.dmode = UDF_INVALID_MODE;
2103	uopt.nls_map = NULL;
2104
2105	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2106	if (!sbi)
2107		return -ENOMEM;
2108
2109	sb->s_fs_info = sbi;
2110
2111	mutex_init(&sbi->s_alloc_mutex);
2112
2113	if (!udf_parse_options((char *)options, &uopt, false))
2114		goto parse_options_failure;
2115
2116	fileset.logicalBlockNum = 0xFFFFFFFF;
2117	fileset.partitionReferenceNum = 0xFFFF;
2118
2119	sbi->s_flags = uopt.flags;
2120	sbi->s_uid = uopt.uid;
2121	sbi->s_gid = uopt.gid;
2122	sbi->s_umask = uopt.umask;
2123	sbi->s_fmode = uopt.fmode;
2124	sbi->s_dmode = uopt.dmode;
2125	sbi->s_nls_map = uopt.nls_map;
2126	rwlock_init(&sbi->s_cred_lock);
2127
2128	if (uopt.session == 0xFFFFFFFF)
2129		sbi->s_session = udf_get_last_session(sb);
2130	else
2131		sbi->s_session = uopt.session;
2132
2133	udf_debug("Multi-session=%d\n", sbi->s_session);
2134
2135	/* Fill in the rest of the superblock */
2136	sb->s_op = &udf_sb_ops;
2137	sb->s_export_op = &udf_export_ops;
2138
2139	sb->s_magic = UDF_SUPER_MAGIC;
2140	sb->s_time_gran = 1000;
2141
2142	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2143		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2144	} else {
2145		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2146		while (uopt.blocksize <= 4096) {
2147			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2148			if (ret < 0) {
2149				if (!silent && ret != -EACCES) {
2150					pr_notice("Scanning with blocksize %u failed\n",
2151						  uopt.blocksize);
2152				}
2153				brelse(sbi->s_lvid_bh);
2154				sbi->s_lvid_bh = NULL;
2155				/*
2156				 * EACCES is special - we want to propagate to
2157				 * upper layers that we cannot handle RW mount.
2158				 */
2159				if (ret == -EACCES)
2160					break;
2161			} else
2162				break;
2163
2164			uopt.blocksize <<= 1;
2165		}
2166	}
2167	if (ret < 0) {
2168		if (ret == -EAGAIN) {
2169			udf_warn(sb, "No partition found (1)\n");
2170			ret = -EINVAL;
2171		}
2172		goto error_out;
2173	}
2174
2175	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2176
2177	if (sbi->s_lvid_bh) {
2178		struct logicalVolIntegrityDescImpUse *lvidiu =
2179							udf_sb_lvidiu(sb);
2180		uint16_t minUDFReadRev;
2181		uint16_t minUDFWriteRev;
2182
2183		if (!lvidiu) {
2184			ret = -EINVAL;
2185			goto error_out;
2186		}
2187		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2188		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2189		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2190			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2191				minUDFReadRev,
2192				UDF_MAX_READ_VERSION);
2193			ret = -EINVAL;
2194			goto error_out;
2195		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2196			if (!sb_rdonly(sb)) {
2197				ret = -EACCES;
2198				goto error_out;
2199			}
2200			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2201		}
2202
2203		sbi->s_udfrev = minUDFWriteRev;
2204
2205		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2206			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2207		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2208			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2209	}
2210
2211	if (!sbi->s_partitions) {
2212		udf_warn(sb, "No partition found (2)\n");
2213		ret = -EINVAL;
2214		goto error_out;
2215	}
2216
2217	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2218			UDF_PART_FLAG_READ_ONLY) {
2219		if (!sb_rdonly(sb)) {
2220			ret = -EACCES;
2221			goto error_out;
2222		}
2223		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2224	}
2225
2226	ret = udf_find_fileset(sb, &fileset, &rootdir);
2227	if (ret < 0) {
2228		udf_warn(sb, "No fileset found\n");
2229		goto error_out;
2230	}
2231
2232	if (!silent) {
2233		struct timestamp ts;
2234		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2235		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2236			 sbi->s_volume_ident,
2237			 le16_to_cpu(ts.year), ts.month, ts.day,
2238			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2239	}
2240	if (!sb_rdonly(sb)) {
2241		udf_open_lvid(sb);
2242		lvid_open = true;
2243	}
2244
2245	/* Assign the root inode */
2246	/* assign inodes by physical block number */
2247	/* perhaps it's not extensible enough, but for now ... */
2248	inode = udf_iget(sb, &rootdir);
2249	if (IS_ERR(inode)) {
2250		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2251		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2252		ret = PTR_ERR(inode);
2253		goto error_out;
2254	}
2255
2256	/* Allocate a dentry for the root inode */
2257	sb->s_root = d_make_root(inode);
2258	if (!sb->s_root) {
2259		udf_err(sb, "Couldn't allocate root dentry\n");
2260		ret = -ENOMEM;
2261		goto error_out;
2262	}
2263	sb->s_maxbytes = UDF_MAX_FILESIZE;
2264	sb->s_max_links = UDF_MAX_LINKS;
2265	return 0;
2266
2267error_out:
2268	iput(sbi->s_vat_inode);
2269parse_options_failure:
2270	unload_nls(uopt.nls_map);
2271	if (lvid_open)
2272		udf_close_lvid(sb);
2273	brelse(sbi->s_lvid_bh);
2274	udf_sb_free_partitions(sb);
2275	kfree(sbi);
2276	sb->s_fs_info = NULL;
2277
2278	return ret;
2279}
2280
2281void _udf_err(struct super_block *sb, const char *function,
2282	      const char *fmt, ...)
2283{
2284	struct va_format vaf;
2285	va_list args;
2286
2287	va_start(args, fmt);
2288
2289	vaf.fmt = fmt;
2290	vaf.va = &args;
2291
2292	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2293
2294	va_end(args);
2295}
2296
2297void _udf_warn(struct super_block *sb, const char *function,
2298	       const char *fmt, ...)
2299{
2300	struct va_format vaf;
2301	va_list args;
2302
2303	va_start(args, fmt);
2304
2305	vaf.fmt = fmt;
2306	vaf.va = &args;
2307
2308	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2309
2310	va_end(args);
2311}
2312
2313static void udf_put_super(struct super_block *sb)
2314{
2315	struct udf_sb_info *sbi;
2316
2317	sbi = UDF_SB(sb);
2318
2319	iput(sbi->s_vat_inode);
2320	unload_nls(sbi->s_nls_map);
2321	if (!sb_rdonly(sb))
2322		udf_close_lvid(sb);
2323	brelse(sbi->s_lvid_bh);
2324	udf_sb_free_partitions(sb);
2325	mutex_destroy(&sbi->s_alloc_mutex);
2326	kfree(sb->s_fs_info);
2327	sb->s_fs_info = NULL;
2328}
2329
2330static int udf_sync_fs(struct super_block *sb, int wait)
2331{
2332	struct udf_sb_info *sbi = UDF_SB(sb);
2333
2334	mutex_lock(&sbi->s_alloc_mutex);
2335	if (sbi->s_lvid_dirty) {
2336		struct buffer_head *bh = sbi->s_lvid_bh;
2337		struct logicalVolIntegrityDesc *lvid;
2338
2339		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2340		udf_finalize_lvid(lvid);
2341
2342		/*
2343		 * Blockdevice will be synced later so we don't have to submit
2344		 * the buffer for IO
2345		 */
2346		mark_buffer_dirty(bh);
2347		sbi->s_lvid_dirty = 0;
2348	}
2349	mutex_unlock(&sbi->s_alloc_mutex);
2350
2351	return 0;
2352}
2353
2354static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2355{
2356	struct super_block *sb = dentry->d_sb;
2357	struct udf_sb_info *sbi = UDF_SB(sb);
2358	struct logicalVolIntegrityDescImpUse *lvidiu;
2359	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2360
2361	lvidiu = udf_sb_lvidiu(sb);
2362	buf->f_type = UDF_SUPER_MAGIC;
2363	buf->f_bsize = sb->s_blocksize;
2364	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2365	buf->f_bfree = udf_count_free(sb);
2366	buf->f_bavail = buf->f_bfree;
2367	/*
2368	 * Let's pretend each free block is also a free 'inode' since UDF does
2369	 * not have separate preallocated table of inodes.
2370	 */
2371	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2372					  le32_to_cpu(lvidiu->numDirs)) : 0)
2373			+ buf->f_bfree;
2374	buf->f_ffree = buf->f_bfree;
2375	buf->f_namelen = UDF_NAME_LEN;
2376	buf->f_fsid = u64_to_fsid(id);
2377
2378	return 0;
2379}
2380
2381static unsigned int udf_count_free_bitmap(struct super_block *sb,
2382					  struct udf_bitmap *bitmap)
2383{
2384	struct buffer_head *bh = NULL;
2385	unsigned int accum = 0;
2386	int index;
2387	udf_pblk_t block = 0, newblock;
2388	struct kernel_lb_addr loc;
2389	uint32_t bytes;
2390	uint8_t *ptr;
2391	uint16_t ident;
2392	struct spaceBitmapDesc *bm;
2393
2394	loc.logicalBlockNum = bitmap->s_extPosition;
2395	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2396	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2397
2398	if (!bh) {
2399		udf_err(sb, "udf_count_free failed\n");
2400		goto out;
2401	} else if (ident != TAG_IDENT_SBD) {
2402		brelse(bh);
2403		udf_err(sb, "udf_count_free failed\n");
2404		goto out;
2405	}
2406
2407	bm = (struct spaceBitmapDesc *)bh->b_data;
2408	bytes = le32_to_cpu(bm->numOfBytes);
2409	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2410	ptr = (uint8_t *)bh->b_data;
2411
2412	while (bytes > 0) {
2413		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2414		accum += bitmap_weight((const unsigned long *)(ptr + index),
2415					cur_bytes * 8);
2416		bytes -= cur_bytes;
2417		if (bytes) {
2418			brelse(bh);
2419			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2420			bh = sb_bread(sb, newblock);
2421			if (!bh) {
2422				udf_debug("read failed\n");
2423				goto out;
2424			}
2425			index = 0;
2426			ptr = (uint8_t *)bh->b_data;
2427		}
2428	}
2429	brelse(bh);
2430out:
2431	return accum;
2432}
2433
2434static unsigned int udf_count_free_table(struct super_block *sb,
2435					 struct inode *table)
2436{
2437	unsigned int accum = 0;
2438	uint32_t elen;
2439	struct kernel_lb_addr eloc;
2440	struct extent_position epos;
2441
2442	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2443	epos.block = UDF_I(table)->i_location;
2444	epos.offset = sizeof(struct unallocSpaceEntry);
2445	epos.bh = NULL;
2446
2447	while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2448		accum += (elen >> table->i_sb->s_blocksize_bits);
2449
2450	brelse(epos.bh);
2451	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2452
2453	return accum;
2454}
2455
2456static unsigned int udf_count_free(struct super_block *sb)
2457{
2458	unsigned int accum = 0;
2459	struct udf_sb_info *sbi = UDF_SB(sb);
2460	struct udf_part_map *map;
2461	unsigned int part = sbi->s_partition;
2462	int ptype = sbi->s_partmaps[part].s_partition_type;
2463
2464	if (ptype == UDF_METADATA_MAP25) {
2465		part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2466							s_phys_partition_ref;
2467	} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2468		/*
2469		 * Filesystems with VAT are append-only and we cannot write to
2470 		 * them. Let's just report 0 here.
2471		 */
2472		return 0;
2473	}
2474
2475	if (sbi->s_lvid_bh) {
2476		struct logicalVolIntegrityDesc *lvid =
2477			(struct logicalVolIntegrityDesc *)
2478			sbi->s_lvid_bh->b_data;
2479		if (le32_to_cpu(lvid->numOfPartitions) > part) {
2480			accum = le32_to_cpu(
2481					lvid->freeSpaceTable[part]);
2482			if (accum == 0xFFFFFFFF)
2483				accum = 0;
2484		}
2485	}
2486
2487	if (accum)
2488		return accum;
2489
2490	map = &sbi->s_partmaps[part];
2491	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2492		accum += udf_count_free_bitmap(sb,
2493					       map->s_uspace.s_bitmap);
2494	}
2495	if (accum)
2496		return accum;
2497
2498	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2499		accum += udf_count_free_table(sb,
2500					      map->s_uspace.s_table);
2501	}
2502	return accum;
2503}
2504
2505MODULE_AUTHOR("Ben Fennema");
2506MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2507MODULE_LICENSE("GPL");
2508module_init(init_udf_fs)
2509module_exit(exit_udf_fs)
2510