xref: /kernel/linux/linux-6.6/fs/udf/inode.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * inode.c
4 *
5 * PURPOSE
6 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
7 *
8 * COPYRIGHT
9 *  (C) 1998 Dave Boynton
10 *  (C) 1998-2004 Ben Fennema
11 *  (C) 1999-2000 Stelias Computing Inc
12 *
13 * HISTORY
14 *
15 *  10/04/98 dgb  Added rudimentary directory functions
16 *  10/07/98      Fully working udf_block_map! It works!
17 *  11/25/98      bmap altered to better support extents
18 *  12/06/98 blf  partition support in udf_iget, udf_block_map
19 *                and udf_read_inode
20 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
21 *                block boundaries (which is not actually allowed)
22 *  12/20/98      added support for strategy 4096
23 *  03/07/99      rewrote udf_block_map (again)
24 *                New funcs, inode_bmap, udf_next_aext
25 *  04/19/99      Support for writing device EA's for major/minor #
26 */
27
28#include "udfdecl.h"
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/pagemap.h>
32#include <linux/writeback.h>
33#include <linux/slab.h>
34#include <linux/crc-itu-t.h>
35#include <linux/mpage.h>
36#include <linux/uio.h>
37#include <linux/bio.h>
38
39#include "udf_i.h"
40#include "udf_sb.h"
41
42#define EXTENT_MERGE_SIZE 5
43
44#define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
45			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
46			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
47
48#define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
49			 FE_PERM_O_DELETE)
50
51struct udf_map_rq;
52
53static umode_t udf_convert_permissions(struct fileEntry *);
54static int udf_update_inode(struct inode *, int);
55static int udf_sync_inode(struct inode *inode);
56static int udf_alloc_i_data(struct inode *inode, size_t size);
57static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
58static int udf_insert_aext(struct inode *, struct extent_position,
59			   struct kernel_lb_addr, uint32_t);
60static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
61			      struct kernel_long_ad *, int *);
62static void udf_prealloc_extents(struct inode *, int, int,
63				 struct kernel_long_ad *, int *);
64static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
65static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
66			      int, struct extent_position *);
67static int udf_get_block_wb(struct inode *inode, sector_t block,
68			    struct buffer_head *bh_result, int create);
69
70static void __udf_clear_extent_cache(struct inode *inode)
71{
72	struct udf_inode_info *iinfo = UDF_I(inode);
73
74	if (iinfo->cached_extent.lstart != -1) {
75		brelse(iinfo->cached_extent.epos.bh);
76		iinfo->cached_extent.lstart = -1;
77	}
78}
79
80/* Invalidate extent cache */
81static void udf_clear_extent_cache(struct inode *inode)
82{
83	struct udf_inode_info *iinfo = UDF_I(inode);
84
85	spin_lock(&iinfo->i_extent_cache_lock);
86	__udf_clear_extent_cache(inode);
87	spin_unlock(&iinfo->i_extent_cache_lock);
88}
89
90/* Return contents of extent cache */
91static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92				 loff_t *lbcount, struct extent_position *pos)
93{
94	struct udf_inode_info *iinfo = UDF_I(inode);
95	int ret = 0;
96
97	spin_lock(&iinfo->i_extent_cache_lock);
98	if ((iinfo->cached_extent.lstart <= bcount) &&
99	    (iinfo->cached_extent.lstart != -1)) {
100		/* Cache hit */
101		*lbcount = iinfo->cached_extent.lstart;
102		memcpy(pos, &iinfo->cached_extent.epos,
103		       sizeof(struct extent_position));
104		if (pos->bh)
105			get_bh(pos->bh);
106		ret = 1;
107	}
108	spin_unlock(&iinfo->i_extent_cache_lock);
109	return ret;
110}
111
112/* Add extent to extent cache */
113static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114				    struct extent_position *pos)
115{
116	struct udf_inode_info *iinfo = UDF_I(inode);
117
118	spin_lock(&iinfo->i_extent_cache_lock);
119	/* Invalidate previously cached extent */
120	__udf_clear_extent_cache(inode);
121	if (pos->bh)
122		get_bh(pos->bh);
123	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
124	iinfo->cached_extent.lstart = estart;
125	switch (iinfo->i_alloc_type) {
126	case ICBTAG_FLAG_AD_SHORT:
127		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
128		break;
129	case ICBTAG_FLAG_AD_LONG:
130		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
131		break;
132	}
133	spin_unlock(&iinfo->i_extent_cache_lock);
134}
135
136void udf_evict_inode(struct inode *inode)
137{
138	struct udf_inode_info *iinfo = UDF_I(inode);
139	int want_delete = 0;
140
141	if (!is_bad_inode(inode)) {
142		if (!inode->i_nlink) {
143			want_delete = 1;
144			udf_setsize(inode, 0);
145			udf_update_inode(inode, IS_SYNC(inode));
146		}
147		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
148		    inode->i_size != iinfo->i_lenExtents) {
149			udf_warn(inode->i_sb,
150				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
151				 inode->i_ino, inode->i_mode,
152				 (unsigned long long)inode->i_size,
153				 (unsigned long long)iinfo->i_lenExtents);
154		}
155	}
156	truncate_inode_pages_final(&inode->i_data);
157	invalidate_inode_buffers(inode);
158	clear_inode(inode);
159	kfree(iinfo->i_data);
160	iinfo->i_data = NULL;
161	udf_clear_extent_cache(inode);
162	if (want_delete) {
163		udf_free_inode(inode);
164	}
165}
166
167static void udf_write_failed(struct address_space *mapping, loff_t to)
168{
169	struct inode *inode = mapping->host;
170	struct udf_inode_info *iinfo = UDF_I(inode);
171	loff_t isize = inode->i_size;
172
173	if (to > isize) {
174		truncate_pagecache(inode, isize);
175		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176			down_write(&iinfo->i_data_sem);
177			udf_clear_extent_cache(inode);
178			udf_truncate_extents(inode);
179			up_write(&iinfo->i_data_sem);
180		}
181	}
182}
183
184static int udf_adinicb_writepage(struct folio *folio,
185				 struct writeback_control *wbc, void *data)
186{
187	struct inode *inode = folio->mapping->host;
188	struct udf_inode_info *iinfo = UDF_I(inode);
189
190	BUG_ON(!folio_test_locked(folio));
191	BUG_ON(folio->index != 0);
192	memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0,
193		       i_size_read(inode));
194	folio_unlock(folio);
195	mark_inode_dirty(inode);
196
197	return 0;
198}
199
200static int udf_writepages(struct address_space *mapping,
201			  struct writeback_control *wbc)
202{
203	struct inode *inode = mapping->host;
204	struct udf_inode_info *iinfo = UDF_I(inode);
205
206	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
207		return mpage_writepages(mapping, wbc, udf_get_block_wb);
208	return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
209}
210
211static void udf_adinicb_readpage(struct page *page)
212{
213	struct inode *inode = page->mapping->host;
214	char *kaddr;
215	struct udf_inode_info *iinfo = UDF_I(inode);
216	loff_t isize = i_size_read(inode);
217
218	kaddr = kmap_local_page(page);
219	memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize);
220	memset(kaddr + isize, 0, PAGE_SIZE - isize);
221	flush_dcache_page(page);
222	SetPageUptodate(page);
223	kunmap_local(kaddr);
224}
225
226static int udf_read_folio(struct file *file, struct folio *folio)
227{
228	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
229
230	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
231		udf_adinicb_readpage(&folio->page);
232		folio_unlock(folio);
233		return 0;
234	}
235	return mpage_read_folio(folio, udf_get_block);
236}
237
238static void udf_readahead(struct readahead_control *rac)
239{
240	struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
241
242	/*
243	 * No readahead needed for in-ICB files and udf_get_block() would get
244	 * confused for such file anyway.
245	 */
246	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
247		return;
248
249	mpage_readahead(rac, udf_get_block);
250}
251
252static int udf_write_begin(struct file *file, struct address_space *mapping,
253			   loff_t pos, unsigned len,
254			   struct page **pagep, void **fsdata)
255{
256	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
257	struct page *page;
258	int ret;
259
260	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
261		ret = block_write_begin(mapping, pos, len, pagep,
262					udf_get_block);
263		if (unlikely(ret))
264			udf_write_failed(mapping, pos + len);
265		return ret;
266	}
267	if (WARN_ON_ONCE(pos >= PAGE_SIZE))
268		return -EIO;
269	page = grab_cache_page_write_begin(mapping, 0);
270	if (!page)
271		return -ENOMEM;
272	*pagep = page;
273	if (!PageUptodate(page))
274		udf_adinicb_readpage(page);
275	return 0;
276}
277
278static int udf_write_end(struct file *file, struct address_space *mapping,
279			 loff_t pos, unsigned len, unsigned copied,
280			 struct page *page, void *fsdata)
281{
282	struct inode *inode = file_inode(file);
283	loff_t last_pos;
284
285	if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
286		return generic_write_end(file, mapping, pos, len, copied, page,
287					 fsdata);
288	last_pos = pos + copied;
289	if (last_pos > inode->i_size)
290		i_size_write(inode, last_pos);
291	set_page_dirty(page);
292	unlock_page(page);
293	put_page(page);
294
295	return copied;
296}
297
298static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
299{
300	struct file *file = iocb->ki_filp;
301	struct address_space *mapping = file->f_mapping;
302	struct inode *inode = mapping->host;
303	size_t count = iov_iter_count(iter);
304	ssize_t ret;
305
306	/* Fallback to buffered IO for in-ICB files */
307	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
308		return 0;
309	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
310	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
311		udf_write_failed(mapping, iocb->ki_pos + count);
312	return ret;
313}
314
315static sector_t udf_bmap(struct address_space *mapping, sector_t block)
316{
317	struct udf_inode_info *iinfo = UDF_I(mapping->host);
318
319	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
320		return -EINVAL;
321	return generic_block_bmap(mapping, block, udf_get_block);
322}
323
324const struct address_space_operations udf_aops = {
325	.dirty_folio	= block_dirty_folio,
326	.invalidate_folio = block_invalidate_folio,
327	.read_folio	= udf_read_folio,
328	.readahead	= udf_readahead,
329	.writepages	= udf_writepages,
330	.write_begin	= udf_write_begin,
331	.write_end	= udf_write_end,
332	.direct_IO	= udf_direct_IO,
333	.bmap		= udf_bmap,
334	.migrate_folio	= buffer_migrate_folio,
335};
336
337/*
338 * Expand file stored in ICB to a normal one-block-file
339 *
340 * This function requires i_mutex held
341 */
342int udf_expand_file_adinicb(struct inode *inode)
343{
344	struct page *page;
345	struct udf_inode_info *iinfo = UDF_I(inode);
346	int err;
347
348	WARN_ON_ONCE(!inode_is_locked(inode));
349	if (!iinfo->i_lenAlloc) {
350		down_write(&iinfo->i_data_sem);
351		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
352			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
353		else
354			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
355		up_write(&iinfo->i_data_sem);
356		mark_inode_dirty(inode);
357		return 0;
358	}
359
360	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
361	if (!page)
362		return -ENOMEM;
363
364	if (!PageUptodate(page))
365		udf_adinicb_readpage(page);
366	down_write(&iinfo->i_data_sem);
367	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
368	       iinfo->i_lenAlloc);
369	iinfo->i_lenAlloc = 0;
370	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
371		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
372	else
373		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
374	set_page_dirty(page);
375	unlock_page(page);
376	up_write(&iinfo->i_data_sem);
377	err = filemap_fdatawrite(inode->i_mapping);
378	if (err) {
379		/* Restore everything back so that we don't lose data... */
380		lock_page(page);
381		down_write(&iinfo->i_data_sem);
382		memcpy_to_page(page, 0, iinfo->i_data + iinfo->i_lenEAttr,
383			       inode->i_size);
384		unlock_page(page);
385		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
386		iinfo->i_lenAlloc = inode->i_size;
387		up_write(&iinfo->i_data_sem);
388	}
389	put_page(page);
390	mark_inode_dirty(inode);
391
392	return err;
393}
394
395#define UDF_MAP_CREATE		0x01	/* Mapping can allocate new blocks */
396#define UDF_MAP_NOPREALLOC	0x02	/* Do not preallocate blocks */
397
398#define UDF_BLK_MAPPED	0x01	/* Block was successfully mapped */
399#define UDF_BLK_NEW	0x02	/* Block was freshly allocated */
400
401struct udf_map_rq {
402	sector_t lblk;
403	udf_pblk_t pblk;
404	int iflags;		/* UDF_MAP_ flags determining behavior */
405	int oflags;		/* UDF_BLK_ flags reporting results */
406};
407
408static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
409{
410	int err;
411	struct udf_inode_info *iinfo = UDF_I(inode);
412
413	if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
414		return -EFSCORRUPTED;
415
416	map->oflags = 0;
417	if (!(map->iflags & UDF_MAP_CREATE)) {
418		struct kernel_lb_addr eloc;
419		uint32_t elen;
420		sector_t offset;
421		struct extent_position epos = {};
422
423		down_read(&iinfo->i_data_sem);
424		if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset)
425				== (EXT_RECORDED_ALLOCATED >> 30)) {
426			map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
427							offset);
428			map->oflags |= UDF_BLK_MAPPED;
429		}
430		up_read(&iinfo->i_data_sem);
431		brelse(epos.bh);
432
433		return 0;
434	}
435
436	down_write(&iinfo->i_data_sem);
437	/*
438	 * Block beyond EOF and prealloc extents? Just discard preallocation
439	 * as it is not useful and complicates things.
440	 */
441	if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
442		udf_discard_prealloc(inode);
443	udf_clear_extent_cache(inode);
444	err = inode_getblk(inode, map);
445	up_write(&iinfo->i_data_sem);
446	return err;
447}
448
449static int __udf_get_block(struct inode *inode, sector_t block,
450			   struct buffer_head *bh_result, int flags)
451{
452	int err;
453	struct udf_map_rq map = {
454		.lblk = block,
455		.iflags = flags,
456	};
457
458	err = udf_map_block(inode, &map);
459	if (err < 0)
460		return err;
461	if (map.oflags & UDF_BLK_MAPPED) {
462		map_bh(bh_result, inode->i_sb, map.pblk);
463		if (map.oflags & UDF_BLK_NEW)
464			set_buffer_new(bh_result);
465	}
466	return 0;
467}
468
469int udf_get_block(struct inode *inode, sector_t block,
470		  struct buffer_head *bh_result, int create)
471{
472	int flags = create ? UDF_MAP_CREATE : 0;
473
474	/*
475	 * We preallocate blocks only for regular files. It also makes sense
476	 * for directories but there's a problem when to drop the
477	 * preallocation. We might use some delayed work for that but I feel
478	 * it's overengineering for a filesystem like UDF.
479	 */
480	if (!S_ISREG(inode->i_mode))
481		flags |= UDF_MAP_NOPREALLOC;
482	return __udf_get_block(inode, block, bh_result, flags);
483}
484
485/*
486 * We shouldn't be allocating blocks on page writeback since we allocate them
487 * on page fault. We can spot dirty buffers without allocated blocks though
488 * when truncate expands file. These however don't have valid data so we can
489 * safely ignore them. So never allocate blocks from page writeback.
490 */
491static int udf_get_block_wb(struct inode *inode, sector_t block,
492			    struct buffer_head *bh_result, int create)
493{
494	return __udf_get_block(inode, block, bh_result, 0);
495}
496
497/* Extend the file with new blocks totaling 'new_block_bytes',
498 * return the number of extents added
499 */
500static int udf_do_extend_file(struct inode *inode,
501			      struct extent_position *last_pos,
502			      struct kernel_long_ad *last_ext,
503			      loff_t new_block_bytes)
504{
505	uint32_t add;
506	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
507	struct super_block *sb = inode->i_sb;
508	struct udf_inode_info *iinfo;
509	int err;
510
511	/* The previous extent is fake and we should not extend by anything
512	 * - there's nothing to do... */
513	if (!new_block_bytes && fake)
514		return 0;
515
516	iinfo = UDF_I(inode);
517	/* Round the last extent up to a multiple of block size */
518	if (last_ext->extLength & (sb->s_blocksize - 1)) {
519		last_ext->extLength =
520			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
521			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
522			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
523		iinfo->i_lenExtents =
524			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
525			~(sb->s_blocksize - 1);
526	}
527
528	add = 0;
529	/* Can we merge with the previous extent? */
530	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
531					EXT_NOT_RECORDED_NOT_ALLOCATED) {
532		add = (1 << 30) - sb->s_blocksize -
533			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
534		if (add > new_block_bytes)
535			add = new_block_bytes;
536		new_block_bytes -= add;
537		last_ext->extLength += add;
538	}
539
540	if (fake) {
541		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
542				   last_ext->extLength, 1);
543		if (err < 0)
544			goto out_err;
545		count++;
546	} else {
547		struct kernel_lb_addr tmploc;
548		uint32_t tmplen;
549
550		udf_write_aext(inode, last_pos, &last_ext->extLocation,
551				last_ext->extLength, 1);
552
553		/*
554		 * We've rewritten the last extent. If we are going to add
555		 * more extents, we may need to enter possible following
556		 * empty indirect extent.
557		 */
558		if (new_block_bytes)
559			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
560	}
561	iinfo->i_lenExtents += add;
562
563	/* Managed to do everything necessary? */
564	if (!new_block_bytes)
565		goto out;
566
567	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
568	last_ext->extLocation.logicalBlockNum = 0;
569	last_ext->extLocation.partitionReferenceNum = 0;
570	add = (1 << 30) - sb->s_blocksize;
571	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
572
573	/* Create enough extents to cover the whole hole */
574	while (new_block_bytes > add) {
575		new_block_bytes -= add;
576		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
577				   last_ext->extLength, 1);
578		if (err)
579			goto out_err;
580		iinfo->i_lenExtents += add;
581		count++;
582	}
583	if (new_block_bytes) {
584		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
585			new_block_bytes;
586		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
587				   last_ext->extLength, 1);
588		if (err)
589			goto out_err;
590		iinfo->i_lenExtents += new_block_bytes;
591		count++;
592	}
593
594out:
595	/* last_pos should point to the last written extent... */
596	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
597		last_pos->offset -= sizeof(struct short_ad);
598	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
599		last_pos->offset -= sizeof(struct long_ad);
600	else
601		return -EIO;
602
603	return count;
604out_err:
605	/* Remove extents we've created so far */
606	udf_clear_extent_cache(inode);
607	udf_truncate_extents(inode);
608	return err;
609}
610
611/* Extend the final block of the file to final_block_len bytes */
612static void udf_do_extend_final_block(struct inode *inode,
613				      struct extent_position *last_pos,
614				      struct kernel_long_ad *last_ext,
615				      uint32_t new_elen)
616{
617	uint32_t added_bytes;
618
619	/*
620	 * Extent already large enough? It may be already rounded up to block
621	 * size...
622	 */
623	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
624		return;
625	added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
626	last_ext->extLength += added_bytes;
627	UDF_I(inode)->i_lenExtents += added_bytes;
628
629	udf_write_aext(inode, last_pos, &last_ext->extLocation,
630			last_ext->extLength, 1);
631}
632
633static int udf_extend_file(struct inode *inode, loff_t newsize)
634{
635
636	struct extent_position epos;
637	struct kernel_lb_addr eloc;
638	uint32_t elen;
639	int8_t etype;
640	struct super_block *sb = inode->i_sb;
641	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
642	loff_t new_elen;
643	int adsize;
644	struct udf_inode_info *iinfo = UDF_I(inode);
645	struct kernel_long_ad extent;
646	int err = 0;
647	bool within_last_ext;
648
649	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
650		adsize = sizeof(struct short_ad);
651	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
652		adsize = sizeof(struct long_ad);
653	else
654		BUG();
655
656	down_write(&iinfo->i_data_sem);
657	/*
658	 * When creating hole in file, just don't bother with preserving
659	 * preallocation. It likely won't be very useful anyway.
660	 */
661	udf_discard_prealloc(inode);
662
663	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
664	within_last_ext = (etype != -1);
665	/* We don't expect extents past EOF... */
666	WARN_ON_ONCE(within_last_ext &&
667		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
668
669	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
670	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
671		/* File has no extents at all or has empty last
672		 * indirect extent! Create a fake extent... */
673		extent.extLocation.logicalBlockNum = 0;
674		extent.extLocation.partitionReferenceNum = 0;
675		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
676	} else {
677		epos.offset -= adsize;
678		etype = udf_next_aext(inode, &epos, &extent.extLocation,
679				      &extent.extLength, 0);
680		extent.extLength |= etype << 30;
681	}
682
683	new_elen = ((loff_t)offset << inode->i_blkbits) |
684					(newsize & (sb->s_blocksize - 1));
685
686	/* File has extent covering the new size (could happen when extending
687	 * inside a block)?
688	 */
689	if (within_last_ext) {
690		/* Extending file within the last file block */
691		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
692	} else {
693		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
694	}
695
696	if (err < 0)
697		goto out;
698	err = 0;
699out:
700	brelse(epos.bh);
701	up_write(&iinfo->i_data_sem);
702	return err;
703}
704
705static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
706{
707	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
708	struct extent_position prev_epos, cur_epos, next_epos;
709	int count = 0, startnum = 0, endnum = 0;
710	uint32_t elen = 0, tmpelen;
711	struct kernel_lb_addr eloc, tmpeloc;
712	int c = 1;
713	loff_t lbcount = 0, b_off = 0;
714	udf_pblk_t newblocknum;
715	sector_t offset = 0;
716	int8_t etype;
717	struct udf_inode_info *iinfo = UDF_I(inode);
718	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
719	int lastblock = 0;
720	bool isBeyondEOF;
721	int ret = 0;
722
723	prev_epos.offset = udf_file_entry_alloc_offset(inode);
724	prev_epos.block = iinfo->i_location;
725	prev_epos.bh = NULL;
726	cur_epos = next_epos = prev_epos;
727	b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
728
729	/* find the extent which contains the block we are looking for.
730	   alternate between laarr[0] and laarr[1] for locations of the
731	   current extent, and the previous extent */
732	do {
733		if (prev_epos.bh != cur_epos.bh) {
734			brelse(prev_epos.bh);
735			get_bh(cur_epos.bh);
736			prev_epos.bh = cur_epos.bh;
737		}
738		if (cur_epos.bh != next_epos.bh) {
739			brelse(cur_epos.bh);
740			get_bh(next_epos.bh);
741			cur_epos.bh = next_epos.bh;
742		}
743
744		lbcount += elen;
745
746		prev_epos.block = cur_epos.block;
747		cur_epos.block = next_epos.block;
748
749		prev_epos.offset = cur_epos.offset;
750		cur_epos.offset = next_epos.offset;
751
752		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
753		if (etype == -1)
754			break;
755
756		c = !c;
757
758		laarr[c].extLength = (etype << 30) | elen;
759		laarr[c].extLocation = eloc;
760
761		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
762			pgoal = eloc.logicalBlockNum +
763				((elen + inode->i_sb->s_blocksize - 1) >>
764				 inode->i_sb->s_blocksize_bits);
765
766		count++;
767	} while (lbcount + elen <= b_off);
768
769	b_off -= lbcount;
770	offset = b_off >> inode->i_sb->s_blocksize_bits;
771	/*
772	 * Move prev_epos and cur_epos into indirect extent if we are at
773	 * the pointer to it
774	 */
775	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
776	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
777
778	/* if the extent is allocated and recorded, return the block
779	   if the extent is not a multiple of the blocksize, round up */
780
781	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
782		if (elen & (inode->i_sb->s_blocksize - 1)) {
783			elen = EXT_RECORDED_ALLOCATED |
784				((elen + inode->i_sb->s_blocksize - 1) &
785				 ~(inode->i_sb->s_blocksize - 1));
786			iinfo->i_lenExtents =
787				ALIGN(iinfo->i_lenExtents,
788				      inode->i_sb->s_blocksize);
789			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
790		}
791		map->oflags = UDF_BLK_MAPPED;
792		map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
793		goto out_free;
794	}
795
796	/* Are we beyond EOF and preallocated extent? */
797	if (etype == -1) {
798		loff_t hole_len;
799
800		isBeyondEOF = true;
801		if (count) {
802			if (c)
803				laarr[0] = laarr[1];
804			startnum = 1;
805		} else {
806			/* Create a fake extent when there's not one */
807			memset(&laarr[0].extLocation, 0x00,
808				sizeof(struct kernel_lb_addr));
809			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
810			/* Will udf_do_extend_file() create real extent from
811			   a fake one? */
812			startnum = (offset > 0);
813		}
814		/* Create extents for the hole between EOF and offset */
815		hole_len = (loff_t)offset << inode->i_blkbits;
816		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
817		if (ret < 0)
818			goto out_free;
819		c = 0;
820		offset = 0;
821		count += ret;
822		/*
823		 * Is there any real extent? - otherwise we overwrite the fake
824		 * one...
825		 */
826		if (count)
827			c = !c;
828		laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
829			inode->i_sb->s_blocksize;
830		memset(&laarr[c].extLocation, 0x00,
831			sizeof(struct kernel_lb_addr));
832		count++;
833		endnum = c + 1;
834		lastblock = 1;
835	} else {
836		isBeyondEOF = false;
837		endnum = startnum = ((count > 2) ? 2 : count);
838
839		/* if the current extent is in position 0,
840		   swap it with the previous */
841		if (!c && count != 1) {
842			laarr[2] = laarr[0];
843			laarr[0] = laarr[1];
844			laarr[1] = laarr[2];
845			c = 1;
846		}
847
848		/* if the current block is located in an extent,
849		   read the next extent */
850		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
851		if (etype != -1) {
852			laarr[c + 1].extLength = (etype << 30) | elen;
853			laarr[c + 1].extLocation = eloc;
854			count++;
855			startnum++;
856			endnum++;
857		} else
858			lastblock = 1;
859	}
860
861	/* if the current extent is not recorded but allocated, get the
862	 * block in the extent corresponding to the requested block */
863	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
864		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
865	else { /* otherwise, allocate a new block */
866		if (iinfo->i_next_alloc_block == map->lblk)
867			goal = iinfo->i_next_alloc_goal;
868
869		if (!goal) {
870			if (!(goal = pgoal)) /* XXX: what was intended here? */
871				goal = iinfo->i_location.logicalBlockNum + 1;
872		}
873
874		newblocknum = udf_new_block(inode->i_sb, inode,
875				iinfo->i_location.partitionReferenceNum,
876				goal, &ret);
877		if (!newblocknum)
878			goto out_free;
879		if (isBeyondEOF)
880			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
881	}
882
883	/* if the extent the requsted block is located in contains multiple
884	 * blocks, split the extent into at most three extents. blocks prior
885	 * to requested block, requested block, and blocks after requested
886	 * block */
887	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
888
889	if (!(map->iflags & UDF_MAP_NOPREALLOC))
890		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
891
892	/* merge any continuous blocks in laarr */
893	udf_merge_extents(inode, laarr, &endnum);
894
895	/* write back the new extents, inserting new extents if the new number
896	 * of extents is greater than the old number, and deleting extents if
897	 * the new number of extents is less than the old number */
898	ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
899	if (ret < 0)
900		goto out_free;
901
902	map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
903				iinfo->i_location.partitionReferenceNum, 0);
904	if (!map->pblk) {
905		ret = -EFSCORRUPTED;
906		goto out_free;
907	}
908	map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
909	iinfo->i_next_alloc_block = map->lblk + 1;
910	iinfo->i_next_alloc_goal = newblocknum + 1;
911	inode_set_ctime_current(inode);
912
913	if (IS_SYNC(inode))
914		udf_sync_inode(inode);
915	else
916		mark_inode_dirty(inode);
917	ret = 0;
918out_free:
919	brelse(prev_epos.bh);
920	brelse(cur_epos.bh);
921	brelse(next_epos.bh);
922	return ret;
923}
924
925static void udf_split_extents(struct inode *inode, int *c, int offset,
926			       udf_pblk_t newblocknum,
927			       struct kernel_long_ad *laarr, int *endnum)
928{
929	unsigned long blocksize = inode->i_sb->s_blocksize;
930	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
931
932	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
933	    (laarr[*c].extLength >> 30) ==
934				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
935		int curr = *c;
936		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
937			    blocksize - 1) >> blocksize_bits;
938		int8_t etype = (laarr[curr].extLength >> 30);
939
940		if (blen == 1)
941			;
942		else if (!offset || blen == offset + 1) {
943			laarr[curr + 2] = laarr[curr + 1];
944			laarr[curr + 1] = laarr[curr];
945		} else {
946			laarr[curr + 3] = laarr[curr + 1];
947			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
948		}
949
950		if (offset) {
951			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
952				udf_free_blocks(inode->i_sb, inode,
953						&laarr[curr].extLocation,
954						0, offset);
955				laarr[curr].extLength =
956					EXT_NOT_RECORDED_NOT_ALLOCATED |
957					(offset << blocksize_bits);
958				laarr[curr].extLocation.logicalBlockNum = 0;
959				laarr[curr].extLocation.
960						partitionReferenceNum = 0;
961			} else
962				laarr[curr].extLength = (etype << 30) |
963					(offset << blocksize_bits);
964			curr++;
965			(*c)++;
966			(*endnum)++;
967		}
968
969		laarr[curr].extLocation.logicalBlockNum = newblocknum;
970		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
971			laarr[curr].extLocation.partitionReferenceNum =
972				UDF_I(inode)->i_location.partitionReferenceNum;
973		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
974			blocksize;
975		curr++;
976
977		if (blen != offset + 1) {
978			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
979				laarr[curr].extLocation.logicalBlockNum +=
980								offset + 1;
981			laarr[curr].extLength = (etype << 30) |
982				((blen - (offset + 1)) << blocksize_bits);
983			curr++;
984			(*endnum)++;
985		}
986	}
987}
988
989static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
990				 struct kernel_long_ad *laarr,
991				 int *endnum)
992{
993	int start, length = 0, currlength = 0, i;
994
995	if (*endnum >= (c + 1)) {
996		if (!lastblock)
997			return;
998		else
999			start = c;
1000	} else {
1001		if ((laarr[c + 1].extLength >> 30) ==
1002					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1003			start = c + 1;
1004			length = currlength =
1005				(((laarr[c + 1].extLength &
1006					UDF_EXTENT_LENGTH_MASK) +
1007				inode->i_sb->s_blocksize - 1) >>
1008				inode->i_sb->s_blocksize_bits);
1009		} else
1010			start = c;
1011	}
1012
1013	for (i = start + 1; i <= *endnum; i++) {
1014		if (i == *endnum) {
1015			if (lastblock)
1016				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1017		} else if ((laarr[i].extLength >> 30) ==
1018				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1019			length += (((laarr[i].extLength &
1020						UDF_EXTENT_LENGTH_MASK) +
1021				    inode->i_sb->s_blocksize - 1) >>
1022				    inode->i_sb->s_blocksize_bits);
1023		} else
1024			break;
1025	}
1026
1027	if (length) {
1028		int next = laarr[start].extLocation.logicalBlockNum +
1029			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1030			  inode->i_sb->s_blocksize - 1) >>
1031			  inode->i_sb->s_blocksize_bits);
1032		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1033				laarr[start].extLocation.partitionReferenceNum,
1034				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1035				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1036				currlength);
1037		if (numalloc) 	{
1038			if (start == (c + 1))
1039				laarr[start].extLength +=
1040					(numalloc <<
1041					 inode->i_sb->s_blocksize_bits);
1042			else {
1043				memmove(&laarr[c + 2], &laarr[c + 1],
1044					sizeof(struct long_ad) * (*endnum - (c + 1)));
1045				(*endnum)++;
1046				laarr[c + 1].extLocation.logicalBlockNum = next;
1047				laarr[c + 1].extLocation.partitionReferenceNum =
1048					laarr[c].extLocation.
1049							partitionReferenceNum;
1050				laarr[c + 1].extLength =
1051					EXT_NOT_RECORDED_ALLOCATED |
1052					(numalloc <<
1053					 inode->i_sb->s_blocksize_bits);
1054				start = c + 1;
1055			}
1056
1057			for (i = start + 1; numalloc && i < *endnum; i++) {
1058				int elen = ((laarr[i].extLength &
1059						UDF_EXTENT_LENGTH_MASK) +
1060					    inode->i_sb->s_blocksize - 1) >>
1061					    inode->i_sb->s_blocksize_bits;
1062
1063				if (elen > numalloc) {
1064					laarr[i].extLength -=
1065						(numalloc <<
1066						 inode->i_sb->s_blocksize_bits);
1067					numalloc = 0;
1068				} else {
1069					numalloc -= elen;
1070					if (*endnum > (i + 1))
1071						memmove(&laarr[i],
1072							&laarr[i + 1],
1073							sizeof(struct long_ad) *
1074							(*endnum - (i + 1)));
1075					i--;
1076					(*endnum)--;
1077				}
1078			}
1079			UDF_I(inode)->i_lenExtents +=
1080				numalloc << inode->i_sb->s_blocksize_bits;
1081		}
1082	}
1083}
1084
1085static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1086			      int *endnum)
1087{
1088	int i;
1089	unsigned long blocksize = inode->i_sb->s_blocksize;
1090	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1091
1092	for (i = 0; i < (*endnum - 1); i++) {
1093		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1094		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1095
1096		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1097			(((li->extLength >> 30) ==
1098				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1099			((lip1->extLocation.logicalBlockNum -
1100			  li->extLocation.logicalBlockNum) ==
1101			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1102			blocksize - 1) >> blocksize_bits)))) {
1103
1104			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1105			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1106			     blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1107				li->extLength = lip1->extLength +
1108					(((li->extLength &
1109						UDF_EXTENT_LENGTH_MASK) +
1110					 blocksize - 1) & ~(blocksize - 1));
1111				if (*endnum > (i + 2))
1112					memmove(&laarr[i + 1], &laarr[i + 2],
1113						sizeof(struct long_ad) *
1114						(*endnum - (i + 2)));
1115				i--;
1116				(*endnum)--;
1117			}
1118		} else if (((li->extLength >> 30) ==
1119				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1120			   ((lip1->extLength >> 30) ==
1121				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1122			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1123					((li->extLength &
1124					  UDF_EXTENT_LENGTH_MASK) +
1125					 blocksize - 1) >> blocksize_bits);
1126			li->extLocation.logicalBlockNum = 0;
1127			li->extLocation.partitionReferenceNum = 0;
1128
1129			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1130			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1131			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1132				lip1->extLength = (lip1->extLength -
1133						   (li->extLength &
1134						   UDF_EXTENT_LENGTH_MASK) +
1135						   UDF_EXTENT_LENGTH_MASK) &
1136						   ~(blocksize - 1);
1137				li->extLength = (li->extLength &
1138						 UDF_EXTENT_FLAG_MASK) +
1139						(UDF_EXTENT_LENGTH_MASK + 1) -
1140						blocksize;
1141			} else {
1142				li->extLength = lip1->extLength +
1143					(((li->extLength &
1144						UDF_EXTENT_LENGTH_MASK) +
1145					  blocksize - 1) & ~(blocksize - 1));
1146				if (*endnum > (i + 2))
1147					memmove(&laarr[i + 1], &laarr[i + 2],
1148						sizeof(struct long_ad) *
1149						(*endnum - (i + 2)));
1150				i--;
1151				(*endnum)--;
1152			}
1153		} else if ((li->extLength >> 30) ==
1154					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1155			udf_free_blocks(inode->i_sb, inode,
1156					&li->extLocation, 0,
1157					((li->extLength &
1158						UDF_EXTENT_LENGTH_MASK) +
1159					 blocksize - 1) >> blocksize_bits);
1160			li->extLocation.logicalBlockNum = 0;
1161			li->extLocation.partitionReferenceNum = 0;
1162			li->extLength = (li->extLength &
1163						UDF_EXTENT_LENGTH_MASK) |
1164						EXT_NOT_RECORDED_NOT_ALLOCATED;
1165		}
1166	}
1167}
1168
1169static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1170			      int startnum, int endnum,
1171			      struct extent_position *epos)
1172{
1173	int start = 0, i;
1174	struct kernel_lb_addr tmploc;
1175	uint32_t tmplen;
1176	int err;
1177
1178	if (startnum > endnum) {
1179		for (i = 0; i < (startnum - endnum); i++)
1180			udf_delete_aext(inode, *epos);
1181	} else if (startnum < endnum) {
1182		for (i = 0; i < (endnum - startnum); i++) {
1183			err = udf_insert_aext(inode, *epos,
1184					      laarr[i].extLocation,
1185					      laarr[i].extLength);
1186			/*
1187			 * If we fail here, we are likely corrupting the extent
1188			 * list and leaking blocks. At least stop early to
1189			 * limit the damage.
1190			 */
1191			if (err < 0)
1192				return err;
1193			udf_next_aext(inode, epos, &laarr[i].extLocation,
1194				      &laarr[i].extLength, 1);
1195			start++;
1196		}
1197	}
1198
1199	for (i = start; i < endnum; i++) {
1200		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1201		udf_write_aext(inode, epos, &laarr[i].extLocation,
1202			       laarr[i].extLength, 1);
1203	}
1204	return 0;
1205}
1206
1207struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1208			      int create, int *err)
1209{
1210	struct buffer_head *bh = NULL;
1211	struct udf_map_rq map = {
1212		.lblk = block,
1213		.iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1214	};
1215
1216	*err = udf_map_block(inode, &map);
1217	if (*err || !(map.oflags & UDF_BLK_MAPPED))
1218		return NULL;
1219
1220	bh = sb_getblk(inode->i_sb, map.pblk);
1221	if (!bh) {
1222		*err = -ENOMEM;
1223		return NULL;
1224	}
1225	if (map.oflags & UDF_BLK_NEW) {
1226		lock_buffer(bh);
1227		memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1228		set_buffer_uptodate(bh);
1229		unlock_buffer(bh);
1230		mark_buffer_dirty_inode(bh, inode);
1231		return bh;
1232	}
1233
1234	if (bh_read(bh, 0) >= 0)
1235		return bh;
1236
1237	brelse(bh);
1238	*err = -EIO;
1239	return NULL;
1240}
1241
1242int udf_setsize(struct inode *inode, loff_t newsize)
1243{
1244	int err = 0;
1245	struct udf_inode_info *iinfo;
1246	unsigned int bsize = i_blocksize(inode);
1247
1248	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1249	      S_ISLNK(inode->i_mode)))
1250		return -EINVAL;
1251	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1252		return -EPERM;
1253
1254	filemap_invalidate_lock(inode->i_mapping);
1255	iinfo = UDF_I(inode);
1256	if (newsize > inode->i_size) {
1257		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1258			if (bsize >=
1259			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1260				down_write(&iinfo->i_data_sem);
1261				iinfo->i_lenAlloc = newsize;
1262				up_write(&iinfo->i_data_sem);
1263				goto set_size;
1264			}
1265			err = udf_expand_file_adinicb(inode);
1266			if (err)
1267				goto out_unlock;
1268		}
1269		err = udf_extend_file(inode, newsize);
1270		if (err)
1271			goto out_unlock;
1272set_size:
1273		truncate_setsize(inode, newsize);
1274	} else {
1275		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1276			down_write(&iinfo->i_data_sem);
1277			udf_clear_extent_cache(inode);
1278			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1279			       0x00, bsize - newsize -
1280			       udf_file_entry_alloc_offset(inode));
1281			iinfo->i_lenAlloc = newsize;
1282			truncate_setsize(inode, newsize);
1283			up_write(&iinfo->i_data_sem);
1284			goto update_time;
1285		}
1286		err = block_truncate_page(inode->i_mapping, newsize,
1287					  udf_get_block);
1288		if (err)
1289			goto out_unlock;
1290		truncate_setsize(inode, newsize);
1291		down_write(&iinfo->i_data_sem);
1292		udf_clear_extent_cache(inode);
1293		err = udf_truncate_extents(inode);
1294		up_write(&iinfo->i_data_sem);
1295		if (err)
1296			goto out_unlock;
1297	}
1298update_time:
1299	inode->i_mtime = inode_set_ctime_current(inode);
1300	if (IS_SYNC(inode))
1301		udf_sync_inode(inode);
1302	else
1303		mark_inode_dirty(inode);
1304out_unlock:
1305	filemap_invalidate_unlock(inode->i_mapping);
1306	return err;
1307}
1308
1309/*
1310 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1311 * arbitrary - just that we hopefully don't limit any real use of rewritten
1312 * inode on write-once media but avoid looping for too long on corrupted media.
1313 */
1314#define UDF_MAX_ICB_NESTING 1024
1315
1316static int udf_read_inode(struct inode *inode, bool hidden_inode)
1317{
1318	struct buffer_head *bh = NULL;
1319	struct fileEntry *fe;
1320	struct extendedFileEntry *efe;
1321	uint16_t ident;
1322	struct udf_inode_info *iinfo = UDF_I(inode);
1323	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1324	struct kernel_lb_addr *iloc = &iinfo->i_location;
1325	unsigned int link_count;
1326	unsigned int indirections = 0;
1327	int bs = inode->i_sb->s_blocksize;
1328	int ret = -EIO;
1329	uint32_t uid, gid;
1330	struct timespec64 ctime;
1331
1332reread:
1333	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1334		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1335			  iloc->partitionReferenceNum, sbi->s_partitions);
1336		return -EIO;
1337	}
1338
1339	if (iloc->logicalBlockNum >=
1340	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1341		udf_debug("block=%u, partition=%u out of range\n",
1342			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1343		return -EIO;
1344	}
1345
1346	/*
1347	 * Set defaults, but the inode is still incomplete!
1348	 * Note: get_new_inode() sets the following on a new inode:
1349	 *      i_sb = sb
1350	 *      i_no = ino
1351	 *      i_flags = sb->s_flags
1352	 *      i_state = 0
1353	 * clean_inode(): zero fills and sets
1354	 *      i_count = 1
1355	 *      i_nlink = 1
1356	 *      i_op = NULL;
1357	 */
1358	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1359	if (!bh) {
1360		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1361		return -EIO;
1362	}
1363
1364	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1365	    ident != TAG_IDENT_USE) {
1366		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1367			inode->i_ino, ident);
1368		goto out;
1369	}
1370
1371	fe = (struct fileEntry *)bh->b_data;
1372	efe = (struct extendedFileEntry *)bh->b_data;
1373
1374	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1375		struct buffer_head *ibh;
1376
1377		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1378		if (ident == TAG_IDENT_IE && ibh) {
1379			struct kernel_lb_addr loc;
1380			struct indirectEntry *ie;
1381
1382			ie = (struct indirectEntry *)ibh->b_data;
1383			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1384
1385			if (ie->indirectICB.extLength) {
1386				brelse(ibh);
1387				memcpy(&iinfo->i_location, &loc,
1388				       sizeof(struct kernel_lb_addr));
1389				if (++indirections > UDF_MAX_ICB_NESTING) {
1390					udf_err(inode->i_sb,
1391						"too many ICBs in ICB hierarchy"
1392						" (max %d supported)\n",
1393						UDF_MAX_ICB_NESTING);
1394					goto out;
1395				}
1396				brelse(bh);
1397				goto reread;
1398			}
1399		}
1400		brelse(ibh);
1401	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1402		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1403			le16_to_cpu(fe->icbTag.strategyType));
1404		goto out;
1405	}
1406	if (fe->icbTag.strategyType == cpu_to_le16(4))
1407		iinfo->i_strat4096 = 0;
1408	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1409		iinfo->i_strat4096 = 1;
1410
1411	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1412							ICBTAG_FLAG_AD_MASK;
1413	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1414	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1415	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1416		ret = -EIO;
1417		goto out;
1418	}
1419	iinfo->i_hidden = hidden_inode;
1420	iinfo->i_unique = 0;
1421	iinfo->i_lenEAttr = 0;
1422	iinfo->i_lenExtents = 0;
1423	iinfo->i_lenAlloc = 0;
1424	iinfo->i_next_alloc_block = 0;
1425	iinfo->i_next_alloc_goal = 0;
1426	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1427		iinfo->i_efe = 1;
1428		iinfo->i_use = 0;
1429		ret = udf_alloc_i_data(inode, bs -
1430					sizeof(struct extendedFileEntry));
1431		if (ret)
1432			goto out;
1433		memcpy(iinfo->i_data,
1434		       bh->b_data + sizeof(struct extendedFileEntry),
1435		       bs - sizeof(struct extendedFileEntry));
1436	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1437		iinfo->i_efe = 0;
1438		iinfo->i_use = 0;
1439		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1440		if (ret)
1441			goto out;
1442		memcpy(iinfo->i_data,
1443		       bh->b_data + sizeof(struct fileEntry),
1444		       bs - sizeof(struct fileEntry));
1445	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1446		iinfo->i_efe = 0;
1447		iinfo->i_use = 1;
1448		iinfo->i_lenAlloc = le32_to_cpu(
1449				((struct unallocSpaceEntry *)bh->b_data)->
1450				 lengthAllocDescs);
1451		ret = udf_alloc_i_data(inode, bs -
1452					sizeof(struct unallocSpaceEntry));
1453		if (ret)
1454			goto out;
1455		memcpy(iinfo->i_data,
1456		       bh->b_data + sizeof(struct unallocSpaceEntry),
1457		       bs - sizeof(struct unallocSpaceEntry));
1458		return 0;
1459	}
1460
1461	ret = -EIO;
1462	read_lock(&sbi->s_cred_lock);
1463	uid = le32_to_cpu(fe->uid);
1464	if (uid == UDF_INVALID_ID ||
1465	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1466		inode->i_uid = sbi->s_uid;
1467	else
1468		i_uid_write(inode, uid);
1469
1470	gid = le32_to_cpu(fe->gid);
1471	if (gid == UDF_INVALID_ID ||
1472	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1473		inode->i_gid = sbi->s_gid;
1474	else
1475		i_gid_write(inode, gid);
1476
1477	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1478			sbi->s_fmode != UDF_INVALID_MODE)
1479		inode->i_mode = sbi->s_fmode;
1480	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1481			sbi->s_dmode != UDF_INVALID_MODE)
1482		inode->i_mode = sbi->s_dmode;
1483	else
1484		inode->i_mode = udf_convert_permissions(fe);
1485	inode->i_mode &= ~sbi->s_umask;
1486	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1487
1488	read_unlock(&sbi->s_cred_lock);
1489
1490	link_count = le16_to_cpu(fe->fileLinkCount);
1491	if (!link_count) {
1492		if (!hidden_inode) {
1493			ret = -ESTALE;
1494			goto out;
1495		}
1496		link_count = 1;
1497	}
1498	set_nlink(inode, link_count);
1499
1500	inode->i_size = le64_to_cpu(fe->informationLength);
1501	iinfo->i_lenExtents = inode->i_size;
1502
1503	if (iinfo->i_efe == 0) {
1504		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1505			(inode->i_sb->s_blocksize_bits - 9);
1506
1507		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1508		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1509		udf_disk_stamp_to_time(&ctime, fe->attrTime);
1510		inode_set_ctime_to_ts(inode, ctime);
1511
1512		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1513		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1514		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1515		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1516		iinfo->i_streamdir = 0;
1517		iinfo->i_lenStreams = 0;
1518	} else {
1519		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1520		    (inode->i_sb->s_blocksize_bits - 9);
1521
1522		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1523		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1524		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1525		udf_disk_stamp_to_time(&ctime, efe->attrTime);
1526		inode_set_ctime_to_ts(inode, ctime);
1527
1528		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1529		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1530		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1531		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1532
1533		/* Named streams */
1534		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1535		iinfo->i_locStreamdir =
1536			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1537		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1538		if (iinfo->i_lenStreams >= inode->i_size)
1539			iinfo->i_lenStreams -= inode->i_size;
1540		else
1541			iinfo->i_lenStreams = 0;
1542	}
1543	inode->i_generation = iinfo->i_unique;
1544
1545	/*
1546	 * Sanity check length of allocation descriptors and extended attrs to
1547	 * avoid integer overflows
1548	 */
1549	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1550		goto out;
1551	/* Now do exact checks */
1552	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1553		goto out;
1554	/* Sanity checks for files in ICB so that we don't get confused later */
1555	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1556		/*
1557		 * For file in ICB data is stored in allocation descriptor
1558		 * so sizes should match
1559		 */
1560		if (iinfo->i_lenAlloc != inode->i_size)
1561			goto out;
1562		/* File in ICB has to fit in there... */
1563		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1564			goto out;
1565	}
1566
1567	switch (fe->icbTag.fileType) {
1568	case ICBTAG_FILE_TYPE_DIRECTORY:
1569		inode->i_op = &udf_dir_inode_operations;
1570		inode->i_fop = &udf_dir_operations;
1571		inode->i_mode |= S_IFDIR;
1572		inc_nlink(inode);
1573		break;
1574	case ICBTAG_FILE_TYPE_REALTIME:
1575	case ICBTAG_FILE_TYPE_REGULAR:
1576	case ICBTAG_FILE_TYPE_UNDEF:
1577	case ICBTAG_FILE_TYPE_VAT20:
1578		inode->i_data.a_ops = &udf_aops;
1579		inode->i_op = &udf_file_inode_operations;
1580		inode->i_fop = &udf_file_operations;
1581		inode->i_mode |= S_IFREG;
1582		break;
1583	case ICBTAG_FILE_TYPE_BLOCK:
1584		inode->i_mode |= S_IFBLK;
1585		break;
1586	case ICBTAG_FILE_TYPE_CHAR:
1587		inode->i_mode |= S_IFCHR;
1588		break;
1589	case ICBTAG_FILE_TYPE_FIFO:
1590		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1591		break;
1592	case ICBTAG_FILE_TYPE_SOCKET:
1593		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1594		break;
1595	case ICBTAG_FILE_TYPE_SYMLINK:
1596		inode->i_data.a_ops = &udf_symlink_aops;
1597		inode->i_op = &udf_symlink_inode_operations;
1598		inode_nohighmem(inode);
1599		inode->i_mode = S_IFLNK | 0777;
1600		break;
1601	case ICBTAG_FILE_TYPE_MAIN:
1602		udf_debug("METADATA FILE-----\n");
1603		break;
1604	case ICBTAG_FILE_TYPE_MIRROR:
1605		udf_debug("METADATA MIRROR FILE-----\n");
1606		break;
1607	case ICBTAG_FILE_TYPE_BITMAP:
1608		udf_debug("METADATA BITMAP FILE-----\n");
1609		break;
1610	default:
1611		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1612			inode->i_ino, fe->icbTag.fileType);
1613		goto out;
1614	}
1615	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1616		struct deviceSpec *dsea =
1617			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1618		if (dsea) {
1619			init_special_inode(inode, inode->i_mode,
1620				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1621				      le32_to_cpu(dsea->minorDeviceIdent)));
1622			/* Developer ID ??? */
1623		} else
1624			goto out;
1625	}
1626	ret = 0;
1627out:
1628	brelse(bh);
1629	return ret;
1630}
1631
1632static int udf_alloc_i_data(struct inode *inode, size_t size)
1633{
1634	struct udf_inode_info *iinfo = UDF_I(inode);
1635	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1636	if (!iinfo->i_data)
1637		return -ENOMEM;
1638	return 0;
1639}
1640
1641static umode_t udf_convert_permissions(struct fileEntry *fe)
1642{
1643	umode_t mode;
1644	uint32_t permissions;
1645	uint32_t flags;
1646
1647	permissions = le32_to_cpu(fe->permissions);
1648	flags = le16_to_cpu(fe->icbTag.flags);
1649
1650	mode =	((permissions) & 0007) |
1651		((permissions >> 2) & 0070) |
1652		((permissions >> 4) & 0700) |
1653		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1654		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1655		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1656
1657	return mode;
1658}
1659
1660void udf_update_extra_perms(struct inode *inode, umode_t mode)
1661{
1662	struct udf_inode_info *iinfo = UDF_I(inode);
1663
1664	/*
1665	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1666	 * In Unix, delete permission tracks write
1667	 */
1668	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1669	if (mode & 0200)
1670		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1671	if (mode & 0020)
1672		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1673	if (mode & 0002)
1674		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1675}
1676
1677int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1678{
1679	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1680}
1681
1682static int udf_sync_inode(struct inode *inode)
1683{
1684	return udf_update_inode(inode, 1);
1685}
1686
1687static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1688{
1689	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1690	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1691	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1692		iinfo->i_crtime = time;
1693}
1694
1695static int udf_update_inode(struct inode *inode, int do_sync)
1696{
1697	struct buffer_head *bh = NULL;
1698	struct fileEntry *fe;
1699	struct extendedFileEntry *efe;
1700	uint64_t lb_recorded;
1701	uint32_t udfperms;
1702	uint16_t icbflags;
1703	uint16_t crclen;
1704	int err = 0;
1705	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1706	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1707	struct udf_inode_info *iinfo = UDF_I(inode);
1708
1709	bh = sb_getblk(inode->i_sb,
1710			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1711	if (!bh) {
1712		udf_debug("getblk failure\n");
1713		return -EIO;
1714	}
1715
1716	lock_buffer(bh);
1717	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1718	fe = (struct fileEntry *)bh->b_data;
1719	efe = (struct extendedFileEntry *)bh->b_data;
1720
1721	if (iinfo->i_use) {
1722		struct unallocSpaceEntry *use =
1723			(struct unallocSpaceEntry *)bh->b_data;
1724
1725		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1726		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1727		       iinfo->i_data, inode->i_sb->s_blocksize -
1728					sizeof(struct unallocSpaceEntry));
1729		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1730		crclen = sizeof(struct unallocSpaceEntry);
1731
1732		goto finish;
1733	}
1734
1735	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1736		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1737	else
1738		fe->uid = cpu_to_le32(i_uid_read(inode));
1739
1740	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1741		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1742	else
1743		fe->gid = cpu_to_le32(i_gid_read(inode));
1744
1745	udfperms = ((inode->i_mode & 0007)) |
1746		   ((inode->i_mode & 0070) << 2) |
1747		   ((inode->i_mode & 0700) << 4);
1748
1749	udfperms |= iinfo->i_extraPerms;
1750	fe->permissions = cpu_to_le32(udfperms);
1751
1752	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1753		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1754	else {
1755		if (iinfo->i_hidden)
1756			fe->fileLinkCount = cpu_to_le16(0);
1757		else
1758			fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1759	}
1760
1761	fe->informationLength = cpu_to_le64(inode->i_size);
1762
1763	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1764		struct regid *eid;
1765		struct deviceSpec *dsea =
1766			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1767		if (!dsea) {
1768			dsea = (struct deviceSpec *)
1769				udf_add_extendedattr(inode,
1770						     sizeof(struct deviceSpec) +
1771						     sizeof(struct regid), 12, 0x3);
1772			dsea->attrType = cpu_to_le32(12);
1773			dsea->attrSubtype = 1;
1774			dsea->attrLength = cpu_to_le32(
1775						sizeof(struct deviceSpec) +
1776						sizeof(struct regid));
1777			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1778		}
1779		eid = (struct regid *)dsea->impUse;
1780		memset(eid, 0, sizeof(*eid));
1781		strcpy(eid->ident, UDF_ID_DEVELOPER);
1782		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1783		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1784		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1785		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1786	}
1787
1788	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1789		lb_recorded = 0; /* No extents => no blocks! */
1790	else
1791		lb_recorded =
1792			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1793			(blocksize_bits - 9);
1794
1795	if (iinfo->i_efe == 0) {
1796		memcpy(bh->b_data + sizeof(struct fileEntry),
1797		       iinfo->i_data,
1798		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1799		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1800
1801		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1802		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1803		udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode));
1804		memset(&(fe->impIdent), 0, sizeof(struct regid));
1805		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1806		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1807		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1808		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1809		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1810		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1811		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1812		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1813		crclen = sizeof(struct fileEntry);
1814	} else {
1815		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1816		       iinfo->i_data,
1817		       inode->i_sb->s_blocksize -
1818					sizeof(struct extendedFileEntry));
1819		efe->objectSize =
1820			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1821		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1822
1823		if (iinfo->i_streamdir) {
1824			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1825
1826			icb_lad->extLocation =
1827				cpu_to_lelb(iinfo->i_locStreamdir);
1828			icb_lad->extLength =
1829				cpu_to_le32(inode->i_sb->s_blocksize);
1830		}
1831
1832		udf_adjust_time(iinfo, inode->i_atime);
1833		udf_adjust_time(iinfo, inode->i_mtime);
1834		udf_adjust_time(iinfo, inode_get_ctime(inode));
1835
1836		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1837		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1838		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1839		udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode));
1840
1841		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1842		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1843		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1844		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1845		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1846		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1847		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1848		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1849		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1850		crclen = sizeof(struct extendedFileEntry);
1851	}
1852
1853finish:
1854	if (iinfo->i_strat4096) {
1855		fe->icbTag.strategyType = cpu_to_le16(4096);
1856		fe->icbTag.strategyParameter = cpu_to_le16(1);
1857		fe->icbTag.numEntries = cpu_to_le16(2);
1858	} else {
1859		fe->icbTag.strategyType = cpu_to_le16(4);
1860		fe->icbTag.numEntries = cpu_to_le16(1);
1861	}
1862
1863	if (iinfo->i_use)
1864		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1865	else if (S_ISDIR(inode->i_mode))
1866		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1867	else if (S_ISREG(inode->i_mode))
1868		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1869	else if (S_ISLNK(inode->i_mode))
1870		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1871	else if (S_ISBLK(inode->i_mode))
1872		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1873	else if (S_ISCHR(inode->i_mode))
1874		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1875	else if (S_ISFIFO(inode->i_mode))
1876		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1877	else if (S_ISSOCK(inode->i_mode))
1878		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1879
1880	icbflags =	iinfo->i_alloc_type |
1881			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1882			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1883			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1884			(le16_to_cpu(fe->icbTag.flags) &
1885				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1886				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1887
1888	fe->icbTag.flags = cpu_to_le16(icbflags);
1889	if (sbi->s_udfrev >= 0x0200)
1890		fe->descTag.descVersion = cpu_to_le16(3);
1891	else
1892		fe->descTag.descVersion = cpu_to_le16(2);
1893	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1894	fe->descTag.tagLocation = cpu_to_le32(
1895					iinfo->i_location.logicalBlockNum);
1896	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1897	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1898	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1899						  crclen));
1900	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1901
1902	set_buffer_uptodate(bh);
1903	unlock_buffer(bh);
1904
1905	/* write the data blocks */
1906	mark_buffer_dirty(bh);
1907	if (do_sync) {
1908		sync_dirty_buffer(bh);
1909		if (buffer_write_io_error(bh)) {
1910			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1911				 inode->i_ino);
1912			err = -EIO;
1913		}
1914	}
1915	brelse(bh);
1916
1917	return err;
1918}
1919
1920struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1921			 bool hidden_inode)
1922{
1923	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1924	struct inode *inode = iget_locked(sb, block);
1925	int err;
1926
1927	if (!inode)
1928		return ERR_PTR(-ENOMEM);
1929
1930	if (!(inode->i_state & I_NEW)) {
1931		if (UDF_I(inode)->i_hidden != hidden_inode) {
1932			iput(inode);
1933			return ERR_PTR(-EFSCORRUPTED);
1934		}
1935		return inode;
1936	}
1937
1938	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1939	err = udf_read_inode(inode, hidden_inode);
1940	if (err < 0) {
1941		iget_failed(inode);
1942		return ERR_PTR(err);
1943	}
1944	unlock_new_inode(inode);
1945
1946	return inode;
1947}
1948
1949int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1950			    struct extent_position *epos)
1951{
1952	struct super_block *sb = inode->i_sb;
1953	struct buffer_head *bh;
1954	struct allocExtDesc *aed;
1955	struct extent_position nepos;
1956	struct kernel_lb_addr neloc;
1957	int ver, adsize;
1958
1959	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1960		adsize = sizeof(struct short_ad);
1961	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1962		adsize = sizeof(struct long_ad);
1963	else
1964		return -EIO;
1965
1966	neloc.logicalBlockNum = block;
1967	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1968
1969	bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1970	if (!bh)
1971		return -EIO;
1972	lock_buffer(bh);
1973	memset(bh->b_data, 0x00, sb->s_blocksize);
1974	set_buffer_uptodate(bh);
1975	unlock_buffer(bh);
1976	mark_buffer_dirty_inode(bh, inode);
1977
1978	aed = (struct allocExtDesc *)(bh->b_data);
1979	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1980		aed->previousAllocExtLocation =
1981				cpu_to_le32(epos->block.logicalBlockNum);
1982	}
1983	aed->lengthAllocDescs = cpu_to_le32(0);
1984	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1985		ver = 3;
1986	else
1987		ver = 2;
1988	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1989		    sizeof(struct tag));
1990
1991	nepos.block = neloc;
1992	nepos.offset = sizeof(struct allocExtDesc);
1993	nepos.bh = bh;
1994
1995	/*
1996	 * Do we have to copy current last extent to make space for indirect
1997	 * one?
1998	 */
1999	if (epos->offset + adsize > sb->s_blocksize) {
2000		struct kernel_lb_addr cp_loc;
2001		uint32_t cp_len;
2002		int cp_type;
2003
2004		epos->offset -= adsize;
2005		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
2006		cp_len |= ((uint32_t)cp_type) << 30;
2007
2008		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2009		udf_write_aext(inode, epos, &nepos.block,
2010			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2011	} else {
2012		__udf_add_aext(inode, epos, &nepos.block,
2013			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2014	}
2015
2016	brelse(epos->bh);
2017	*epos = nepos;
2018
2019	return 0;
2020}
2021
2022/*
2023 * Append extent at the given position - should be the first free one in inode
2024 * / indirect extent. This function assumes there is enough space in the inode
2025 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2026 */
2027int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2028		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2029{
2030	struct udf_inode_info *iinfo = UDF_I(inode);
2031	struct allocExtDesc *aed;
2032	int adsize;
2033
2034	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2035		adsize = sizeof(struct short_ad);
2036	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2037		adsize = sizeof(struct long_ad);
2038	else
2039		return -EIO;
2040
2041	if (!epos->bh) {
2042		WARN_ON(iinfo->i_lenAlloc !=
2043			epos->offset - udf_file_entry_alloc_offset(inode));
2044	} else {
2045		aed = (struct allocExtDesc *)epos->bh->b_data;
2046		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2047			epos->offset - sizeof(struct allocExtDesc));
2048		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2049	}
2050
2051	udf_write_aext(inode, epos, eloc, elen, inc);
2052
2053	if (!epos->bh) {
2054		iinfo->i_lenAlloc += adsize;
2055		mark_inode_dirty(inode);
2056	} else {
2057		aed = (struct allocExtDesc *)epos->bh->b_data;
2058		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2059		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2060				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2061			udf_update_tag(epos->bh->b_data,
2062					epos->offset + (inc ? 0 : adsize));
2063		else
2064			udf_update_tag(epos->bh->b_data,
2065					sizeof(struct allocExtDesc));
2066		mark_buffer_dirty_inode(epos->bh, inode);
2067	}
2068
2069	return 0;
2070}
2071
2072/*
2073 * Append extent at given position - should be the first free one in inode
2074 * / indirect extent. Takes care of allocating and linking indirect blocks.
2075 */
2076int udf_add_aext(struct inode *inode, struct extent_position *epos,
2077		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2078{
2079	int adsize;
2080	struct super_block *sb = inode->i_sb;
2081
2082	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2083		adsize = sizeof(struct short_ad);
2084	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2085		adsize = sizeof(struct long_ad);
2086	else
2087		return -EIO;
2088
2089	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2090		int err;
2091		udf_pblk_t new_block;
2092
2093		new_block = udf_new_block(sb, NULL,
2094					  epos->block.partitionReferenceNum,
2095					  epos->block.logicalBlockNum, &err);
2096		if (!new_block)
2097			return -ENOSPC;
2098
2099		err = udf_setup_indirect_aext(inode, new_block, epos);
2100		if (err)
2101			return err;
2102	}
2103
2104	return __udf_add_aext(inode, epos, eloc, elen, inc);
2105}
2106
2107void udf_write_aext(struct inode *inode, struct extent_position *epos,
2108		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2109{
2110	int adsize;
2111	uint8_t *ptr;
2112	struct short_ad *sad;
2113	struct long_ad *lad;
2114	struct udf_inode_info *iinfo = UDF_I(inode);
2115
2116	if (!epos->bh)
2117		ptr = iinfo->i_data + epos->offset -
2118			udf_file_entry_alloc_offset(inode) +
2119			iinfo->i_lenEAttr;
2120	else
2121		ptr = epos->bh->b_data + epos->offset;
2122
2123	switch (iinfo->i_alloc_type) {
2124	case ICBTAG_FLAG_AD_SHORT:
2125		sad = (struct short_ad *)ptr;
2126		sad->extLength = cpu_to_le32(elen);
2127		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2128		adsize = sizeof(struct short_ad);
2129		break;
2130	case ICBTAG_FLAG_AD_LONG:
2131		lad = (struct long_ad *)ptr;
2132		lad->extLength = cpu_to_le32(elen);
2133		lad->extLocation = cpu_to_lelb(*eloc);
2134		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2135		adsize = sizeof(struct long_ad);
2136		break;
2137	default:
2138		return;
2139	}
2140
2141	if (epos->bh) {
2142		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2143		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2144			struct allocExtDesc *aed =
2145				(struct allocExtDesc *)epos->bh->b_data;
2146			udf_update_tag(epos->bh->b_data,
2147				       le32_to_cpu(aed->lengthAllocDescs) +
2148				       sizeof(struct allocExtDesc));
2149		}
2150		mark_buffer_dirty_inode(epos->bh, inode);
2151	} else {
2152		mark_inode_dirty(inode);
2153	}
2154
2155	if (inc)
2156		epos->offset += adsize;
2157}
2158
2159/*
2160 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2161 * someone does some weird stuff.
2162 */
2163#define UDF_MAX_INDIR_EXTS 16
2164
2165int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2166		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2167{
2168	int8_t etype;
2169	unsigned int indirections = 0;
2170
2171	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2172	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2173		udf_pblk_t block;
2174
2175		if (++indirections > UDF_MAX_INDIR_EXTS) {
2176			udf_err(inode->i_sb,
2177				"too many indirect extents in inode %lu\n",
2178				inode->i_ino);
2179			return -1;
2180		}
2181
2182		epos->block = *eloc;
2183		epos->offset = sizeof(struct allocExtDesc);
2184		brelse(epos->bh);
2185		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2186		epos->bh = sb_bread(inode->i_sb, block);
2187		if (!epos->bh) {
2188			udf_debug("reading block %u failed!\n", block);
2189			return -1;
2190		}
2191	}
2192
2193	return etype;
2194}
2195
2196int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2197			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2198{
2199	int alen;
2200	int8_t etype;
2201	uint8_t *ptr;
2202	struct short_ad *sad;
2203	struct long_ad *lad;
2204	struct udf_inode_info *iinfo = UDF_I(inode);
2205
2206	if (!epos->bh) {
2207		if (!epos->offset)
2208			epos->offset = udf_file_entry_alloc_offset(inode);
2209		ptr = iinfo->i_data + epos->offset -
2210			udf_file_entry_alloc_offset(inode) +
2211			iinfo->i_lenEAttr;
2212		alen = udf_file_entry_alloc_offset(inode) +
2213							iinfo->i_lenAlloc;
2214	} else {
2215		if (!epos->offset)
2216			epos->offset = sizeof(struct allocExtDesc);
2217		ptr = epos->bh->b_data + epos->offset;
2218		alen = sizeof(struct allocExtDesc) +
2219			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2220							lengthAllocDescs);
2221	}
2222
2223	switch (iinfo->i_alloc_type) {
2224	case ICBTAG_FLAG_AD_SHORT:
2225		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2226		if (!sad)
2227			return -1;
2228		etype = le32_to_cpu(sad->extLength) >> 30;
2229		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2230		eloc->partitionReferenceNum =
2231				iinfo->i_location.partitionReferenceNum;
2232		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2233		break;
2234	case ICBTAG_FLAG_AD_LONG:
2235		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2236		if (!lad)
2237			return -1;
2238		etype = le32_to_cpu(lad->extLength) >> 30;
2239		*eloc = lelb_to_cpu(lad->extLocation);
2240		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2241		break;
2242	default:
2243		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2244		return -1;
2245	}
2246
2247	return etype;
2248}
2249
2250static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2251			   struct kernel_lb_addr neloc, uint32_t nelen)
2252{
2253	struct kernel_lb_addr oeloc;
2254	uint32_t oelen;
2255	int8_t etype;
2256	int err;
2257
2258	if (epos.bh)
2259		get_bh(epos.bh);
2260
2261	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2262		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2263		neloc = oeloc;
2264		nelen = (etype << 30) | oelen;
2265	}
2266	err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2267	brelse(epos.bh);
2268
2269	return err;
2270}
2271
2272int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2273{
2274	struct extent_position oepos;
2275	int adsize;
2276	int8_t etype;
2277	struct allocExtDesc *aed;
2278	struct udf_inode_info *iinfo;
2279	struct kernel_lb_addr eloc;
2280	uint32_t elen;
2281
2282	if (epos.bh) {
2283		get_bh(epos.bh);
2284		get_bh(epos.bh);
2285	}
2286
2287	iinfo = UDF_I(inode);
2288	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2289		adsize = sizeof(struct short_ad);
2290	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2291		adsize = sizeof(struct long_ad);
2292	else
2293		adsize = 0;
2294
2295	oepos = epos;
2296	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2297		return -1;
2298
2299	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2300		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2301		if (oepos.bh != epos.bh) {
2302			oepos.block = epos.block;
2303			brelse(oepos.bh);
2304			get_bh(epos.bh);
2305			oepos.bh = epos.bh;
2306			oepos.offset = epos.offset - adsize;
2307		}
2308	}
2309	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2310	elen = 0;
2311
2312	if (epos.bh != oepos.bh) {
2313		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2314		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2315		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2316		if (!oepos.bh) {
2317			iinfo->i_lenAlloc -= (adsize * 2);
2318			mark_inode_dirty(inode);
2319		} else {
2320			aed = (struct allocExtDesc *)oepos.bh->b_data;
2321			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2322			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2323			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2324				udf_update_tag(oepos.bh->b_data,
2325						oepos.offset - (2 * adsize));
2326			else
2327				udf_update_tag(oepos.bh->b_data,
2328						sizeof(struct allocExtDesc));
2329			mark_buffer_dirty_inode(oepos.bh, inode);
2330		}
2331	} else {
2332		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2333		if (!oepos.bh) {
2334			iinfo->i_lenAlloc -= adsize;
2335			mark_inode_dirty(inode);
2336		} else {
2337			aed = (struct allocExtDesc *)oepos.bh->b_data;
2338			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2339			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2340			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2341				udf_update_tag(oepos.bh->b_data,
2342						epos.offset - adsize);
2343			else
2344				udf_update_tag(oepos.bh->b_data,
2345						sizeof(struct allocExtDesc));
2346			mark_buffer_dirty_inode(oepos.bh, inode);
2347		}
2348	}
2349
2350	brelse(epos.bh);
2351	brelse(oepos.bh);
2352
2353	return (elen >> 30);
2354}
2355
2356int8_t inode_bmap(struct inode *inode, sector_t block,
2357		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2358		  uint32_t *elen, sector_t *offset)
2359{
2360	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2361	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2362	int8_t etype;
2363	struct udf_inode_info *iinfo;
2364
2365	iinfo = UDF_I(inode);
2366	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2367		pos->offset = 0;
2368		pos->block = iinfo->i_location;
2369		pos->bh = NULL;
2370	}
2371	*elen = 0;
2372	do {
2373		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2374		if (etype == -1) {
2375			*offset = (bcount - lbcount) >> blocksize_bits;
2376			iinfo->i_lenExtents = lbcount;
2377			return -1;
2378		}
2379		lbcount += *elen;
2380	} while (lbcount <= bcount);
2381	/* update extent cache */
2382	udf_update_extent_cache(inode, lbcount - *elen, pos);
2383	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2384
2385	return etype;
2386}
2387