162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci * decompress_common.c - Code shared by the XPRESS and LZX decompressors
462306a36Sopenharmony_ci *
562306a36Sopenharmony_ci * Copyright (C) 2015 Eric Biggers
662306a36Sopenharmony_ci */
762306a36Sopenharmony_ci
862306a36Sopenharmony_ci#include "decompress_common.h"
962306a36Sopenharmony_ci
1062306a36Sopenharmony_ci/*
1162306a36Sopenharmony_ci * make_huffman_decode_table() -
1262306a36Sopenharmony_ci *
1362306a36Sopenharmony_ci * Build a decoding table for a canonical prefix code, or "Huffman code".
1462306a36Sopenharmony_ci *
1562306a36Sopenharmony_ci * This is an internal function, not part of the library API!
1662306a36Sopenharmony_ci *
1762306a36Sopenharmony_ci * This takes as input the length of the codeword for each symbol in the
1862306a36Sopenharmony_ci * alphabet and produces as output a table that can be used for fast
1962306a36Sopenharmony_ci * decoding of prefix-encoded symbols using read_huffsym().
2062306a36Sopenharmony_ci *
2162306a36Sopenharmony_ci * Strictly speaking, a canonical prefix code might not be a Huffman
2262306a36Sopenharmony_ci * code.  But this algorithm will work either way; and in fact, since
2362306a36Sopenharmony_ci * Huffman codes are defined in terms of symbol frequencies, there is no
2462306a36Sopenharmony_ci * way for the decompressor to know whether the code is a true Huffman
2562306a36Sopenharmony_ci * code or not until all symbols have been decoded.
2662306a36Sopenharmony_ci *
2762306a36Sopenharmony_ci * Because the prefix code is assumed to be "canonical", it can be
2862306a36Sopenharmony_ci * reconstructed directly from the codeword lengths.  A prefix code is
2962306a36Sopenharmony_ci * canonical if and only if a longer codeword never lexicographically
3062306a36Sopenharmony_ci * precedes a shorter codeword, and the lexicographic ordering of
3162306a36Sopenharmony_ci * codewords of the same length is the same as the lexicographic ordering
3262306a36Sopenharmony_ci * of the corresponding symbols.  Consequently, we can sort the symbols
3362306a36Sopenharmony_ci * primarily by codeword length and secondarily by symbol value, then
3462306a36Sopenharmony_ci * reconstruct the prefix code by generating codewords lexicographically
3562306a36Sopenharmony_ci * in that order.
3662306a36Sopenharmony_ci *
3762306a36Sopenharmony_ci * This function does not, however, generate the prefix code explicitly.
3862306a36Sopenharmony_ci * Instead, it directly builds a table for decoding symbols using the
3962306a36Sopenharmony_ci * code.  The basic idea is this: given the next 'max_codeword_len' bits
4062306a36Sopenharmony_ci * in the input, we can look up the decoded symbol by indexing a table
4162306a36Sopenharmony_ci * containing 2**max_codeword_len entries.  A codeword with length
4262306a36Sopenharmony_ci * 'max_codeword_len' will have exactly one entry in this table, whereas
4362306a36Sopenharmony_ci * a codeword shorter than 'max_codeword_len' will have multiple entries
4462306a36Sopenharmony_ci * in this table.  Precisely, a codeword of length n will be represented
4562306a36Sopenharmony_ci * by 2**(max_codeword_len - n) entries in this table.  The 0-based index
4662306a36Sopenharmony_ci * of each such entry will contain the corresponding codeword as a prefix
4762306a36Sopenharmony_ci * when zero-padded on the left to 'max_codeword_len' binary digits.
4862306a36Sopenharmony_ci *
4962306a36Sopenharmony_ci * That's the basic idea, but we implement two optimizations regarding
5062306a36Sopenharmony_ci * the format of the decode table itself:
5162306a36Sopenharmony_ci *
5262306a36Sopenharmony_ci * - For many compression formats, the maximum codeword length is too
5362306a36Sopenharmony_ci *   long for it to be efficient to build the full decoding table
5462306a36Sopenharmony_ci *   whenever a new prefix code is used.  Instead, we can build the table
5562306a36Sopenharmony_ci *   using only 2**table_bits entries, where 'table_bits' is some number
5662306a36Sopenharmony_ci *   less than or equal to 'max_codeword_len'.  Then, only codewords of
5762306a36Sopenharmony_ci *   length 'table_bits' and shorter can be directly looked up.  For
5862306a36Sopenharmony_ci *   longer codewords, the direct lookup instead produces the root of a
5962306a36Sopenharmony_ci *   binary tree.  Using this tree, the decoder can do traditional
6062306a36Sopenharmony_ci *   bit-by-bit decoding of the remainder of the codeword.  Child nodes
6162306a36Sopenharmony_ci *   are allocated in extra entries at the end of the table; leaf nodes
6262306a36Sopenharmony_ci *   contain symbols.  Note that the long-codeword case is, in general,
6362306a36Sopenharmony_ci *   not performance critical, since in Huffman codes the most frequently
6462306a36Sopenharmony_ci *   used symbols are assigned the shortest codeword lengths.
6562306a36Sopenharmony_ci *
6662306a36Sopenharmony_ci * - When we decode a symbol using a direct lookup of the table, we still
6762306a36Sopenharmony_ci *   need to know its length so that the bitstream can be advanced by the
6862306a36Sopenharmony_ci *   appropriate number of bits.  The simple solution is to simply retain
6962306a36Sopenharmony_ci *   the 'lens' array and use the decoded symbol as an index into it.
7062306a36Sopenharmony_ci *   However, this requires two separate array accesses in the fast path.
7162306a36Sopenharmony_ci *   The optimization is to store the length directly in the decode
7262306a36Sopenharmony_ci *   table.  We use the bottom 11 bits for the symbol and the top 5 bits
7362306a36Sopenharmony_ci *   for the length.  In addition, to combine this optimization with the
7462306a36Sopenharmony_ci *   previous one, we introduce a special case where the top 2 bits of
7562306a36Sopenharmony_ci *   the length are both set if the entry is actually the root of a
7662306a36Sopenharmony_ci *   binary tree.
7762306a36Sopenharmony_ci *
7862306a36Sopenharmony_ci * @decode_table:
7962306a36Sopenharmony_ci *	The array in which to create the decoding table.  This must have
8062306a36Sopenharmony_ci *	a length of at least ((2**table_bits) + 2 * num_syms) entries.
8162306a36Sopenharmony_ci *
8262306a36Sopenharmony_ci * @num_syms:
8362306a36Sopenharmony_ci *	The number of symbols in the alphabet; also, the length of the
8462306a36Sopenharmony_ci *	'lens' array.  Must be less than or equal to 2048.
8562306a36Sopenharmony_ci *
8662306a36Sopenharmony_ci * @table_bits:
8762306a36Sopenharmony_ci *	The order of the decode table size, as explained above.  Must be
8862306a36Sopenharmony_ci *	less than or equal to 13.
8962306a36Sopenharmony_ci *
9062306a36Sopenharmony_ci * @lens:
9162306a36Sopenharmony_ci *	An array of length @num_syms, indexable by symbol, that gives the
9262306a36Sopenharmony_ci *	length of the codeword, in bits, for that symbol.  The length can
9362306a36Sopenharmony_ci *	be 0, which means that the symbol does not have a codeword
9462306a36Sopenharmony_ci *	assigned.
9562306a36Sopenharmony_ci *
9662306a36Sopenharmony_ci * @max_codeword_len:
9762306a36Sopenharmony_ci *	The longest codeword length allowed in the compression format.
9862306a36Sopenharmony_ci *	All entries in 'lens' must be less than or equal to this value.
9962306a36Sopenharmony_ci *	This must be less than or equal to 23.
10062306a36Sopenharmony_ci *
10162306a36Sopenharmony_ci * @working_space
10262306a36Sopenharmony_ci *	A temporary array of length '2 * (max_codeword_len + 1) +
10362306a36Sopenharmony_ci *	num_syms'.
10462306a36Sopenharmony_ci *
10562306a36Sopenharmony_ci * Returns 0 on success, or -1 if the lengths do not form a valid prefix
10662306a36Sopenharmony_ci * code.
10762306a36Sopenharmony_ci */
10862306a36Sopenharmony_ciint make_huffman_decode_table(u16 decode_table[], const u32 num_syms,
10962306a36Sopenharmony_ci			      const u32 table_bits, const u8 lens[],
11062306a36Sopenharmony_ci			      const u32 max_codeword_len,
11162306a36Sopenharmony_ci			      u16 working_space[])
11262306a36Sopenharmony_ci{
11362306a36Sopenharmony_ci	const u32 table_num_entries = 1 << table_bits;
11462306a36Sopenharmony_ci	u16 * const len_counts = &working_space[0];
11562306a36Sopenharmony_ci	u16 * const offsets = &working_space[1 * (max_codeword_len + 1)];
11662306a36Sopenharmony_ci	u16 * const sorted_syms = &working_space[2 * (max_codeword_len + 1)];
11762306a36Sopenharmony_ci	int left;
11862306a36Sopenharmony_ci	void *decode_table_ptr;
11962306a36Sopenharmony_ci	u32 sym_idx;
12062306a36Sopenharmony_ci	u32 codeword_len;
12162306a36Sopenharmony_ci	u32 stores_per_loop;
12262306a36Sopenharmony_ci	u32 decode_table_pos;
12362306a36Sopenharmony_ci	u32 len;
12462306a36Sopenharmony_ci	u32 sym;
12562306a36Sopenharmony_ci
12662306a36Sopenharmony_ci	/* Count how many symbols have each possible codeword length.
12762306a36Sopenharmony_ci	 * Note that a length of 0 indicates the corresponding symbol is not
12862306a36Sopenharmony_ci	 * used in the code and therefore does not have a codeword.
12962306a36Sopenharmony_ci	 */
13062306a36Sopenharmony_ci	for (len = 0; len <= max_codeword_len; len++)
13162306a36Sopenharmony_ci		len_counts[len] = 0;
13262306a36Sopenharmony_ci	for (sym = 0; sym < num_syms; sym++)
13362306a36Sopenharmony_ci		len_counts[lens[sym]]++;
13462306a36Sopenharmony_ci
13562306a36Sopenharmony_ci	/* We can assume all lengths are <= max_codeword_len, but we
13662306a36Sopenharmony_ci	 * cannot assume they form a valid prefix code.  A codeword of
13762306a36Sopenharmony_ci	 * length n should require a proportion of the codespace equaling
13862306a36Sopenharmony_ci	 * (1/2)^n.  The code is valid if and only if the codespace is
13962306a36Sopenharmony_ci	 * exactly filled by the lengths, by this measure.
14062306a36Sopenharmony_ci	 */
14162306a36Sopenharmony_ci	left = 1;
14262306a36Sopenharmony_ci	for (len = 1; len <= max_codeword_len; len++) {
14362306a36Sopenharmony_ci		left <<= 1;
14462306a36Sopenharmony_ci		left -= len_counts[len];
14562306a36Sopenharmony_ci		if (left < 0) {
14662306a36Sopenharmony_ci			/* The lengths overflow the codespace; that is, the code
14762306a36Sopenharmony_ci			 * is over-subscribed.
14862306a36Sopenharmony_ci			 */
14962306a36Sopenharmony_ci			return -1;
15062306a36Sopenharmony_ci		}
15162306a36Sopenharmony_ci	}
15262306a36Sopenharmony_ci
15362306a36Sopenharmony_ci	if (left) {
15462306a36Sopenharmony_ci		/* The lengths do not fill the codespace; that is, they form an
15562306a36Sopenharmony_ci		 * incomplete set.
15662306a36Sopenharmony_ci		 */
15762306a36Sopenharmony_ci		if (left == (1 << max_codeword_len)) {
15862306a36Sopenharmony_ci			/* The code is completely empty.  This is arguably
15962306a36Sopenharmony_ci			 * invalid, but in fact it is valid in LZX and XPRESS,
16062306a36Sopenharmony_ci			 * so we must allow it.  By definition, no symbols can
16162306a36Sopenharmony_ci			 * be decoded with an empty code.  Consequently, we
16262306a36Sopenharmony_ci			 * technically don't even need to fill in the decode
16362306a36Sopenharmony_ci			 * table.  However, to avoid accessing uninitialized
16462306a36Sopenharmony_ci			 * memory if the algorithm nevertheless attempts to
16562306a36Sopenharmony_ci			 * decode symbols using such a code, we zero out the
16662306a36Sopenharmony_ci			 * decode table.
16762306a36Sopenharmony_ci			 */
16862306a36Sopenharmony_ci			memset(decode_table, 0,
16962306a36Sopenharmony_ci			       table_num_entries * sizeof(decode_table[0]));
17062306a36Sopenharmony_ci			return 0;
17162306a36Sopenharmony_ci		}
17262306a36Sopenharmony_ci		return -1;
17362306a36Sopenharmony_ci	}
17462306a36Sopenharmony_ci
17562306a36Sopenharmony_ci	/* Sort the symbols primarily by length and secondarily by symbol order.
17662306a36Sopenharmony_ci	 */
17762306a36Sopenharmony_ci
17862306a36Sopenharmony_ci	/* Initialize 'offsets' so that offsets[len] for 1 <= len <=
17962306a36Sopenharmony_ci	 * max_codeword_len is the number of codewords shorter than 'len' bits.
18062306a36Sopenharmony_ci	 */
18162306a36Sopenharmony_ci	offsets[1] = 0;
18262306a36Sopenharmony_ci	for (len = 1; len < max_codeword_len; len++)
18362306a36Sopenharmony_ci		offsets[len + 1] = offsets[len] + len_counts[len];
18462306a36Sopenharmony_ci
18562306a36Sopenharmony_ci	/* Use the 'offsets' array to sort the symbols.  Note that we do not
18662306a36Sopenharmony_ci	 * include symbols that are not used in the code.  Consequently, fewer
18762306a36Sopenharmony_ci	 * than 'num_syms' entries in 'sorted_syms' may be filled.
18862306a36Sopenharmony_ci	 */
18962306a36Sopenharmony_ci	for (sym = 0; sym < num_syms; sym++)
19062306a36Sopenharmony_ci		if (lens[sym])
19162306a36Sopenharmony_ci			sorted_syms[offsets[lens[sym]]++] = sym;
19262306a36Sopenharmony_ci
19362306a36Sopenharmony_ci	/* Fill entries for codewords with length <= table_bits
19462306a36Sopenharmony_ci	 * --- that is, those short enough for a direct mapping.
19562306a36Sopenharmony_ci	 *
19662306a36Sopenharmony_ci	 * The table will start with entries for the shortest codeword(s), which
19762306a36Sopenharmony_ci	 * have the most entries.  From there, the number of entries per
19862306a36Sopenharmony_ci	 * codeword will decrease.
19962306a36Sopenharmony_ci	 */
20062306a36Sopenharmony_ci	decode_table_ptr = decode_table;
20162306a36Sopenharmony_ci	sym_idx = 0;
20262306a36Sopenharmony_ci	codeword_len = 1;
20362306a36Sopenharmony_ci	stores_per_loop = (1 << (table_bits - codeword_len));
20462306a36Sopenharmony_ci	for (; stores_per_loop != 0; codeword_len++, stores_per_loop >>= 1) {
20562306a36Sopenharmony_ci		u32 end_sym_idx = sym_idx + len_counts[codeword_len];
20662306a36Sopenharmony_ci
20762306a36Sopenharmony_ci		for (; sym_idx < end_sym_idx; sym_idx++) {
20862306a36Sopenharmony_ci			u16 entry;
20962306a36Sopenharmony_ci			u16 *p;
21062306a36Sopenharmony_ci			u32 n;
21162306a36Sopenharmony_ci
21262306a36Sopenharmony_ci			entry = ((u32)codeword_len << 11) | sorted_syms[sym_idx];
21362306a36Sopenharmony_ci			p = (u16 *)decode_table_ptr;
21462306a36Sopenharmony_ci			n = stores_per_loop;
21562306a36Sopenharmony_ci
21662306a36Sopenharmony_ci			do {
21762306a36Sopenharmony_ci				*p++ = entry;
21862306a36Sopenharmony_ci			} while (--n);
21962306a36Sopenharmony_ci
22062306a36Sopenharmony_ci			decode_table_ptr = p;
22162306a36Sopenharmony_ci		}
22262306a36Sopenharmony_ci	}
22362306a36Sopenharmony_ci
22462306a36Sopenharmony_ci	/* If we've filled in the entire table, we are done.  Otherwise,
22562306a36Sopenharmony_ci	 * there are codewords longer than table_bits for which we must
22662306a36Sopenharmony_ci	 * generate binary trees.
22762306a36Sopenharmony_ci	 */
22862306a36Sopenharmony_ci	decode_table_pos = (u16 *)decode_table_ptr - decode_table;
22962306a36Sopenharmony_ci	if (decode_table_pos != table_num_entries) {
23062306a36Sopenharmony_ci		u32 j;
23162306a36Sopenharmony_ci		u32 next_free_tree_slot;
23262306a36Sopenharmony_ci		u32 cur_codeword;
23362306a36Sopenharmony_ci
23462306a36Sopenharmony_ci		/* First, zero out the remaining entries.  This is
23562306a36Sopenharmony_ci		 * necessary so that these entries appear as
23662306a36Sopenharmony_ci		 * "unallocated" in the next part.  Each of these entries
23762306a36Sopenharmony_ci		 * will eventually be filled with the representation of
23862306a36Sopenharmony_ci		 * the root node of a binary tree.
23962306a36Sopenharmony_ci		 */
24062306a36Sopenharmony_ci		j = decode_table_pos;
24162306a36Sopenharmony_ci		do {
24262306a36Sopenharmony_ci			decode_table[j] = 0;
24362306a36Sopenharmony_ci		} while (++j != table_num_entries);
24462306a36Sopenharmony_ci
24562306a36Sopenharmony_ci		/* We allocate child nodes starting at the end of the
24662306a36Sopenharmony_ci		 * direct lookup table.  Note that there should be
24762306a36Sopenharmony_ci		 * 2*num_syms extra entries for this purpose, although
24862306a36Sopenharmony_ci		 * fewer than this may actually be needed.
24962306a36Sopenharmony_ci		 */
25062306a36Sopenharmony_ci		next_free_tree_slot = table_num_entries;
25162306a36Sopenharmony_ci
25262306a36Sopenharmony_ci		/* Iterate through each codeword with length greater than
25362306a36Sopenharmony_ci		 * 'table_bits', primarily in order of codeword length
25462306a36Sopenharmony_ci		 * and secondarily in order of symbol.
25562306a36Sopenharmony_ci		 */
25662306a36Sopenharmony_ci		for (cur_codeword = decode_table_pos << 1;
25762306a36Sopenharmony_ci		     codeword_len <= max_codeword_len;
25862306a36Sopenharmony_ci		     codeword_len++, cur_codeword <<= 1) {
25962306a36Sopenharmony_ci			u32 end_sym_idx = sym_idx + len_counts[codeword_len];
26062306a36Sopenharmony_ci
26162306a36Sopenharmony_ci			for (; sym_idx < end_sym_idx; sym_idx++, cur_codeword++) {
26262306a36Sopenharmony_ci				/* 'sorted_sym' is the symbol represented by the
26362306a36Sopenharmony_ci				 * codeword.
26462306a36Sopenharmony_ci				 */
26562306a36Sopenharmony_ci				u32 sorted_sym = sorted_syms[sym_idx];
26662306a36Sopenharmony_ci				u32 extra_bits = codeword_len - table_bits;
26762306a36Sopenharmony_ci				u32 node_idx = cur_codeword >> extra_bits;
26862306a36Sopenharmony_ci
26962306a36Sopenharmony_ci				/* Go through each bit of the current codeword
27062306a36Sopenharmony_ci				 * beyond the prefix of length @table_bits and
27162306a36Sopenharmony_ci				 * walk the appropriate binary tree, allocating
27262306a36Sopenharmony_ci				 * any slots that have not yet been allocated.
27362306a36Sopenharmony_ci				 *
27462306a36Sopenharmony_ci				 * Note that the 'pointer' entry to the binary
27562306a36Sopenharmony_ci				 * tree, which is stored in the direct lookup
27662306a36Sopenharmony_ci				 * portion of the table, is represented
27762306a36Sopenharmony_ci				 * identically to other internal (non-leaf)
27862306a36Sopenharmony_ci				 * nodes of the binary tree; it can be thought
27962306a36Sopenharmony_ci				 * of as simply the root of the tree.  The
28062306a36Sopenharmony_ci				 * representation of these internal nodes is
28162306a36Sopenharmony_ci				 * simply the index of the left child combined
28262306a36Sopenharmony_ci				 * with the special bits 0xC000 to distinguish
28362306a36Sopenharmony_ci				 * the entry from direct mapping and leaf node
28462306a36Sopenharmony_ci				 * entries.
28562306a36Sopenharmony_ci				 */
28662306a36Sopenharmony_ci				do {
28762306a36Sopenharmony_ci					/* At least one bit remains in the
28862306a36Sopenharmony_ci					 * codeword, but the current node is an
28962306a36Sopenharmony_ci					 * unallocated leaf.  Change it to an
29062306a36Sopenharmony_ci					 * internal node.
29162306a36Sopenharmony_ci					 */
29262306a36Sopenharmony_ci					if (decode_table[node_idx] == 0) {
29362306a36Sopenharmony_ci						decode_table[node_idx] =
29462306a36Sopenharmony_ci							next_free_tree_slot | 0xC000;
29562306a36Sopenharmony_ci						decode_table[next_free_tree_slot++] = 0;
29662306a36Sopenharmony_ci						decode_table[next_free_tree_slot++] = 0;
29762306a36Sopenharmony_ci					}
29862306a36Sopenharmony_ci
29962306a36Sopenharmony_ci					/* Go to the left child if the next bit
30062306a36Sopenharmony_ci					 * in the codeword is 0; otherwise go to
30162306a36Sopenharmony_ci					 * the right child.
30262306a36Sopenharmony_ci					 */
30362306a36Sopenharmony_ci					node_idx = decode_table[node_idx] & 0x3FFF;
30462306a36Sopenharmony_ci					--extra_bits;
30562306a36Sopenharmony_ci					node_idx += (cur_codeword >> extra_bits) & 1;
30662306a36Sopenharmony_ci				} while (extra_bits != 0);
30762306a36Sopenharmony_ci
30862306a36Sopenharmony_ci				/* We've traversed the tree using the entire
30962306a36Sopenharmony_ci				 * codeword, and we're now at the entry where
31062306a36Sopenharmony_ci				 * the actual symbol will be stored.  This is
31162306a36Sopenharmony_ci				 * distinguished from internal nodes by not
31262306a36Sopenharmony_ci				 * having its high two bits set.
31362306a36Sopenharmony_ci				 */
31462306a36Sopenharmony_ci				decode_table[node_idx] = sorted_sym;
31562306a36Sopenharmony_ci			}
31662306a36Sopenharmony_ci		}
31762306a36Sopenharmony_ci	}
31862306a36Sopenharmony_ci	return 0;
31962306a36Sopenharmony_ci}
320