xref: /kernel/linux/linux-6.6/fs/nfsd/nfscache.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Request reply cache. This is currently a global cache, but this may
4 * change in the future and be a per-client cache.
5 *
6 * This code is heavily inspired by the 44BSD implementation, although
7 * it does things a bit differently.
8 *
9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
10 */
11
12#include <linux/sunrpc/svc_xprt.h>
13#include <linux/slab.h>
14#include <linux/vmalloc.h>
15#include <linux/sunrpc/addr.h>
16#include <linux/highmem.h>
17#include <linux/log2.h>
18#include <linux/hash.h>
19#include <net/checksum.h>
20
21#include "nfsd.h"
22#include "cache.h"
23#include "trace.h"
24
25/*
26 * We use this value to determine the number of hash buckets from the max
27 * cache size, the idea being that when the cache is at its maximum number
28 * of entries, then this should be the average number of entries per bucket.
29 */
30#define TARGET_BUCKET_SIZE	64
31
32struct nfsd_drc_bucket {
33	struct rb_root rb_head;
34	struct list_head lru_head;
35	spinlock_t cache_lock;
36};
37
38static struct kmem_cache	*drc_slab;
39
40static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
41static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
42					    struct shrink_control *sc);
43static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
44					   struct shrink_control *sc);
45
46/*
47 * Put a cap on the size of the DRC based on the amount of available
48 * low memory in the machine.
49 *
50 *  64MB:    8192
51 * 128MB:   11585
52 * 256MB:   16384
53 * 512MB:   23170
54 *   1GB:   32768
55 *   2GB:   46340
56 *   4GB:   65536
57 *   8GB:   92681
58 *  16GB:  131072
59 *
60 * ...with a hard cap of 256k entries. In the worst case, each entry will be
61 * ~1k, so the above numbers should give a rough max of the amount of memory
62 * used in k.
63 *
64 * XXX: these limits are per-container, so memory used will increase
65 * linearly with number of containers.  Maybe that's OK.
66 */
67static unsigned int
68nfsd_cache_size_limit(void)
69{
70	unsigned int limit;
71	unsigned long low_pages = totalram_pages() - totalhigh_pages();
72
73	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
74	return min_t(unsigned int, limit, 256*1024);
75}
76
77/*
78 * Compute the number of hash buckets we need. Divide the max cachesize by
79 * the "target" max bucket size, and round up to next power of two.
80 */
81static unsigned int
82nfsd_hashsize(unsigned int limit)
83{
84	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
85}
86
87static struct nfsd_cacherep *
88nfsd_cacherep_alloc(struct svc_rqst *rqstp, __wsum csum,
89		    struct nfsd_net *nn)
90{
91	struct nfsd_cacherep *rp;
92
93	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
94	if (rp) {
95		rp->c_state = RC_UNUSED;
96		rp->c_type = RC_NOCACHE;
97		RB_CLEAR_NODE(&rp->c_node);
98		INIT_LIST_HEAD(&rp->c_lru);
99
100		memset(&rp->c_key, 0, sizeof(rp->c_key));
101		rp->c_key.k_xid = rqstp->rq_xid;
102		rp->c_key.k_proc = rqstp->rq_proc;
103		rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
104		rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
105		rp->c_key.k_prot = rqstp->rq_prot;
106		rp->c_key.k_vers = rqstp->rq_vers;
107		rp->c_key.k_len = rqstp->rq_arg.len;
108		rp->c_key.k_csum = csum;
109	}
110	return rp;
111}
112
113static void nfsd_cacherep_free(struct nfsd_cacherep *rp)
114{
115	if (rp->c_type == RC_REPLBUFF)
116		kfree(rp->c_replvec.iov_base);
117	kmem_cache_free(drc_slab, rp);
118}
119
120static unsigned long
121nfsd_cacherep_dispose(struct list_head *dispose)
122{
123	struct nfsd_cacherep *rp;
124	unsigned long freed = 0;
125
126	while (!list_empty(dispose)) {
127		rp = list_first_entry(dispose, struct nfsd_cacherep, c_lru);
128		list_del(&rp->c_lru);
129		nfsd_cacherep_free(rp);
130		freed++;
131	}
132	return freed;
133}
134
135static void
136nfsd_cacherep_unlink_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
137			    struct nfsd_cacherep *rp)
138{
139	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base)
140		nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len);
141	if (rp->c_state != RC_UNUSED) {
142		rb_erase(&rp->c_node, &b->rb_head);
143		list_del(&rp->c_lru);
144		atomic_dec(&nn->num_drc_entries);
145		nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp));
146	}
147}
148
149static void
150nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
151				struct nfsd_net *nn)
152{
153	nfsd_cacherep_unlink_locked(nn, b, rp);
154	nfsd_cacherep_free(rp);
155}
156
157static void
158nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
159			struct nfsd_net *nn)
160{
161	spin_lock(&b->cache_lock);
162	nfsd_cacherep_unlink_locked(nn, b, rp);
163	spin_unlock(&b->cache_lock);
164	nfsd_cacherep_free(rp);
165}
166
167int nfsd_drc_slab_create(void)
168{
169	drc_slab = kmem_cache_create("nfsd_drc",
170				sizeof(struct nfsd_cacherep), 0, 0, NULL);
171	return drc_slab ? 0: -ENOMEM;
172}
173
174void nfsd_drc_slab_free(void)
175{
176	kmem_cache_destroy(drc_slab);
177}
178
179/**
180 * nfsd_net_reply_cache_init - per net namespace reply cache set-up
181 * @nn: nfsd_net being initialized
182 *
183 * Returns zero on succes; otherwise a negative errno is returned.
184 */
185int nfsd_net_reply_cache_init(struct nfsd_net *nn)
186{
187	return nfsd_percpu_counters_init(nn->counter, NFSD_NET_COUNTERS_NUM);
188}
189
190/**
191 * nfsd_net_reply_cache_destroy - per net namespace reply cache tear-down
192 * @nn: nfsd_net being freed
193 *
194 */
195void nfsd_net_reply_cache_destroy(struct nfsd_net *nn)
196{
197	nfsd_percpu_counters_destroy(nn->counter, NFSD_NET_COUNTERS_NUM);
198}
199
200int nfsd_reply_cache_init(struct nfsd_net *nn)
201{
202	unsigned int hashsize;
203	unsigned int i;
204	int status = 0;
205
206	nn->max_drc_entries = nfsd_cache_size_limit();
207	atomic_set(&nn->num_drc_entries, 0);
208	hashsize = nfsd_hashsize(nn->max_drc_entries);
209	nn->maskbits = ilog2(hashsize);
210
211	nn->nfsd_reply_cache_shrinker.scan_objects = nfsd_reply_cache_scan;
212	nn->nfsd_reply_cache_shrinker.count_objects = nfsd_reply_cache_count;
213	nn->nfsd_reply_cache_shrinker.seeks = 1;
214	status = register_shrinker(&nn->nfsd_reply_cache_shrinker,
215				   "nfsd-reply:%s", nn->nfsd_name);
216	if (status)
217		return status;
218
219	nn->drc_hashtbl = kvzalloc(array_size(hashsize,
220				sizeof(*nn->drc_hashtbl)), GFP_KERNEL);
221	if (!nn->drc_hashtbl)
222		goto out_shrinker;
223
224	for (i = 0; i < hashsize; i++) {
225		INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head);
226		spin_lock_init(&nn->drc_hashtbl[i].cache_lock);
227	}
228	nn->drc_hashsize = hashsize;
229
230	return 0;
231out_shrinker:
232	unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
233	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
234	return -ENOMEM;
235}
236
237void nfsd_reply_cache_shutdown(struct nfsd_net *nn)
238{
239	struct nfsd_cacherep *rp;
240	unsigned int i;
241
242	unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
243
244	for (i = 0; i < nn->drc_hashsize; i++) {
245		struct list_head *head = &nn->drc_hashtbl[i].lru_head;
246		while (!list_empty(head)) {
247			rp = list_first_entry(head, struct nfsd_cacherep, c_lru);
248			nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i],
249									rp, nn);
250		}
251	}
252
253	kvfree(nn->drc_hashtbl);
254	nn->drc_hashtbl = NULL;
255	nn->drc_hashsize = 0;
256
257}
258
259/*
260 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
261 * not already scheduled.
262 */
263static void
264lru_put_end(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp)
265{
266	rp->c_timestamp = jiffies;
267	list_move_tail(&rp->c_lru, &b->lru_head);
268}
269
270static noinline struct nfsd_drc_bucket *
271nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn)
272{
273	unsigned int hash = hash_32((__force u32)xid, nn->maskbits);
274
275	return &nn->drc_hashtbl[hash];
276}
277
278/*
279 * Remove and return no more than @max expired entries in bucket @b.
280 * If @max is zero, do not limit the number of removed entries.
281 */
282static void
283nfsd_prune_bucket_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
284			 unsigned int max, struct list_head *dispose)
285{
286	unsigned long expiry = jiffies - RC_EXPIRE;
287	struct nfsd_cacherep *rp, *tmp;
288	unsigned int freed = 0;
289
290	lockdep_assert_held(&b->cache_lock);
291
292	/* The bucket LRU is ordered oldest-first. */
293	list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
294		/*
295		 * Don't free entries attached to calls that are still
296		 * in-progress, but do keep scanning the list.
297		 */
298		if (rp->c_state == RC_INPROG)
299			continue;
300
301		if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries &&
302		    time_before(expiry, rp->c_timestamp))
303			break;
304
305		nfsd_cacherep_unlink_locked(nn, b, rp);
306		list_add(&rp->c_lru, dispose);
307
308		if (max && ++freed > max)
309			break;
310	}
311}
312
313/**
314 * nfsd_reply_cache_count - count_objects method for the DRC shrinker
315 * @shrink: our registered shrinker context
316 * @sc: garbage collection parameters
317 *
318 * Returns the total number of entries in the duplicate reply cache. To
319 * keep things simple and quick, this is not the number of expired entries
320 * in the cache (ie, the number that would be removed by a call to
321 * nfsd_reply_cache_scan).
322 */
323static unsigned long
324nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
325{
326	struct nfsd_net *nn = container_of(shrink,
327				struct nfsd_net, nfsd_reply_cache_shrinker);
328
329	return atomic_read(&nn->num_drc_entries);
330}
331
332/**
333 * nfsd_reply_cache_scan - scan_objects method for the DRC shrinker
334 * @shrink: our registered shrinker context
335 * @sc: garbage collection parameters
336 *
337 * Free expired entries on each bucket's LRU list until we've released
338 * nr_to_scan freed objects. Nothing will be released if the cache
339 * has not exceeded it's max_drc_entries limit.
340 *
341 * Returns the number of entries released by this call.
342 */
343static unsigned long
344nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
345{
346	struct nfsd_net *nn = container_of(shrink,
347				struct nfsd_net, nfsd_reply_cache_shrinker);
348	unsigned long freed = 0;
349	LIST_HEAD(dispose);
350	unsigned int i;
351
352	for (i = 0; i < nn->drc_hashsize; i++) {
353		struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i];
354
355		if (list_empty(&b->lru_head))
356			continue;
357
358		spin_lock(&b->cache_lock);
359		nfsd_prune_bucket_locked(nn, b, 0, &dispose);
360		spin_unlock(&b->cache_lock);
361
362		freed += nfsd_cacherep_dispose(&dispose);
363		if (freed > sc->nr_to_scan)
364			break;
365	}
366
367	trace_nfsd_drc_gc(nn, freed);
368	return freed;
369}
370
371/**
372 * nfsd_cache_csum - Checksum incoming NFS Call arguments
373 * @buf: buffer containing a whole RPC Call message
374 * @start: starting byte of the NFS Call header
375 * @remaining: size of the NFS Call header, in bytes
376 *
377 * Compute a weak checksum of the leading bytes of an NFS procedure
378 * call header to help verify that a retransmitted Call matches an
379 * entry in the duplicate reply cache.
380 *
381 * To avoid assumptions about how the RPC message is laid out in
382 * @buf and what else it might contain (eg, a GSS MIC suffix), the
383 * caller passes us the exact location and length of the NFS Call
384 * header.
385 *
386 * Returns a 32-bit checksum value, as defined in RFC 793.
387 */
388static __wsum nfsd_cache_csum(struct xdr_buf *buf, unsigned int start,
389			      unsigned int remaining)
390{
391	unsigned int base, len;
392	struct xdr_buf subbuf;
393	__wsum csum = 0;
394	void *p;
395	int idx;
396
397	if (remaining > RC_CSUMLEN)
398		remaining = RC_CSUMLEN;
399	if (xdr_buf_subsegment(buf, &subbuf, start, remaining))
400		return csum;
401
402	/* rq_arg.head first */
403	if (subbuf.head[0].iov_len) {
404		len = min_t(unsigned int, subbuf.head[0].iov_len, remaining);
405		csum = csum_partial(subbuf.head[0].iov_base, len, csum);
406		remaining -= len;
407	}
408
409	/* Continue into page array */
410	idx = subbuf.page_base / PAGE_SIZE;
411	base = subbuf.page_base & ~PAGE_MASK;
412	while (remaining) {
413		p = page_address(subbuf.pages[idx]) + base;
414		len = min_t(unsigned int, PAGE_SIZE - base, remaining);
415		csum = csum_partial(p, len, csum);
416		remaining -= len;
417		base = 0;
418		++idx;
419	}
420	return csum;
421}
422
423static int
424nfsd_cache_key_cmp(const struct nfsd_cacherep *key,
425		   const struct nfsd_cacherep *rp, struct nfsd_net *nn)
426{
427	if (key->c_key.k_xid == rp->c_key.k_xid &&
428	    key->c_key.k_csum != rp->c_key.k_csum) {
429		nfsd_stats_payload_misses_inc(nn);
430		trace_nfsd_drc_mismatch(nn, key, rp);
431	}
432
433	return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
434}
435
436/*
437 * Search the request hash for an entry that matches the given rqstp.
438 * Must be called with cache_lock held. Returns the found entry or
439 * inserts an empty key on failure.
440 */
441static struct nfsd_cacherep *
442nfsd_cache_insert(struct nfsd_drc_bucket *b, struct nfsd_cacherep *key,
443			struct nfsd_net *nn)
444{
445	struct nfsd_cacherep	*rp, *ret = key;
446	struct rb_node		**p = &b->rb_head.rb_node,
447				*parent = NULL;
448	unsigned int		entries = 0;
449	int cmp;
450
451	while (*p != NULL) {
452		++entries;
453		parent = *p;
454		rp = rb_entry(parent, struct nfsd_cacherep, c_node);
455
456		cmp = nfsd_cache_key_cmp(key, rp, nn);
457		if (cmp < 0)
458			p = &parent->rb_left;
459		else if (cmp > 0)
460			p = &parent->rb_right;
461		else {
462			ret = rp;
463			goto out;
464		}
465	}
466	rb_link_node(&key->c_node, parent, p);
467	rb_insert_color(&key->c_node, &b->rb_head);
468out:
469	/* tally hash chain length stats */
470	if (entries > nn->longest_chain) {
471		nn->longest_chain = entries;
472		nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries);
473	} else if (entries == nn->longest_chain) {
474		/* prefer to keep the smallest cachesize possible here */
475		nn->longest_chain_cachesize = min_t(unsigned int,
476				nn->longest_chain_cachesize,
477				atomic_read(&nn->num_drc_entries));
478	}
479
480	lru_put_end(b, ret);
481	return ret;
482}
483
484/**
485 * nfsd_cache_lookup - Find an entry in the duplicate reply cache
486 * @rqstp: Incoming Call to find
487 * @start: starting byte in @rqstp->rq_arg of the NFS Call header
488 * @len: size of the NFS Call header, in bytes
489 * @cacherep: OUT: DRC entry for this request
490 *
491 * Try to find an entry matching the current call in the cache. When none
492 * is found, we try to grab the oldest expired entry off the LRU list. If
493 * a suitable one isn't there, then drop the cache_lock and allocate a
494 * new one, then search again in case one got inserted while this thread
495 * didn't hold the lock.
496 *
497 * Return values:
498 *   %RC_DOIT: Process the request normally
499 *   %RC_REPLY: Reply from cache
500 *   %RC_DROPIT: Do not process the request further
501 */
502int nfsd_cache_lookup(struct svc_rqst *rqstp, unsigned int start,
503		      unsigned int len, struct nfsd_cacherep **cacherep)
504{
505	struct nfsd_net		*nn;
506	struct nfsd_cacherep	*rp, *found;
507	__wsum			csum;
508	struct nfsd_drc_bucket	*b;
509	int type = rqstp->rq_cachetype;
510	unsigned long freed;
511	LIST_HEAD(dispose);
512	int rtn = RC_DOIT;
513
514	if (type == RC_NOCACHE) {
515		nfsd_stats_rc_nocache_inc();
516		goto out;
517	}
518
519	csum = nfsd_cache_csum(&rqstp->rq_arg, start, len);
520
521	/*
522	 * Since the common case is a cache miss followed by an insert,
523	 * preallocate an entry.
524	 */
525	nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
526	rp = nfsd_cacherep_alloc(rqstp, csum, nn);
527	if (!rp)
528		goto out;
529
530	b = nfsd_cache_bucket_find(rqstp->rq_xid, nn);
531	spin_lock(&b->cache_lock);
532	found = nfsd_cache_insert(b, rp, nn);
533	if (found != rp)
534		goto found_entry;
535	*cacherep = rp;
536	rp->c_state = RC_INPROG;
537	nfsd_prune_bucket_locked(nn, b, 3, &dispose);
538	spin_unlock(&b->cache_lock);
539
540	freed = nfsd_cacherep_dispose(&dispose);
541	trace_nfsd_drc_gc(nn, freed);
542
543	nfsd_stats_rc_misses_inc();
544	atomic_inc(&nn->num_drc_entries);
545	nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp));
546	goto out;
547
548found_entry:
549	/* We found a matching entry which is either in progress or done. */
550	nfsd_reply_cache_free_locked(NULL, rp, nn);
551	nfsd_stats_rc_hits_inc();
552	rtn = RC_DROPIT;
553	rp = found;
554
555	/* Request being processed */
556	if (rp->c_state == RC_INPROG)
557		goto out_trace;
558
559	/* From the hall of fame of impractical attacks:
560	 * Is this a user who tries to snoop on the cache? */
561	rtn = RC_DOIT;
562	if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
563		goto out_trace;
564
565	/* Compose RPC reply header */
566	switch (rp->c_type) {
567	case RC_NOCACHE:
568		break;
569	case RC_REPLSTAT:
570		xdr_stream_encode_be32(&rqstp->rq_res_stream, rp->c_replstat);
571		rtn = RC_REPLY;
572		break;
573	case RC_REPLBUFF:
574		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
575			goto out_unlock; /* should not happen */
576		rtn = RC_REPLY;
577		break;
578	default:
579		WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type);
580	}
581
582out_trace:
583	trace_nfsd_drc_found(nn, rqstp, rtn);
584out_unlock:
585	spin_unlock(&b->cache_lock);
586out:
587	return rtn;
588}
589
590/**
591 * nfsd_cache_update - Update an entry in the duplicate reply cache.
592 * @rqstp: svc_rqst with a finished Reply
593 * @rp: IN: DRC entry for this request
594 * @cachetype: which cache to update
595 * @statp: pointer to Reply's NFS status code, or NULL
596 *
597 * This is called from nfsd_dispatch when the procedure has been
598 * executed and the complete reply is in rqstp->rq_res.
599 *
600 * We're copying around data here rather than swapping buffers because
601 * the toplevel loop requires max-sized buffers, which would be a waste
602 * of memory for a cache with a max reply size of 100 bytes (diropokres).
603 *
604 * If we should start to use different types of cache entries tailored
605 * specifically for attrstat and fh's, we may save even more space.
606 *
607 * Also note that a cachetype of RC_NOCACHE can legally be passed when
608 * nfsd failed to encode a reply that otherwise would have been cached.
609 * In this case, nfsd_cache_update is called with statp == NULL.
610 */
611void nfsd_cache_update(struct svc_rqst *rqstp, struct nfsd_cacherep *rp,
612		       int cachetype, __be32 *statp)
613{
614	struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
615	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
616	struct nfsd_drc_bucket *b;
617	int		len;
618	size_t		bufsize = 0;
619
620	if (!rp)
621		return;
622
623	b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn);
624
625	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
626	len >>= 2;
627
628	/* Don't cache excessive amounts of data and XDR failures */
629	if (!statp || len > (256 >> 2)) {
630		nfsd_reply_cache_free(b, rp, nn);
631		return;
632	}
633
634	switch (cachetype) {
635	case RC_REPLSTAT:
636		if (len != 1)
637			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
638		rp->c_replstat = *statp;
639		break;
640	case RC_REPLBUFF:
641		cachv = &rp->c_replvec;
642		bufsize = len << 2;
643		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
644		if (!cachv->iov_base) {
645			nfsd_reply_cache_free(b, rp, nn);
646			return;
647		}
648		cachv->iov_len = bufsize;
649		memcpy(cachv->iov_base, statp, bufsize);
650		break;
651	case RC_NOCACHE:
652		nfsd_reply_cache_free(b, rp, nn);
653		return;
654	}
655	spin_lock(&b->cache_lock);
656	nfsd_stats_drc_mem_usage_add(nn, bufsize);
657	lru_put_end(b, rp);
658	rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
659	rp->c_type = cachetype;
660	rp->c_state = RC_DONE;
661	spin_unlock(&b->cache_lock);
662	return;
663}
664
665static int
666nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
667{
668	__be32 *p;
669
670	p = xdr_reserve_space(&rqstp->rq_res_stream, data->iov_len);
671	if (unlikely(!p))
672		return false;
673	memcpy(p, data->iov_base, data->iov_len);
674	xdr_commit_encode(&rqstp->rq_res_stream);
675	return true;
676}
677
678/*
679 * Note that fields may be added, removed or reordered in the future. Programs
680 * scraping this file for info should test the labels to ensure they're
681 * getting the correct field.
682 */
683int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
684{
685	struct nfsd_net *nn = net_generic(file_inode(m->file)->i_sb->s_fs_info,
686					  nfsd_net_id);
687
688	seq_printf(m, "max entries:           %u\n", nn->max_drc_entries);
689	seq_printf(m, "num entries:           %u\n",
690		   atomic_read(&nn->num_drc_entries));
691	seq_printf(m, "hash buckets:          %u\n", 1 << nn->maskbits);
692	seq_printf(m, "mem usage:             %lld\n",
693		   percpu_counter_sum_positive(&nn->counter[NFSD_NET_DRC_MEM_USAGE]));
694	seq_printf(m, "cache hits:            %lld\n",
695		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_HITS]));
696	seq_printf(m, "cache misses:          %lld\n",
697		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_MISSES]));
698	seq_printf(m, "not cached:            %lld\n",
699		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_NOCACHE]));
700	seq_printf(m, "payload misses:        %lld\n",
701		   percpu_counter_sum_positive(&nn->counter[NFSD_NET_PAYLOAD_MISSES]));
702	seq_printf(m, "longest chain len:     %u\n", nn->longest_chain);
703	seq_printf(m, "cachesize at longest:  %u\n", nn->longest_chain_cachesize);
704	return 0;
705}
706