xref: /kernel/linux/linux-6.6/fs/reiserfs/inode.c (revision 62306a36)
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <linux/time.h>
6#include <linux/fs.h>
7#include "reiserfs.h"
8#include "acl.h"
9#include "xattr.h"
10#include <linux/exportfs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/slab.h>
14#include <linux/uaccess.h>
15#include <asm/unaligned.h>
16#include <linux/buffer_head.h>
17#include <linux/mpage.h>
18#include <linux/writeback.h>
19#include <linux/quotaops.h>
20#include <linux/swap.h>
21#include <linux/uio.h>
22#include <linux/bio.h>
23
24int reiserfs_commit_write(struct file *f, struct page *page,
25			  unsigned from, unsigned to);
26
27void reiserfs_evict_inode(struct inode *inode)
28{
29	/*
30	 * We need blocks for transaction + (user+group) quota
31	 * update (possibly delete)
32	 */
33	int jbegin_count =
34	    JOURNAL_PER_BALANCE_CNT * 2 +
35	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
36	struct reiserfs_transaction_handle th;
37	int err;
38
39	if (!inode->i_nlink && !is_bad_inode(inode))
40		dquot_initialize(inode);
41
42	truncate_inode_pages_final(&inode->i_data);
43	if (inode->i_nlink)
44		goto no_delete;
45
46	/*
47	 * The = 0 happens when we abort creating a new inode
48	 * for some reason like lack of space..
49	 * also handles bad_inode case
50	 */
51	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
52
53		reiserfs_delete_xattrs(inode);
54
55		reiserfs_write_lock(inode->i_sb);
56
57		if (journal_begin(&th, inode->i_sb, jbegin_count))
58			goto out;
59		reiserfs_update_inode_transaction(inode);
60
61		reiserfs_discard_prealloc(&th, inode);
62
63		err = reiserfs_delete_object(&th, inode);
64
65		/*
66		 * Do quota update inside a transaction for journaled quotas.
67		 * We must do that after delete_object so that quota updates
68		 * go into the same transaction as stat data deletion
69		 */
70		if (!err) {
71			int depth = reiserfs_write_unlock_nested(inode->i_sb);
72			dquot_free_inode(inode);
73			reiserfs_write_lock_nested(inode->i_sb, depth);
74		}
75
76		if (journal_end(&th))
77			goto out;
78
79		/*
80		 * check return value from reiserfs_delete_object after
81		 * ending the transaction
82		 */
83		if (err)
84		    goto out;
85
86		/*
87		 * all items of file are deleted, so we can remove
88		 * "save" link
89		 * we can't do anything about an error here
90		 */
91		remove_save_link(inode, 0 /* not truncate */);
92out:
93		reiserfs_write_unlock(inode->i_sb);
94	} else {
95		/* no object items are in the tree */
96		;
97	}
98
99	/* note this must go after the journal_end to prevent deadlock */
100	clear_inode(inode);
101
102	dquot_drop(inode);
103	inode->i_blocks = 0;
104	return;
105
106no_delete:
107	clear_inode(inode);
108	dquot_drop(inode);
109}
110
111static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
112			  __u32 objectid, loff_t offset, int type, int length)
113{
114	key->version = version;
115
116	key->on_disk_key.k_dir_id = dirid;
117	key->on_disk_key.k_objectid = objectid;
118	set_cpu_key_k_offset(key, offset);
119	set_cpu_key_k_type(key, type);
120	key->key_length = length;
121}
122
123/*
124 * take base of inode_key (it comes from inode always) (dirid, objectid)
125 * and version from an inode, set offset and type of key
126 */
127void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
128		  int type, int length)
129{
130	_make_cpu_key(key, get_inode_item_key_version(inode),
131		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
132		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
133		      length);
134}
135
136/* when key is 0, do not set version and short key */
137inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
138			      int version,
139			      loff_t offset, int type, int length,
140			      int entry_count /*or ih_free_space */ )
141{
142	if (key) {
143		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
144		ih->ih_key.k_objectid =
145		    cpu_to_le32(key->on_disk_key.k_objectid);
146	}
147	put_ih_version(ih, version);
148	set_le_ih_k_offset(ih, offset);
149	set_le_ih_k_type(ih, type);
150	put_ih_item_len(ih, length);
151	/*    set_ih_free_space (ih, 0); */
152	/*
153	 * for directory items it is entry count, for directs and stat
154	 * datas - 0xffff, for indirects - 0
155	 */
156	put_ih_entry_count(ih, entry_count);
157}
158
159/*
160 * FIXME: we might cache recently accessed indirect item
161 * Ugh.  Not too eager for that....
162 * I cut the code until such time as I see a convincing argument (benchmark).
163 * I don't want a bloated inode struct..., and I don't like code complexity....
164 */
165
166/*
167 * cutting the code is fine, since it really isn't in use yet and is easy
168 * to add back in.  But, Vladimir has a really good idea here.  Think
169 * about what happens for reading a file.  For each page,
170 * The VFS layer calls reiserfs_read_folio, who searches the tree to find
171 * an indirect item.  This indirect item has X number of pointers, where
172 * X is a big number if we've done the block allocation right.  But,
173 * we only use one or two of these pointers during each call to read_folio,
174 * needlessly researching again later on.
175 *
176 * The size of the cache could be dynamic based on the size of the file.
177 *
178 * I'd also like to see us cache the location the stat data item, since
179 * we are needlessly researching for that frequently.
180 *
181 * --chris
182 */
183
184/*
185 * If this page has a file tail in it, and
186 * it was read in by get_block_create_0, the page data is valid,
187 * but tail is still sitting in a direct item, and we can't write to
188 * it.  So, look through this page, and check all the mapped buffers
189 * to make sure they have valid block numbers.  Any that don't need
190 * to be unmapped, so that __block_write_begin will correctly call
191 * reiserfs_get_block to convert the tail into an unformatted node
192 */
193static inline void fix_tail_page_for_writing(struct page *page)
194{
195	struct buffer_head *head, *next, *bh;
196
197	if (page && page_has_buffers(page)) {
198		head = page_buffers(page);
199		bh = head;
200		do {
201			next = bh->b_this_page;
202			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
203				reiserfs_unmap_buffer(bh);
204			}
205			bh = next;
206		} while (bh != head);
207	}
208}
209
210/*
211 * reiserfs_get_block does not need to allocate a block only if it has been
212 * done already or non-hole position has been found in the indirect item
213 */
214static inline int allocation_needed(int retval, b_blocknr_t allocated,
215				    struct item_head *ih,
216				    __le32 * item, int pos_in_item)
217{
218	if (allocated)
219		return 0;
220	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
221	    get_block_num(item, pos_in_item))
222		return 0;
223	return 1;
224}
225
226static inline int indirect_item_found(int retval, struct item_head *ih)
227{
228	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
229}
230
231static inline void set_block_dev_mapped(struct buffer_head *bh,
232					b_blocknr_t block, struct inode *inode)
233{
234	map_bh(bh, inode->i_sb, block);
235}
236
237/*
238 * files which were created in the earlier version can not be longer,
239 * than 2 gb
240 */
241static int file_capable(struct inode *inode, sector_t block)
242{
243	/* it is new file. */
244	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
245	    /* old file, but 'block' is inside of 2gb */
246	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
247		return 1;
248
249	return 0;
250}
251
252static int restart_transaction(struct reiserfs_transaction_handle *th,
253			       struct inode *inode, struct treepath *path)
254{
255	struct super_block *s = th->t_super;
256	int err;
257
258	BUG_ON(!th->t_trans_id);
259	BUG_ON(!th->t_refcount);
260
261	pathrelse(path);
262
263	/* we cannot restart while nested */
264	if (th->t_refcount > 1) {
265		return 0;
266	}
267	reiserfs_update_sd(th, inode);
268	err = journal_end(th);
269	if (!err) {
270		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
271		if (!err)
272			reiserfs_update_inode_transaction(inode);
273	}
274	return err;
275}
276
277/*
278 * it is called by get_block when create == 0. Returns block number
279 * for 'block'-th logical block of file. When it hits direct item it
280 * returns 0 (being called from bmap) or read direct item into piece
281 * of page (bh_result)
282 * Please improve the english/clarity in the comment above, as it is
283 * hard to understand.
284 */
285static int _get_block_create_0(struct inode *inode, sector_t block,
286			       struct buffer_head *bh_result, int args)
287{
288	INITIALIZE_PATH(path);
289	struct cpu_key key;
290	struct buffer_head *bh;
291	struct item_head *ih, tmp_ih;
292	b_blocknr_t blocknr;
293	char *p;
294	int chars;
295	int ret;
296	int result;
297	int done = 0;
298	unsigned long offset;
299
300	/* prepare the key to look for the 'block'-th block of file */
301	make_cpu_key(&key, inode,
302		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
303		     3);
304
305	result = search_for_position_by_key(inode->i_sb, &key, &path);
306	if (result != POSITION_FOUND) {
307		pathrelse(&path);
308		if (result == IO_ERROR)
309			return -EIO;
310		/*
311		 * We do not return -ENOENT if there is a hole but page is
312		 * uptodate, because it means that there is some MMAPED data
313		 * associated with it that is yet to be written to disk.
314		 */
315		if ((args & GET_BLOCK_NO_HOLE)
316		    && !PageUptodate(bh_result->b_page)) {
317			return -ENOENT;
318		}
319		return 0;
320	}
321
322	bh = get_last_bh(&path);
323	ih = tp_item_head(&path);
324	if (is_indirect_le_ih(ih)) {
325		__le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
326
327		/*
328		 * FIXME: here we could cache indirect item or part of it in
329		 * the inode to avoid search_by_key in case of subsequent
330		 * access to file
331		 */
332		blocknr = get_block_num(ind_item, path.pos_in_item);
333		ret = 0;
334		if (blocknr) {
335			map_bh(bh_result, inode->i_sb, blocknr);
336			if (path.pos_in_item ==
337			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
338				set_buffer_boundary(bh_result);
339			}
340		} else
341			/*
342			 * We do not return -ENOENT if there is a hole but
343			 * page is uptodate, because it means that there is
344			 * some MMAPED data associated with it that is
345			 * yet to be written to disk.
346			 */
347		if ((args & GET_BLOCK_NO_HOLE)
348			    && !PageUptodate(bh_result->b_page)) {
349			ret = -ENOENT;
350		}
351
352		pathrelse(&path);
353		return ret;
354	}
355	/* requested data are in direct item(s) */
356	if (!(args & GET_BLOCK_READ_DIRECT)) {
357		/*
358		 * we are called by bmap. FIXME: we can not map block of file
359		 * when it is stored in direct item(s)
360		 */
361		pathrelse(&path);
362		return -ENOENT;
363	}
364
365	/*
366	 * if we've got a direct item, and the buffer or page was uptodate,
367	 * we don't want to pull data off disk again.  skip to the
368	 * end, where we map the buffer and return
369	 */
370	if (buffer_uptodate(bh_result)) {
371		goto finished;
372	} else
373		/*
374		 * grab_tail_page can trigger calls to reiserfs_get_block on
375		 * up to date pages without any buffers.  If the page is up
376		 * to date, we don't want read old data off disk.  Set the up
377		 * to date bit on the buffer instead and jump to the end
378		 */
379	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
380		set_buffer_uptodate(bh_result);
381		goto finished;
382	}
383	/* read file tail into part of page */
384	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
385	copy_item_head(&tmp_ih, ih);
386
387	/*
388	 * we only want to kmap if we are reading the tail into the page.
389	 * this is not the common case, so we don't kmap until we are
390	 * sure we need to.  But, this means the item might move if
391	 * kmap schedules
392	 */
393	p = (char *)kmap(bh_result->b_page);
394	p += offset;
395	memset(p, 0, inode->i_sb->s_blocksize);
396	do {
397		if (!is_direct_le_ih(ih)) {
398			BUG();
399		}
400		/*
401		 * make sure we don't read more bytes than actually exist in
402		 * the file.  This can happen in odd cases where i_size isn't
403		 * correct, and when direct item padding results in a few
404		 * extra bytes at the end of the direct item
405		 */
406		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
407			break;
408		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
409			chars =
410			    inode->i_size - (le_ih_k_offset(ih) - 1) -
411			    path.pos_in_item;
412			done = 1;
413		} else {
414			chars = ih_item_len(ih) - path.pos_in_item;
415		}
416		memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
417
418		if (done)
419			break;
420
421		p += chars;
422
423		/*
424		 * we done, if read direct item is not the last item of
425		 * node FIXME: we could try to check right delimiting key
426		 * to see whether direct item continues in the right
427		 * neighbor or rely on i_size
428		 */
429		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
430			break;
431
432		/* update key to look for the next piece */
433		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
434		result = search_for_position_by_key(inode->i_sb, &key, &path);
435		if (result != POSITION_FOUND)
436			/* i/o error most likely */
437			break;
438		bh = get_last_bh(&path);
439		ih = tp_item_head(&path);
440	} while (1);
441
442	flush_dcache_page(bh_result->b_page);
443	kunmap(bh_result->b_page);
444
445finished:
446	pathrelse(&path);
447
448	if (result == IO_ERROR)
449		return -EIO;
450
451	/*
452	 * this buffer has valid data, but isn't valid for io.  mapping it to
453	 * block #0 tells the rest of reiserfs it just has a tail in it
454	 */
455	map_bh(bh_result, inode->i_sb, 0);
456	set_buffer_uptodate(bh_result);
457	return 0;
458}
459
460/*
461 * this is called to create file map. So, _get_block_create_0 will not
462 * read direct item
463 */
464static int reiserfs_bmap(struct inode *inode, sector_t block,
465			 struct buffer_head *bh_result, int create)
466{
467	if (!file_capable(inode, block))
468		return -EFBIG;
469
470	reiserfs_write_lock(inode->i_sb);
471	/* do not read the direct item */
472	_get_block_create_0(inode, block, bh_result, 0);
473	reiserfs_write_unlock(inode->i_sb);
474	return 0;
475}
476
477/*
478 * special version of get_block that is only used by grab_tail_page right
479 * now.  It is sent to __block_write_begin, and when you try to get a
480 * block past the end of the file (or a block from a hole) it returns
481 * -ENOENT instead of a valid buffer.  __block_write_begin expects to
482 * be able to do i/o on the buffers returned, unless an error value
483 * is also returned.
484 *
485 * So, this allows __block_write_begin to be used for reading a single block
486 * in a page.  Where it does not produce a valid page for holes, or past the
487 * end of the file.  This turns out to be exactly what we need for reading
488 * tails for conversion.
489 *
490 * The point of the wrapper is forcing a certain value for create, even
491 * though the VFS layer is calling this function with create==1.  If you
492 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
493 * don't use this function.
494*/
495static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
496				       struct buffer_head *bh_result,
497				       int create)
498{
499	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
500}
501
502/*
503 * This is special helper for reiserfs_get_block in case we are executing
504 * direct_IO request.
505 */
506static int reiserfs_get_blocks_direct_io(struct inode *inode,
507					 sector_t iblock,
508					 struct buffer_head *bh_result,
509					 int create)
510{
511	int ret;
512
513	bh_result->b_page = NULL;
514
515	/*
516	 * We set the b_size before reiserfs_get_block call since it is
517	 * referenced in convert_tail_for_hole() that may be called from
518	 * reiserfs_get_block()
519	 */
520	bh_result->b_size = i_blocksize(inode);
521
522	ret = reiserfs_get_block(inode, iblock, bh_result,
523				 create | GET_BLOCK_NO_DANGLE);
524	if (ret)
525		goto out;
526
527	/* don't allow direct io onto tail pages */
528	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
529		/*
530		 * make sure future calls to the direct io funcs for this
531		 * offset in the file fail by unmapping the buffer
532		 */
533		clear_buffer_mapped(bh_result);
534		ret = -EINVAL;
535	}
536
537	/*
538	 * Possible unpacked tail. Flush the data before pages have
539	 * disappeared
540	 */
541	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
542		int err;
543
544		reiserfs_write_lock(inode->i_sb);
545
546		err = reiserfs_commit_for_inode(inode);
547		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
548
549		reiserfs_write_unlock(inode->i_sb);
550
551		if (err < 0)
552			ret = err;
553	}
554out:
555	return ret;
556}
557
558/*
559 * helper function for when reiserfs_get_block is called for a hole
560 * but the file tail is still in a direct item
561 * bh_result is the buffer head for the hole
562 * tail_offset is the offset of the start of the tail in the file
563 *
564 * This calls prepare_write, which will start a new transaction
565 * you should not be in a transaction, or have any paths held when you
566 * call this.
567 */
568static int convert_tail_for_hole(struct inode *inode,
569				 struct buffer_head *bh_result,
570				 loff_t tail_offset)
571{
572	unsigned long index;
573	unsigned long tail_end;
574	unsigned long tail_start;
575	struct page *tail_page;
576	struct page *hole_page = bh_result->b_page;
577	int retval = 0;
578
579	if ((tail_offset & (bh_result->b_size - 1)) != 1)
580		return -EIO;
581
582	/* always try to read until the end of the block */
583	tail_start = tail_offset & (PAGE_SIZE - 1);
584	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
585
586	index = tail_offset >> PAGE_SHIFT;
587	/*
588	 * hole_page can be zero in case of direct_io, we are sure
589	 * that we cannot get here if we write with O_DIRECT into tail page
590	 */
591	if (!hole_page || index != hole_page->index) {
592		tail_page = grab_cache_page(inode->i_mapping, index);
593		retval = -ENOMEM;
594		if (!tail_page) {
595			goto out;
596		}
597	} else {
598		tail_page = hole_page;
599	}
600
601	/*
602	 * we don't have to make sure the conversion did not happen while
603	 * we were locking the page because anyone that could convert
604	 * must first take i_mutex.
605	 *
606	 * We must fix the tail page for writing because it might have buffers
607	 * that are mapped, but have a block number of 0.  This indicates tail
608	 * data that has been read directly into the page, and
609	 * __block_write_begin won't trigger a get_block in this case.
610	 */
611	fix_tail_page_for_writing(tail_page);
612	retval = __reiserfs_write_begin(tail_page, tail_start,
613				      tail_end - tail_start);
614	if (retval)
615		goto unlock;
616
617	/* tail conversion might change the data in the page */
618	flush_dcache_page(tail_page);
619
620	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
621
622unlock:
623	if (tail_page != hole_page) {
624		unlock_page(tail_page);
625		put_page(tail_page);
626	}
627out:
628	return retval;
629}
630
631static inline int _allocate_block(struct reiserfs_transaction_handle *th,
632				  sector_t block,
633				  struct inode *inode,
634				  b_blocknr_t * allocated_block_nr,
635				  struct treepath *path, int flags)
636{
637	BUG_ON(!th->t_trans_id);
638
639#ifdef REISERFS_PREALLOCATE
640	if (!(flags & GET_BLOCK_NO_IMUX)) {
641		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
642						  path, block);
643	}
644#endif
645	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
646					 block);
647}
648
649int reiserfs_get_block(struct inode *inode, sector_t block,
650		       struct buffer_head *bh_result, int create)
651{
652	int repeat, retval = 0;
653	/* b_blocknr_t is (unsigned) 32 bit int*/
654	b_blocknr_t allocated_block_nr = 0;
655	INITIALIZE_PATH(path);
656	int pos_in_item;
657	struct cpu_key key;
658	struct buffer_head *bh, *unbh = NULL;
659	struct item_head *ih, tmp_ih;
660	__le32 *item;
661	int done;
662	int fs_gen;
663	struct reiserfs_transaction_handle *th = NULL;
664	/*
665	 * space reserved in transaction batch:
666	 * . 3 balancings in direct->indirect conversion
667	 * . 1 block involved into reiserfs_update_sd()
668	 * XXX in practically impossible worst case direct2indirect()
669	 * can incur (much) more than 3 balancings.
670	 * quota update for user, group
671	 */
672	int jbegin_count =
673	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
674	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
675	int version;
676	int dangle = 1;
677	loff_t new_offset =
678	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
679
680	reiserfs_write_lock(inode->i_sb);
681	version = get_inode_item_key_version(inode);
682
683	if (!file_capable(inode, block)) {
684		reiserfs_write_unlock(inode->i_sb);
685		return -EFBIG;
686	}
687
688	/*
689	 * if !create, we aren't changing the FS, so we don't need to
690	 * log anything, so we don't need to start a transaction
691	 */
692	if (!(create & GET_BLOCK_CREATE)) {
693		int ret;
694		/* find number of block-th logical block of the file */
695		ret = _get_block_create_0(inode, block, bh_result,
696					  create | GET_BLOCK_READ_DIRECT);
697		reiserfs_write_unlock(inode->i_sb);
698		return ret;
699	}
700
701	/*
702	 * if we're already in a transaction, make sure to close
703	 * any new transactions we start in this func
704	 */
705	if ((create & GET_BLOCK_NO_DANGLE) ||
706	    reiserfs_transaction_running(inode->i_sb))
707		dangle = 0;
708
709	/*
710	 * If file is of such a size, that it might have a tail and
711	 * tails are enabled  we should mark it as possibly needing
712	 * tail packing on close
713	 */
714	if ((have_large_tails(inode->i_sb)
715	     && inode->i_size < i_block_size(inode) * 4)
716	    || (have_small_tails(inode->i_sb)
717		&& inode->i_size < i_block_size(inode)))
718		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
719
720	/* set the key of the first byte in the 'block'-th block of file */
721	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
722	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
723start_trans:
724		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
725		if (!th) {
726			retval = -ENOMEM;
727			goto failure;
728		}
729		reiserfs_update_inode_transaction(inode);
730	}
731research:
732
733	retval = search_for_position_by_key(inode->i_sb, &key, &path);
734	if (retval == IO_ERROR) {
735		retval = -EIO;
736		goto failure;
737	}
738
739	bh = get_last_bh(&path);
740	ih = tp_item_head(&path);
741	item = tp_item_body(&path);
742	pos_in_item = path.pos_in_item;
743
744	fs_gen = get_generation(inode->i_sb);
745	copy_item_head(&tmp_ih, ih);
746
747	if (allocation_needed
748	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
749		/* we have to allocate block for the unformatted node */
750		if (!th) {
751			pathrelse(&path);
752			goto start_trans;
753		}
754
755		repeat =
756		    _allocate_block(th, block, inode, &allocated_block_nr,
757				    &path, create);
758
759		/*
760		 * restart the transaction to give the journal a chance to free
761		 * some blocks.  releases the path, so we have to go back to
762		 * research if we succeed on the second try
763		 */
764		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
765			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
766			retval = restart_transaction(th, inode, &path);
767			if (retval)
768				goto failure;
769			repeat =
770			    _allocate_block(th, block, inode,
771					    &allocated_block_nr, NULL, create);
772
773			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
774				goto research;
775			}
776			if (repeat == QUOTA_EXCEEDED)
777				retval = -EDQUOT;
778			else
779				retval = -ENOSPC;
780			goto failure;
781		}
782
783		if (fs_changed(fs_gen, inode->i_sb)
784		    && item_moved(&tmp_ih, &path)) {
785			goto research;
786		}
787	}
788
789	if (indirect_item_found(retval, ih)) {
790		b_blocknr_t unfm_ptr;
791		/*
792		 * 'block'-th block is in the file already (there is
793		 * corresponding cell in some indirect item). But it may be
794		 * zero unformatted node pointer (hole)
795		 */
796		unfm_ptr = get_block_num(item, pos_in_item);
797		if (unfm_ptr == 0) {
798			/* use allocated block to plug the hole */
799			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
800			if (fs_changed(fs_gen, inode->i_sb)
801			    && item_moved(&tmp_ih, &path)) {
802				reiserfs_restore_prepared_buffer(inode->i_sb,
803								 bh);
804				goto research;
805			}
806			set_buffer_new(bh_result);
807			if (buffer_dirty(bh_result)
808			    && reiserfs_data_ordered(inode->i_sb))
809				reiserfs_add_ordered_list(inode, bh_result);
810			put_block_num(item, pos_in_item, allocated_block_nr);
811			unfm_ptr = allocated_block_nr;
812			journal_mark_dirty(th, bh);
813			reiserfs_update_sd(th, inode);
814		}
815		set_block_dev_mapped(bh_result, unfm_ptr, inode);
816		pathrelse(&path);
817		retval = 0;
818		if (!dangle && th)
819			retval = reiserfs_end_persistent_transaction(th);
820
821		reiserfs_write_unlock(inode->i_sb);
822
823		/*
824		 * the item was found, so new blocks were not added to the file
825		 * there is no need to make sure the inode is updated with this
826		 * transaction
827		 */
828		return retval;
829	}
830
831	if (!th) {
832		pathrelse(&path);
833		goto start_trans;
834	}
835
836	/*
837	 * desired position is not found or is in the direct item. We have
838	 * to append file with holes up to 'block'-th block converting
839	 * direct items to indirect one if necessary
840	 */
841	done = 0;
842	do {
843		if (is_statdata_le_ih(ih)) {
844			__le32 unp = 0;
845			struct cpu_key tmp_key;
846
847			/* indirect item has to be inserted */
848			make_le_item_head(&tmp_ih, &key, version, 1,
849					  TYPE_INDIRECT, UNFM_P_SIZE,
850					  0 /* free_space */ );
851
852			/*
853			 * we are going to add 'block'-th block to the file.
854			 * Use allocated block for that
855			 */
856			if (cpu_key_k_offset(&key) == 1) {
857				unp = cpu_to_le32(allocated_block_nr);
858				set_block_dev_mapped(bh_result,
859						     allocated_block_nr, inode);
860				set_buffer_new(bh_result);
861				done = 1;
862			}
863			tmp_key = key;	/* ;) */
864			set_cpu_key_k_offset(&tmp_key, 1);
865			PATH_LAST_POSITION(&path)++;
866
867			retval =
868			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
869						 inode, (char *)&unp);
870			if (retval) {
871				reiserfs_free_block(th, inode,
872						    allocated_block_nr, 1);
873				/*
874				 * retval == -ENOSPC, -EDQUOT or -EIO
875				 * or -EEXIST
876				 */
877				goto failure;
878			}
879		} else if (is_direct_le_ih(ih)) {
880			/* direct item has to be converted */
881			loff_t tail_offset;
882
883			tail_offset =
884			    ((le_ih_k_offset(ih) -
885			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
886
887			/*
888			 * direct item we just found fits into block we have
889			 * to map. Convert it into unformatted node: use
890			 * bh_result for the conversion
891			 */
892			if (tail_offset == cpu_key_k_offset(&key)) {
893				set_block_dev_mapped(bh_result,
894						     allocated_block_nr, inode);
895				unbh = bh_result;
896				done = 1;
897			} else {
898				/*
899				 * we have to pad file tail stored in direct
900				 * item(s) up to block size and convert it
901				 * to unformatted node. FIXME: this should
902				 * also get into page cache
903				 */
904
905				pathrelse(&path);
906				/*
907				 * ugly, but we can only end the transaction if
908				 * we aren't nested
909				 */
910				BUG_ON(!th->t_refcount);
911				if (th->t_refcount == 1) {
912					retval =
913					    reiserfs_end_persistent_transaction
914					    (th);
915					th = NULL;
916					if (retval)
917						goto failure;
918				}
919
920				retval =
921				    convert_tail_for_hole(inode, bh_result,
922							  tail_offset);
923				if (retval) {
924					if (retval != -ENOSPC)
925						reiserfs_error(inode->i_sb,
926							"clm-6004",
927							"convert tail failed "
928							"inode %lu, error %d",
929							inode->i_ino,
930							retval);
931					if (allocated_block_nr) {
932						/*
933						 * the bitmap, the super,
934						 * and the stat data == 3
935						 */
936						if (!th)
937							th = reiserfs_persistent_transaction(inode->i_sb, 3);
938						if (th)
939							reiserfs_free_block(th,
940									    inode,
941									    allocated_block_nr,
942									    1);
943					}
944					goto failure;
945				}
946				goto research;
947			}
948			retval =
949			    direct2indirect(th, inode, &path, unbh,
950					    tail_offset);
951			if (retval) {
952				reiserfs_unmap_buffer(unbh);
953				reiserfs_free_block(th, inode,
954						    allocated_block_nr, 1);
955				goto failure;
956			}
957			/*
958			 * it is important the set_buffer_uptodate is done
959			 * after the direct2indirect.  The buffer might
960			 * contain valid data newer than the data on disk
961			 * (read by read_folio, changed, and then sent here by
962			 * writepage).  direct2indirect needs to know if unbh
963			 * was already up to date, so it can decide if the
964			 * data in unbh needs to be replaced with data from
965			 * the disk
966			 */
967			set_buffer_uptodate(unbh);
968
969			/*
970			 * unbh->b_page == NULL in case of DIRECT_IO request,
971			 * this means buffer will disappear shortly, so it
972			 * should not be added to
973			 */
974			if (unbh->b_page) {
975				/*
976				 * we've converted the tail, so we must
977				 * flush unbh before the transaction commits
978				 */
979				reiserfs_add_tail_list(inode, unbh);
980
981				/*
982				 * mark it dirty now to prevent commit_write
983				 * from adding this buffer to the inode's
984				 * dirty buffer list
985				 */
986				/*
987				 * AKPM: changed __mark_buffer_dirty to
988				 * mark_buffer_dirty().  It's still atomic,
989				 * but it sets the page dirty too, which makes
990				 * it eligible for writeback at any time by the
991				 * VM (which was also the case with
992				 * __mark_buffer_dirty())
993				 */
994				mark_buffer_dirty(unbh);
995			}
996		} else {
997			/*
998			 * append indirect item with holes if needed, when
999			 * appending pointer to 'block'-th block use block,
1000			 * which is already allocated
1001			 */
1002			struct cpu_key tmp_key;
1003			/*
1004			 * We use this in case we need to allocate
1005			 * only one block which is a fastpath
1006			 */
1007			unp_t unf_single = 0;
1008			unp_t *un;
1009			__u64 max_to_insert =
1010			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1011			    UNFM_P_SIZE;
1012			__u64 blocks_needed;
1013
1014			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1015			       "vs-804: invalid position for append");
1016			/*
1017			 * indirect item has to be appended,
1018			 * set up key of that position
1019			 * (key type is unimportant)
1020			 */
1021			make_cpu_key(&tmp_key, inode,
1022				     le_key_k_offset(version,
1023						     &ih->ih_key) +
1024				     op_bytes_number(ih,
1025						     inode->i_sb->s_blocksize),
1026				     TYPE_INDIRECT, 3);
1027
1028			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1029			       "green-805: invalid offset");
1030			blocks_needed =
1031			    1 +
1032			    ((cpu_key_k_offset(&key) -
1033			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1034			     s_blocksize_bits);
1035
1036			if (blocks_needed == 1) {
1037				un = &unf_single;
1038			} else {
1039				un = kcalloc(min(blocks_needed, max_to_insert),
1040					     UNFM_P_SIZE, GFP_NOFS);
1041				if (!un) {
1042					un = &unf_single;
1043					blocks_needed = 1;
1044					max_to_insert = 0;
1045				}
1046			}
1047			if (blocks_needed <= max_to_insert) {
1048				/*
1049				 * we are going to add target block to
1050				 * the file. Use allocated block for that
1051				 */
1052				un[blocks_needed - 1] =
1053				    cpu_to_le32(allocated_block_nr);
1054				set_block_dev_mapped(bh_result,
1055						     allocated_block_nr, inode);
1056				set_buffer_new(bh_result);
1057				done = 1;
1058			} else {
1059				/* paste hole to the indirect item */
1060				/*
1061				 * If kcalloc failed, max_to_insert becomes
1062				 * zero and it means we only have space for
1063				 * one block
1064				 */
1065				blocks_needed =
1066				    max_to_insert ? max_to_insert : 1;
1067			}
1068			retval =
1069			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1070						     (char *)un,
1071						     UNFM_P_SIZE *
1072						     blocks_needed);
1073
1074			if (blocks_needed != 1)
1075				kfree(un);
1076
1077			if (retval) {
1078				reiserfs_free_block(th, inode,
1079						    allocated_block_nr, 1);
1080				goto failure;
1081			}
1082			if (!done) {
1083				/*
1084				 * We need to mark new file size in case
1085				 * this function will be interrupted/aborted
1086				 * later on. And we may do this only for
1087				 * holes.
1088				 */
1089				inode->i_size +=
1090				    inode->i_sb->s_blocksize * blocks_needed;
1091			}
1092		}
1093
1094		if (done == 1)
1095			break;
1096
1097		/*
1098		 * this loop could log more blocks than we had originally
1099		 * asked for.  So, we have to allow the transaction to end
1100		 * if it is too big or too full.  Update the inode so things
1101		 * are consistent if we crash before the function returns
1102		 * release the path so that anybody waiting on the path before
1103		 * ending their transaction will be able to continue.
1104		 */
1105		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1106			retval = restart_transaction(th, inode, &path);
1107			if (retval)
1108				goto failure;
1109		}
1110		/*
1111		 * inserting indirect pointers for a hole can take a
1112		 * long time.  reschedule if needed and also release the write
1113		 * lock for others.
1114		 */
1115		reiserfs_cond_resched(inode->i_sb);
1116
1117		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1118		if (retval == IO_ERROR) {
1119			retval = -EIO;
1120			goto failure;
1121		}
1122		if (retval == POSITION_FOUND) {
1123			reiserfs_warning(inode->i_sb, "vs-825",
1124					 "%K should not be found", &key);
1125			retval = -EEXIST;
1126			if (allocated_block_nr)
1127				reiserfs_free_block(th, inode,
1128						    allocated_block_nr, 1);
1129			pathrelse(&path);
1130			goto failure;
1131		}
1132		bh = get_last_bh(&path);
1133		ih = tp_item_head(&path);
1134		item = tp_item_body(&path);
1135		pos_in_item = path.pos_in_item;
1136	} while (1);
1137
1138	retval = 0;
1139
1140failure:
1141	if (th && (!dangle || (retval && !th->t_trans_id))) {
1142		int err;
1143		if (th->t_trans_id)
1144			reiserfs_update_sd(th, inode);
1145		err = reiserfs_end_persistent_transaction(th);
1146		if (err)
1147			retval = err;
1148	}
1149
1150	reiserfs_write_unlock(inode->i_sb);
1151	reiserfs_check_path(&path);
1152	return retval;
1153}
1154
1155static void reiserfs_readahead(struct readahead_control *rac)
1156{
1157	mpage_readahead(rac, reiserfs_get_block);
1158}
1159
1160/*
1161 * Compute real number of used bytes by file
1162 * Following three functions can go away when we'll have enough space in
1163 * stat item
1164 */
1165static int real_space_diff(struct inode *inode, int sd_size)
1166{
1167	int bytes;
1168	loff_t blocksize = inode->i_sb->s_blocksize;
1169
1170	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1171		return sd_size;
1172
1173	/*
1174	 * End of file is also in full block with indirect reference, so round
1175	 * up to the next block.
1176	 *
1177	 * there is just no way to know if the tail is actually packed
1178	 * on the file, so we have to assume it isn't.  When we pack the
1179	 * tail, we add 4 bytes to pretend there really is an unformatted
1180	 * node pointer
1181	 */
1182	bytes =
1183	    ((inode->i_size +
1184	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1185	    sd_size;
1186	return bytes;
1187}
1188
1189static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1190					int sd_size)
1191{
1192	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1193		return inode->i_size +
1194		    (loff_t) (real_space_diff(inode, sd_size));
1195	}
1196	return ((loff_t) real_space_diff(inode, sd_size)) +
1197	    (((loff_t) blocks) << 9);
1198}
1199
1200/* Compute number of blocks used by file in ReiserFS counting */
1201static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1202{
1203	loff_t bytes = inode_get_bytes(inode);
1204	loff_t real_space = real_space_diff(inode, sd_size);
1205
1206	/* keeps fsck and non-quota versions of reiserfs happy */
1207	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1208		bytes += (loff_t) 511;
1209	}
1210
1211	/*
1212	 * files from before the quota patch might i_blocks such that
1213	 * bytes < real_space.  Deal with that here to prevent it from
1214	 * going negative.
1215	 */
1216	if (bytes < real_space)
1217		return 0;
1218	return (bytes - real_space) >> 9;
1219}
1220
1221/*
1222 * BAD: new directories have stat data of new type and all other items
1223 * of old type. Version stored in the inode says about body items, so
1224 * in update_stat_data we can not rely on inode, but have to check
1225 * item version directly
1226 */
1227
1228/* called by read_locked_inode */
1229static void init_inode(struct inode *inode, struct treepath *path)
1230{
1231	struct buffer_head *bh;
1232	struct item_head *ih;
1233	__u32 rdev;
1234
1235	bh = PATH_PLAST_BUFFER(path);
1236	ih = tp_item_head(path);
1237
1238	copy_key(INODE_PKEY(inode), &ih->ih_key);
1239
1240	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1241	REISERFS_I(inode)->i_flags = 0;
1242	REISERFS_I(inode)->i_prealloc_block = 0;
1243	REISERFS_I(inode)->i_prealloc_count = 0;
1244	REISERFS_I(inode)->i_trans_id = 0;
1245	REISERFS_I(inode)->i_jl = NULL;
1246	reiserfs_init_xattr_rwsem(inode);
1247
1248	if (stat_data_v1(ih)) {
1249		struct stat_data_v1 *sd =
1250		    (struct stat_data_v1 *)ih_item_body(bh, ih);
1251		unsigned long blocks;
1252
1253		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1254		set_inode_sd_version(inode, STAT_DATA_V1);
1255		inode->i_mode = sd_v1_mode(sd);
1256		set_nlink(inode, sd_v1_nlink(sd));
1257		i_uid_write(inode, sd_v1_uid(sd));
1258		i_gid_write(inode, sd_v1_gid(sd));
1259		inode->i_size = sd_v1_size(sd);
1260		inode->i_atime.tv_sec = sd_v1_atime(sd);
1261		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1262		inode_set_ctime(inode, sd_v1_ctime(sd), 0);
1263		inode->i_atime.tv_nsec = 0;
1264		inode->i_mtime.tv_nsec = 0;
1265
1266		inode->i_blocks = sd_v1_blocks(sd);
1267		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1268		blocks = (inode->i_size + 511) >> 9;
1269		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1270
1271		/*
1272		 * there was a bug in <=3.5.23 when i_blocks could take
1273		 * negative values. Starting from 3.5.17 this value could
1274		 * even be stored in stat data. For such files we set
1275		 * i_blocks based on file size. Just 2 notes: this can be
1276		 * wrong for sparse files. On-disk value will be only
1277		 * updated if file's inode will ever change
1278		 */
1279		if (inode->i_blocks > blocks) {
1280			inode->i_blocks = blocks;
1281		}
1282
1283		rdev = sd_v1_rdev(sd);
1284		REISERFS_I(inode)->i_first_direct_byte =
1285		    sd_v1_first_direct_byte(sd);
1286
1287		/*
1288		 * an early bug in the quota code can give us an odd
1289		 * number for the block count.  This is incorrect, fix it here.
1290		 */
1291		if (inode->i_blocks & 1) {
1292			inode->i_blocks++;
1293		}
1294		inode_set_bytes(inode,
1295				to_real_used_space(inode, inode->i_blocks,
1296						   SD_V1_SIZE));
1297		/*
1298		 * nopack is initially zero for v1 objects. For v2 objects,
1299		 * nopack is initialised from sd_attrs
1300		 */
1301		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1302	} else {
1303		/*
1304		 * new stat data found, but object may have old items
1305		 * (directories and symlinks)
1306		 */
1307		struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1308
1309		inode->i_mode = sd_v2_mode(sd);
1310		set_nlink(inode, sd_v2_nlink(sd));
1311		i_uid_write(inode, sd_v2_uid(sd));
1312		inode->i_size = sd_v2_size(sd);
1313		i_gid_write(inode, sd_v2_gid(sd));
1314		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1315		inode->i_atime.tv_sec = sd_v2_atime(sd);
1316		inode_set_ctime(inode, sd_v2_ctime(sd), 0);
1317		inode->i_mtime.tv_nsec = 0;
1318		inode->i_atime.tv_nsec = 0;
1319		inode->i_blocks = sd_v2_blocks(sd);
1320		rdev = sd_v2_rdev(sd);
1321		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1322			inode->i_generation =
1323			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1324		else
1325			inode->i_generation = sd_v2_generation(sd);
1326
1327		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1328			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1329		else
1330			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1331		REISERFS_I(inode)->i_first_direct_byte = 0;
1332		set_inode_sd_version(inode, STAT_DATA_V2);
1333		inode_set_bytes(inode,
1334				to_real_used_space(inode, inode->i_blocks,
1335						   SD_V2_SIZE));
1336		/*
1337		 * read persistent inode attributes from sd and initialise
1338		 * generic inode flags from them
1339		 */
1340		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1341		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1342	}
1343
1344	pathrelse(path);
1345	if (S_ISREG(inode->i_mode)) {
1346		inode->i_op = &reiserfs_file_inode_operations;
1347		inode->i_fop = &reiserfs_file_operations;
1348		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1349	} else if (S_ISDIR(inode->i_mode)) {
1350		inode->i_op = &reiserfs_dir_inode_operations;
1351		inode->i_fop = &reiserfs_dir_operations;
1352	} else if (S_ISLNK(inode->i_mode)) {
1353		inode->i_op = &reiserfs_symlink_inode_operations;
1354		inode_nohighmem(inode);
1355		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1356	} else {
1357		inode->i_blocks = 0;
1358		inode->i_op = &reiserfs_special_inode_operations;
1359		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1360	}
1361}
1362
1363/* update new stat data with inode fields */
1364static void inode2sd(void *sd, struct inode *inode, loff_t size)
1365{
1366	struct stat_data *sd_v2 = (struct stat_data *)sd;
1367
1368	set_sd_v2_mode(sd_v2, inode->i_mode);
1369	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1370	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1371	set_sd_v2_size(sd_v2, size);
1372	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1373	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1374	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1375	set_sd_v2_ctime(sd_v2, inode_get_ctime(inode).tv_sec);
1376	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1377	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1378		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1379	else
1380		set_sd_v2_generation(sd_v2, inode->i_generation);
1381	set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
1382}
1383
1384/* used to copy inode's fields to old stat data */
1385static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1386{
1387	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1388
1389	set_sd_v1_mode(sd_v1, inode->i_mode);
1390	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1391	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1392	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1393	set_sd_v1_size(sd_v1, size);
1394	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1395	set_sd_v1_ctime(sd_v1, inode_get_ctime(inode).tv_sec);
1396	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1397
1398	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1399		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1400	else
1401		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1402
1403	/* Sigh. i_first_direct_byte is back */
1404	set_sd_v1_first_direct_byte(sd_v1,
1405				    REISERFS_I(inode)->i_first_direct_byte);
1406}
1407
1408/*
1409 * NOTE, you must prepare the buffer head before sending it here,
1410 * and then log it after the call
1411 */
1412static void update_stat_data(struct treepath *path, struct inode *inode,
1413			     loff_t size)
1414{
1415	struct buffer_head *bh;
1416	struct item_head *ih;
1417
1418	bh = PATH_PLAST_BUFFER(path);
1419	ih = tp_item_head(path);
1420
1421	if (!is_statdata_le_ih(ih))
1422		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1423			       INODE_PKEY(inode), ih);
1424
1425	/* path points to old stat data */
1426	if (stat_data_v1(ih)) {
1427		inode2sd_v1(ih_item_body(bh, ih), inode, size);
1428	} else {
1429		inode2sd(ih_item_body(bh, ih), inode, size);
1430	}
1431
1432	return;
1433}
1434
1435void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1436			     struct inode *inode, loff_t size)
1437{
1438	struct cpu_key key;
1439	INITIALIZE_PATH(path);
1440	struct buffer_head *bh;
1441	int fs_gen;
1442	struct item_head *ih, tmp_ih;
1443	int retval;
1444
1445	BUG_ON(!th->t_trans_id);
1446
1447	/* key type is unimportant */
1448	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1449
1450	for (;;) {
1451		int pos;
1452		/* look for the object's stat data */
1453		retval = search_item(inode->i_sb, &key, &path);
1454		if (retval == IO_ERROR) {
1455			reiserfs_error(inode->i_sb, "vs-13050",
1456				       "i/o failure occurred trying to "
1457				       "update %K stat data", &key);
1458			return;
1459		}
1460		if (retval == ITEM_NOT_FOUND) {
1461			pos = PATH_LAST_POSITION(&path);
1462			pathrelse(&path);
1463			if (inode->i_nlink == 0) {
1464				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1465				return;
1466			}
1467			reiserfs_warning(inode->i_sb, "vs-13060",
1468					 "stat data of object %k (nlink == %d) "
1469					 "not found (pos %d)",
1470					 INODE_PKEY(inode), inode->i_nlink,
1471					 pos);
1472			reiserfs_check_path(&path);
1473			return;
1474		}
1475
1476		/*
1477		 * sigh, prepare_for_journal might schedule.  When it
1478		 * schedules the FS might change.  We have to detect that,
1479		 * and loop back to the search if the stat data item has moved
1480		 */
1481		bh = get_last_bh(&path);
1482		ih = tp_item_head(&path);
1483		copy_item_head(&tmp_ih, ih);
1484		fs_gen = get_generation(inode->i_sb);
1485		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1486
1487		/* Stat_data item has been moved after scheduling. */
1488		if (fs_changed(fs_gen, inode->i_sb)
1489		    && item_moved(&tmp_ih, &path)) {
1490			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1491			continue;
1492		}
1493		break;
1494	}
1495	update_stat_data(&path, inode, size);
1496	journal_mark_dirty(th, bh);
1497	pathrelse(&path);
1498	return;
1499}
1500
1501/*
1502 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1503 * does a make_bad_inode when things go wrong.  But, we need to make sure
1504 * and clear the key in the private portion of the inode, otherwise a
1505 * corresponding iput might try to delete whatever object the inode last
1506 * represented.
1507 */
1508static void reiserfs_make_bad_inode(struct inode *inode)
1509{
1510	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1511	make_bad_inode(inode);
1512}
1513
1514/*
1515 * initially this function was derived from minix or ext2's analog and
1516 * evolved as the prototype did
1517 */
1518int reiserfs_init_locked_inode(struct inode *inode, void *p)
1519{
1520	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1521	inode->i_ino = args->objectid;
1522	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1523	return 0;
1524}
1525
1526/*
1527 * looks for stat data in the tree, and fills up the fields of in-core
1528 * inode stat data fields
1529 */
1530void reiserfs_read_locked_inode(struct inode *inode,
1531				struct reiserfs_iget_args *args)
1532{
1533	INITIALIZE_PATH(path_to_sd);
1534	struct cpu_key key;
1535	unsigned long dirino;
1536	int retval;
1537
1538	dirino = args->dirid;
1539
1540	/*
1541	 * set version 1, version 2 could be used too, because stat data
1542	 * key is the same in both versions
1543	 */
1544	_make_cpu_key(&key, KEY_FORMAT_3_5, dirino, inode->i_ino, 0, 0, 3);
1545
1546	/* look for the object's stat data */
1547	retval = search_item(inode->i_sb, &key, &path_to_sd);
1548	if (retval == IO_ERROR) {
1549		reiserfs_error(inode->i_sb, "vs-13070",
1550			       "i/o failure occurred trying to find "
1551			       "stat data of %K", &key);
1552		reiserfs_make_bad_inode(inode);
1553		return;
1554	}
1555
1556	/* a stale NFS handle can trigger this without it being an error */
1557	if (retval != ITEM_FOUND) {
1558		pathrelse(&path_to_sd);
1559		reiserfs_make_bad_inode(inode);
1560		clear_nlink(inode);
1561		return;
1562	}
1563
1564	init_inode(inode, &path_to_sd);
1565
1566	/*
1567	 * It is possible that knfsd is trying to access inode of a file
1568	 * that is being removed from the disk by some other thread. As we
1569	 * update sd on unlink all that is required is to check for nlink
1570	 * here. This bug was first found by Sizif when debugging
1571	 * SquidNG/Butterfly, forgotten, and found again after Philippe
1572	 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1573
1574	 * More logical fix would require changes in fs/inode.c:iput() to
1575	 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1576	 * in iget() to return NULL if I_FREEING inode is found in
1577	 * hash-table.
1578	 */
1579
1580	/*
1581	 * Currently there is one place where it's ok to meet inode with
1582	 * nlink==0: processing of open-unlinked and half-truncated files
1583	 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1584	 */
1585	if ((inode->i_nlink == 0) &&
1586	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1587		reiserfs_warning(inode->i_sb, "vs-13075",
1588				 "dead inode read from disk %K. "
1589				 "This is likely to be race with knfsd. Ignore",
1590				 &key);
1591		reiserfs_make_bad_inode(inode);
1592	}
1593
1594	/* init inode should be relsing */
1595	reiserfs_check_path(&path_to_sd);
1596
1597	/*
1598	 * Stat data v1 doesn't support ACLs.
1599	 */
1600	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1601		cache_no_acl(inode);
1602}
1603
1604/*
1605 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1606 *
1607 * @inode:    inode from hash table to check
1608 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1609 *
1610 * This function is called by iget5_locked() to distinguish reiserfs inodes
1611 * having the same inode numbers. Such inodes can only exist due to some
1612 * error condition. One of them should be bad. Inodes with identical
1613 * inode numbers (objectids) are distinguished by parent directory ids.
1614 *
1615 */
1616int reiserfs_find_actor(struct inode *inode, void *opaque)
1617{
1618	struct reiserfs_iget_args *args;
1619
1620	args = opaque;
1621	/* args is already in CPU order */
1622	return (inode->i_ino == args->objectid) &&
1623	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1624}
1625
1626struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1627{
1628	struct inode *inode;
1629	struct reiserfs_iget_args args;
1630	int depth;
1631
1632	args.objectid = key->on_disk_key.k_objectid;
1633	args.dirid = key->on_disk_key.k_dir_id;
1634	depth = reiserfs_write_unlock_nested(s);
1635	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1636			     reiserfs_find_actor, reiserfs_init_locked_inode,
1637			     (void *)(&args));
1638	reiserfs_write_lock_nested(s, depth);
1639	if (!inode)
1640		return ERR_PTR(-ENOMEM);
1641
1642	if (inode->i_state & I_NEW) {
1643		reiserfs_read_locked_inode(inode, &args);
1644		unlock_new_inode(inode);
1645	}
1646
1647	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1648		/* either due to i/o error or a stale NFS handle */
1649		iput(inode);
1650		inode = NULL;
1651	}
1652	return inode;
1653}
1654
1655static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1656	u32 objectid, u32 dir_id, u32 generation)
1657
1658{
1659	struct cpu_key key;
1660	struct inode *inode;
1661
1662	key.on_disk_key.k_objectid = objectid;
1663	key.on_disk_key.k_dir_id = dir_id;
1664	reiserfs_write_lock(sb);
1665	inode = reiserfs_iget(sb, &key);
1666	if (inode && !IS_ERR(inode) && generation != 0 &&
1667	    generation != inode->i_generation) {
1668		iput(inode);
1669		inode = NULL;
1670	}
1671	reiserfs_write_unlock(sb);
1672
1673	return d_obtain_alias(inode);
1674}
1675
1676struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1677		int fh_len, int fh_type)
1678{
1679	/*
1680	 * fhtype happens to reflect the number of u32s encoded.
1681	 * due to a bug in earlier code, fhtype might indicate there
1682	 * are more u32s then actually fitted.
1683	 * so if fhtype seems to be more than len, reduce fhtype.
1684	 * Valid types are:
1685	 *   2 - objectid + dir_id - legacy support
1686	 *   3 - objectid + dir_id + generation
1687	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1688	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1689	 *   6 - as above plus generation of directory
1690	 * 6 does not fit in NFSv2 handles
1691	 */
1692	if (fh_type > fh_len) {
1693		if (fh_type != 6 || fh_len != 5)
1694			reiserfs_warning(sb, "reiserfs-13077",
1695				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1696				fh_type, fh_len);
1697		fh_type = fh_len;
1698	}
1699	if (fh_len < 2)
1700		return NULL;
1701
1702	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1703		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1704}
1705
1706struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1707		int fh_len, int fh_type)
1708{
1709	if (fh_type > fh_len)
1710		fh_type = fh_len;
1711	if (fh_type < 4)
1712		return NULL;
1713
1714	return reiserfs_get_dentry(sb,
1715		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1716		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1717		(fh_type == 6) ? fid->raw[5] : 0);
1718}
1719
1720int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1721		       struct inode *parent)
1722{
1723	int maxlen = *lenp;
1724
1725	if (parent && (maxlen < 5)) {
1726		*lenp = 5;
1727		return FILEID_INVALID;
1728	} else if (maxlen < 3) {
1729		*lenp = 3;
1730		return FILEID_INVALID;
1731	}
1732
1733	data[0] = inode->i_ino;
1734	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1735	data[2] = inode->i_generation;
1736	*lenp = 3;
1737	if (parent) {
1738		data[3] = parent->i_ino;
1739		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1740		*lenp = 5;
1741		if (maxlen >= 6) {
1742			data[5] = parent->i_generation;
1743			*lenp = 6;
1744		}
1745	}
1746	return *lenp;
1747}
1748
1749/*
1750 * looks for stat data, then copies fields to it, marks the buffer
1751 * containing stat data as dirty
1752 */
1753/*
1754 * reiserfs inodes are never really dirty, since the dirty inode call
1755 * always logs them.  This call allows the VFS inode marking routines
1756 * to properly mark inodes for datasync and such, but only actually
1757 * does something when called for a synchronous update.
1758 */
1759int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1760{
1761	struct reiserfs_transaction_handle th;
1762	int jbegin_count = 1;
1763
1764	if (sb_rdonly(inode->i_sb))
1765		return -EROFS;
1766	/*
1767	 * memory pressure can sometimes initiate write_inode calls with
1768	 * sync == 1,
1769	 * these cases are just when the system needs ram, not when the
1770	 * inode needs to reach disk for safety, and they can safely be
1771	 * ignored because the altered inode has already been logged.
1772	 */
1773	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1774		reiserfs_write_lock(inode->i_sb);
1775		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1776			reiserfs_update_sd(&th, inode);
1777			journal_end_sync(&th);
1778		}
1779		reiserfs_write_unlock(inode->i_sb);
1780	}
1781	return 0;
1782}
1783
1784/*
1785 * stat data of new object is inserted already, this inserts the item
1786 * containing "." and ".." entries
1787 */
1788static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1789				  struct inode *inode,
1790				  struct item_head *ih, struct treepath *path,
1791				  struct inode *dir)
1792{
1793	struct super_block *sb = th->t_super;
1794	char empty_dir[EMPTY_DIR_SIZE];
1795	char *body = empty_dir;
1796	struct cpu_key key;
1797	int retval;
1798
1799	BUG_ON(!th->t_trans_id);
1800
1801	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1802		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1803		      TYPE_DIRENTRY, 3 /*key length */ );
1804
1805	/*
1806	 * compose item head for new item. Directories consist of items of
1807	 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1808	 * is done by reiserfs_new_inode
1809	 */
1810	if (old_format_only(sb)) {
1811		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1812				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1813
1814		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1815				       ih->ih_key.k_objectid,
1816				       INODE_PKEY(dir)->k_dir_id,
1817				       INODE_PKEY(dir)->k_objectid);
1818	} else {
1819		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1820				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1821
1822		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1823				    ih->ih_key.k_objectid,
1824				    INODE_PKEY(dir)->k_dir_id,
1825				    INODE_PKEY(dir)->k_objectid);
1826	}
1827
1828	/* look for place in the tree for new item */
1829	retval = search_item(sb, &key, path);
1830	if (retval == IO_ERROR) {
1831		reiserfs_error(sb, "vs-13080",
1832			       "i/o failure occurred creating new directory");
1833		return -EIO;
1834	}
1835	if (retval == ITEM_FOUND) {
1836		pathrelse(path);
1837		reiserfs_warning(sb, "vs-13070",
1838				 "object with this key exists (%k)",
1839				 &(ih->ih_key));
1840		return -EEXIST;
1841	}
1842
1843	/* insert item, that is empty directory item */
1844	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1845}
1846
1847/*
1848 * stat data of object has been inserted, this inserts the item
1849 * containing the body of symlink
1850 */
1851static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1852				struct inode *inode,
1853				struct item_head *ih,
1854				struct treepath *path, const char *symname,
1855				int item_len)
1856{
1857	struct super_block *sb = th->t_super;
1858	struct cpu_key key;
1859	int retval;
1860
1861	BUG_ON(!th->t_trans_id);
1862
1863	_make_cpu_key(&key, KEY_FORMAT_3_5,
1864		      le32_to_cpu(ih->ih_key.k_dir_id),
1865		      le32_to_cpu(ih->ih_key.k_objectid),
1866		      1, TYPE_DIRECT, 3 /*key length */ );
1867
1868	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1869			  0 /*free_space */ );
1870
1871	/* look for place in the tree for new item */
1872	retval = search_item(sb, &key, path);
1873	if (retval == IO_ERROR) {
1874		reiserfs_error(sb, "vs-13080",
1875			       "i/o failure occurred creating new symlink");
1876		return -EIO;
1877	}
1878	if (retval == ITEM_FOUND) {
1879		pathrelse(path);
1880		reiserfs_warning(sb, "vs-13080",
1881				 "object with this key exists (%k)",
1882				 &(ih->ih_key));
1883		return -EEXIST;
1884	}
1885
1886	/* insert item, that is body of symlink */
1887	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1888}
1889
1890/*
1891 * inserts the stat data into the tree, and then calls
1892 * reiserfs_new_directory (to insert ".", ".." item if new object is
1893 * directory) or reiserfs_new_symlink (to insert symlink body if new
1894 * object is symlink) or nothing (if new object is regular file)
1895
1896 * NOTE! uid and gid must already be set in the inode.  If we return
1897 * non-zero due to an error, we have to drop the quota previously allocated
1898 * for the fresh inode.  This can only be done outside a transaction, so
1899 * if we return non-zero, we also end the transaction.
1900 *
1901 * @th: active transaction handle
1902 * @dir: parent directory for new inode
1903 * @mode: mode of new inode
1904 * @symname: symlink contents if inode is symlink
1905 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1906 *         symlinks
1907 * @inode: inode to be filled
1908 * @security: optional security context to associate with this inode
1909 */
1910int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1911		       struct inode *dir, umode_t mode, const char *symname,
1912		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1913		          strlen (symname) for symlinks) */
1914		       loff_t i_size, struct dentry *dentry,
1915		       struct inode *inode,
1916		       struct reiserfs_security_handle *security)
1917{
1918	struct super_block *sb = dir->i_sb;
1919	struct reiserfs_iget_args args;
1920	INITIALIZE_PATH(path_to_key);
1921	struct cpu_key key;
1922	struct item_head ih;
1923	struct stat_data sd;
1924	int retval;
1925	int err;
1926	int depth;
1927
1928	BUG_ON(!th->t_trans_id);
1929
1930	depth = reiserfs_write_unlock_nested(sb);
1931	err = dquot_alloc_inode(inode);
1932	reiserfs_write_lock_nested(sb, depth);
1933	if (err)
1934		goto out_end_trans;
1935	if (!dir->i_nlink) {
1936		err = -EPERM;
1937		goto out_bad_inode;
1938	}
1939
1940	/* item head of new item */
1941	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1942	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1943	if (!ih.ih_key.k_objectid) {
1944		err = -ENOMEM;
1945		goto out_bad_inode;
1946	}
1947	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1948	if (old_format_only(sb))
1949		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1950				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1951	else
1952		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1953				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1954	memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1955	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1956
1957	depth = reiserfs_write_unlock_nested(inode->i_sb);
1958	err = insert_inode_locked4(inode, args.objectid,
1959			     reiserfs_find_actor, &args);
1960	reiserfs_write_lock_nested(inode->i_sb, depth);
1961	if (err) {
1962		err = -EINVAL;
1963		goto out_bad_inode;
1964	}
1965
1966	if (old_format_only(sb))
1967		/*
1968		 * not a perfect generation count, as object ids can be reused,
1969		 * but this is as good as reiserfs can do right now.
1970		 * note that the private part of inode isn't filled in yet,
1971		 * we have to use the directory.
1972		 */
1973		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1974	else
1975#if defined( USE_INODE_GENERATION_COUNTER )
1976		inode->i_generation =
1977		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1978#else
1979		inode->i_generation = ++event;
1980#endif
1981
1982	/* fill stat data */
1983	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1984
1985	/* uid and gid must already be set by the caller for quota init */
1986
1987	inode->i_mtime = inode->i_atime = inode_set_ctime_current(inode);
1988	inode->i_size = i_size;
1989	inode->i_blocks = 0;
1990	inode->i_bytes = 0;
1991	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1992	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1993
1994	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1995	REISERFS_I(inode)->i_flags = 0;
1996	REISERFS_I(inode)->i_prealloc_block = 0;
1997	REISERFS_I(inode)->i_prealloc_count = 0;
1998	REISERFS_I(inode)->i_trans_id = 0;
1999	REISERFS_I(inode)->i_jl = NULL;
2000	REISERFS_I(inode)->i_attrs =
2001	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2002	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2003	reiserfs_init_xattr_rwsem(inode);
2004
2005	/* key to search for correct place for new stat data */
2006	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2007		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2008		      TYPE_STAT_DATA, 3 /*key length */ );
2009
2010	/* find proper place for inserting of stat data */
2011	retval = search_item(sb, &key, &path_to_key);
2012	if (retval == IO_ERROR) {
2013		err = -EIO;
2014		goto out_bad_inode;
2015	}
2016	if (retval == ITEM_FOUND) {
2017		pathrelse(&path_to_key);
2018		err = -EEXIST;
2019		goto out_bad_inode;
2020	}
2021	if (old_format_only(sb)) {
2022		/* i_uid or i_gid is too big to be stored in stat data v3.5 */
2023		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2024			pathrelse(&path_to_key);
2025			err = -EINVAL;
2026			goto out_bad_inode;
2027		}
2028		inode2sd_v1(&sd, inode, inode->i_size);
2029	} else {
2030		inode2sd(&sd, inode, inode->i_size);
2031	}
2032	/*
2033	 * store in in-core inode the key of stat data and version all
2034	 * object items will have (directory items will have old offset
2035	 * format, other new objects will consist of new items)
2036	 */
2037	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2038		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2039	else
2040		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2041	if (old_format_only(sb))
2042		set_inode_sd_version(inode, STAT_DATA_V1);
2043	else
2044		set_inode_sd_version(inode, STAT_DATA_V2);
2045
2046	/* insert the stat data into the tree */
2047#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2048	if (REISERFS_I(dir)->new_packing_locality)
2049		th->displace_new_blocks = 1;
2050#endif
2051	retval =
2052	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2053				 (char *)(&sd));
2054	if (retval) {
2055		err = retval;
2056		reiserfs_check_path(&path_to_key);
2057		goto out_bad_inode;
2058	}
2059#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2060	if (!th->displace_new_blocks)
2061		REISERFS_I(dir)->new_packing_locality = 0;
2062#endif
2063	if (S_ISDIR(mode)) {
2064		/* insert item with "." and ".." */
2065		retval =
2066		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2067	}
2068
2069	if (S_ISLNK(mode)) {
2070		/* insert body of symlink */
2071		if (!old_format_only(sb))
2072			i_size = ROUND_UP(i_size);
2073		retval =
2074		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2075					 i_size);
2076	}
2077	if (retval) {
2078		err = retval;
2079		reiserfs_check_path(&path_to_key);
2080		journal_end(th);
2081		goto out_inserted_sd;
2082	}
2083
2084	/*
2085	 * Mark it private if we're creating the privroot
2086	 * or something under it.
2087	 */
2088	if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root)
2089		reiserfs_init_priv_inode(inode);
2090
2091	if (reiserfs_posixacl(inode->i_sb)) {
2092		reiserfs_write_unlock(inode->i_sb);
2093		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2094		reiserfs_write_lock(inode->i_sb);
2095		if (retval) {
2096			err = retval;
2097			reiserfs_check_path(&path_to_key);
2098			journal_end(th);
2099			goto out_inserted_sd;
2100		}
2101	} else if (inode->i_sb->s_flags & SB_POSIXACL) {
2102		reiserfs_warning(inode->i_sb, "jdm-13090",
2103				 "ACLs aren't enabled in the fs, "
2104				 "but vfs thinks they are!");
2105	}
2106
2107	if (security->name) {
2108		reiserfs_write_unlock(inode->i_sb);
2109		retval = reiserfs_security_write(th, inode, security);
2110		reiserfs_write_lock(inode->i_sb);
2111		if (retval) {
2112			err = retval;
2113			reiserfs_check_path(&path_to_key);
2114			retval = journal_end(th);
2115			if (retval)
2116				err = retval;
2117			goto out_inserted_sd;
2118		}
2119	}
2120
2121	reiserfs_update_sd(th, inode);
2122	reiserfs_check_path(&path_to_key);
2123
2124	return 0;
2125
2126out_bad_inode:
2127	/* Invalidate the object, nothing was inserted yet */
2128	INODE_PKEY(inode)->k_objectid = 0;
2129
2130	/* Quota change must be inside a transaction for journaling */
2131	depth = reiserfs_write_unlock_nested(inode->i_sb);
2132	dquot_free_inode(inode);
2133	reiserfs_write_lock_nested(inode->i_sb, depth);
2134
2135out_end_trans:
2136	journal_end(th);
2137	/*
2138	 * Drop can be outside and it needs more credits so it's better
2139	 * to have it outside
2140	 */
2141	depth = reiserfs_write_unlock_nested(inode->i_sb);
2142	dquot_drop(inode);
2143	reiserfs_write_lock_nested(inode->i_sb, depth);
2144	inode->i_flags |= S_NOQUOTA;
2145	make_bad_inode(inode);
2146
2147out_inserted_sd:
2148	clear_nlink(inode);
2149	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2150	if (inode->i_state & I_NEW)
2151		unlock_new_inode(inode);
2152	iput(inode);
2153	return err;
2154}
2155
2156/*
2157 * finds the tail page in the page cache,
2158 * reads the last block in.
2159 *
2160 * On success, page_result is set to a locked, pinned page, and bh_result
2161 * is set to an up to date buffer for the last block in the file.  returns 0.
2162 *
2163 * tail conversion is not done, so bh_result might not be valid for writing
2164 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2165 * trying to write the block.
2166 *
2167 * on failure, nonzero is returned, page_result and bh_result are untouched.
2168 */
2169static int grab_tail_page(struct inode *inode,
2170			  struct page **page_result,
2171			  struct buffer_head **bh_result)
2172{
2173
2174	/*
2175	 * we want the page with the last byte in the file,
2176	 * not the page that will hold the next byte for appending
2177	 */
2178	unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2179	unsigned long pos = 0;
2180	unsigned long start = 0;
2181	unsigned long blocksize = inode->i_sb->s_blocksize;
2182	unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2183	struct buffer_head *bh;
2184	struct buffer_head *head;
2185	struct page *page;
2186	int error;
2187
2188	/*
2189	 * we know that we are only called with inode->i_size > 0.
2190	 * we also know that a file tail can never be as big as a block
2191	 * If i_size % blocksize == 0, our file is currently block aligned
2192	 * and it won't need converting or zeroing after a truncate.
2193	 */
2194	if ((offset & (blocksize - 1)) == 0) {
2195		return -ENOENT;
2196	}
2197	page = grab_cache_page(inode->i_mapping, index);
2198	error = -ENOMEM;
2199	if (!page) {
2200		goto out;
2201	}
2202	/* start within the page of the last block in the file */
2203	start = (offset / blocksize) * blocksize;
2204
2205	error = __block_write_begin(page, start, offset - start,
2206				    reiserfs_get_block_create_0);
2207	if (error)
2208		goto unlock;
2209
2210	head = page_buffers(page);
2211	bh = head;
2212	do {
2213		if (pos >= start) {
2214			break;
2215		}
2216		bh = bh->b_this_page;
2217		pos += blocksize;
2218	} while (bh != head);
2219
2220	if (!buffer_uptodate(bh)) {
2221		/*
2222		 * note, this should never happen, prepare_write should be
2223		 * taking care of this for us.  If the buffer isn't up to
2224		 * date, I've screwed up the code to find the buffer, or the
2225		 * code to call prepare_write
2226		 */
2227		reiserfs_error(inode->i_sb, "clm-6000",
2228			       "error reading block %lu", bh->b_blocknr);
2229		error = -EIO;
2230		goto unlock;
2231	}
2232	*bh_result = bh;
2233	*page_result = page;
2234
2235out:
2236	return error;
2237
2238unlock:
2239	unlock_page(page);
2240	put_page(page);
2241	return error;
2242}
2243
2244/*
2245 * vfs version of truncate file.  Must NOT be called with
2246 * a transaction already started.
2247 *
2248 * some code taken from block_truncate_page
2249 */
2250int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2251{
2252	struct reiserfs_transaction_handle th;
2253	/* we want the offset for the first byte after the end of the file */
2254	unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2255	unsigned blocksize = inode->i_sb->s_blocksize;
2256	unsigned length;
2257	struct page *page = NULL;
2258	int error;
2259	struct buffer_head *bh = NULL;
2260	int err2;
2261
2262	reiserfs_write_lock(inode->i_sb);
2263
2264	if (inode->i_size > 0) {
2265		error = grab_tail_page(inode, &page, &bh);
2266		if (error) {
2267			/*
2268			 * -ENOENT means we truncated past the end of the
2269			 * file, and get_block_create_0 could not find a
2270			 * block to read in, which is ok.
2271			 */
2272			if (error != -ENOENT)
2273				reiserfs_error(inode->i_sb, "clm-6001",
2274					       "grab_tail_page failed %d",
2275					       error);
2276			page = NULL;
2277			bh = NULL;
2278		}
2279	}
2280
2281	/*
2282	 * so, if page != NULL, we have a buffer head for the offset at
2283	 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2284	 * then we have an unformatted node.  Otherwise, we have a direct item,
2285	 * and no zeroing is required on disk.  We zero after the truncate,
2286	 * because the truncate might pack the item anyway
2287	 * (it will unmap bh if it packs).
2288	 *
2289	 * it is enough to reserve space in transaction for 2 balancings:
2290	 * one for "save" link adding and another for the first
2291	 * cut_from_item. 1 is for update_sd
2292	 */
2293	error = journal_begin(&th, inode->i_sb,
2294			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2295	if (error)
2296		goto out;
2297	reiserfs_update_inode_transaction(inode);
2298	if (update_timestamps)
2299		/*
2300		 * we are doing real truncate: if the system crashes
2301		 * before the last transaction of truncating gets committed
2302		 * - on reboot the file either appears truncated properly
2303		 * or not truncated at all
2304		 */
2305		add_save_link(&th, inode, 1);
2306	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2307	error = journal_end(&th);
2308	if (error)
2309		goto out;
2310
2311	/* check reiserfs_do_truncate after ending the transaction */
2312	if (err2) {
2313		error = err2;
2314  		goto out;
2315	}
2316
2317	if (update_timestamps) {
2318		error = remove_save_link(inode, 1 /* truncate */);
2319		if (error)
2320			goto out;
2321	}
2322
2323	if (page) {
2324		length = offset & (blocksize - 1);
2325		/* if we are not on a block boundary */
2326		if (length) {
2327			length = blocksize - length;
2328			zero_user(page, offset, length);
2329			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2330				mark_buffer_dirty(bh);
2331			}
2332		}
2333		unlock_page(page);
2334		put_page(page);
2335	}
2336
2337	reiserfs_write_unlock(inode->i_sb);
2338
2339	return 0;
2340out:
2341	if (page) {
2342		unlock_page(page);
2343		put_page(page);
2344	}
2345
2346	reiserfs_write_unlock(inode->i_sb);
2347
2348	return error;
2349}
2350
2351static int map_block_for_writepage(struct inode *inode,
2352				   struct buffer_head *bh_result,
2353				   unsigned long block)
2354{
2355	struct reiserfs_transaction_handle th;
2356	int fs_gen;
2357	struct item_head tmp_ih;
2358	struct item_head *ih;
2359	struct buffer_head *bh;
2360	__le32 *item;
2361	struct cpu_key key;
2362	INITIALIZE_PATH(path);
2363	int pos_in_item;
2364	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2365	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2366	int retval;
2367	int use_get_block = 0;
2368	int bytes_copied = 0;
2369	int copy_size;
2370	int trans_running = 0;
2371
2372	/*
2373	 * catch places below that try to log something without
2374	 * starting a trans
2375	 */
2376	th.t_trans_id = 0;
2377
2378	if (!buffer_uptodate(bh_result)) {
2379		return -EIO;
2380	}
2381
2382	kmap(bh_result->b_page);
2383start_over:
2384	reiserfs_write_lock(inode->i_sb);
2385	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2386
2387research:
2388	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2389	if (retval != POSITION_FOUND) {
2390		use_get_block = 1;
2391		goto out;
2392	}
2393
2394	bh = get_last_bh(&path);
2395	ih = tp_item_head(&path);
2396	item = tp_item_body(&path);
2397	pos_in_item = path.pos_in_item;
2398
2399	/* we've found an unformatted node */
2400	if (indirect_item_found(retval, ih)) {
2401		if (bytes_copied > 0) {
2402			reiserfs_warning(inode->i_sb, "clm-6002",
2403					 "bytes_copied %d", bytes_copied);
2404		}
2405		if (!get_block_num(item, pos_in_item)) {
2406			/* crap, we are writing to a hole */
2407			use_get_block = 1;
2408			goto out;
2409		}
2410		set_block_dev_mapped(bh_result,
2411				     get_block_num(item, pos_in_item), inode);
2412	} else if (is_direct_le_ih(ih)) {
2413		char *p;
2414		p = page_address(bh_result->b_page);
2415		p += (byte_offset - 1) & (PAGE_SIZE - 1);
2416		copy_size = ih_item_len(ih) - pos_in_item;
2417
2418		fs_gen = get_generation(inode->i_sb);
2419		copy_item_head(&tmp_ih, ih);
2420
2421		if (!trans_running) {
2422			/* vs-3050 is gone, no need to drop the path */
2423			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2424			if (retval)
2425				goto out;
2426			reiserfs_update_inode_transaction(inode);
2427			trans_running = 1;
2428			if (fs_changed(fs_gen, inode->i_sb)
2429			    && item_moved(&tmp_ih, &path)) {
2430				reiserfs_restore_prepared_buffer(inode->i_sb,
2431								 bh);
2432				goto research;
2433			}
2434		}
2435
2436		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2437
2438		if (fs_changed(fs_gen, inode->i_sb)
2439		    && item_moved(&tmp_ih, &path)) {
2440			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2441			goto research;
2442		}
2443
2444		memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2445		       copy_size);
2446
2447		journal_mark_dirty(&th, bh);
2448		bytes_copied += copy_size;
2449		set_block_dev_mapped(bh_result, 0, inode);
2450
2451		/* are there still bytes left? */
2452		if (bytes_copied < bh_result->b_size &&
2453		    (byte_offset + bytes_copied) < inode->i_size) {
2454			set_cpu_key_k_offset(&key,
2455					     cpu_key_k_offset(&key) +
2456					     copy_size);
2457			goto research;
2458		}
2459	} else {
2460		reiserfs_warning(inode->i_sb, "clm-6003",
2461				 "bad item inode %lu", inode->i_ino);
2462		retval = -EIO;
2463		goto out;
2464	}
2465	retval = 0;
2466
2467out:
2468	pathrelse(&path);
2469	if (trans_running) {
2470		int err = journal_end(&th);
2471		if (err)
2472			retval = err;
2473		trans_running = 0;
2474	}
2475	reiserfs_write_unlock(inode->i_sb);
2476
2477	/* this is where we fill in holes in the file. */
2478	if (use_get_block) {
2479		retval = reiserfs_get_block(inode, block, bh_result,
2480					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2481					    | GET_BLOCK_NO_DANGLE);
2482		if (!retval) {
2483			if (!buffer_mapped(bh_result)
2484			    || bh_result->b_blocknr == 0) {
2485				/* get_block failed to find a mapped unformatted node. */
2486				use_get_block = 0;
2487				goto start_over;
2488			}
2489		}
2490	}
2491	kunmap(bh_result->b_page);
2492
2493	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2494		/*
2495		 * we've copied data from the page into the direct item, so the
2496		 * buffer in the page is now clean, mark it to reflect that.
2497		 */
2498		lock_buffer(bh_result);
2499		clear_buffer_dirty(bh_result);
2500		unlock_buffer(bh_result);
2501	}
2502	return retval;
2503}
2504
2505/*
2506 * mason@suse.com: updated in 2.5.54 to follow the same general io
2507 * start/recovery path as __block_write_full_folio, along with special
2508 * code to handle reiserfs tails.
2509 */
2510static int reiserfs_write_full_page(struct page *page,
2511				    struct writeback_control *wbc)
2512{
2513	struct inode *inode = page->mapping->host;
2514	unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2515	int error = 0;
2516	unsigned long block;
2517	sector_t last_block;
2518	struct buffer_head *head, *bh;
2519	int partial = 0;
2520	int nr = 0;
2521	int checked = PageChecked(page);
2522	struct reiserfs_transaction_handle th;
2523	struct super_block *s = inode->i_sb;
2524	int bh_per_page = PAGE_SIZE / s->s_blocksize;
2525	th.t_trans_id = 0;
2526
2527	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2528	if (checked && (current->flags & PF_MEMALLOC)) {
2529		redirty_page_for_writepage(wbc, page);
2530		unlock_page(page);
2531		return 0;
2532	}
2533
2534	/*
2535	 * The page dirty bit is cleared before writepage is called, which
2536	 * means we have to tell create_empty_buffers to make dirty buffers
2537	 * The page really should be up to date at this point, so tossing
2538	 * in the BH_Uptodate is just a sanity check.
2539	 */
2540	if (!page_has_buffers(page)) {
2541		create_empty_buffers(page, s->s_blocksize,
2542				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2543	}
2544	head = page_buffers(page);
2545
2546	/*
2547	 * last page in the file, zero out any contents past the
2548	 * last byte in the file
2549	 */
2550	if (page->index >= end_index) {
2551		unsigned last_offset;
2552
2553		last_offset = inode->i_size & (PAGE_SIZE - 1);
2554		/* no file contents in this page */
2555		if (page->index >= end_index + 1 || !last_offset) {
2556			unlock_page(page);
2557			return 0;
2558		}
2559		zero_user_segment(page, last_offset, PAGE_SIZE);
2560	}
2561	bh = head;
2562	block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
2563	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2564	/* first map all the buffers, logging any direct items we find */
2565	do {
2566		if (block > last_block) {
2567			/*
2568			 * This can happen when the block size is less than
2569			 * the page size.  The corresponding bytes in the page
2570			 * were zero filled above
2571			 */
2572			clear_buffer_dirty(bh);
2573			set_buffer_uptodate(bh);
2574		} else if ((checked || buffer_dirty(bh)) &&
2575			   (!buffer_mapped(bh) || bh->b_blocknr == 0)) {
2576			/*
2577			 * not mapped yet, or it points to a direct item, search
2578			 * the btree for the mapping info, and log any direct
2579			 * items found
2580			 */
2581			if ((error = map_block_for_writepage(inode, bh, block))) {
2582				goto fail;
2583			}
2584		}
2585		bh = bh->b_this_page;
2586		block++;
2587	} while (bh != head);
2588
2589	/*
2590	 * we start the transaction after map_block_for_writepage,
2591	 * because it can create holes in the file (an unbounded operation).
2592	 * starting it here, we can make a reliable estimate for how many
2593	 * blocks we're going to log
2594	 */
2595	if (checked) {
2596		ClearPageChecked(page);
2597		reiserfs_write_lock(s);
2598		error = journal_begin(&th, s, bh_per_page + 1);
2599		if (error) {
2600			reiserfs_write_unlock(s);
2601			goto fail;
2602		}
2603		reiserfs_update_inode_transaction(inode);
2604	}
2605	/* now go through and lock any dirty buffers on the page */
2606	do {
2607		get_bh(bh);
2608		if (!buffer_mapped(bh))
2609			continue;
2610		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2611			continue;
2612
2613		if (checked) {
2614			reiserfs_prepare_for_journal(s, bh, 1);
2615			journal_mark_dirty(&th, bh);
2616			continue;
2617		}
2618		/*
2619		 * from this point on, we know the buffer is mapped to a
2620		 * real block and not a direct item
2621		 */
2622		if (wbc->sync_mode != WB_SYNC_NONE) {
2623			lock_buffer(bh);
2624		} else {
2625			if (!trylock_buffer(bh)) {
2626				redirty_page_for_writepage(wbc, page);
2627				continue;
2628			}
2629		}
2630		if (test_clear_buffer_dirty(bh)) {
2631			mark_buffer_async_write(bh);
2632		} else {
2633			unlock_buffer(bh);
2634		}
2635	} while ((bh = bh->b_this_page) != head);
2636
2637	if (checked) {
2638		error = journal_end(&th);
2639		reiserfs_write_unlock(s);
2640		if (error)
2641			goto fail;
2642	}
2643	BUG_ON(PageWriteback(page));
2644	set_page_writeback(page);
2645	unlock_page(page);
2646
2647	/*
2648	 * since any buffer might be the only dirty buffer on the page,
2649	 * the first submit_bh can bring the page out of writeback.
2650	 * be careful with the buffers.
2651	 */
2652	do {
2653		struct buffer_head *next = bh->b_this_page;
2654		if (buffer_async_write(bh)) {
2655			submit_bh(REQ_OP_WRITE, bh);
2656			nr++;
2657		}
2658		put_bh(bh);
2659		bh = next;
2660	} while (bh != head);
2661
2662	error = 0;
2663done:
2664	if (nr == 0) {
2665		/*
2666		 * if this page only had a direct item, it is very possible for
2667		 * no io to be required without there being an error.  Or,
2668		 * someone else could have locked them and sent them down the
2669		 * pipe without locking the page
2670		 */
2671		bh = head;
2672		do {
2673			if (!buffer_uptodate(bh)) {
2674				partial = 1;
2675				break;
2676			}
2677			bh = bh->b_this_page;
2678		} while (bh != head);
2679		if (!partial)
2680			SetPageUptodate(page);
2681		end_page_writeback(page);
2682	}
2683	return error;
2684
2685fail:
2686	/*
2687	 * catches various errors, we need to make sure any valid dirty blocks
2688	 * get to the media.  The page is currently locked and not marked for
2689	 * writeback
2690	 */
2691	ClearPageUptodate(page);
2692	bh = head;
2693	do {
2694		get_bh(bh);
2695		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2696			lock_buffer(bh);
2697			mark_buffer_async_write(bh);
2698		} else {
2699			/*
2700			 * clear any dirty bits that might have come from
2701			 * getting attached to a dirty page
2702			 */
2703			clear_buffer_dirty(bh);
2704		}
2705		bh = bh->b_this_page;
2706	} while (bh != head);
2707	SetPageError(page);
2708	BUG_ON(PageWriteback(page));
2709	set_page_writeback(page);
2710	unlock_page(page);
2711	do {
2712		struct buffer_head *next = bh->b_this_page;
2713		if (buffer_async_write(bh)) {
2714			clear_buffer_dirty(bh);
2715			submit_bh(REQ_OP_WRITE, bh);
2716			nr++;
2717		}
2718		put_bh(bh);
2719		bh = next;
2720	} while (bh != head);
2721	goto done;
2722}
2723
2724static int reiserfs_read_folio(struct file *f, struct folio *folio)
2725{
2726	return block_read_full_folio(folio, reiserfs_get_block);
2727}
2728
2729static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2730{
2731	struct inode *inode = page->mapping->host;
2732	reiserfs_wait_on_write_block(inode->i_sb);
2733	return reiserfs_write_full_page(page, wbc);
2734}
2735
2736static void reiserfs_truncate_failed_write(struct inode *inode)
2737{
2738	truncate_inode_pages(inode->i_mapping, inode->i_size);
2739	reiserfs_truncate_file(inode, 0);
2740}
2741
2742static int reiserfs_write_begin(struct file *file,
2743				struct address_space *mapping,
2744				loff_t pos, unsigned len,
2745				struct page **pagep, void **fsdata)
2746{
2747	struct inode *inode;
2748	struct page *page;
2749	pgoff_t index;
2750	int ret;
2751	int old_ref = 0;
2752
2753 	inode = mapping->host;
2754	index = pos >> PAGE_SHIFT;
2755	page = grab_cache_page_write_begin(mapping, index);
2756	if (!page)
2757		return -ENOMEM;
2758	*pagep = page;
2759
2760	reiserfs_wait_on_write_block(inode->i_sb);
2761	fix_tail_page_for_writing(page);
2762	if (reiserfs_transaction_running(inode->i_sb)) {
2763		struct reiserfs_transaction_handle *th;
2764		th = (struct reiserfs_transaction_handle *)current->
2765		    journal_info;
2766		BUG_ON(!th->t_refcount);
2767		BUG_ON(!th->t_trans_id);
2768		old_ref = th->t_refcount;
2769		th->t_refcount++;
2770	}
2771	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2772	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2773		struct reiserfs_transaction_handle *th = current->journal_info;
2774		/*
2775		 * this gets a little ugly.  If reiserfs_get_block returned an
2776		 * error and left a transacstion running, we've got to close
2777		 * it, and we've got to free handle if it was a persistent
2778		 * transaction.
2779		 *
2780		 * But, if we had nested into an existing transaction, we need
2781		 * to just drop the ref count on the handle.
2782		 *
2783		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2784		 * and it was a persistent trans.  Otherwise, it was nested
2785		 * above.
2786		 */
2787		if (th->t_refcount > old_ref) {
2788			if (old_ref)
2789				th->t_refcount--;
2790			else {
2791				int err;
2792				reiserfs_write_lock(inode->i_sb);
2793				err = reiserfs_end_persistent_transaction(th);
2794				reiserfs_write_unlock(inode->i_sb);
2795				if (err)
2796					ret = err;
2797			}
2798		}
2799	}
2800	if (ret) {
2801		unlock_page(page);
2802		put_page(page);
2803		/* Truncate allocated blocks */
2804		reiserfs_truncate_failed_write(inode);
2805	}
2806	return ret;
2807}
2808
2809int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2810{
2811	struct inode *inode = page->mapping->host;
2812	int ret;
2813	int old_ref = 0;
2814	int depth;
2815
2816	depth = reiserfs_write_unlock_nested(inode->i_sb);
2817	reiserfs_wait_on_write_block(inode->i_sb);
2818	reiserfs_write_lock_nested(inode->i_sb, depth);
2819
2820	fix_tail_page_for_writing(page);
2821	if (reiserfs_transaction_running(inode->i_sb)) {
2822		struct reiserfs_transaction_handle *th;
2823		th = (struct reiserfs_transaction_handle *)current->
2824		    journal_info;
2825		BUG_ON(!th->t_refcount);
2826		BUG_ON(!th->t_trans_id);
2827		old_ref = th->t_refcount;
2828		th->t_refcount++;
2829	}
2830
2831	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2832	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2833		struct reiserfs_transaction_handle *th = current->journal_info;
2834		/*
2835		 * this gets a little ugly.  If reiserfs_get_block returned an
2836		 * error and left a transacstion running, we've got to close
2837		 * it, and we've got to free handle if it was a persistent
2838		 * transaction.
2839		 *
2840		 * But, if we had nested into an existing transaction, we need
2841		 * to just drop the ref count on the handle.
2842		 *
2843		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2844		 * and it was a persistent trans.  Otherwise, it was nested
2845		 * above.
2846		 */
2847		if (th->t_refcount > old_ref) {
2848			if (old_ref)
2849				th->t_refcount--;
2850			else {
2851				int err;
2852				reiserfs_write_lock(inode->i_sb);
2853				err = reiserfs_end_persistent_transaction(th);
2854				reiserfs_write_unlock(inode->i_sb);
2855				if (err)
2856					ret = err;
2857			}
2858		}
2859	}
2860	return ret;
2861
2862}
2863
2864static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2865{
2866	return generic_block_bmap(as, block, reiserfs_bmap);
2867}
2868
2869static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2870			      loff_t pos, unsigned len, unsigned copied,
2871			      struct page *page, void *fsdata)
2872{
2873	struct folio *folio = page_folio(page);
2874	struct inode *inode = page->mapping->host;
2875	int ret = 0;
2876	int update_sd = 0;
2877	struct reiserfs_transaction_handle *th;
2878	unsigned start;
2879	bool locked = false;
2880
2881	reiserfs_wait_on_write_block(inode->i_sb);
2882	if (reiserfs_transaction_running(inode->i_sb))
2883		th = current->journal_info;
2884	else
2885		th = NULL;
2886
2887	start = pos & (PAGE_SIZE - 1);
2888	if (unlikely(copied < len)) {
2889		if (!folio_test_uptodate(folio))
2890			copied = 0;
2891
2892		folio_zero_new_buffers(folio, start + copied, start + len);
2893	}
2894	flush_dcache_folio(folio);
2895
2896	reiserfs_commit_page(inode, page, start, start + copied);
2897
2898	/*
2899	 * generic_commit_write does this for us, but does not update the
2900	 * transaction tracking stuff when the size changes.  So, we have
2901	 * to do the i_size updates here.
2902	 */
2903	if (pos + copied > inode->i_size) {
2904		struct reiserfs_transaction_handle myth;
2905		reiserfs_write_lock(inode->i_sb);
2906		locked = true;
2907		/*
2908		 * If the file have grown beyond the border where it
2909		 * can have a tail, unmark it as needing a tail
2910		 * packing
2911		 */
2912		if ((have_large_tails(inode->i_sb)
2913		     && inode->i_size > i_block_size(inode) * 4)
2914		    || (have_small_tails(inode->i_sb)
2915			&& inode->i_size > i_block_size(inode)))
2916			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2917
2918		ret = journal_begin(&myth, inode->i_sb, 1);
2919		if (ret)
2920			goto journal_error;
2921
2922		reiserfs_update_inode_transaction(inode);
2923		inode->i_size = pos + copied;
2924		/*
2925		 * this will just nest into our transaction.  It's important
2926		 * to use mark_inode_dirty so the inode gets pushed around on
2927		 * the dirty lists, and so that O_SYNC works as expected
2928		 */
2929		mark_inode_dirty(inode);
2930		reiserfs_update_sd(&myth, inode);
2931		update_sd = 1;
2932		ret = journal_end(&myth);
2933		if (ret)
2934			goto journal_error;
2935	}
2936	if (th) {
2937		if (!locked) {
2938			reiserfs_write_lock(inode->i_sb);
2939			locked = true;
2940		}
2941		if (!update_sd)
2942			mark_inode_dirty(inode);
2943		ret = reiserfs_end_persistent_transaction(th);
2944		if (ret)
2945			goto out;
2946	}
2947
2948out:
2949	if (locked)
2950		reiserfs_write_unlock(inode->i_sb);
2951	unlock_page(page);
2952	put_page(page);
2953
2954	if (pos + len > inode->i_size)
2955		reiserfs_truncate_failed_write(inode);
2956
2957	return ret == 0 ? copied : ret;
2958
2959journal_error:
2960	reiserfs_write_unlock(inode->i_sb);
2961	locked = false;
2962	if (th) {
2963		if (!update_sd)
2964			reiserfs_update_sd(th, inode);
2965		ret = reiserfs_end_persistent_transaction(th);
2966	}
2967	goto out;
2968}
2969
2970int reiserfs_commit_write(struct file *f, struct page *page,
2971			  unsigned from, unsigned to)
2972{
2973	struct inode *inode = page->mapping->host;
2974	loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
2975	int ret = 0;
2976	int update_sd = 0;
2977	struct reiserfs_transaction_handle *th = NULL;
2978	int depth;
2979
2980	depth = reiserfs_write_unlock_nested(inode->i_sb);
2981	reiserfs_wait_on_write_block(inode->i_sb);
2982	reiserfs_write_lock_nested(inode->i_sb, depth);
2983
2984	if (reiserfs_transaction_running(inode->i_sb)) {
2985		th = current->journal_info;
2986	}
2987	reiserfs_commit_page(inode, page, from, to);
2988
2989	/*
2990	 * generic_commit_write does this for us, but does not update the
2991	 * transaction tracking stuff when the size changes.  So, we have
2992	 * to do the i_size updates here.
2993	 */
2994	if (pos > inode->i_size) {
2995		struct reiserfs_transaction_handle myth;
2996		/*
2997		 * If the file have grown beyond the border where it
2998		 * can have a tail, unmark it as needing a tail
2999		 * packing
3000		 */
3001		if ((have_large_tails(inode->i_sb)
3002		     && inode->i_size > i_block_size(inode) * 4)
3003		    || (have_small_tails(inode->i_sb)
3004			&& inode->i_size > i_block_size(inode)))
3005			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3006
3007		ret = journal_begin(&myth, inode->i_sb, 1);
3008		if (ret)
3009			goto journal_error;
3010
3011		reiserfs_update_inode_transaction(inode);
3012		inode->i_size = pos;
3013		/*
3014		 * this will just nest into our transaction.  It's important
3015		 * to use mark_inode_dirty so the inode gets pushed around
3016		 * on the dirty lists, and so that O_SYNC works as expected
3017		 */
3018		mark_inode_dirty(inode);
3019		reiserfs_update_sd(&myth, inode);
3020		update_sd = 1;
3021		ret = journal_end(&myth);
3022		if (ret)
3023			goto journal_error;
3024	}
3025	if (th) {
3026		if (!update_sd)
3027			mark_inode_dirty(inode);
3028		ret = reiserfs_end_persistent_transaction(th);
3029		if (ret)
3030			goto out;
3031	}
3032
3033out:
3034	return ret;
3035
3036journal_error:
3037	if (th) {
3038		if (!update_sd)
3039			reiserfs_update_sd(th, inode);
3040		ret = reiserfs_end_persistent_transaction(th);
3041	}
3042
3043	return ret;
3044}
3045
3046void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3047{
3048	if (reiserfs_attrs(inode->i_sb)) {
3049		if (sd_attrs & REISERFS_SYNC_FL)
3050			inode->i_flags |= S_SYNC;
3051		else
3052			inode->i_flags &= ~S_SYNC;
3053		if (sd_attrs & REISERFS_IMMUTABLE_FL)
3054			inode->i_flags |= S_IMMUTABLE;
3055		else
3056			inode->i_flags &= ~S_IMMUTABLE;
3057		if (sd_attrs & REISERFS_APPEND_FL)
3058			inode->i_flags |= S_APPEND;
3059		else
3060			inode->i_flags &= ~S_APPEND;
3061		if (sd_attrs & REISERFS_NOATIME_FL)
3062			inode->i_flags |= S_NOATIME;
3063		else
3064			inode->i_flags &= ~S_NOATIME;
3065		if (sd_attrs & REISERFS_NOTAIL_FL)
3066			REISERFS_I(inode)->i_flags |= i_nopack_mask;
3067		else
3068			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3069	}
3070}
3071
3072/*
3073 * decide if this buffer needs to stay around for data logging or ordered
3074 * write purposes
3075 */
3076static int invalidate_folio_can_drop(struct inode *inode, struct buffer_head *bh)
3077{
3078	int ret = 1;
3079	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3080
3081	lock_buffer(bh);
3082	spin_lock(&j->j_dirty_buffers_lock);
3083	if (!buffer_mapped(bh)) {
3084		goto free_jh;
3085	}
3086	/*
3087	 * the page is locked, and the only places that log a data buffer
3088	 * also lock the page.
3089	 */
3090	if (reiserfs_file_data_log(inode)) {
3091		/*
3092		 * very conservative, leave the buffer pinned if
3093		 * anyone might need it.
3094		 */
3095		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3096			ret = 0;
3097		}
3098	} else  if (buffer_dirty(bh)) {
3099		struct reiserfs_journal_list *jl;
3100		struct reiserfs_jh *jh = bh->b_private;
3101
3102		/*
3103		 * why is this safe?
3104		 * reiserfs_setattr updates i_size in the on disk
3105		 * stat data before allowing vmtruncate to be called.
3106		 *
3107		 * If buffer was put onto the ordered list for this
3108		 * transaction, we know for sure either this transaction
3109		 * or an older one already has updated i_size on disk,
3110		 * and this ordered data won't be referenced in the file
3111		 * if we crash.
3112		 *
3113		 * if the buffer was put onto the ordered list for an older
3114		 * transaction, we need to leave it around
3115		 */
3116		if (jh && (jl = jh->jl)
3117		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3118			ret = 0;
3119	}
3120free_jh:
3121	if (ret && bh->b_private) {
3122		reiserfs_free_jh(bh);
3123	}
3124	spin_unlock(&j->j_dirty_buffers_lock);
3125	unlock_buffer(bh);
3126	return ret;
3127}
3128
3129/* clm -- taken from fs/buffer.c:block_invalidate_folio */
3130static void reiserfs_invalidate_folio(struct folio *folio, size_t offset,
3131				    size_t length)
3132{
3133	struct buffer_head *head, *bh, *next;
3134	struct inode *inode = folio->mapping->host;
3135	unsigned int curr_off = 0;
3136	unsigned int stop = offset + length;
3137	int partial_page = (offset || length < folio_size(folio));
3138	int ret = 1;
3139
3140	BUG_ON(!folio_test_locked(folio));
3141
3142	if (!partial_page)
3143		folio_clear_checked(folio);
3144
3145	head = folio_buffers(folio);
3146	if (!head)
3147		goto out;
3148
3149	bh = head;
3150	do {
3151		unsigned int next_off = curr_off + bh->b_size;
3152		next = bh->b_this_page;
3153
3154		if (next_off > stop)
3155			goto out;
3156
3157		/*
3158		 * is this block fully invalidated?
3159		 */
3160		if (offset <= curr_off) {
3161			if (invalidate_folio_can_drop(inode, bh))
3162				reiserfs_unmap_buffer(bh);
3163			else
3164				ret = 0;
3165		}
3166		curr_off = next_off;
3167		bh = next;
3168	} while (bh != head);
3169
3170	/*
3171	 * We release buffers only if the entire page is being invalidated.
3172	 * The get_block cached value has been unconditionally invalidated,
3173	 * so real IO is not possible anymore.
3174	 */
3175	if (!partial_page && ret) {
3176		ret = filemap_release_folio(folio, 0);
3177		/* maybe should BUG_ON(!ret); - neilb */
3178	}
3179out:
3180	return;
3181}
3182
3183static bool reiserfs_dirty_folio(struct address_space *mapping,
3184		struct folio *folio)
3185{
3186	if (reiserfs_file_data_log(mapping->host)) {
3187		folio_set_checked(folio);
3188		return filemap_dirty_folio(mapping, folio);
3189	}
3190	return block_dirty_folio(mapping, folio);
3191}
3192
3193/*
3194 * Returns true if the folio's buffers were dropped.  The folio is locked.
3195 *
3196 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3197 * in the buffers at folio_buffers(folio).
3198 *
3199 * even in -o notail mode, we can't be sure an old mount without -o notail
3200 * didn't create files with tails.
3201 */
3202static bool reiserfs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
3203{
3204	struct inode *inode = folio->mapping->host;
3205	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3206	struct buffer_head *head;
3207	struct buffer_head *bh;
3208	bool ret = true;
3209
3210	WARN_ON(folio_test_checked(folio));
3211	spin_lock(&j->j_dirty_buffers_lock);
3212	head = folio_buffers(folio);
3213	bh = head;
3214	do {
3215		if (bh->b_private) {
3216			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3217				reiserfs_free_jh(bh);
3218			} else {
3219				ret = false;
3220				break;
3221			}
3222		}
3223		bh = bh->b_this_page;
3224	} while (bh != head);
3225	if (ret)
3226		ret = try_to_free_buffers(folio);
3227	spin_unlock(&j->j_dirty_buffers_lock);
3228	return ret;
3229}
3230
3231/*
3232 * We thank Mingming Cao for helping us understand in great detail what
3233 * to do in this section of the code.
3234 */
3235static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3236{
3237	struct file *file = iocb->ki_filp;
3238	struct inode *inode = file->f_mapping->host;
3239	size_t count = iov_iter_count(iter);
3240	ssize_t ret;
3241
3242	ret = blockdev_direct_IO(iocb, inode, iter,
3243				 reiserfs_get_blocks_direct_io);
3244
3245	/*
3246	 * In case of error extending write may have instantiated a few
3247	 * blocks outside i_size. Trim these off again.
3248	 */
3249	if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3250		loff_t isize = i_size_read(inode);
3251		loff_t end = iocb->ki_pos + count;
3252
3253		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3254			truncate_setsize(inode, isize);
3255			reiserfs_vfs_truncate_file(inode);
3256		}
3257	}
3258
3259	return ret;
3260}
3261
3262int reiserfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3263		     struct iattr *attr)
3264{
3265	struct inode *inode = d_inode(dentry);
3266	unsigned int ia_valid;
3267	int error;
3268
3269	error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
3270	if (error)
3271		return error;
3272
3273	/* must be turned off for recursive notify_change calls */
3274	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3275
3276	if (is_quota_modification(&nop_mnt_idmap, inode, attr)) {
3277		error = dquot_initialize(inode);
3278		if (error)
3279			return error;
3280	}
3281	reiserfs_write_lock(inode->i_sb);
3282	if (attr->ia_valid & ATTR_SIZE) {
3283		/*
3284		 * version 2 items will be caught by the s_maxbytes check
3285		 * done for us in vmtruncate
3286		 */
3287		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3288		    attr->ia_size > MAX_NON_LFS) {
3289			reiserfs_write_unlock(inode->i_sb);
3290			error = -EFBIG;
3291			goto out;
3292		}
3293
3294		inode_dio_wait(inode);
3295
3296		/* fill in hole pointers in the expanding truncate case. */
3297		if (attr->ia_size > inode->i_size) {
3298			loff_t pos = attr->ia_size;
3299
3300			if ((pos & (inode->i_sb->s_blocksize - 1)) == 0)
3301				pos++;
3302			error = generic_cont_expand_simple(inode, pos);
3303			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3304				int err;
3305				struct reiserfs_transaction_handle th;
3306				/* we're changing at most 2 bitmaps, inode + super */
3307				err = journal_begin(&th, inode->i_sb, 4);
3308				if (!err) {
3309					reiserfs_discard_prealloc(&th, inode);
3310					err = journal_end(&th);
3311				}
3312				if (err)
3313					error = err;
3314			}
3315			if (error) {
3316				reiserfs_write_unlock(inode->i_sb);
3317				goto out;
3318			}
3319			/*
3320			 * file size is changed, ctime and mtime are
3321			 * to be updated
3322			 */
3323			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3324		}
3325	}
3326	reiserfs_write_unlock(inode->i_sb);
3327
3328	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3329	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3330	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3331		/* stat data of format v3.5 has 16 bit uid and gid */
3332		error = -EINVAL;
3333		goto out;
3334	}
3335
3336	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3337	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3338		struct reiserfs_transaction_handle th;
3339		int jbegin_count =
3340		    2 *
3341		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3342		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3343		    2;
3344
3345		error = reiserfs_chown_xattrs(inode, attr);
3346
3347		if (error)
3348			return error;
3349
3350		/*
3351		 * (user+group)*(old+new) structure - we count quota
3352		 * info and , inode write (sb, inode)
3353		 */
3354		reiserfs_write_lock(inode->i_sb);
3355		error = journal_begin(&th, inode->i_sb, jbegin_count);
3356		reiserfs_write_unlock(inode->i_sb);
3357		if (error)
3358			goto out;
3359		error = dquot_transfer(&nop_mnt_idmap, inode, attr);
3360		reiserfs_write_lock(inode->i_sb);
3361		if (error) {
3362			journal_end(&th);
3363			reiserfs_write_unlock(inode->i_sb);
3364			goto out;
3365		}
3366
3367		/*
3368		 * Update corresponding info in inode so that everything
3369		 * is in one transaction
3370		 */
3371		if (attr->ia_valid & ATTR_UID)
3372			inode->i_uid = attr->ia_uid;
3373		if (attr->ia_valid & ATTR_GID)
3374			inode->i_gid = attr->ia_gid;
3375		mark_inode_dirty(inode);
3376		error = journal_end(&th);
3377		reiserfs_write_unlock(inode->i_sb);
3378		if (error)
3379			goto out;
3380	}
3381
3382	if ((attr->ia_valid & ATTR_SIZE) &&
3383	    attr->ia_size != i_size_read(inode)) {
3384		error = inode_newsize_ok(inode, attr->ia_size);
3385		if (!error) {
3386			/*
3387			 * Could race against reiserfs_file_release
3388			 * if called from NFS, so take tailpack mutex.
3389			 */
3390			mutex_lock(&REISERFS_I(inode)->tailpack);
3391			truncate_setsize(inode, attr->ia_size);
3392			reiserfs_truncate_file(inode, 1);
3393			mutex_unlock(&REISERFS_I(inode)->tailpack);
3394		}
3395	}
3396
3397	if (!error) {
3398		setattr_copy(&nop_mnt_idmap, inode, attr);
3399		mark_inode_dirty(inode);
3400	}
3401
3402	if (!error && reiserfs_posixacl(inode->i_sb)) {
3403		if (attr->ia_valid & ATTR_MODE)
3404			error = reiserfs_acl_chmod(dentry);
3405	}
3406
3407out:
3408	return error;
3409}
3410
3411const struct address_space_operations reiserfs_address_space_operations = {
3412	.writepage = reiserfs_writepage,
3413	.read_folio = reiserfs_read_folio,
3414	.readahead = reiserfs_readahead,
3415	.release_folio = reiserfs_release_folio,
3416	.invalidate_folio = reiserfs_invalidate_folio,
3417	.write_begin = reiserfs_write_begin,
3418	.write_end = reiserfs_write_end,
3419	.bmap = reiserfs_aop_bmap,
3420	.direct_IO = reiserfs_direct_IO,
3421	.dirty_folio = reiserfs_dirty_folio,
3422};
3423