xref: /kernel/linux/linux-6.6/fs/nfs/nfs42xattr.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Copyright 2019, 2020 Amazon.com, Inc. or its affiliates. All rights reserved.
5 *
6 * User extended attribute client side cache functions.
7 *
8 * Author: Frank van der Linden <fllinden@amazon.com>
9 */
10#include <linux/errno.h>
11#include <linux/nfs_fs.h>
12#include <linux/hashtable.h>
13#include <linux/refcount.h>
14#include <uapi/linux/xattr.h>
15
16#include "nfs4_fs.h"
17#include "internal.h"
18
19/*
20 * User extended attributes client side caching is implemented by having
21 * a cache structure attached to NFS inodes. This structure is allocated
22 * when needed, and freed when the cache is zapped.
23 *
24 * The cache structure contains as hash table of entries, and a pointer
25 * to a special-cased entry for the listxattr cache.
26 *
27 * Accessing and allocating / freeing the caches is done via reference
28 * counting. The cache entries use a similar refcounting scheme.
29 *
30 * This makes freeing a cache, both from the shrinker and from the
31 * zap cache path, easy. It also means that, in current use cases,
32 * the large majority of inodes will not waste any memory, as they
33 * will never have any user extended attributes assigned to them.
34 *
35 * Attribute entries are hashed in to a simple hash table. They are
36 * also part of an LRU.
37 *
38 * There are three shrinkers.
39 *
40 * Two shrinkers deal with the cache entries themselves: one for
41 * large entries (> PAGE_SIZE), and one for smaller entries. The
42 * shrinker for the larger entries works more aggressively than
43 * those for the smaller entries.
44 *
45 * The other shrinker frees the cache structures themselves.
46 */
47
48/*
49 * 64 buckets is a good default. There is likely no reasonable
50 * workload that uses more than even 64 user extended attributes.
51 * You can certainly add a lot more - but you get what you ask for
52 * in those circumstances.
53 */
54#define NFS4_XATTR_HASH_SIZE	64
55
56#define NFSDBG_FACILITY	NFSDBG_XATTRCACHE
57
58struct nfs4_xattr_cache;
59struct nfs4_xattr_entry;
60
61struct nfs4_xattr_bucket {
62	spinlock_t lock;
63	struct hlist_head hlist;
64	struct nfs4_xattr_cache *cache;
65	bool draining;
66};
67
68struct nfs4_xattr_cache {
69	struct kref ref;
70	struct nfs4_xattr_bucket buckets[NFS4_XATTR_HASH_SIZE];
71	struct list_head lru;
72	struct list_head dispose;
73	atomic_long_t nent;
74	spinlock_t listxattr_lock;
75	struct inode *inode;
76	struct nfs4_xattr_entry *listxattr;
77};
78
79struct nfs4_xattr_entry {
80	struct kref ref;
81	struct hlist_node hnode;
82	struct list_head lru;
83	struct list_head dispose;
84	char *xattr_name;
85	void *xattr_value;
86	size_t xattr_size;
87	struct nfs4_xattr_bucket *bucket;
88	uint32_t flags;
89};
90
91#define	NFS4_XATTR_ENTRY_EXTVAL	0x0001
92
93/*
94 * LRU list of NFS inodes that have xattr caches.
95 */
96static struct list_lru nfs4_xattr_cache_lru;
97static struct list_lru nfs4_xattr_entry_lru;
98static struct list_lru nfs4_xattr_large_entry_lru;
99
100static struct kmem_cache *nfs4_xattr_cache_cachep;
101
102/*
103 * Hashing helper functions.
104 */
105static void
106nfs4_xattr_hash_init(struct nfs4_xattr_cache *cache)
107{
108	unsigned int i;
109
110	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
111		INIT_HLIST_HEAD(&cache->buckets[i].hlist);
112		spin_lock_init(&cache->buckets[i].lock);
113		cache->buckets[i].cache = cache;
114		cache->buckets[i].draining = false;
115	}
116}
117
118/*
119 * Locking order:
120 * 1. inode i_lock or bucket lock
121 * 2. list_lru lock (taken by list_lru_* functions)
122 */
123
124/*
125 * Wrapper functions to add a cache entry to the right LRU.
126 */
127static bool
128nfs4_xattr_entry_lru_add(struct nfs4_xattr_entry *entry)
129{
130	struct list_lru *lru;
131
132	lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
133	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
134
135	return list_lru_add(lru, &entry->lru);
136}
137
138static bool
139nfs4_xattr_entry_lru_del(struct nfs4_xattr_entry *entry)
140{
141	struct list_lru *lru;
142
143	lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
144	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
145
146	return list_lru_del(lru, &entry->lru);
147}
148
149/*
150 * This function allocates cache entries. They are the normal
151 * extended attribute name/value pairs, but may also be a listxattr
152 * cache. Those allocations use the same entry so that they can be
153 * treated as one by the memory shrinker.
154 *
155 * xattr cache entries are allocated together with names. If the
156 * value fits in to one page with the entry structure and the name,
157 * it will also be part of the same allocation (kmalloc). This is
158 * expected to be the vast majority of cases. Larger allocations
159 * have a value pointer that is allocated separately by kvmalloc.
160 *
161 * Parameters:
162 *
163 * @name:  Name of the extended attribute. NULL for listxattr cache
164 *         entry.
165 * @value: Value of attribute, or listxattr cache. NULL if the
166 *         value is to be copied from pages instead.
167 * @pages: Pages to copy the value from, if not NULL. Passed in to
168 *	   make it easier to copy the value after an RPC, even if
169 *	   the value will not be passed up to application (e.g.
170 *	   for a 'query' getxattr with NULL buffer).
171 * @len:   Length of the value. Can be 0 for zero-length attributes.
172 *         @value and @pages will be NULL if @len is 0.
173 */
174static struct nfs4_xattr_entry *
175nfs4_xattr_alloc_entry(const char *name, const void *value,
176		       struct page **pages, size_t len)
177{
178	struct nfs4_xattr_entry *entry;
179	void *valp;
180	char *namep;
181	size_t alloclen, slen;
182	char *buf;
183	uint32_t flags;
184
185	BUILD_BUG_ON(sizeof(struct nfs4_xattr_entry) +
186	    XATTR_NAME_MAX + 1 > PAGE_SIZE);
187
188	alloclen = sizeof(struct nfs4_xattr_entry);
189	if (name != NULL) {
190		slen = strlen(name) + 1;
191		alloclen += slen;
192	} else
193		slen = 0;
194
195	if (alloclen + len <= PAGE_SIZE) {
196		alloclen += len;
197		flags = 0;
198	} else {
199		flags = NFS4_XATTR_ENTRY_EXTVAL;
200	}
201
202	buf = kmalloc(alloclen, GFP_KERNEL);
203	if (buf == NULL)
204		return NULL;
205	entry = (struct nfs4_xattr_entry *)buf;
206
207	if (name != NULL) {
208		namep = buf + sizeof(struct nfs4_xattr_entry);
209		memcpy(namep, name, slen);
210	} else {
211		namep = NULL;
212	}
213
214
215	if (flags & NFS4_XATTR_ENTRY_EXTVAL) {
216		valp = kvmalloc(len, GFP_KERNEL);
217		if (valp == NULL) {
218			kfree(buf);
219			return NULL;
220		}
221	} else if (len != 0) {
222		valp = buf + sizeof(struct nfs4_xattr_entry) + slen;
223	} else
224		valp = NULL;
225
226	if (valp != NULL) {
227		if (value != NULL)
228			memcpy(valp, value, len);
229		else
230			_copy_from_pages(valp, pages, 0, len);
231	}
232
233	entry->flags = flags;
234	entry->xattr_value = valp;
235	kref_init(&entry->ref);
236	entry->xattr_name = namep;
237	entry->xattr_size = len;
238	entry->bucket = NULL;
239	INIT_LIST_HEAD(&entry->lru);
240	INIT_LIST_HEAD(&entry->dispose);
241	INIT_HLIST_NODE(&entry->hnode);
242
243	return entry;
244}
245
246static void
247nfs4_xattr_free_entry(struct nfs4_xattr_entry *entry)
248{
249	if (entry->flags & NFS4_XATTR_ENTRY_EXTVAL)
250		kvfree(entry->xattr_value);
251	kfree(entry);
252}
253
254static void
255nfs4_xattr_free_entry_cb(struct kref *kref)
256{
257	struct nfs4_xattr_entry *entry;
258
259	entry = container_of(kref, struct nfs4_xattr_entry, ref);
260
261	if (WARN_ON(!list_empty(&entry->lru)))
262		return;
263
264	nfs4_xattr_free_entry(entry);
265}
266
267static void
268nfs4_xattr_free_cache_cb(struct kref *kref)
269{
270	struct nfs4_xattr_cache *cache;
271	int i;
272
273	cache = container_of(kref, struct nfs4_xattr_cache, ref);
274
275	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
276		if (WARN_ON(!hlist_empty(&cache->buckets[i].hlist)))
277			return;
278		cache->buckets[i].draining = false;
279	}
280
281	cache->listxattr = NULL;
282
283	kmem_cache_free(nfs4_xattr_cache_cachep, cache);
284
285}
286
287static struct nfs4_xattr_cache *
288nfs4_xattr_alloc_cache(void)
289{
290	struct nfs4_xattr_cache *cache;
291
292	cache = kmem_cache_alloc(nfs4_xattr_cache_cachep, GFP_KERNEL);
293	if (cache == NULL)
294		return NULL;
295
296	kref_init(&cache->ref);
297	atomic_long_set(&cache->nent, 0);
298
299	return cache;
300}
301
302/*
303 * Set the listxattr cache, which is a special-cased cache entry.
304 * The special value ERR_PTR(-ESTALE) is used to indicate that
305 * the cache is being drained - this prevents a new listxattr
306 * cache from being added to what is now a stale cache.
307 */
308static int
309nfs4_xattr_set_listcache(struct nfs4_xattr_cache *cache,
310			 struct nfs4_xattr_entry *new)
311{
312	struct nfs4_xattr_entry *old;
313	int ret = 1;
314
315	spin_lock(&cache->listxattr_lock);
316
317	old = cache->listxattr;
318
319	if (old == ERR_PTR(-ESTALE)) {
320		ret = 0;
321		goto out;
322	}
323
324	cache->listxattr = new;
325	if (new != NULL && new != ERR_PTR(-ESTALE))
326		nfs4_xattr_entry_lru_add(new);
327
328	if (old != NULL) {
329		nfs4_xattr_entry_lru_del(old);
330		kref_put(&old->ref, nfs4_xattr_free_entry_cb);
331	}
332out:
333	spin_unlock(&cache->listxattr_lock);
334
335	return ret;
336}
337
338/*
339 * Unlink a cache from its parent inode, clearing out an invalid
340 * cache. Must be called with i_lock held.
341 */
342static struct nfs4_xattr_cache *
343nfs4_xattr_cache_unlink(struct inode *inode)
344{
345	struct nfs_inode *nfsi;
346	struct nfs4_xattr_cache *oldcache;
347
348	nfsi = NFS_I(inode);
349
350	oldcache = nfsi->xattr_cache;
351	if (oldcache != NULL) {
352		list_lru_del(&nfs4_xattr_cache_lru, &oldcache->lru);
353		oldcache->inode = NULL;
354	}
355	nfsi->xattr_cache = NULL;
356	nfsi->cache_validity &= ~NFS_INO_INVALID_XATTR;
357
358	return oldcache;
359
360}
361
362/*
363 * Discard a cache. Called by get_cache() if there was an old,
364 * invalid cache. Can also be called from a shrinker callback.
365 *
366 * The cache is dead, it has already been unlinked from its inode,
367 * and no longer appears on the cache LRU list.
368 *
369 * Mark all buckets as draining, so that no new entries are added. This
370 * could still happen in the unlikely, but possible case that another
371 * thread had grabbed a reference before it was unlinked from the inode,
372 * and is still holding it for an add operation.
373 *
374 * Remove all entries from the LRU lists, so that there is no longer
375 * any way to 'find' this cache. Then, remove the entries from the hash
376 * table.
377 *
378 * At that point, the cache will remain empty and can be freed when the final
379 * reference drops, which is very likely the kref_put at the end of
380 * this function, or the one called immediately afterwards in the
381 * shrinker callback.
382 */
383static void
384nfs4_xattr_discard_cache(struct nfs4_xattr_cache *cache)
385{
386	unsigned int i;
387	struct nfs4_xattr_entry *entry;
388	struct nfs4_xattr_bucket *bucket;
389	struct hlist_node *n;
390
391	nfs4_xattr_set_listcache(cache, ERR_PTR(-ESTALE));
392
393	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
394		bucket = &cache->buckets[i];
395
396		spin_lock(&bucket->lock);
397		bucket->draining = true;
398		hlist_for_each_entry_safe(entry, n, &bucket->hlist, hnode) {
399			nfs4_xattr_entry_lru_del(entry);
400			hlist_del_init(&entry->hnode);
401			kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
402		}
403		spin_unlock(&bucket->lock);
404	}
405
406	atomic_long_set(&cache->nent, 0);
407
408	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
409}
410
411/*
412 * Get a referenced copy of the cache structure. Avoid doing allocs
413 * while holding i_lock. Which means that we do some optimistic allocation,
414 * and might have to free the result in rare cases.
415 *
416 * This function only checks the NFS_INO_INVALID_XATTR cache validity bit
417 * and acts accordingly, replacing the cache when needed. For the read case
418 * (!add), this means that the caller must make sure that the cache
419 * is valid before caling this function. getxattr and listxattr call
420 * revalidate_inode to do this. The attribute cache timeout (for the
421 * non-delegated case) is expected to be dealt with in the revalidate
422 * call.
423 */
424
425static struct nfs4_xattr_cache *
426nfs4_xattr_get_cache(struct inode *inode, int add)
427{
428	struct nfs_inode *nfsi;
429	struct nfs4_xattr_cache *cache, *oldcache, *newcache;
430
431	nfsi = NFS_I(inode);
432
433	cache = oldcache = NULL;
434
435	spin_lock(&inode->i_lock);
436
437	if (nfsi->cache_validity & NFS_INO_INVALID_XATTR)
438		oldcache = nfs4_xattr_cache_unlink(inode);
439	else
440		cache = nfsi->xattr_cache;
441
442	if (cache != NULL)
443		kref_get(&cache->ref);
444
445	spin_unlock(&inode->i_lock);
446
447	if (add && cache == NULL) {
448		newcache = NULL;
449
450		cache = nfs4_xattr_alloc_cache();
451		if (cache == NULL)
452			goto out;
453
454		spin_lock(&inode->i_lock);
455		if (nfsi->cache_validity & NFS_INO_INVALID_XATTR) {
456			/*
457			 * The cache was invalidated again. Give up,
458			 * since what we want to enter is now likely
459			 * outdated anyway.
460			 */
461			spin_unlock(&inode->i_lock);
462			kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
463			cache = NULL;
464			goto out;
465		}
466
467		/*
468		 * Check if someone beat us to it.
469		 */
470		if (nfsi->xattr_cache != NULL) {
471			newcache = nfsi->xattr_cache;
472			kref_get(&newcache->ref);
473		} else {
474			kref_get(&cache->ref);
475			nfsi->xattr_cache = cache;
476			cache->inode = inode;
477			list_lru_add(&nfs4_xattr_cache_lru, &cache->lru);
478		}
479
480		spin_unlock(&inode->i_lock);
481
482		/*
483		 * If there was a race, throw away the cache we just
484		 * allocated, and use the new one allocated by someone
485		 * else.
486		 */
487		if (newcache != NULL) {
488			kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
489			cache = newcache;
490		}
491	}
492
493out:
494	/*
495	 * Discard the now orphaned old cache.
496	 */
497	if (oldcache != NULL)
498		nfs4_xattr_discard_cache(oldcache);
499
500	return cache;
501}
502
503static inline struct nfs4_xattr_bucket *
504nfs4_xattr_hash_bucket(struct nfs4_xattr_cache *cache, const char *name)
505{
506	return &cache->buckets[jhash(name, strlen(name), 0) &
507	    (ARRAY_SIZE(cache->buckets) - 1)];
508}
509
510static struct nfs4_xattr_entry *
511nfs4_xattr_get_entry(struct nfs4_xattr_bucket *bucket, const char *name)
512{
513	struct nfs4_xattr_entry *entry;
514
515	entry = NULL;
516
517	hlist_for_each_entry(entry, &bucket->hlist, hnode) {
518		if (!strcmp(entry->xattr_name, name))
519			break;
520	}
521
522	return entry;
523}
524
525static int
526nfs4_xattr_hash_add(struct nfs4_xattr_cache *cache,
527		    struct nfs4_xattr_entry *entry)
528{
529	struct nfs4_xattr_bucket *bucket;
530	struct nfs4_xattr_entry *oldentry = NULL;
531	int ret = 1;
532
533	bucket = nfs4_xattr_hash_bucket(cache, entry->xattr_name);
534	entry->bucket = bucket;
535
536	spin_lock(&bucket->lock);
537
538	if (bucket->draining) {
539		ret = 0;
540		goto out;
541	}
542
543	oldentry = nfs4_xattr_get_entry(bucket, entry->xattr_name);
544	if (oldentry != NULL) {
545		hlist_del_init(&oldentry->hnode);
546		nfs4_xattr_entry_lru_del(oldentry);
547	} else {
548		atomic_long_inc(&cache->nent);
549	}
550
551	hlist_add_head(&entry->hnode, &bucket->hlist);
552	nfs4_xattr_entry_lru_add(entry);
553
554out:
555	spin_unlock(&bucket->lock);
556
557	if (oldentry != NULL)
558		kref_put(&oldentry->ref, nfs4_xattr_free_entry_cb);
559
560	return ret;
561}
562
563static void
564nfs4_xattr_hash_remove(struct nfs4_xattr_cache *cache, const char *name)
565{
566	struct nfs4_xattr_bucket *bucket;
567	struct nfs4_xattr_entry *entry;
568
569	bucket = nfs4_xattr_hash_bucket(cache, name);
570
571	spin_lock(&bucket->lock);
572
573	entry = nfs4_xattr_get_entry(bucket, name);
574	if (entry != NULL) {
575		hlist_del_init(&entry->hnode);
576		nfs4_xattr_entry_lru_del(entry);
577		atomic_long_dec(&cache->nent);
578	}
579
580	spin_unlock(&bucket->lock);
581
582	if (entry != NULL)
583		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
584}
585
586static struct nfs4_xattr_entry *
587nfs4_xattr_hash_find(struct nfs4_xattr_cache *cache, const char *name)
588{
589	struct nfs4_xattr_bucket *bucket;
590	struct nfs4_xattr_entry *entry;
591
592	bucket = nfs4_xattr_hash_bucket(cache, name);
593
594	spin_lock(&bucket->lock);
595
596	entry = nfs4_xattr_get_entry(bucket, name);
597	if (entry != NULL)
598		kref_get(&entry->ref);
599
600	spin_unlock(&bucket->lock);
601
602	return entry;
603}
604
605/*
606 * Entry point to retrieve an entry from the cache.
607 */
608ssize_t nfs4_xattr_cache_get(struct inode *inode, const char *name, char *buf,
609			 ssize_t buflen)
610{
611	struct nfs4_xattr_cache *cache;
612	struct nfs4_xattr_entry *entry;
613	ssize_t ret;
614
615	cache = nfs4_xattr_get_cache(inode, 0);
616	if (cache == NULL)
617		return -ENOENT;
618
619	ret = 0;
620	entry = nfs4_xattr_hash_find(cache, name);
621
622	if (entry != NULL) {
623		dprintk("%s: cache hit '%s', len %lu\n", __func__,
624		    entry->xattr_name, (unsigned long)entry->xattr_size);
625		if (buflen == 0) {
626			/* Length probe only */
627			ret = entry->xattr_size;
628		} else if (buflen < entry->xattr_size)
629			ret = -ERANGE;
630		else {
631			memcpy(buf, entry->xattr_value, entry->xattr_size);
632			ret = entry->xattr_size;
633		}
634		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
635	} else {
636		dprintk("%s: cache miss '%s'\n", __func__, name);
637		ret = -ENOENT;
638	}
639
640	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
641
642	return ret;
643}
644
645/*
646 * Retrieve a cached list of xattrs from the cache.
647 */
648ssize_t nfs4_xattr_cache_list(struct inode *inode, char *buf, ssize_t buflen)
649{
650	struct nfs4_xattr_cache *cache;
651	struct nfs4_xattr_entry *entry;
652	ssize_t ret;
653
654	cache = nfs4_xattr_get_cache(inode, 0);
655	if (cache == NULL)
656		return -ENOENT;
657
658	spin_lock(&cache->listxattr_lock);
659
660	entry = cache->listxattr;
661
662	if (entry != NULL && entry != ERR_PTR(-ESTALE)) {
663		if (buflen == 0) {
664			/* Length probe only */
665			ret = entry->xattr_size;
666		} else if (entry->xattr_size > buflen)
667			ret = -ERANGE;
668		else {
669			memcpy(buf, entry->xattr_value, entry->xattr_size);
670			ret = entry->xattr_size;
671		}
672	} else {
673		ret = -ENOENT;
674	}
675
676	spin_unlock(&cache->listxattr_lock);
677
678	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
679
680	return ret;
681}
682
683/*
684 * Add an xattr to the cache.
685 *
686 * This also invalidates the xattr list cache.
687 */
688void nfs4_xattr_cache_add(struct inode *inode, const char *name,
689			  const char *buf, struct page **pages, ssize_t buflen)
690{
691	struct nfs4_xattr_cache *cache;
692	struct nfs4_xattr_entry *entry;
693
694	dprintk("%s: add '%s' len %lu\n", __func__,
695	    name, (unsigned long)buflen);
696
697	cache = nfs4_xattr_get_cache(inode, 1);
698	if (cache == NULL)
699		return;
700
701	entry = nfs4_xattr_alloc_entry(name, buf, pages, buflen);
702	if (entry == NULL)
703		goto out;
704
705	(void)nfs4_xattr_set_listcache(cache, NULL);
706
707	if (!nfs4_xattr_hash_add(cache, entry))
708		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
709
710out:
711	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
712}
713
714
715/*
716 * Remove an xattr from the cache.
717 *
718 * This also invalidates the xattr list cache.
719 */
720void nfs4_xattr_cache_remove(struct inode *inode, const char *name)
721{
722	struct nfs4_xattr_cache *cache;
723
724	dprintk("%s: remove '%s'\n", __func__, name);
725
726	cache = nfs4_xattr_get_cache(inode, 0);
727	if (cache == NULL)
728		return;
729
730	(void)nfs4_xattr_set_listcache(cache, NULL);
731	nfs4_xattr_hash_remove(cache, name);
732
733	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
734}
735
736/*
737 * Cache listxattr output, replacing any possible old one.
738 */
739void nfs4_xattr_cache_set_list(struct inode *inode, const char *buf,
740			       ssize_t buflen)
741{
742	struct nfs4_xattr_cache *cache;
743	struct nfs4_xattr_entry *entry;
744
745	cache = nfs4_xattr_get_cache(inode, 1);
746	if (cache == NULL)
747		return;
748
749	entry = nfs4_xattr_alloc_entry(NULL, buf, NULL, buflen);
750	if (entry == NULL)
751		goto out;
752
753	/*
754	 * This is just there to be able to get to bucket->cache,
755	 * which is obviously the same for all buckets, so just
756	 * use bucket 0.
757	 */
758	entry->bucket = &cache->buckets[0];
759
760	if (!nfs4_xattr_set_listcache(cache, entry))
761		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
762
763out:
764	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
765}
766
767/*
768 * Zap the entire cache. Called when an inode is evicted.
769 */
770void nfs4_xattr_cache_zap(struct inode *inode)
771{
772	struct nfs4_xattr_cache *oldcache;
773
774	spin_lock(&inode->i_lock);
775	oldcache = nfs4_xattr_cache_unlink(inode);
776	spin_unlock(&inode->i_lock);
777
778	if (oldcache)
779		nfs4_xattr_discard_cache(oldcache);
780}
781
782/*
783 * The entry LRU is shrunk more aggressively than the cache LRU,
784 * by settings @seeks to 1.
785 *
786 * Cache structures are freed only when they've become empty, after
787 * pruning all but one entry.
788 */
789
790static unsigned long nfs4_xattr_cache_count(struct shrinker *shrink,
791					    struct shrink_control *sc);
792static unsigned long nfs4_xattr_entry_count(struct shrinker *shrink,
793					    struct shrink_control *sc);
794static unsigned long nfs4_xattr_cache_scan(struct shrinker *shrink,
795					   struct shrink_control *sc);
796static unsigned long nfs4_xattr_entry_scan(struct shrinker *shrink,
797					   struct shrink_control *sc);
798
799static struct shrinker nfs4_xattr_cache_shrinker = {
800	.count_objects	= nfs4_xattr_cache_count,
801	.scan_objects	= nfs4_xattr_cache_scan,
802	.seeks		= DEFAULT_SEEKS,
803	.flags		= SHRINKER_MEMCG_AWARE,
804};
805
806static struct shrinker nfs4_xattr_entry_shrinker = {
807	.count_objects	= nfs4_xattr_entry_count,
808	.scan_objects	= nfs4_xattr_entry_scan,
809	.seeks		= DEFAULT_SEEKS,
810	.batch		= 512,
811	.flags		= SHRINKER_MEMCG_AWARE,
812};
813
814static struct shrinker nfs4_xattr_large_entry_shrinker = {
815	.count_objects	= nfs4_xattr_entry_count,
816	.scan_objects	= nfs4_xattr_entry_scan,
817	.seeks		= 1,
818	.batch		= 512,
819	.flags		= SHRINKER_MEMCG_AWARE,
820};
821
822static enum lru_status
823cache_lru_isolate(struct list_head *item,
824	struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
825{
826	struct list_head *dispose = arg;
827	struct inode *inode;
828	struct nfs4_xattr_cache *cache = container_of(item,
829	    struct nfs4_xattr_cache, lru);
830
831	if (atomic_long_read(&cache->nent) > 1)
832		return LRU_SKIP;
833
834	/*
835	 * If a cache structure is on the LRU list, we know that
836	 * its inode is valid. Try to lock it to break the link.
837	 * Since we're inverting the lock order here, only try.
838	 */
839	inode = cache->inode;
840
841	if (!spin_trylock(&inode->i_lock))
842		return LRU_SKIP;
843
844	kref_get(&cache->ref);
845
846	cache->inode = NULL;
847	NFS_I(inode)->xattr_cache = NULL;
848	NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_XATTR;
849	list_lru_isolate(lru, &cache->lru);
850
851	spin_unlock(&inode->i_lock);
852
853	list_add_tail(&cache->dispose, dispose);
854	return LRU_REMOVED;
855}
856
857static unsigned long
858nfs4_xattr_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
859{
860	LIST_HEAD(dispose);
861	unsigned long freed;
862	struct nfs4_xattr_cache *cache;
863
864	freed = list_lru_shrink_walk(&nfs4_xattr_cache_lru, sc,
865	    cache_lru_isolate, &dispose);
866	while (!list_empty(&dispose)) {
867		cache = list_first_entry(&dispose, struct nfs4_xattr_cache,
868		    dispose);
869		list_del_init(&cache->dispose);
870		nfs4_xattr_discard_cache(cache);
871		kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
872	}
873
874	return freed;
875}
876
877
878static unsigned long
879nfs4_xattr_cache_count(struct shrinker *shrink, struct shrink_control *sc)
880{
881	unsigned long count;
882
883	count = list_lru_shrink_count(&nfs4_xattr_cache_lru, sc);
884	return vfs_pressure_ratio(count);
885}
886
887static enum lru_status
888entry_lru_isolate(struct list_head *item,
889	struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
890{
891	struct list_head *dispose = arg;
892	struct nfs4_xattr_bucket *bucket;
893	struct nfs4_xattr_cache *cache;
894	struct nfs4_xattr_entry *entry = container_of(item,
895	    struct nfs4_xattr_entry, lru);
896
897	bucket = entry->bucket;
898	cache = bucket->cache;
899
900	/*
901	 * Unhook the entry from its parent (either a cache bucket
902	 * or a cache structure if it's a listxattr buf), so that
903	 * it's no longer found. Then add it to the isolate list,
904	 * to be freed later.
905	 *
906	 * In both cases, we're reverting lock order, so use
907	 * trylock and skip the entry if we can't get the lock.
908	 */
909	if (entry->xattr_name != NULL) {
910		/* Regular cache entry */
911		if (!spin_trylock(&bucket->lock))
912			return LRU_SKIP;
913
914		kref_get(&entry->ref);
915
916		hlist_del_init(&entry->hnode);
917		atomic_long_dec(&cache->nent);
918		list_lru_isolate(lru, &entry->lru);
919
920		spin_unlock(&bucket->lock);
921	} else {
922		/* Listxattr cache entry */
923		if (!spin_trylock(&cache->listxattr_lock))
924			return LRU_SKIP;
925
926		kref_get(&entry->ref);
927
928		cache->listxattr = NULL;
929		list_lru_isolate(lru, &entry->lru);
930
931		spin_unlock(&cache->listxattr_lock);
932	}
933
934	list_add_tail(&entry->dispose, dispose);
935	return LRU_REMOVED;
936}
937
938static unsigned long
939nfs4_xattr_entry_scan(struct shrinker *shrink, struct shrink_control *sc)
940{
941	LIST_HEAD(dispose);
942	unsigned long freed;
943	struct nfs4_xattr_entry *entry;
944	struct list_lru *lru;
945
946	lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
947	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
948
949	freed = list_lru_shrink_walk(lru, sc, entry_lru_isolate, &dispose);
950
951	while (!list_empty(&dispose)) {
952		entry = list_first_entry(&dispose, struct nfs4_xattr_entry,
953		    dispose);
954		list_del_init(&entry->dispose);
955
956		/*
957		 * Drop two references: the one that we just grabbed
958		 * in entry_lru_isolate, and the one that was set
959		 * when the entry was first allocated.
960		 */
961		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
962		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
963	}
964
965	return freed;
966}
967
968static unsigned long
969nfs4_xattr_entry_count(struct shrinker *shrink, struct shrink_control *sc)
970{
971	unsigned long count;
972	struct list_lru *lru;
973
974	lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
975	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
976
977	count = list_lru_shrink_count(lru, sc);
978	return vfs_pressure_ratio(count);
979}
980
981
982static void nfs4_xattr_cache_init_once(void *p)
983{
984	struct nfs4_xattr_cache *cache = p;
985
986	spin_lock_init(&cache->listxattr_lock);
987	atomic_long_set(&cache->nent, 0);
988	nfs4_xattr_hash_init(cache);
989	cache->listxattr = NULL;
990	INIT_LIST_HEAD(&cache->lru);
991	INIT_LIST_HEAD(&cache->dispose);
992}
993
994static int nfs4_xattr_shrinker_init(struct shrinker *shrinker,
995				    struct list_lru *lru, const char *name)
996{
997	int ret = 0;
998
999	ret = register_shrinker(shrinker, name);
1000	if (ret)
1001		return ret;
1002
1003	ret = list_lru_init_memcg(lru, shrinker);
1004	if (ret)
1005		unregister_shrinker(shrinker);
1006
1007	return ret;
1008}
1009
1010static void nfs4_xattr_shrinker_destroy(struct shrinker *shrinker,
1011					struct list_lru *lru)
1012{
1013	unregister_shrinker(shrinker);
1014	list_lru_destroy(lru);
1015}
1016
1017int __init nfs4_xattr_cache_init(void)
1018{
1019	int ret = 0;
1020
1021	nfs4_xattr_cache_cachep = kmem_cache_create("nfs4_xattr_cache_cache",
1022	    sizeof(struct nfs4_xattr_cache), 0,
1023	    (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD),
1024	    nfs4_xattr_cache_init_once);
1025	if (nfs4_xattr_cache_cachep == NULL)
1026		return -ENOMEM;
1027
1028	ret = nfs4_xattr_shrinker_init(&nfs4_xattr_cache_shrinker,
1029				       &nfs4_xattr_cache_lru,
1030				       "nfs-xattr_cache");
1031	if (ret)
1032		goto out1;
1033
1034	ret = nfs4_xattr_shrinker_init(&nfs4_xattr_entry_shrinker,
1035				       &nfs4_xattr_entry_lru,
1036				       "nfs-xattr_entry");
1037	if (ret)
1038		goto out2;
1039
1040	ret = nfs4_xattr_shrinker_init(&nfs4_xattr_large_entry_shrinker,
1041				       &nfs4_xattr_large_entry_lru,
1042				       "nfs-xattr_large_entry");
1043	if (!ret)
1044		return 0;
1045
1046	nfs4_xattr_shrinker_destroy(&nfs4_xattr_entry_shrinker,
1047				    &nfs4_xattr_entry_lru);
1048out2:
1049	nfs4_xattr_shrinker_destroy(&nfs4_xattr_cache_shrinker,
1050				    &nfs4_xattr_cache_lru);
1051out1:
1052	kmem_cache_destroy(nfs4_xattr_cache_cachep);
1053
1054	return ret;
1055}
1056
1057void nfs4_xattr_cache_exit(void)
1058{
1059	nfs4_xattr_shrinker_destroy(&nfs4_xattr_large_entry_shrinker,
1060				    &nfs4_xattr_large_entry_lru);
1061	nfs4_xattr_shrinker_destroy(&nfs4_xattr_entry_shrinker,
1062				    &nfs4_xattr_entry_lru);
1063	nfs4_xattr_shrinker_destroy(&nfs4_xattr_cache_shrinker,
1064				    &nfs4_xattr_cache_lru);
1065	kmem_cache_destroy(nfs4_xattr_cache_cachep);
1066}
1067