xref: /kernel/linux/linux-6.6/fs/smb/client/misc.c (revision 62306a36)
1// SPDX-License-Identifier: LGPL-2.1
2/*
3 *
4 *   Copyright (C) International Business Machines  Corp., 2002,2008
5 *   Author(s): Steve French (sfrench@us.ibm.com)
6 *
7 */
8
9#include <linux/slab.h>
10#include <linux/ctype.h>
11#include <linux/mempool.h>
12#include <linux/vmalloc.h>
13#include "cifspdu.h"
14#include "cifsglob.h"
15#include "cifsproto.h"
16#include "cifs_debug.h"
17#include "smberr.h"
18#include "nterr.h"
19#include "cifs_unicode.h"
20#include "smb2pdu.h"
21#include "cifsfs.h"
22#ifdef CONFIG_CIFS_DFS_UPCALL
23#include "dns_resolve.h"
24#include "dfs_cache.h"
25#include "dfs.h"
26#endif
27#include "fs_context.h"
28#include "cached_dir.h"
29
30extern mempool_t *cifs_sm_req_poolp;
31extern mempool_t *cifs_req_poolp;
32
33/* The xid serves as a useful identifier for each incoming vfs request,
34   in a similar way to the mid which is useful to track each sent smb,
35   and CurrentXid can also provide a running counter (although it
36   will eventually wrap past zero) of the total vfs operations handled
37   since the cifs fs was mounted */
38
39unsigned int
40_get_xid(void)
41{
42	unsigned int xid;
43
44	spin_lock(&GlobalMid_Lock);
45	GlobalTotalActiveXid++;
46
47	/* keep high water mark for number of simultaneous ops in filesystem */
48	if (GlobalTotalActiveXid > GlobalMaxActiveXid)
49		GlobalMaxActiveXid = GlobalTotalActiveXid;
50	if (GlobalTotalActiveXid > 65000)
51		cifs_dbg(FYI, "warning: more than 65000 requests active\n");
52	xid = GlobalCurrentXid++;
53	spin_unlock(&GlobalMid_Lock);
54	return xid;
55}
56
57void
58_free_xid(unsigned int xid)
59{
60	spin_lock(&GlobalMid_Lock);
61	/* if (GlobalTotalActiveXid == 0)
62		BUG(); */
63	GlobalTotalActiveXid--;
64	spin_unlock(&GlobalMid_Lock);
65}
66
67struct cifs_ses *
68sesInfoAlloc(void)
69{
70	struct cifs_ses *ret_buf;
71
72	ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
73	if (ret_buf) {
74		atomic_inc(&sesInfoAllocCount);
75		spin_lock_init(&ret_buf->ses_lock);
76		ret_buf->ses_status = SES_NEW;
77		++ret_buf->ses_count;
78		INIT_LIST_HEAD(&ret_buf->smb_ses_list);
79		INIT_LIST_HEAD(&ret_buf->tcon_list);
80		mutex_init(&ret_buf->session_mutex);
81		spin_lock_init(&ret_buf->iface_lock);
82		INIT_LIST_HEAD(&ret_buf->iface_list);
83		spin_lock_init(&ret_buf->chan_lock);
84	}
85	return ret_buf;
86}
87
88void
89sesInfoFree(struct cifs_ses *buf_to_free)
90{
91	struct cifs_server_iface *iface = NULL, *niface = NULL;
92
93	if (buf_to_free == NULL) {
94		cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
95		return;
96	}
97
98	unload_nls(buf_to_free->local_nls);
99	atomic_dec(&sesInfoAllocCount);
100	kfree(buf_to_free->serverOS);
101	kfree(buf_to_free->serverDomain);
102	kfree(buf_to_free->serverNOS);
103	kfree_sensitive(buf_to_free->password);
104	kfree(buf_to_free->user_name);
105	kfree(buf_to_free->domainName);
106	kfree_sensitive(buf_to_free->auth_key.response);
107	spin_lock(&buf_to_free->iface_lock);
108	list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
109				 iface_head)
110		kref_put(&iface->refcount, release_iface);
111	spin_unlock(&buf_to_free->iface_lock);
112	kfree_sensitive(buf_to_free);
113}
114
115struct cifs_tcon *
116tcon_info_alloc(bool dir_leases_enabled)
117{
118	struct cifs_tcon *ret_buf;
119
120	ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
121	if (!ret_buf)
122		return NULL;
123
124	if (dir_leases_enabled == true) {
125		ret_buf->cfids = init_cached_dirs();
126		if (!ret_buf->cfids) {
127			kfree(ret_buf);
128			return NULL;
129		}
130	}
131	/* else ret_buf->cfids is already set to NULL above */
132
133	atomic_inc(&tconInfoAllocCount);
134	ret_buf->status = TID_NEW;
135	++ret_buf->tc_count;
136	spin_lock_init(&ret_buf->tc_lock);
137	INIT_LIST_HEAD(&ret_buf->openFileList);
138	INIT_LIST_HEAD(&ret_buf->tcon_list);
139	spin_lock_init(&ret_buf->open_file_lock);
140	spin_lock_init(&ret_buf->stat_lock);
141	atomic_set(&ret_buf->num_local_opens, 0);
142	atomic_set(&ret_buf->num_remote_opens, 0);
143#ifdef CONFIG_CIFS_DFS_UPCALL
144	INIT_LIST_HEAD(&ret_buf->dfs_ses_list);
145#endif
146
147	return ret_buf;
148}
149
150void
151tconInfoFree(struct cifs_tcon *tcon)
152{
153	if (tcon == NULL) {
154		cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
155		return;
156	}
157	free_cached_dirs(tcon->cfids);
158	atomic_dec(&tconInfoAllocCount);
159	kfree(tcon->nativeFileSystem);
160	kfree_sensitive(tcon->password);
161#ifdef CONFIG_CIFS_DFS_UPCALL
162	dfs_put_root_smb_sessions(&tcon->dfs_ses_list);
163#endif
164	kfree(tcon->origin_fullpath);
165	kfree(tcon);
166}
167
168struct smb_hdr *
169cifs_buf_get(void)
170{
171	struct smb_hdr *ret_buf = NULL;
172	/*
173	 * SMB2 header is bigger than CIFS one - no problems to clean some
174	 * more bytes for CIFS.
175	 */
176	size_t buf_size = sizeof(struct smb2_hdr);
177
178	/*
179	 * We could use negotiated size instead of max_msgsize -
180	 * but it may be more efficient to always alloc same size
181	 * albeit slightly larger than necessary and maxbuffersize
182	 * defaults to this and can not be bigger.
183	 */
184	ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
185
186	/* clear the first few header bytes */
187	/* for most paths, more is cleared in header_assemble */
188	memset(ret_buf, 0, buf_size + 3);
189	atomic_inc(&buf_alloc_count);
190#ifdef CONFIG_CIFS_STATS2
191	atomic_inc(&total_buf_alloc_count);
192#endif /* CONFIG_CIFS_STATS2 */
193
194	return ret_buf;
195}
196
197void
198cifs_buf_release(void *buf_to_free)
199{
200	if (buf_to_free == NULL) {
201		/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
202		return;
203	}
204	mempool_free(buf_to_free, cifs_req_poolp);
205
206	atomic_dec(&buf_alloc_count);
207	return;
208}
209
210struct smb_hdr *
211cifs_small_buf_get(void)
212{
213	struct smb_hdr *ret_buf = NULL;
214
215/* We could use negotiated size instead of max_msgsize -
216   but it may be more efficient to always alloc same size
217   albeit slightly larger than necessary and maxbuffersize
218   defaults to this and can not be bigger */
219	ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
220	/* No need to clear memory here, cleared in header assemble */
221	/*	memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
222	atomic_inc(&small_buf_alloc_count);
223#ifdef CONFIG_CIFS_STATS2
224	atomic_inc(&total_small_buf_alloc_count);
225#endif /* CONFIG_CIFS_STATS2 */
226
227	return ret_buf;
228}
229
230void
231cifs_small_buf_release(void *buf_to_free)
232{
233
234	if (buf_to_free == NULL) {
235		cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
236		return;
237	}
238	mempool_free(buf_to_free, cifs_sm_req_poolp);
239
240	atomic_dec(&small_buf_alloc_count);
241	return;
242}
243
244void
245free_rsp_buf(int resp_buftype, void *rsp)
246{
247	if (resp_buftype == CIFS_SMALL_BUFFER)
248		cifs_small_buf_release(rsp);
249	else if (resp_buftype == CIFS_LARGE_BUFFER)
250		cifs_buf_release(rsp);
251}
252
253/* NB: MID can not be set if treeCon not passed in, in that
254   case it is responsbility of caller to set the mid */
255void
256header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
257		const struct cifs_tcon *treeCon, int word_count
258		/* length of fixed section (word count) in two byte units  */)
259{
260	char *temp = (char *) buffer;
261
262	memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
263
264	buffer->smb_buf_length = cpu_to_be32(
265	    (2 * word_count) + sizeof(struct smb_hdr) -
266	    4 /*  RFC 1001 length field does not count */  +
267	    2 /* for bcc field itself */) ;
268
269	buffer->Protocol[0] = 0xFF;
270	buffer->Protocol[1] = 'S';
271	buffer->Protocol[2] = 'M';
272	buffer->Protocol[3] = 'B';
273	buffer->Command = smb_command;
274	buffer->Flags = 0x00;	/* case sensitive */
275	buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
276	buffer->Pid = cpu_to_le16((__u16)current->tgid);
277	buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
278	if (treeCon) {
279		buffer->Tid = treeCon->tid;
280		if (treeCon->ses) {
281			if (treeCon->ses->capabilities & CAP_UNICODE)
282				buffer->Flags2 |= SMBFLG2_UNICODE;
283			if (treeCon->ses->capabilities & CAP_STATUS32)
284				buffer->Flags2 |= SMBFLG2_ERR_STATUS;
285
286			/* Uid is not converted */
287			buffer->Uid = treeCon->ses->Suid;
288			if (treeCon->ses->server)
289				buffer->Mid = get_next_mid(treeCon->ses->server);
290		}
291		if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
292			buffer->Flags2 |= SMBFLG2_DFS;
293		if (treeCon->nocase)
294			buffer->Flags  |= SMBFLG_CASELESS;
295		if ((treeCon->ses) && (treeCon->ses->server))
296			if (treeCon->ses->server->sign)
297				buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
298	}
299
300/*  endian conversion of flags is now done just before sending */
301	buffer->WordCount = (char) word_count;
302	return;
303}
304
305static int
306check_smb_hdr(struct smb_hdr *smb)
307{
308	/* does it have the right SMB "signature" ? */
309	if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
310		cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
311			 *(unsigned int *)smb->Protocol);
312		return 1;
313	}
314
315	/* if it's a response then accept */
316	if (smb->Flags & SMBFLG_RESPONSE)
317		return 0;
318
319	/* only one valid case where server sends us request */
320	if (smb->Command == SMB_COM_LOCKING_ANDX)
321		return 0;
322
323	cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
324		 get_mid(smb));
325	return 1;
326}
327
328int
329checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
330{
331	struct smb_hdr *smb = (struct smb_hdr *)buf;
332	__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
333	__u32 clc_len;  /* calculated length */
334	cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
335		 total_read, rfclen);
336
337	/* is this frame too small to even get to a BCC? */
338	if (total_read < 2 + sizeof(struct smb_hdr)) {
339		if ((total_read >= sizeof(struct smb_hdr) - 1)
340			    && (smb->Status.CifsError != 0)) {
341			/* it's an error return */
342			smb->WordCount = 0;
343			/* some error cases do not return wct and bcc */
344			return 0;
345		} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
346				(smb->WordCount == 0)) {
347			char *tmp = (char *)smb;
348			/* Need to work around a bug in two servers here */
349			/* First, check if the part of bcc they sent was zero */
350			if (tmp[sizeof(struct smb_hdr)] == 0) {
351				/* some servers return only half of bcc
352				 * on simple responses (wct, bcc both zero)
353				 * in particular have seen this on
354				 * ulogoffX and FindClose. This leaves
355				 * one byte of bcc potentially unitialized
356				 */
357				/* zero rest of bcc */
358				tmp[sizeof(struct smb_hdr)+1] = 0;
359				return 0;
360			}
361			cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
362		} else {
363			cifs_dbg(VFS, "Length less than smb header size\n");
364		}
365		return -EIO;
366	} else if (total_read < sizeof(*smb) + 2 * smb->WordCount) {
367		cifs_dbg(VFS, "%s: can't read BCC due to invalid WordCount(%u)\n",
368			 __func__, smb->WordCount);
369		return -EIO;
370	}
371
372	/* otherwise, there is enough to get to the BCC */
373	if (check_smb_hdr(smb))
374		return -EIO;
375	clc_len = smbCalcSize(smb);
376
377	if (4 + rfclen != total_read) {
378		cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
379			 rfclen);
380		return -EIO;
381	}
382
383	if (4 + rfclen != clc_len) {
384		__u16 mid = get_mid(smb);
385		/* check if bcc wrapped around for large read responses */
386		if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
387			/* check if lengths match mod 64K */
388			if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
389				return 0; /* bcc wrapped */
390		}
391		cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
392			 clc_len, 4 + rfclen, mid);
393
394		if (4 + rfclen < clc_len) {
395			cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
396				 rfclen, mid);
397			return -EIO;
398		} else if (rfclen > clc_len + 512) {
399			/*
400			 * Some servers (Windows XP in particular) send more
401			 * data than the lengths in the SMB packet would
402			 * indicate on certain calls (byte range locks and
403			 * trans2 find first calls in particular). While the
404			 * client can handle such a frame by ignoring the
405			 * trailing data, we choose limit the amount of extra
406			 * data to 512 bytes.
407			 */
408			cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
409				 rfclen, mid);
410			return -EIO;
411		}
412	}
413	return 0;
414}
415
416bool
417is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
418{
419	struct smb_hdr *buf = (struct smb_hdr *)buffer;
420	struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
421	struct TCP_Server_Info *pserver;
422	struct cifs_ses *ses;
423	struct cifs_tcon *tcon;
424	struct cifsInodeInfo *pCifsInode;
425	struct cifsFileInfo *netfile;
426
427	cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
428	if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
429	   (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
430		struct smb_com_transaction_change_notify_rsp *pSMBr =
431			(struct smb_com_transaction_change_notify_rsp *)buf;
432		struct file_notify_information *pnotify;
433		__u32 data_offset = 0;
434		size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
435
436		if (get_bcc(buf) > sizeof(struct file_notify_information)) {
437			data_offset = le32_to_cpu(pSMBr->DataOffset);
438
439			if (data_offset >
440			    len - sizeof(struct file_notify_information)) {
441				cifs_dbg(FYI, "Invalid data_offset %u\n",
442					 data_offset);
443				return true;
444			}
445			pnotify = (struct file_notify_information *)
446				((char *)&pSMBr->hdr.Protocol + data_offset);
447			cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
448				 pnotify->FileName, pnotify->Action);
449			/*   cifs_dump_mem("Rcvd notify Data: ",buf,
450				sizeof(struct smb_hdr)+60); */
451			return true;
452		}
453		if (pSMBr->hdr.Status.CifsError) {
454			cifs_dbg(FYI, "notify err 0x%x\n",
455				 pSMBr->hdr.Status.CifsError);
456			return true;
457		}
458		return false;
459	}
460	if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
461		return false;
462	if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
463		/* no sense logging error on invalid handle on oplock
464		   break - harmless race between close request and oplock
465		   break response is expected from time to time writing out
466		   large dirty files cached on the client */
467		if ((NT_STATUS_INVALID_HANDLE) ==
468		   le32_to_cpu(pSMB->hdr.Status.CifsError)) {
469			cifs_dbg(FYI, "Invalid handle on oplock break\n");
470			return true;
471		} else if (ERRbadfid ==
472		   le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
473			return true;
474		} else {
475			return false; /* on valid oplock brk we get "request" */
476		}
477	}
478	if (pSMB->hdr.WordCount != 8)
479		return false;
480
481	cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
482		 pSMB->LockType, pSMB->OplockLevel);
483	if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
484		return false;
485
486	/* If server is a channel, select the primary channel */
487	pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
488
489	/* look up tcon based on tid & uid */
490	spin_lock(&cifs_tcp_ses_lock);
491	list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
492		list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
493			if (tcon->tid != buf->Tid)
494				continue;
495
496			cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
497			spin_lock(&tcon->open_file_lock);
498			list_for_each_entry(netfile, &tcon->openFileList, tlist) {
499				if (pSMB->Fid != netfile->fid.netfid)
500					continue;
501
502				cifs_dbg(FYI, "file id match, oplock break\n");
503				pCifsInode = CIFS_I(d_inode(netfile->dentry));
504
505				set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
506					&pCifsInode->flags);
507
508				netfile->oplock_epoch = 0;
509				netfile->oplock_level = pSMB->OplockLevel;
510				netfile->oplock_break_cancelled = false;
511				cifs_queue_oplock_break(netfile);
512
513				spin_unlock(&tcon->open_file_lock);
514				spin_unlock(&cifs_tcp_ses_lock);
515				return true;
516			}
517			spin_unlock(&tcon->open_file_lock);
518			spin_unlock(&cifs_tcp_ses_lock);
519			cifs_dbg(FYI, "No matching file for oplock break\n");
520			return true;
521		}
522	}
523	spin_unlock(&cifs_tcp_ses_lock);
524	cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
525	return true;
526}
527
528void
529dump_smb(void *buf, int smb_buf_length)
530{
531	if (traceSMB == 0)
532		return;
533
534	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
535		       smb_buf_length, true);
536}
537
538void
539cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
540{
541	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
542		struct cifs_tcon *tcon = NULL;
543
544		if (cifs_sb->master_tlink)
545			tcon = cifs_sb_master_tcon(cifs_sb);
546
547		cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
548		cifs_sb->mnt_cifs_serverino_autodisabled = true;
549		cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
550			 tcon ? tcon->tree_name : "new server");
551		cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
552		cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
553
554	}
555}
556
557void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
558{
559	oplock &= 0xF;
560
561	if (oplock == OPLOCK_EXCLUSIVE) {
562		cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
563		cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
564			 &cinode->netfs.inode);
565	} else if (oplock == OPLOCK_READ) {
566		cinode->oplock = CIFS_CACHE_READ_FLG;
567		cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
568			 &cinode->netfs.inode);
569	} else
570		cinode->oplock = 0;
571}
572
573/*
574 * We wait for oplock breaks to be processed before we attempt to perform
575 * writes.
576 */
577int cifs_get_writer(struct cifsInodeInfo *cinode)
578{
579	int rc;
580
581start:
582	rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
583			 TASK_KILLABLE);
584	if (rc)
585		return rc;
586
587	spin_lock(&cinode->writers_lock);
588	if (!cinode->writers)
589		set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
590	cinode->writers++;
591	/* Check to see if we have started servicing an oplock break */
592	if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
593		cinode->writers--;
594		if (cinode->writers == 0) {
595			clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
596			wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
597		}
598		spin_unlock(&cinode->writers_lock);
599		goto start;
600	}
601	spin_unlock(&cinode->writers_lock);
602	return 0;
603}
604
605void cifs_put_writer(struct cifsInodeInfo *cinode)
606{
607	spin_lock(&cinode->writers_lock);
608	cinode->writers--;
609	if (cinode->writers == 0) {
610		clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
611		wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
612	}
613	spin_unlock(&cinode->writers_lock);
614}
615
616/**
617 * cifs_queue_oplock_break - queue the oplock break handler for cfile
618 * @cfile: The file to break the oplock on
619 *
620 * This function is called from the demultiplex thread when it
621 * receives an oplock break for @cfile.
622 *
623 * Assumes the tcon->open_file_lock is held.
624 * Assumes cfile->file_info_lock is NOT held.
625 */
626void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
627{
628	/*
629	 * Bump the handle refcount now while we hold the
630	 * open_file_lock to enforce the validity of it for the oplock
631	 * break handler. The matching put is done at the end of the
632	 * handler.
633	 */
634	cifsFileInfo_get(cfile);
635
636	queue_work(cifsoplockd_wq, &cfile->oplock_break);
637}
638
639void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
640{
641	clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
642	wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
643}
644
645bool
646backup_cred(struct cifs_sb_info *cifs_sb)
647{
648	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
649		if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
650			return true;
651	}
652	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
653		if (in_group_p(cifs_sb->ctx->backupgid))
654			return true;
655	}
656
657	return false;
658}
659
660void
661cifs_del_pending_open(struct cifs_pending_open *open)
662{
663	spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
664	list_del(&open->olist);
665	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
666}
667
668void
669cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
670			     struct cifs_pending_open *open)
671{
672	memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
673	open->oplock = CIFS_OPLOCK_NO_CHANGE;
674	open->tlink = tlink;
675	fid->pending_open = open;
676	list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
677}
678
679void
680cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
681		      struct cifs_pending_open *open)
682{
683	spin_lock(&tlink_tcon(tlink)->open_file_lock);
684	cifs_add_pending_open_locked(fid, tlink, open);
685	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
686}
687
688/*
689 * Critical section which runs after acquiring deferred_lock.
690 * As there is no reference count on cifs_deferred_close, pdclose
691 * should not be used outside deferred_lock.
692 */
693bool
694cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
695{
696	struct cifs_deferred_close *dclose;
697
698	list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
699		if ((dclose->netfid == cfile->fid.netfid) &&
700			(dclose->persistent_fid == cfile->fid.persistent_fid) &&
701			(dclose->volatile_fid == cfile->fid.volatile_fid)) {
702			*pdclose = dclose;
703			return true;
704		}
705	}
706	return false;
707}
708
709/*
710 * Critical section which runs after acquiring deferred_lock.
711 */
712void
713cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
714{
715	bool is_deferred = false;
716	struct cifs_deferred_close *pdclose;
717
718	is_deferred = cifs_is_deferred_close(cfile, &pdclose);
719	if (is_deferred) {
720		kfree(dclose);
721		return;
722	}
723
724	dclose->tlink = cfile->tlink;
725	dclose->netfid = cfile->fid.netfid;
726	dclose->persistent_fid = cfile->fid.persistent_fid;
727	dclose->volatile_fid = cfile->fid.volatile_fid;
728	list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
729}
730
731/*
732 * Critical section which runs after acquiring deferred_lock.
733 */
734void
735cifs_del_deferred_close(struct cifsFileInfo *cfile)
736{
737	bool is_deferred = false;
738	struct cifs_deferred_close *dclose;
739
740	is_deferred = cifs_is_deferred_close(cfile, &dclose);
741	if (!is_deferred)
742		return;
743	list_del(&dclose->dlist);
744	kfree(dclose);
745}
746
747void
748cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
749{
750	struct cifsFileInfo *cfile = NULL;
751	struct file_list *tmp_list, *tmp_next_list;
752	struct list_head file_head;
753
754	if (cifs_inode == NULL)
755		return;
756
757	INIT_LIST_HEAD(&file_head);
758	spin_lock(&cifs_inode->open_file_lock);
759	list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
760		if (delayed_work_pending(&cfile->deferred)) {
761			if (cancel_delayed_work(&cfile->deferred)) {
762				spin_lock(&cifs_inode->deferred_lock);
763				cifs_del_deferred_close(cfile);
764				spin_unlock(&cifs_inode->deferred_lock);
765
766				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
767				if (tmp_list == NULL)
768					break;
769				tmp_list->cfile = cfile;
770				list_add_tail(&tmp_list->list, &file_head);
771			}
772		}
773	}
774	spin_unlock(&cifs_inode->open_file_lock);
775
776	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
777		_cifsFileInfo_put(tmp_list->cfile, false, false);
778		list_del(&tmp_list->list);
779		kfree(tmp_list);
780	}
781}
782
783void
784cifs_close_all_deferred_files(struct cifs_tcon *tcon)
785{
786	struct cifsFileInfo *cfile;
787	struct file_list *tmp_list, *tmp_next_list;
788	struct list_head file_head;
789
790	INIT_LIST_HEAD(&file_head);
791	spin_lock(&tcon->open_file_lock);
792	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
793		if (delayed_work_pending(&cfile->deferred)) {
794			if (cancel_delayed_work(&cfile->deferred)) {
795				spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
796				cifs_del_deferred_close(cfile);
797				spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
798
799				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
800				if (tmp_list == NULL)
801					break;
802				tmp_list->cfile = cfile;
803				list_add_tail(&tmp_list->list, &file_head);
804			}
805		}
806	}
807	spin_unlock(&tcon->open_file_lock);
808
809	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
810		_cifsFileInfo_put(tmp_list->cfile, true, false);
811		list_del(&tmp_list->list);
812		kfree(tmp_list);
813	}
814}
815void
816cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
817{
818	struct cifsFileInfo *cfile;
819	struct file_list *tmp_list, *tmp_next_list;
820	struct list_head file_head;
821	void *page;
822	const char *full_path;
823
824	INIT_LIST_HEAD(&file_head);
825	page = alloc_dentry_path();
826	spin_lock(&tcon->open_file_lock);
827	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
828		full_path = build_path_from_dentry(cfile->dentry, page);
829		if (strstr(full_path, path)) {
830			if (delayed_work_pending(&cfile->deferred)) {
831				if (cancel_delayed_work(&cfile->deferred)) {
832					spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
833					cifs_del_deferred_close(cfile);
834					spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
835
836					tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
837					if (tmp_list == NULL)
838						break;
839					tmp_list->cfile = cfile;
840					list_add_tail(&tmp_list->list, &file_head);
841				}
842			}
843		}
844	}
845	spin_unlock(&tcon->open_file_lock);
846
847	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
848		_cifsFileInfo_put(tmp_list->cfile, true, false);
849		list_del(&tmp_list->list);
850		kfree(tmp_list);
851	}
852	free_dentry_path(page);
853}
854
855/* parses DFS referral V3 structure
856 * caller is responsible for freeing target_nodes
857 * returns:
858 * - on success - 0
859 * - on failure - errno
860 */
861int
862parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
863		    unsigned int *num_of_nodes,
864		    struct dfs_info3_param **target_nodes,
865		    const struct nls_table *nls_codepage, int remap,
866		    const char *searchName, bool is_unicode)
867{
868	int i, rc = 0;
869	char *data_end;
870	struct dfs_referral_level_3 *ref;
871
872	*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
873
874	if (*num_of_nodes < 1) {
875		cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
876			 *num_of_nodes);
877		rc = -EINVAL;
878		goto parse_DFS_referrals_exit;
879	}
880
881	ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
882	if (ref->VersionNumber != cpu_to_le16(3)) {
883		cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
884			 le16_to_cpu(ref->VersionNumber));
885		rc = -EINVAL;
886		goto parse_DFS_referrals_exit;
887	}
888
889	/* get the upper boundary of the resp buffer */
890	data_end = (char *)rsp + rsp_size;
891
892	cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
893		 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
894
895	*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
896				GFP_KERNEL);
897	if (*target_nodes == NULL) {
898		rc = -ENOMEM;
899		goto parse_DFS_referrals_exit;
900	}
901
902	/* collect necessary data from referrals */
903	for (i = 0; i < *num_of_nodes; i++) {
904		char *temp;
905		int max_len;
906		struct dfs_info3_param *node = (*target_nodes)+i;
907
908		node->flags = le32_to_cpu(rsp->DFSFlags);
909		if (is_unicode) {
910			__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
911						GFP_KERNEL);
912			if (tmp == NULL) {
913				rc = -ENOMEM;
914				goto parse_DFS_referrals_exit;
915			}
916			cifsConvertToUTF16((__le16 *) tmp, searchName,
917					   PATH_MAX, nls_codepage, remap);
918			node->path_consumed = cifs_utf16_bytes(tmp,
919					le16_to_cpu(rsp->PathConsumed),
920					nls_codepage);
921			kfree(tmp);
922		} else
923			node->path_consumed = le16_to_cpu(rsp->PathConsumed);
924
925		node->server_type = le16_to_cpu(ref->ServerType);
926		node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
927
928		/* copy DfsPath */
929		temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
930		max_len = data_end - temp;
931		node->path_name = cifs_strndup_from_utf16(temp, max_len,
932						is_unicode, nls_codepage);
933		if (!node->path_name) {
934			rc = -ENOMEM;
935			goto parse_DFS_referrals_exit;
936		}
937
938		/* copy link target UNC */
939		temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
940		max_len = data_end - temp;
941		node->node_name = cifs_strndup_from_utf16(temp, max_len,
942						is_unicode, nls_codepage);
943		if (!node->node_name) {
944			rc = -ENOMEM;
945			goto parse_DFS_referrals_exit;
946		}
947
948		node->ttl = le32_to_cpu(ref->TimeToLive);
949
950		ref++;
951	}
952
953parse_DFS_referrals_exit:
954	if (rc) {
955		free_dfs_info_array(*target_nodes, *num_of_nodes);
956		*target_nodes = NULL;
957		*num_of_nodes = 0;
958	}
959	return rc;
960}
961
962struct cifs_aio_ctx *
963cifs_aio_ctx_alloc(void)
964{
965	struct cifs_aio_ctx *ctx;
966
967	/*
968	 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
969	 * to false so that we know when we have to unreference pages within
970	 * cifs_aio_ctx_release()
971	 */
972	ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
973	if (!ctx)
974		return NULL;
975
976	INIT_LIST_HEAD(&ctx->list);
977	mutex_init(&ctx->aio_mutex);
978	init_completion(&ctx->done);
979	kref_init(&ctx->refcount);
980	return ctx;
981}
982
983void
984cifs_aio_ctx_release(struct kref *refcount)
985{
986	struct cifs_aio_ctx *ctx = container_of(refcount,
987					struct cifs_aio_ctx, refcount);
988
989	cifsFileInfo_put(ctx->cfile);
990
991	/*
992	 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
993	 * which means that iov_iter_extract_pages() was a success and thus
994	 * that we may have references or pins on pages that we need to
995	 * release.
996	 */
997	if (ctx->bv) {
998		if (ctx->should_dirty || ctx->bv_need_unpin) {
999			unsigned int i;
1000
1001			for (i = 0; i < ctx->nr_pinned_pages; i++) {
1002				struct page *page = ctx->bv[i].bv_page;
1003
1004				if (ctx->should_dirty)
1005					set_page_dirty(page);
1006				if (ctx->bv_need_unpin)
1007					unpin_user_page(page);
1008			}
1009		}
1010		kvfree(ctx->bv);
1011	}
1012
1013	kfree(ctx);
1014}
1015
1016/**
1017 * cifs_alloc_hash - allocate hash and hash context together
1018 * @name: The name of the crypto hash algo
1019 * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1020 *
1021 * The caller has to make sure @sdesc is initialized to either NULL or
1022 * a valid context. It can be freed via cifs_free_hash().
1023 */
1024int
1025cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1026{
1027	int rc = 0;
1028	struct crypto_shash *alg = NULL;
1029
1030	if (*sdesc)
1031		return 0;
1032
1033	alg = crypto_alloc_shash(name, 0, 0);
1034	if (IS_ERR(alg)) {
1035		cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1036		rc = PTR_ERR(alg);
1037		*sdesc = NULL;
1038		return rc;
1039	}
1040
1041	*sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1042	if (*sdesc == NULL) {
1043		cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1044		crypto_free_shash(alg);
1045		return -ENOMEM;
1046	}
1047
1048	(*sdesc)->tfm = alg;
1049	return 0;
1050}
1051
1052/**
1053 * cifs_free_hash - free hash and hash context together
1054 * @sdesc: Where to find the pointer to the hash TFM
1055 *
1056 * Freeing a NULL descriptor is safe.
1057 */
1058void
1059cifs_free_hash(struct shash_desc **sdesc)
1060{
1061	if (unlikely(!sdesc) || !*sdesc)
1062		return;
1063
1064	if ((*sdesc)->tfm) {
1065		crypto_free_shash((*sdesc)->tfm);
1066		(*sdesc)->tfm = NULL;
1067	}
1068
1069	kfree_sensitive(*sdesc);
1070	*sdesc = NULL;
1071}
1072
1073void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1074{
1075	const char *end;
1076
1077	/* skip initial slashes */
1078	while (*unc && (*unc == '\\' || *unc == '/'))
1079		unc++;
1080
1081	end = unc;
1082
1083	while (*end && !(*end == '\\' || *end == '/'))
1084		end++;
1085
1086	*h = unc;
1087	*len = end - unc;
1088}
1089
1090/**
1091 * copy_path_name - copy src path to dst, possibly truncating
1092 * @dst: The destination buffer
1093 * @src: The source name
1094 *
1095 * returns number of bytes written (including trailing nul)
1096 */
1097int copy_path_name(char *dst, const char *src)
1098{
1099	int name_len;
1100
1101	/*
1102	 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1103	 * will truncate and strlen(dst) will be PATH_MAX-1
1104	 */
1105	name_len = strscpy(dst, src, PATH_MAX);
1106	if (WARN_ON_ONCE(name_len < 0))
1107		name_len = PATH_MAX-1;
1108
1109	/* we count the trailing nul */
1110	name_len++;
1111	return name_len;
1112}
1113
1114struct super_cb_data {
1115	void *data;
1116	struct super_block *sb;
1117};
1118
1119static void tcon_super_cb(struct super_block *sb, void *arg)
1120{
1121	struct super_cb_data *sd = arg;
1122	struct cifs_sb_info *cifs_sb;
1123	struct cifs_tcon *t1 = sd->data, *t2;
1124
1125	if (sd->sb)
1126		return;
1127
1128	cifs_sb = CIFS_SB(sb);
1129	t2 = cifs_sb_master_tcon(cifs_sb);
1130
1131	spin_lock(&t2->tc_lock);
1132	if (t1->ses == t2->ses &&
1133	    t1->ses->server == t2->ses->server &&
1134	    t2->origin_fullpath &&
1135	    dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
1136		sd->sb = sb;
1137	spin_unlock(&t2->tc_lock);
1138}
1139
1140static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1141					    void *data)
1142{
1143	struct super_cb_data sd = {
1144		.data = data,
1145		.sb = NULL,
1146	};
1147	struct file_system_type **fs_type = (struct file_system_type *[]) {
1148		&cifs_fs_type, &smb3_fs_type, NULL,
1149	};
1150
1151	for (; *fs_type; fs_type++) {
1152		iterate_supers_type(*fs_type, f, &sd);
1153		if (sd.sb) {
1154			/*
1155			 * Grab an active reference in order to prevent automounts (DFS links)
1156			 * of expiring and then freeing up our cifs superblock pointer while
1157			 * we're doing failover.
1158			 */
1159			cifs_sb_active(sd.sb);
1160			return sd.sb;
1161		}
1162	}
1163	pr_warn_once("%s: could not find dfs superblock\n", __func__);
1164	return ERR_PTR(-EINVAL);
1165}
1166
1167static void __cifs_put_super(struct super_block *sb)
1168{
1169	if (!IS_ERR_OR_NULL(sb))
1170		cifs_sb_deactive(sb);
1171}
1172
1173struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
1174{
1175	spin_lock(&tcon->tc_lock);
1176	if (!tcon->origin_fullpath) {
1177		spin_unlock(&tcon->tc_lock);
1178		return ERR_PTR(-ENOENT);
1179	}
1180	spin_unlock(&tcon->tc_lock);
1181	return __cifs_get_super(tcon_super_cb, tcon);
1182}
1183
1184void cifs_put_tcp_super(struct super_block *sb)
1185{
1186	__cifs_put_super(sb);
1187}
1188
1189#ifdef CONFIG_CIFS_DFS_UPCALL
1190int match_target_ip(struct TCP_Server_Info *server,
1191		    const char *share, size_t share_len,
1192		    bool *result)
1193{
1194	int rc;
1195	char *target;
1196	struct sockaddr_storage ss;
1197
1198	*result = false;
1199
1200	target = kzalloc(share_len + 3, GFP_KERNEL);
1201	if (!target)
1202		return -ENOMEM;
1203
1204	scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1205
1206	cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1207
1208	rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1209	kfree(target);
1210
1211	if (rc < 0)
1212		return rc;
1213
1214	spin_lock(&server->srv_lock);
1215	*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1216	spin_unlock(&server->srv_lock);
1217	cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1218	return 0;
1219}
1220
1221int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1222{
1223	int rc;
1224
1225	kfree(cifs_sb->prepath);
1226	cifs_sb->prepath = NULL;
1227
1228	if (prefix && *prefix) {
1229		cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1230		if (IS_ERR(cifs_sb->prepath)) {
1231			rc = PTR_ERR(cifs_sb->prepath);
1232			cifs_sb->prepath = NULL;
1233			return rc;
1234		}
1235		if (cifs_sb->prepath)
1236			convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1237	}
1238
1239	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1240	return 0;
1241}
1242
1243/*
1244 * Handle weird Windows SMB server behaviour. It responds with
1245 * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1246 * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1247 * non-ASCII unicode symbols.
1248 */
1249int cifs_inval_name_dfs_link_error(const unsigned int xid,
1250				   struct cifs_tcon *tcon,
1251				   struct cifs_sb_info *cifs_sb,
1252				   const char *full_path,
1253				   bool *islink)
1254{
1255	struct cifs_ses *ses = tcon->ses;
1256	size_t len;
1257	char *path;
1258	char *ref_path;
1259
1260	*islink = false;
1261
1262	/*
1263	 * Fast path - skip check when @full_path doesn't have a prefix path to
1264	 * look up or tcon is not DFS.
1265	 */
1266	if (strlen(full_path) < 2 || !cifs_sb ||
1267	    (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1268	    !is_tcon_dfs(tcon))
1269		return 0;
1270
1271	spin_lock(&tcon->tc_lock);
1272	if (!tcon->origin_fullpath) {
1273		spin_unlock(&tcon->tc_lock);
1274		return 0;
1275	}
1276	spin_unlock(&tcon->tc_lock);
1277
1278	/*
1279	 * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1280	 * to get a referral to figure out whether it is an DFS link.
1281	 */
1282	len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1283	path = kmalloc(len, GFP_KERNEL);
1284	if (!path)
1285		return -ENOMEM;
1286
1287	scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1288	ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1289					    cifs_remap(cifs_sb));
1290	kfree(path);
1291
1292	if (IS_ERR(ref_path)) {
1293		if (PTR_ERR(ref_path) != -EINVAL)
1294			return PTR_ERR(ref_path);
1295	} else {
1296		struct dfs_info3_param *refs = NULL;
1297		int num_refs = 0;
1298
1299		/*
1300		 * XXX: we are not using dfs_cache_find() here because we might
1301		 * end up filling all the DFS cache and thus potentially
1302		 * removing cached DFS targets that the client would eventually
1303		 * need during failover.
1304		 */
1305		ses = CIFS_DFS_ROOT_SES(ses);
1306		if (ses->server->ops->get_dfs_refer &&
1307		    !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1308						     &num_refs, cifs_sb->local_nls,
1309						     cifs_remap(cifs_sb)))
1310			*islink = refs[0].server_type == DFS_TYPE_LINK;
1311		free_dfs_info_array(refs, num_refs);
1312		kfree(ref_path);
1313	}
1314	return 0;
1315}
1316#endif
1317
1318int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1319{
1320	int timeout = 10;
1321	int rc;
1322
1323	spin_lock(&server->srv_lock);
1324	if (server->tcpStatus != CifsNeedReconnect) {
1325		spin_unlock(&server->srv_lock);
1326		return 0;
1327	}
1328	timeout *= server->nr_targets;
1329	spin_unlock(&server->srv_lock);
1330
1331	/*
1332	 * Give demultiplex thread up to 10 seconds to each target available for
1333	 * reconnect -- should be greater than cifs socket timeout which is 7
1334	 * seconds.
1335	 *
1336	 * On "soft" mounts we wait once. Hard mounts keep retrying until
1337	 * process is killed or server comes back on-line.
1338	 */
1339	do {
1340		rc = wait_event_interruptible_timeout(server->response_q,
1341						      (server->tcpStatus != CifsNeedReconnect),
1342						      timeout * HZ);
1343		if (rc < 0) {
1344			cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1345				 __func__);
1346			return -ERESTARTSYS;
1347		}
1348
1349		/* are we still trying to reconnect? */
1350		spin_lock(&server->srv_lock);
1351		if (server->tcpStatus != CifsNeedReconnect) {
1352			spin_unlock(&server->srv_lock);
1353			return 0;
1354		}
1355		spin_unlock(&server->srv_lock);
1356	} while (retry);
1357
1358	cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1359	return -EHOSTDOWN;
1360}
1361