xref: /kernel/linux/linux-6.6/fs/nilfs2/super.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * NILFS module and super block management.
4 *
5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 *
7 * Written by Ryusuke Konishi.
8 */
9/*
10 *  linux/fs/ext2/super.c
11 *
12 * Copyright (C) 1992, 1993, 1994, 1995
13 * Remy Card (card@masi.ibp.fr)
14 * Laboratoire MASI - Institut Blaise Pascal
15 * Universite Pierre et Marie Curie (Paris VI)
16 *
17 *  from
18 *
19 *  linux/fs/minix/inode.c
20 *
21 *  Copyright (C) 1991, 1992  Linus Torvalds
22 *
23 *  Big-endian to little-endian byte-swapping/bitmaps by
24 *        David S. Miller (davem@caip.rutgers.edu), 1995
25 */
26
27#include <linux/module.h>
28#include <linux/string.h>
29#include <linux/slab.h>
30#include <linux/init.h>
31#include <linux/blkdev.h>
32#include <linux/parser.h>
33#include <linux/crc32.h>
34#include <linux/vfs.h>
35#include <linux/writeback.h>
36#include <linux/seq_file.h>
37#include <linux/mount.h>
38#include <linux/fs_context.h>
39#include "nilfs.h"
40#include "export.h"
41#include "mdt.h"
42#include "alloc.h"
43#include "btree.h"
44#include "btnode.h"
45#include "page.h"
46#include "cpfile.h"
47#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
48#include "ifile.h"
49#include "dat.h"
50#include "segment.h"
51#include "segbuf.h"
52
53MODULE_AUTHOR("NTT Corp.");
54MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
55		   "(NILFS)");
56MODULE_LICENSE("GPL");
57
58static struct kmem_cache *nilfs_inode_cachep;
59struct kmem_cache *nilfs_transaction_cachep;
60struct kmem_cache *nilfs_segbuf_cachep;
61struct kmem_cache *nilfs_btree_path_cache;
62
63static int nilfs_setup_super(struct super_block *sb, int is_mount);
64static int nilfs_remount(struct super_block *sb, int *flags, char *data);
65
66void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
67{
68	struct va_format vaf;
69	va_list args;
70	int level;
71
72	va_start(args, fmt);
73
74	level = printk_get_level(fmt);
75	vaf.fmt = printk_skip_level(fmt);
76	vaf.va = &args;
77
78	if (sb)
79		printk("%c%cNILFS (%s): %pV\n",
80		       KERN_SOH_ASCII, level, sb->s_id, &vaf);
81	else
82		printk("%c%cNILFS: %pV\n",
83		       KERN_SOH_ASCII, level, &vaf);
84
85	va_end(args);
86}
87
88static void nilfs_set_error(struct super_block *sb)
89{
90	struct the_nilfs *nilfs = sb->s_fs_info;
91	struct nilfs_super_block **sbp;
92
93	down_write(&nilfs->ns_sem);
94	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
95		nilfs->ns_mount_state |= NILFS_ERROR_FS;
96		sbp = nilfs_prepare_super(sb, 0);
97		if (likely(sbp)) {
98			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
99			if (sbp[1])
100				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
101			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
102		}
103	}
104	up_write(&nilfs->ns_sem);
105}
106
107/**
108 * __nilfs_error() - report failure condition on a filesystem
109 *
110 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
111 * reporting an error message.  This function should be called when
112 * NILFS detects incoherences or defects of meta data on disk.
113 *
114 * This implements the body of nilfs_error() macro.  Normally,
115 * nilfs_error() should be used.  As for sustainable errors such as a
116 * single-shot I/O error, nilfs_err() should be used instead.
117 *
118 * Callers should not add a trailing newline since this will do it.
119 */
120void __nilfs_error(struct super_block *sb, const char *function,
121		   const char *fmt, ...)
122{
123	struct the_nilfs *nilfs = sb->s_fs_info;
124	struct va_format vaf;
125	va_list args;
126
127	va_start(args, fmt);
128
129	vaf.fmt = fmt;
130	vaf.va = &args;
131
132	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
133	       sb->s_id, function, &vaf);
134
135	va_end(args);
136
137	if (!sb_rdonly(sb)) {
138		nilfs_set_error(sb);
139
140		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
141			printk(KERN_CRIT "Remounting filesystem read-only\n");
142			sb->s_flags |= SB_RDONLY;
143		}
144	}
145
146	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
147		panic("NILFS (device %s): panic forced after error\n",
148		      sb->s_id);
149}
150
151struct inode *nilfs_alloc_inode(struct super_block *sb)
152{
153	struct nilfs_inode_info *ii;
154
155	ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS);
156	if (!ii)
157		return NULL;
158	ii->i_bh = NULL;
159	ii->i_state = 0;
160	ii->i_cno = 0;
161	ii->i_assoc_inode = NULL;
162	ii->i_bmap = &ii->i_bmap_data;
163	return &ii->vfs_inode;
164}
165
166static void nilfs_free_inode(struct inode *inode)
167{
168	if (nilfs_is_metadata_file_inode(inode))
169		nilfs_mdt_destroy(inode);
170
171	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
172}
173
174static int nilfs_sync_super(struct super_block *sb, int flag)
175{
176	struct the_nilfs *nilfs = sb->s_fs_info;
177	int err;
178
179 retry:
180	set_buffer_dirty(nilfs->ns_sbh[0]);
181	if (nilfs_test_opt(nilfs, BARRIER)) {
182		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
183					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
184	} else {
185		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
186	}
187
188	if (unlikely(err)) {
189		nilfs_err(sb, "unable to write superblock: err=%d", err);
190		if (err == -EIO && nilfs->ns_sbh[1]) {
191			/*
192			 * sbp[0] points to newer log than sbp[1],
193			 * so copy sbp[0] to sbp[1] to take over sbp[0].
194			 */
195			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
196			       nilfs->ns_sbsize);
197			nilfs_fall_back_super_block(nilfs);
198			goto retry;
199		}
200	} else {
201		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
202
203		nilfs->ns_sbwcount++;
204
205		/*
206		 * The latest segment becomes trailable from the position
207		 * written in superblock.
208		 */
209		clear_nilfs_discontinued(nilfs);
210
211		/* update GC protection for recent segments */
212		if (nilfs->ns_sbh[1]) {
213			if (flag == NILFS_SB_COMMIT_ALL) {
214				set_buffer_dirty(nilfs->ns_sbh[1]);
215				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
216					goto out;
217			}
218			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
219			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
220				sbp = nilfs->ns_sbp[1];
221		}
222
223		spin_lock(&nilfs->ns_last_segment_lock);
224		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
225		spin_unlock(&nilfs->ns_last_segment_lock);
226	}
227 out:
228	return err;
229}
230
231void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
232			  struct the_nilfs *nilfs)
233{
234	sector_t nfreeblocks;
235
236	/* nilfs->ns_sem must be locked by the caller. */
237	nilfs_count_free_blocks(nilfs, &nfreeblocks);
238	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
239
240	spin_lock(&nilfs->ns_last_segment_lock);
241	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
242	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
243	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
244	spin_unlock(&nilfs->ns_last_segment_lock);
245}
246
247struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
248					       int flip)
249{
250	struct the_nilfs *nilfs = sb->s_fs_info;
251	struct nilfs_super_block **sbp = nilfs->ns_sbp;
252
253	/* nilfs->ns_sem must be locked by the caller. */
254	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
255		if (sbp[1] &&
256		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
257			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
258		} else {
259			nilfs_crit(sb, "superblock broke");
260			return NULL;
261		}
262	} else if (sbp[1] &&
263		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
264		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
265	}
266
267	if (flip && sbp[1])
268		nilfs_swap_super_block(nilfs);
269
270	return sbp;
271}
272
273int nilfs_commit_super(struct super_block *sb, int flag)
274{
275	struct the_nilfs *nilfs = sb->s_fs_info;
276	struct nilfs_super_block **sbp = nilfs->ns_sbp;
277	time64_t t;
278
279	/* nilfs->ns_sem must be locked by the caller. */
280	t = ktime_get_real_seconds();
281	nilfs->ns_sbwtime = t;
282	sbp[0]->s_wtime = cpu_to_le64(t);
283	sbp[0]->s_sum = 0;
284	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
285					     (unsigned char *)sbp[0],
286					     nilfs->ns_sbsize));
287	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
288		sbp[1]->s_wtime = sbp[0]->s_wtime;
289		sbp[1]->s_sum = 0;
290		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
291					    (unsigned char *)sbp[1],
292					    nilfs->ns_sbsize));
293	}
294	clear_nilfs_sb_dirty(nilfs);
295	nilfs->ns_flushed_device = 1;
296	/* make sure store to ns_flushed_device cannot be reordered */
297	smp_wmb();
298	return nilfs_sync_super(sb, flag);
299}
300
301/**
302 * nilfs_cleanup_super() - write filesystem state for cleanup
303 * @sb: super block instance to be unmounted or degraded to read-only
304 *
305 * This function restores state flags in the on-disk super block.
306 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
307 * filesystem was not clean previously.
308 */
309int nilfs_cleanup_super(struct super_block *sb)
310{
311	struct the_nilfs *nilfs = sb->s_fs_info;
312	struct nilfs_super_block **sbp;
313	int flag = NILFS_SB_COMMIT;
314	int ret = -EIO;
315
316	sbp = nilfs_prepare_super(sb, 0);
317	if (sbp) {
318		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
319		nilfs_set_log_cursor(sbp[0], nilfs);
320		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
321			/*
322			 * make the "clean" flag also to the opposite
323			 * super block if both super blocks point to
324			 * the same checkpoint.
325			 */
326			sbp[1]->s_state = sbp[0]->s_state;
327			flag = NILFS_SB_COMMIT_ALL;
328		}
329		ret = nilfs_commit_super(sb, flag);
330	}
331	return ret;
332}
333
334/**
335 * nilfs_move_2nd_super - relocate secondary super block
336 * @sb: super block instance
337 * @sb2off: new offset of the secondary super block (in bytes)
338 */
339static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
340{
341	struct the_nilfs *nilfs = sb->s_fs_info;
342	struct buffer_head *nsbh;
343	struct nilfs_super_block *nsbp;
344	sector_t blocknr, newblocknr;
345	unsigned long offset;
346	int sb2i;  /* array index of the secondary superblock */
347	int ret = 0;
348
349	/* nilfs->ns_sem must be locked by the caller. */
350	if (nilfs->ns_sbh[1] &&
351	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
352		sb2i = 1;
353		blocknr = nilfs->ns_sbh[1]->b_blocknr;
354	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
355		sb2i = 0;
356		blocknr = nilfs->ns_sbh[0]->b_blocknr;
357	} else {
358		sb2i = -1;
359		blocknr = 0;
360	}
361	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
362		goto out;  /* super block location is unchanged */
363
364	/* Get new super block buffer */
365	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
366	offset = sb2off & (nilfs->ns_blocksize - 1);
367	nsbh = sb_getblk(sb, newblocknr);
368	if (!nsbh) {
369		nilfs_warn(sb,
370			   "unable to move secondary superblock to block %llu",
371			   (unsigned long long)newblocknr);
372		ret = -EIO;
373		goto out;
374	}
375	nsbp = (void *)nsbh->b_data + offset;
376
377	lock_buffer(nsbh);
378	if (sb2i >= 0) {
379		/*
380		 * The position of the second superblock only changes by 4KiB,
381		 * which is larger than the maximum superblock data size
382		 * (= 1KiB), so there is no need to use memmove() to allow
383		 * overlap between source and destination.
384		 */
385		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
386
387		/*
388		 * Zero fill after copy to avoid overwriting in case of move
389		 * within the same block.
390		 */
391		memset(nsbh->b_data, 0, offset);
392		memset((void *)nsbp + nilfs->ns_sbsize, 0,
393		       nsbh->b_size - offset - nilfs->ns_sbsize);
394	} else {
395		memset(nsbh->b_data, 0, nsbh->b_size);
396	}
397	set_buffer_uptodate(nsbh);
398	unlock_buffer(nsbh);
399
400	if (sb2i >= 0) {
401		brelse(nilfs->ns_sbh[sb2i]);
402		nilfs->ns_sbh[sb2i] = nsbh;
403		nilfs->ns_sbp[sb2i] = nsbp;
404	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
405		/* secondary super block will be restored to index 1 */
406		nilfs->ns_sbh[1] = nsbh;
407		nilfs->ns_sbp[1] = nsbp;
408	} else {
409		brelse(nsbh);
410	}
411out:
412	return ret;
413}
414
415/**
416 * nilfs_resize_fs - resize the filesystem
417 * @sb: super block instance
418 * @newsize: new size of the filesystem (in bytes)
419 */
420int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
421{
422	struct the_nilfs *nilfs = sb->s_fs_info;
423	struct nilfs_super_block **sbp;
424	__u64 devsize, newnsegs;
425	loff_t sb2off;
426	int ret;
427
428	ret = -ERANGE;
429	devsize = bdev_nr_bytes(sb->s_bdev);
430	if (newsize > devsize)
431		goto out;
432
433	/*
434	 * Prevent underflow in second superblock position calculation.
435	 * The exact minimum size check is done in nilfs_sufile_resize().
436	 */
437	if (newsize < 4096) {
438		ret = -ENOSPC;
439		goto out;
440	}
441
442	/*
443	 * Write lock is required to protect some functions depending
444	 * on the number of segments, the number of reserved segments,
445	 * and so forth.
446	 */
447	down_write(&nilfs->ns_segctor_sem);
448
449	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
450	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
451	do_div(newnsegs, nilfs->ns_blocks_per_segment);
452
453	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
454	up_write(&nilfs->ns_segctor_sem);
455	if (ret < 0)
456		goto out;
457
458	ret = nilfs_construct_segment(sb);
459	if (ret < 0)
460		goto out;
461
462	down_write(&nilfs->ns_sem);
463	nilfs_move_2nd_super(sb, sb2off);
464	ret = -EIO;
465	sbp = nilfs_prepare_super(sb, 0);
466	if (likely(sbp)) {
467		nilfs_set_log_cursor(sbp[0], nilfs);
468		/*
469		 * Drop NILFS_RESIZE_FS flag for compatibility with
470		 * mount-time resize which may be implemented in a
471		 * future release.
472		 */
473		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
474					      ~NILFS_RESIZE_FS);
475		sbp[0]->s_dev_size = cpu_to_le64(newsize);
476		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
477		if (sbp[1])
478			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
479		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
480	}
481	up_write(&nilfs->ns_sem);
482
483	/*
484	 * Reset the range of allocatable segments last.  This order
485	 * is important in the case of expansion because the secondary
486	 * superblock must be protected from log write until migration
487	 * completes.
488	 */
489	if (!ret)
490		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
491out:
492	return ret;
493}
494
495static void nilfs_put_super(struct super_block *sb)
496{
497	struct the_nilfs *nilfs = sb->s_fs_info;
498
499	nilfs_detach_log_writer(sb);
500
501	if (!sb_rdonly(sb)) {
502		down_write(&nilfs->ns_sem);
503		nilfs_cleanup_super(sb);
504		up_write(&nilfs->ns_sem);
505	}
506
507	nilfs_sysfs_delete_device_group(nilfs);
508	iput(nilfs->ns_sufile);
509	iput(nilfs->ns_cpfile);
510	iput(nilfs->ns_dat);
511
512	destroy_nilfs(nilfs);
513	sb->s_fs_info = NULL;
514}
515
516static int nilfs_sync_fs(struct super_block *sb, int wait)
517{
518	struct the_nilfs *nilfs = sb->s_fs_info;
519	struct nilfs_super_block **sbp;
520	int err = 0;
521
522	/* This function is called when super block should be written back */
523	if (wait)
524		err = nilfs_construct_segment(sb);
525
526	down_write(&nilfs->ns_sem);
527	if (nilfs_sb_dirty(nilfs)) {
528		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
529		if (likely(sbp)) {
530			nilfs_set_log_cursor(sbp[0], nilfs);
531			nilfs_commit_super(sb, NILFS_SB_COMMIT);
532		}
533	}
534	up_write(&nilfs->ns_sem);
535
536	if (!err)
537		err = nilfs_flush_device(nilfs);
538
539	return err;
540}
541
542int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
543			    struct nilfs_root **rootp)
544{
545	struct the_nilfs *nilfs = sb->s_fs_info;
546	struct nilfs_root *root;
547	struct nilfs_checkpoint *raw_cp;
548	struct buffer_head *bh_cp;
549	int err = -ENOMEM;
550
551	root = nilfs_find_or_create_root(
552		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
553	if (!root)
554		return err;
555
556	if (root->ifile)
557		goto reuse; /* already attached checkpoint */
558
559	down_read(&nilfs->ns_segctor_sem);
560	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
561					  &bh_cp);
562	up_read(&nilfs->ns_segctor_sem);
563	if (unlikely(err)) {
564		if (err == -ENOENT || err == -EINVAL) {
565			nilfs_err(sb,
566				  "Invalid checkpoint (checkpoint number=%llu)",
567				  (unsigned long long)cno);
568			err = -EINVAL;
569		}
570		goto failed;
571	}
572
573	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
574			       &raw_cp->cp_ifile_inode, &root->ifile);
575	if (err)
576		goto failed_bh;
577
578	atomic64_set(&root->inodes_count,
579			le64_to_cpu(raw_cp->cp_inodes_count));
580	atomic64_set(&root->blocks_count,
581			le64_to_cpu(raw_cp->cp_blocks_count));
582
583	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
584
585 reuse:
586	*rootp = root;
587	return 0;
588
589 failed_bh:
590	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
591 failed:
592	nilfs_put_root(root);
593
594	return err;
595}
596
597static int nilfs_freeze(struct super_block *sb)
598{
599	struct the_nilfs *nilfs = sb->s_fs_info;
600	int err;
601
602	if (sb_rdonly(sb))
603		return 0;
604
605	/* Mark super block clean */
606	down_write(&nilfs->ns_sem);
607	err = nilfs_cleanup_super(sb);
608	up_write(&nilfs->ns_sem);
609	return err;
610}
611
612static int nilfs_unfreeze(struct super_block *sb)
613{
614	struct the_nilfs *nilfs = sb->s_fs_info;
615
616	if (sb_rdonly(sb))
617		return 0;
618
619	down_write(&nilfs->ns_sem);
620	nilfs_setup_super(sb, false);
621	up_write(&nilfs->ns_sem);
622	return 0;
623}
624
625static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
626{
627	struct super_block *sb = dentry->d_sb;
628	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
629	struct the_nilfs *nilfs = root->nilfs;
630	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
631	unsigned long long blocks;
632	unsigned long overhead;
633	unsigned long nrsvblocks;
634	sector_t nfreeblocks;
635	u64 nmaxinodes, nfreeinodes;
636	int err;
637
638	/*
639	 * Compute all of the segment blocks
640	 *
641	 * The blocks before first segment and after last segment
642	 * are excluded.
643	 */
644	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
645		- nilfs->ns_first_data_block;
646	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
647
648	/*
649	 * Compute the overhead
650	 *
651	 * When distributing meta data blocks outside segment structure,
652	 * We must count them as the overhead.
653	 */
654	overhead = 0;
655
656	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
657	if (unlikely(err))
658		return err;
659
660	err = nilfs_ifile_count_free_inodes(root->ifile,
661					    &nmaxinodes, &nfreeinodes);
662	if (unlikely(err)) {
663		nilfs_warn(sb, "failed to count free inodes: err=%d", err);
664		if (err == -ERANGE) {
665			/*
666			 * If nilfs_palloc_count_max_entries() returns
667			 * -ERANGE error code then we simply treat
668			 * curent inodes count as maximum possible and
669			 * zero as free inodes value.
670			 */
671			nmaxinodes = atomic64_read(&root->inodes_count);
672			nfreeinodes = 0;
673			err = 0;
674		} else
675			return err;
676	}
677
678	buf->f_type = NILFS_SUPER_MAGIC;
679	buf->f_bsize = sb->s_blocksize;
680	buf->f_blocks = blocks - overhead;
681	buf->f_bfree = nfreeblocks;
682	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
683		(buf->f_bfree - nrsvblocks) : 0;
684	buf->f_files = nmaxinodes;
685	buf->f_ffree = nfreeinodes;
686	buf->f_namelen = NILFS_NAME_LEN;
687	buf->f_fsid = u64_to_fsid(id);
688
689	return 0;
690}
691
692static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
693{
694	struct super_block *sb = dentry->d_sb;
695	struct the_nilfs *nilfs = sb->s_fs_info;
696	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
697
698	if (!nilfs_test_opt(nilfs, BARRIER))
699		seq_puts(seq, ",nobarrier");
700	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
701		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
702	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
703		seq_puts(seq, ",errors=panic");
704	if (nilfs_test_opt(nilfs, ERRORS_CONT))
705		seq_puts(seq, ",errors=continue");
706	if (nilfs_test_opt(nilfs, STRICT_ORDER))
707		seq_puts(seq, ",order=strict");
708	if (nilfs_test_opt(nilfs, NORECOVERY))
709		seq_puts(seq, ",norecovery");
710	if (nilfs_test_opt(nilfs, DISCARD))
711		seq_puts(seq, ",discard");
712
713	return 0;
714}
715
716static const struct super_operations nilfs_sops = {
717	.alloc_inode    = nilfs_alloc_inode,
718	.free_inode     = nilfs_free_inode,
719	.dirty_inode    = nilfs_dirty_inode,
720	.evict_inode    = nilfs_evict_inode,
721	.put_super      = nilfs_put_super,
722	.sync_fs        = nilfs_sync_fs,
723	.freeze_fs	= nilfs_freeze,
724	.unfreeze_fs	= nilfs_unfreeze,
725	.statfs         = nilfs_statfs,
726	.remount_fs     = nilfs_remount,
727	.show_options = nilfs_show_options
728};
729
730enum {
731	Opt_err_cont, Opt_err_panic, Opt_err_ro,
732	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
733	Opt_discard, Opt_nodiscard, Opt_err,
734};
735
736static match_table_t tokens = {
737	{Opt_err_cont, "errors=continue"},
738	{Opt_err_panic, "errors=panic"},
739	{Opt_err_ro, "errors=remount-ro"},
740	{Opt_barrier, "barrier"},
741	{Opt_nobarrier, "nobarrier"},
742	{Opt_snapshot, "cp=%u"},
743	{Opt_order, "order=%s"},
744	{Opt_norecovery, "norecovery"},
745	{Opt_discard, "discard"},
746	{Opt_nodiscard, "nodiscard"},
747	{Opt_err, NULL}
748};
749
750static int parse_options(char *options, struct super_block *sb, int is_remount)
751{
752	struct the_nilfs *nilfs = sb->s_fs_info;
753	char *p;
754	substring_t args[MAX_OPT_ARGS];
755
756	if (!options)
757		return 1;
758
759	while ((p = strsep(&options, ",")) != NULL) {
760		int token;
761
762		if (!*p)
763			continue;
764
765		token = match_token(p, tokens, args);
766		switch (token) {
767		case Opt_barrier:
768			nilfs_set_opt(nilfs, BARRIER);
769			break;
770		case Opt_nobarrier:
771			nilfs_clear_opt(nilfs, BARRIER);
772			break;
773		case Opt_order:
774			if (strcmp(args[0].from, "relaxed") == 0)
775				/* Ordered data semantics */
776				nilfs_clear_opt(nilfs, STRICT_ORDER);
777			else if (strcmp(args[0].from, "strict") == 0)
778				/* Strict in-order semantics */
779				nilfs_set_opt(nilfs, STRICT_ORDER);
780			else
781				return 0;
782			break;
783		case Opt_err_panic:
784			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
785			break;
786		case Opt_err_ro:
787			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
788			break;
789		case Opt_err_cont:
790			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
791			break;
792		case Opt_snapshot:
793			if (is_remount) {
794				nilfs_err(sb,
795					  "\"%s\" option is invalid for remount",
796					  p);
797				return 0;
798			}
799			break;
800		case Opt_norecovery:
801			nilfs_set_opt(nilfs, NORECOVERY);
802			break;
803		case Opt_discard:
804			nilfs_set_opt(nilfs, DISCARD);
805			break;
806		case Opt_nodiscard:
807			nilfs_clear_opt(nilfs, DISCARD);
808			break;
809		default:
810			nilfs_err(sb, "unrecognized mount option \"%s\"", p);
811			return 0;
812		}
813	}
814	return 1;
815}
816
817static inline void
818nilfs_set_default_options(struct super_block *sb,
819			  struct nilfs_super_block *sbp)
820{
821	struct the_nilfs *nilfs = sb->s_fs_info;
822
823	nilfs->ns_mount_opt =
824		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
825}
826
827static int nilfs_setup_super(struct super_block *sb, int is_mount)
828{
829	struct the_nilfs *nilfs = sb->s_fs_info;
830	struct nilfs_super_block **sbp;
831	int max_mnt_count;
832	int mnt_count;
833
834	/* nilfs->ns_sem must be locked by the caller. */
835	sbp = nilfs_prepare_super(sb, 0);
836	if (!sbp)
837		return -EIO;
838
839	if (!is_mount)
840		goto skip_mount_setup;
841
842	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
843	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
844
845	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
846		nilfs_warn(sb, "mounting fs with errors");
847#if 0
848	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
849		nilfs_warn(sb, "maximal mount count reached");
850#endif
851	}
852	if (!max_mnt_count)
853		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
854
855	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
856	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
857
858skip_mount_setup:
859	sbp[0]->s_state =
860		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
861	/* synchronize sbp[1] with sbp[0] */
862	if (sbp[1])
863		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
864	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
865}
866
867struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
868						 u64 pos, int blocksize,
869						 struct buffer_head **pbh)
870{
871	unsigned long long sb_index = pos;
872	unsigned long offset;
873
874	offset = do_div(sb_index, blocksize);
875	*pbh = sb_bread(sb, sb_index);
876	if (!*pbh)
877		return NULL;
878	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
879}
880
881int nilfs_store_magic_and_option(struct super_block *sb,
882				 struct nilfs_super_block *sbp,
883				 char *data)
884{
885	struct the_nilfs *nilfs = sb->s_fs_info;
886
887	sb->s_magic = le16_to_cpu(sbp->s_magic);
888
889	/* FS independent flags */
890#ifdef NILFS_ATIME_DISABLE
891	sb->s_flags |= SB_NOATIME;
892#endif
893
894	nilfs_set_default_options(sb, sbp);
895
896	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
897	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
898	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
899	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
900
901	return !parse_options(data, sb, 0) ? -EINVAL : 0;
902}
903
904int nilfs_check_feature_compatibility(struct super_block *sb,
905				      struct nilfs_super_block *sbp)
906{
907	__u64 features;
908
909	features = le64_to_cpu(sbp->s_feature_incompat) &
910		~NILFS_FEATURE_INCOMPAT_SUPP;
911	if (features) {
912		nilfs_err(sb,
913			  "couldn't mount because of unsupported optional features (%llx)",
914			  (unsigned long long)features);
915		return -EINVAL;
916	}
917	features = le64_to_cpu(sbp->s_feature_compat_ro) &
918		~NILFS_FEATURE_COMPAT_RO_SUPP;
919	if (!sb_rdonly(sb) && features) {
920		nilfs_err(sb,
921			  "couldn't mount RDWR because of unsupported optional features (%llx)",
922			  (unsigned long long)features);
923		return -EINVAL;
924	}
925	return 0;
926}
927
928static int nilfs_get_root_dentry(struct super_block *sb,
929				 struct nilfs_root *root,
930				 struct dentry **root_dentry)
931{
932	struct inode *inode;
933	struct dentry *dentry;
934	int ret = 0;
935
936	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
937	if (IS_ERR(inode)) {
938		ret = PTR_ERR(inode);
939		nilfs_err(sb, "error %d getting root inode", ret);
940		goto out;
941	}
942	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
943		iput(inode);
944		nilfs_err(sb, "corrupt root inode");
945		ret = -EINVAL;
946		goto out;
947	}
948
949	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
950		dentry = d_find_alias(inode);
951		if (!dentry) {
952			dentry = d_make_root(inode);
953			if (!dentry) {
954				ret = -ENOMEM;
955				goto failed_dentry;
956			}
957		} else {
958			iput(inode);
959		}
960	} else {
961		dentry = d_obtain_root(inode);
962		if (IS_ERR(dentry)) {
963			ret = PTR_ERR(dentry);
964			goto failed_dentry;
965		}
966	}
967	*root_dentry = dentry;
968 out:
969	return ret;
970
971 failed_dentry:
972	nilfs_err(sb, "error %d getting root dentry", ret);
973	goto out;
974}
975
976static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
977				 struct dentry **root_dentry)
978{
979	struct the_nilfs *nilfs = s->s_fs_info;
980	struct nilfs_root *root;
981	int ret;
982
983	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
984
985	down_read(&nilfs->ns_segctor_sem);
986	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
987	up_read(&nilfs->ns_segctor_sem);
988	if (ret < 0) {
989		ret = (ret == -ENOENT) ? -EINVAL : ret;
990		goto out;
991	} else if (!ret) {
992		nilfs_err(s,
993			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
994			  (unsigned long long)cno);
995		ret = -EINVAL;
996		goto out;
997	}
998
999	ret = nilfs_attach_checkpoint(s, cno, false, &root);
1000	if (ret) {
1001		nilfs_err(s,
1002			  "error %d while loading snapshot (checkpoint number=%llu)",
1003			  ret, (unsigned long long)cno);
1004		goto out;
1005	}
1006	ret = nilfs_get_root_dentry(s, root, root_dentry);
1007	nilfs_put_root(root);
1008 out:
1009	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
1010	return ret;
1011}
1012
1013/**
1014 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1015 * @root_dentry: root dentry of the tree to be shrunk
1016 *
1017 * This function returns true if the tree was in-use.
1018 */
1019static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1020{
1021	shrink_dcache_parent(root_dentry);
1022	return d_count(root_dentry) > 1;
1023}
1024
1025int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1026{
1027	struct the_nilfs *nilfs = sb->s_fs_info;
1028	struct nilfs_root *root;
1029	struct inode *inode;
1030	struct dentry *dentry;
1031	int ret;
1032
1033	if (cno > nilfs->ns_cno)
1034		return false;
1035
1036	if (cno >= nilfs_last_cno(nilfs))
1037		return true;	/* protect recent checkpoints */
1038
1039	ret = false;
1040	root = nilfs_lookup_root(nilfs, cno);
1041	if (root) {
1042		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1043		if (inode) {
1044			dentry = d_find_alias(inode);
1045			if (dentry) {
1046				ret = nilfs_tree_is_busy(dentry);
1047				dput(dentry);
1048			}
1049			iput(inode);
1050		}
1051		nilfs_put_root(root);
1052	}
1053	return ret;
1054}
1055
1056/**
1057 * nilfs_fill_super() - initialize a super block instance
1058 * @sb: super_block
1059 * @data: mount options
1060 * @silent: silent mode flag
1061 *
1062 * This function is called exclusively by nilfs->ns_mount_mutex.
1063 * So, the recovery process is protected from other simultaneous mounts.
1064 */
1065static int
1066nilfs_fill_super(struct super_block *sb, void *data, int silent)
1067{
1068	struct the_nilfs *nilfs;
1069	struct nilfs_root *fsroot;
1070	__u64 cno;
1071	int err;
1072
1073	nilfs = alloc_nilfs(sb);
1074	if (!nilfs)
1075		return -ENOMEM;
1076
1077	sb->s_fs_info = nilfs;
1078
1079	err = init_nilfs(nilfs, sb, (char *)data);
1080	if (err)
1081		goto failed_nilfs;
1082
1083	sb->s_op = &nilfs_sops;
1084	sb->s_export_op = &nilfs_export_ops;
1085	sb->s_root = NULL;
1086	sb->s_time_gran = 1;
1087	sb->s_max_links = NILFS_LINK_MAX;
1088
1089	sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi);
1090
1091	err = load_nilfs(nilfs, sb);
1092	if (err)
1093		goto failed_nilfs;
1094
1095	cno = nilfs_last_cno(nilfs);
1096	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1097	if (err) {
1098		nilfs_err(sb,
1099			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1100			  err, (unsigned long long)cno);
1101		goto failed_unload;
1102	}
1103
1104	if (!sb_rdonly(sb)) {
1105		err = nilfs_attach_log_writer(sb, fsroot);
1106		if (err)
1107			goto failed_checkpoint;
1108	}
1109
1110	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1111	if (err)
1112		goto failed_segctor;
1113
1114	nilfs_put_root(fsroot);
1115
1116	if (!sb_rdonly(sb)) {
1117		down_write(&nilfs->ns_sem);
1118		nilfs_setup_super(sb, true);
1119		up_write(&nilfs->ns_sem);
1120	}
1121
1122	return 0;
1123
1124 failed_segctor:
1125	nilfs_detach_log_writer(sb);
1126
1127 failed_checkpoint:
1128	nilfs_put_root(fsroot);
1129
1130 failed_unload:
1131	nilfs_sysfs_delete_device_group(nilfs);
1132	iput(nilfs->ns_sufile);
1133	iput(nilfs->ns_cpfile);
1134	iput(nilfs->ns_dat);
1135
1136 failed_nilfs:
1137	destroy_nilfs(nilfs);
1138	return err;
1139}
1140
1141static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1142{
1143	struct the_nilfs *nilfs = sb->s_fs_info;
1144	unsigned long old_sb_flags;
1145	unsigned long old_mount_opt;
1146	int err;
1147
1148	sync_filesystem(sb);
1149	old_sb_flags = sb->s_flags;
1150	old_mount_opt = nilfs->ns_mount_opt;
1151
1152	if (!parse_options(data, sb, 1)) {
1153		err = -EINVAL;
1154		goto restore_opts;
1155	}
1156	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1157
1158	err = -EINVAL;
1159
1160	if (!nilfs_valid_fs(nilfs)) {
1161		nilfs_warn(sb,
1162			   "couldn't remount because the filesystem is in an incomplete recovery state");
1163		goto restore_opts;
1164	}
1165
1166	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1167		goto out;
1168	if (*flags & SB_RDONLY) {
1169		sb->s_flags |= SB_RDONLY;
1170
1171		/*
1172		 * Remounting a valid RW partition RDONLY, so set
1173		 * the RDONLY flag and then mark the partition as valid again.
1174		 */
1175		down_write(&nilfs->ns_sem);
1176		nilfs_cleanup_super(sb);
1177		up_write(&nilfs->ns_sem);
1178	} else {
1179		__u64 features;
1180		struct nilfs_root *root;
1181
1182		/*
1183		 * Mounting a RDONLY partition read-write, so reread and
1184		 * store the current valid flag.  (It may have been changed
1185		 * by fsck since we originally mounted the partition.)
1186		 */
1187		down_read(&nilfs->ns_sem);
1188		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1189			~NILFS_FEATURE_COMPAT_RO_SUPP;
1190		up_read(&nilfs->ns_sem);
1191		if (features) {
1192			nilfs_warn(sb,
1193				   "couldn't remount RDWR because of unsupported optional features (%llx)",
1194				   (unsigned long long)features);
1195			err = -EROFS;
1196			goto restore_opts;
1197		}
1198
1199		sb->s_flags &= ~SB_RDONLY;
1200
1201		root = NILFS_I(d_inode(sb->s_root))->i_root;
1202		err = nilfs_attach_log_writer(sb, root);
1203		if (err)
1204			goto restore_opts;
1205
1206		down_write(&nilfs->ns_sem);
1207		nilfs_setup_super(sb, true);
1208		up_write(&nilfs->ns_sem);
1209	}
1210 out:
1211	return 0;
1212
1213 restore_opts:
1214	sb->s_flags = old_sb_flags;
1215	nilfs->ns_mount_opt = old_mount_opt;
1216	return err;
1217}
1218
1219struct nilfs_super_data {
1220	__u64 cno;
1221	int flags;
1222};
1223
1224static int nilfs_parse_snapshot_option(const char *option,
1225				       const substring_t *arg,
1226				       struct nilfs_super_data *sd)
1227{
1228	unsigned long long val;
1229	const char *msg = NULL;
1230	int err;
1231
1232	if (!(sd->flags & SB_RDONLY)) {
1233		msg = "read-only option is not specified";
1234		goto parse_error;
1235	}
1236
1237	err = kstrtoull(arg->from, 0, &val);
1238	if (err) {
1239		if (err == -ERANGE)
1240			msg = "too large checkpoint number";
1241		else
1242			msg = "malformed argument";
1243		goto parse_error;
1244	} else if (val == 0) {
1245		msg = "invalid checkpoint number 0";
1246		goto parse_error;
1247	}
1248	sd->cno = val;
1249	return 0;
1250
1251parse_error:
1252	nilfs_err(NULL, "invalid option \"%s\": %s", option, msg);
1253	return 1;
1254}
1255
1256/**
1257 * nilfs_identify - pre-read mount options needed to identify mount instance
1258 * @data: mount options
1259 * @sd: nilfs_super_data
1260 */
1261static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1262{
1263	char *p, *options = data;
1264	substring_t args[MAX_OPT_ARGS];
1265	int token;
1266	int ret = 0;
1267
1268	do {
1269		p = strsep(&options, ",");
1270		if (p != NULL && *p) {
1271			token = match_token(p, tokens, args);
1272			if (token == Opt_snapshot)
1273				ret = nilfs_parse_snapshot_option(p, &args[0],
1274								  sd);
1275		}
1276		if (!options)
1277			break;
1278		BUG_ON(options == data);
1279		*(options - 1) = ',';
1280	} while (!ret);
1281	return ret;
1282}
1283
1284static int nilfs_set_bdev_super(struct super_block *s, void *data)
1285{
1286	s->s_dev = *(dev_t *)data;
1287	return 0;
1288}
1289
1290static int nilfs_test_bdev_super(struct super_block *s, void *data)
1291{
1292	return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1293}
1294
1295static struct dentry *
1296nilfs_mount(struct file_system_type *fs_type, int flags,
1297	     const char *dev_name, void *data)
1298{
1299	struct nilfs_super_data sd = { .flags = flags };
1300	struct super_block *s;
1301	dev_t dev;
1302	int err;
1303
1304	if (nilfs_identify(data, &sd))
1305		return ERR_PTR(-EINVAL);
1306
1307	err = lookup_bdev(dev_name, &dev);
1308	if (err)
1309		return ERR_PTR(err);
1310
1311	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1312		 &dev);
1313	if (IS_ERR(s))
1314		return ERR_CAST(s);
1315
1316	if (!s->s_root) {
1317		/*
1318		 * We drop s_umount here because we need to open the bdev and
1319		 * bdev->open_mutex ranks above s_umount (blkdev_put() ->
1320		 * __invalidate_device()). It is safe because we have active sb
1321		 * reference and SB_BORN is not set yet.
1322		 */
1323		up_write(&s->s_umount);
1324		err = setup_bdev_super(s, flags, NULL);
1325		down_write(&s->s_umount);
1326		if (!err)
1327			err = nilfs_fill_super(s, data,
1328					       flags & SB_SILENT ? 1 : 0);
1329		if (err)
1330			goto failed_super;
1331
1332		s->s_flags |= SB_ACTIVE;
1333	} else if (!sd.cno) {
1334		if (nilfs_tree_is_busy(s->s_root)) {
1335			if ((flags ^ s->s_flags) & SB_RDONLY) {
1336				nilfs_err(s,
1337					  "the device already has a %s mount.",
1338					  sb_rdonly(s) ? "read-only" : "read/write");
1339				err = -EBUSY;
1340				goto failed_super;
1341			}
1342		} else {
1343			/*
1344			 * Try remount to setup mount states if the current
1345			 * tree is not mounted and only snapshots use this sb.
1346			 */
1347			err = nilfs_remount(s, &flags, data);
1348			if (err)
1349				goto failed_super;
1350		}
1351	}
1352
1353	if (sd.cno) {
1354		struct dentry *root_dentry;
1355
1356		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1357		if (err)
1358			goto failed_super;
1359		return root_dentry;
1360	}
1361
1362	return dget(s->s_root);
1363
1364 failed_super:
1365	deactivate_locked_super(s);
1366	return ERR_PTR(err);
1367}
1368
1369struct file_system_type nilfs_fs_type = {
1370	.owner    = THIS_MODULE,
1371	.name     = "nilfs2",
1372	.mount    = nilfs_mount,
1373	.kill_sb  = kill_block_super,
1374	.fs_flags = FS_REQUIRES_DEV,
1375};
1376MODULE_ALIAS_FS("nilfs2");
1377
1378static void nilfs_inode_init_once(void *obj)
1379{
1380	struct nilfs_inode_info *ii = obj;
1381
1382	INIT_LIST_HEAD(&ii->i_dirty);
1383#ifdef CONFIG_NILFS_XATTR
1384	init_rwsem(&ii->xattr_sem);
1385#endif
1386	inode_init_once(&ii->vfs_inode);
1387}
1388
1389static void nilfs_segbuf_init_once(void *obj)
1390{
1391	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1392}
1393
1394static void nilfs_destroy_cachep(void)
1395{
1396	/*
1397	 * Make sure all delayed rcu free inodes are flushed before we
1398	 * destroy cache.
1399	 */
1400	rcu_barrier();
1401
1402	kmem_cache_destroy(nilfs_inode_cachep);
1403	kmem_cache_destroy(nilfs_transaction_cachep);
1404	kmem_cache_destroy(nilfs_segbuf_cachep);
1405	kmem_cache_destroy(nilfs_btree_path_cache);
1406}
1407
1408static int __init nilfs_init_cachep(void)
1409{
1410	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1411			sizeof(struct nilfs_inode_info), 0,
1412			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1413			nilfs_inode_init_once);
1414	if (!nilfs_inode_cachep)
1415		goto fail;
1416
1417	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1418			sizeof(struct nilfs_transaction_info), 0,
1419			SLAB_RECLAIM_ACCOUNT, NULL);
1420	if (!nilfs_transaction_cachep)
1421		goto fail;
1422
1423	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1424			sizeof(struct nilfs_segment_buffer), 0,
1425			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1426	if (!nilfs_segbuf_cachep)
1427		goto fail;
1428
1429	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1430			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1431			0, 0, NULL);
1432	if (!nilfs_btree_path_cache)
1433		goto fail;
1434
1435	return 0;
1436
1437fail:
1438	nilfs_destroy_cachep();
1439	return -ENOMEM;
1440}
1441
1442static int __init init_nilfs_fs(void)
1443{
1444	int err;
1445
1446	err = nilfs_init_cachep();
1447	if (err)
1448		goto fail;
1449
1450	err = nilfs_sysfs_init();
1451	if (err)
1452		goto free_cachep;
1453
1454	err = register_filesystem(&nilfs_fs_type);
1455	if (err)
1456		goto deinit_sysfs_entry;
1457
1458	printk(KERN_INFO "NILFS version 2 loaded\n");
1459	return 0;
1460
1461deinit_sysfs_entry:
1462	nilfs_sysfs_exit();
1463free_cachep:
1464	nilfs_destroy_cachep();
1465fail:
1466	return err;
1467}
1468
1469static void __exit exit_nilfs_fs(void)
1470{
1471	nilfs_destroy_cachep();
1472	nilfs_sysfs_exit();
1473	unregister_filesystem(&nilfs_fs_type);
1474}
1475
1476module_init(init_nilfs_fs)
1477module_exit(exit_nilfs_fs)
1478