xref: /kernel/linux/linux-6.6/fs/nfs/dir.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/fs/nfs/dir.c
4 *
5 *  Copyright (C) 1992  Rick Sladkey
6 *
7 *  nfs directory handling functions
8 *
9 * 10 Apr 1996	Added silly rename for unlink	--okir
10 * 28 Sep 1996	Improved directory cache --okir
11 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12 *              Re-implemented silly rename for unlink, newly implemented
13 *              silly rename for nfs_rename() following the suggestions
14 *              of Olaf Kirch (okir) found in this file.
15 *              Following Linus comments on my original hack, this version
16 *              depends only on the dcache stuff and doesn't touch the inode
17 *              layer (iput() and friends).
18 *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19 */
20
21#include <linux/compat.h>
22#include <linux/module.h>
23#include <linux/time.h>
24#include <linux/errno.h>
25#include <linux/stat.h>
26#include <linux/fcntl.h>
27#include <linux/string.h>
28#include <linux/kernel.h>
29#include <linux/slab.h>
30#include <linux/mm.h>
31#include <linux/sunrpc/clnt.h>
32#include <linux/nfs_fs.h>
33#include <linux/nfs_mount.h>
34#include <linux/pagemap.h>
35#include <linux/pagevec.h>
36#include <linux/namei.h>
37#include <linux/mount.h>
38#include <linux/swap.h>
39#include <linux/sched.h>
40#include <linux/kmemleak.h>
41#include <linux/xattr.h>
42#include <linux/hash.h>
43
44#include "delegation.h"
45#include "iostat.h"
46#include "internal.h"
47#include "fscache.h"
48
49#include "nfstrace.h"
50
51/* #define NFS_DEBUG_VERBOSE 1 */
52
53static int nfs_opendir(struct inode *, struct file *);
54static int nfs_closedir(struct inode *, struct file *);
55static int nfs_readdir(struct file *, struct dir_context *);
56static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58static void nfs_readdir_clear_array(struct folio *);
59
60const struct file_operations nfs_dir_operations = {
61	.llseek		= nfs_llseek_dir,
62	.read		= generic_read_dir,
63	.iterate_shared	= nfs_readdir,
64	.open		= nfs_opendir,
65	.release	= nfs_closedir,
66	.fsync		= nfs_fsync_dir,
67};
68
69const struct address_space_operations nfs_dir_aops = {
70	.free_folio = nfs_readdir_clear_array,
71};
72
73#define NFS_INIT_DTSIZE PAGE_SIZE
74
75static struct nfs_open_dir_context *
76alloc_nfs_open_dir_context(struct inode *dir)
77{
78	struct nfs_inode *nfsi = NFS_I(dir);
79	struct nfs_open_dir_context *ctx;
80
81	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
82	if (ctx != NULL) {
83		ctx->attr_gencount = nfsi->attr_gencount;
84		ctx->dtsize = NFS_INIT_DTSIZE;
85		spin_lock(&dir->i_lock);
86		if (list_empty(&nfsi->open_files) &&
87		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
88			nfs_set_cache_invalid(dir,
89					      NFS_INO_INVALID_DATA |
90						      NFS_INO_REVAL_FORCED);
91		list_add_tail_rcu(&ctx->list, &nfsi->open_files);
92		memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
93		spin_unlock(&dir->i_lock);
94		return ctx;
95	}
96	return  ERR_PTR(-ENOMEM);
97}
98
99static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
100{
101	spin_lock(&dir->i_lock);
102	list_del_rcu(&ctx->list);
103	spin_unlock(&dir->i_lock);
104	kfree_rcu(ctx, rcu_head);
105}
106
107/*
108 * Open file
109 */
110static int
111nfs_opendir(struct inode *inode, struct file *filp)
112{
113	int res = 0;
114	struct nfs_open_dir_context *ctx;
115
116	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
117
118	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
119
120	ctx = alloc_nfs_open_dir_context(inode);
121	if (IS_ERR(ctx)) {
122		res = PTR_ERR(ctx);
123		goto out;
124	}
125	filp->private_data = ctx;
126out:
127	return res;
128}
129
130static int
131nfs_closedir(struct inode *inode, struct file *filp)
132{
133	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
134	return 0;
135}
136
137struct nfs_cache_array_entry {
138	u64 cookie;
139	u64 ino;
140	const char *name;
141	unsigned int name_len;
142	unsigned char d_type;
143};
144
145struct nfs_cache_array {
146	u64 change_attr;
147	u64 last_cookie;
148	unsigned int size;
149	unsigned char folio_full : 1,
150		      folio_is_eof : 1,
151		      cookies_are_ordered : 1;
152	struct nfs_cache_array_entry array[];
153};
154
155struct nfs_readdir_descriptor {
156	struct file	*file;
157	struct folio	*folio;
158	struct dir_context *ctx;
159	pgoff_t		folio_index;
160	pgoff_t		folio_index_max;
161	u64		dir_cookie;
162	u64		last_cookie;
163	loff_t		current_index;
164
165	__be32		verf[NFS_DIR_VERIFIER_SIZE];
166	unsigned long	dir_verifier;
167	unsigned long	timestamp;
168	unsigned long	gencount;
169	unsigned long	attr_gencount;
170	unsigned int	cache_entry_index;
171	unsigned int	buffer_fills;
172	unsigned int	dtsize;
173	bool clear_cache;
174	bool plus;
175	bool eob;
176	bool eof;
177};
178
179static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
180{
181	struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
182	unsigned int maxsize = server->dtsize;
183
184	if (sz > maxsize)
185		sz = maxsize;
186	if (sz < NFS_MIN_FILE_IO_SIZE)
187		sz = NFS_MIN_FILE_IO_SIZE;
188	desc->dtsize = sz;
189}
190
191static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
192{
193	nfs_set_dtsize(desc, desc->dtsize >> 1);
194}
195
196static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
197{
198	nfs_set_dtsize(desc, desc->dtsize << 1);
199}
200
201static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie,
202					 u64 change_attr)
203{
204	struct nfs_cache_array *array;
205
206	array = kmap_local_folio(folio, 0);
207	array->change_attr = change_attr;
208	array->last_cookie = last_cookie;
209	array->size = 0;
210	array->folio_full = 0;
211	array->folio_is_eof = 0;
212	array->cookies_are_ordered = 1;
213	kunmap_local(array);
214}
215
216/*
217 * we are freeing strings created by nfs_add_to_readdir_array()
218 */
219static void nfs_readdir_clear_array(struct folio *folio)
220{
221	struct nfs_cache_array *array;
222	unsigned int i;
223
224	array = kmap_local_folio(folio, 0);
225	for (i = 0; i < array->size; i++)
226		kfree(array->array[i].name);
227	array->size = 0;
228	kunmap_local(array);
229}
230
231static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie,
232					   u64 change_attr)
233{
234	nfs_readdir_clear_array(folio);
235	nfs_readdir_folio_init_array(folio, last_cookie, change_attr);
236}
237
238static struct folio *
239nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags)
240{
241	struct folio *folio = folio_alloc(gfp_flags, 0);
242	if (folio)
243		nfs_readdir_folio_init_array(folio, last_cookie, 0);
244	return folio;
245}
246
247static void nfs_readdir_folio_array_free(struct folio *folio)
248{
249	if (folio) {
250		nfs_readdir_clear_array(folio);
251		folio_put(folio);
252	}
253}
254
255static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
256{
257	return array->size == 0 ? array->last_cookie : array->array[0].cookie;
258}
259
260static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
261{
262	array->folio_is_eof = 1;
263	array->folio_full = 1;
264}
265
266static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
267{
268	return array->folio_full;
269}
270
271/*
272 * the caller is responsible for freeing qstr.name
273 * when called by nfs_readdir_add_to_array, the strings will be freed in
274 * nfs_clear_readdir_array()
275 */
276static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
277{
278	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
279
280	/*
281	 * Avoid a kmemleak false positive. The pointer to the name is stored
282	 * in a page cache page which kmemleak does not scan.
283	 */
284	if (ret != NULL)
285		kmemleak_not_leak(ret);
286	return ret;
287}
288
289static size_t nfs_readdir_array_maxentries(void)
290{
291	return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
292	       sizeof(struct nfs_cache_array_entry);
293}
294
295/*
296 * Check that the next array entry lies entirely within the page bounds
297 */
298static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
299{
300	if (array->folio_full)
301		return -ENOSPC;
302	if (array->size == nfs_readdir_array_maxentries()) {
303		array->folio_full = 1;
304		return -ENOSPC;
305	}
306	return 0;
307}
308
309static int nfs_readdir_folio_array_append(struct folio *folio,
310					  const struct nfs_entry *entry,
311					  u64 *cookie)
312{
313	struct nfs_cache_array *array;
314	struct nfs_cache_array_entry *cache_entry;
315	const char *name;
316	int ret = -ENOMEM;
317
318	name = nfs_readdir_copy_name(entry->name, entry->len);
319
320	array = kmap_local_folio(folio, 0);
321	if (!name)
322		goto out;
323	ret = nfs_readdir_array_can_expand(array);
324	if (ret) {
325		kfree(name);
326		goto out;
327	}
328
329	cache_entry = &array->array[array->size];
330	cache_entry->cookie = array->last_cookie;
331	cache_entry->ino = entry->ino;
332	cache_entry->d_type = entry->d_type;
333	cache_entry->name_len = entry->len;
334	cache_entry->name = name;
335	array->last_cookie = entry->cookie;
336	if (array->last_cookie <= cache_entry->cookie)
337		array->cookies_are_ordered = 0;
338	array->size++;
339	if (entry->eof != 0)
340		nfs_readdir_array_set_eof(array);
341out:
342	*cookie = array->last_cookie;
343	kunmap_local(array);
344	return ret;
345}
346
347#define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
348/*
349 * Hash algorithm allowing content addressible access to sequences
350 * of directory cookies. Content is addressed by the value of the
351 * cookie index of the first readdir entry in a page.
352 *
353 * We select only the first 18 bits to avoid issues with excessive
354 * memory use for the page cache XArray. 18 bits should allow the caching
355 * of 262144 pages of sequences of readdir entries. Since each page holds
356 * 127 readdir entries for a typical 64-bit system, that works out to a
357 * cache of ~ 33 million entries per directory.
358 */
359static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie)
360{
361	if (cookie == 0)
362		return 0;
363	return hash_64(cookie, 18);
364}
365
366static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie,
367				       u64 change_attr)
368{
369	struct nfs_cache_array *array = kmap_local_folio(folio, 0);
370	int ret = true;
371
372	if (array->change_attr != change_attr)
373		ret = false;
374	if (nfs_readdir_array_index_cookie(array) != last_cookie)
375		ret = false;
376	kunmap_local(array);
377	return ret;
378}
379
380static void nfs_readdir_folio_unlock_and_put(struct folio *folio)
381{
382	folio_unlock(folio);
383	folio_put(folio);
384}
385
386static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie,
387						u64 change_attr)
388{
389	if (folio_test_uptodate(folio)) {
390		if (nfs_readdir_folio_validate(folio, cookie, change_attr))
391			return;
392		nfs_readdir_clear_array(folio);
393	}
394	nfs_readdir_folio_init_array(folio, cookie, change_attr);
395	folio_mark_uptodate(folio);
396}
397
398static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping,
399						  u64 cookie, u64 change_attr)
400{
401	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
402	struct folio *folio;
403
404	folio = filemap_grab_folio(mapping, index);
405	if (IS_ERR(folio))
406		return NULL;
407	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
408	return folio;
409}
410
411static u64 nfs_readdir_folio_last_cookie(struct folio *folio)
412{
413	struct nfs_cache_array *array;
414	u64 ret;
415
416	array = kmap_local_folio(folio, 0);
417	ret = array->last_cookie;
418	kunmap_local(array);
419	return ret;
420}
421
422static bool nfs_readdir_folio_needs_filling(struct folio *folio)
423{
424	struct nfs_cache_array *array;
425	bool ret;
426
427	array = kmap_local_folio(folio, 0);
428	ret = !nfs_readdir_array_is_full(array);
429	kunmap_local(array);
430	return ret;
431}
432
433static void nfs_readdir_folio_set_eof(struct folio *folio)
434{
435	struct nfs_cache_array *array;
436
437	array = kmap_local_folio(folio, 0);
438	nfs_readdir_array_set_eof(array);
439	kunmap_local(array);
440}
441
442static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping,
443						u64 cookie, u64 change_attr)
444{
445	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
446	struct folio *folio;
447
448	folio = __filemap_get_folio(mapping, index,
449			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
450			mapping_gfp_mask(mapping));
451	if (IS_ERR(folio))
452		return NULL;
453	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
454	if (nfs_readdir_folio_last_cookie(folio) != cookie)
455		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
456	return folio;
457}
458
459static inline
460int is_32bit_api(void)
461{
462#ifdef CONFIG_COMPAT
463	return in_compat_syscall();
464#else
465	return (BITS_PER_LONG == 32);
466#endif
467}
468
469static
470bool nfs_readdir_use_cookie(const struct file *filp)
471{
472	if ((filp->f_mode & FMODE_32BITHASH) ||
473	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
474		return false;
475	return true;
476}
477
478static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
479					struct nfs_readdir_descriptor *desc)
480{
481	if (array->folio_full) {
482		desc->last_cookie = array->last_cookie;
483		desc->current_index += array->size;
484		desc->cache_entry_index = 0;
485		desc->folio_index++;
486	} else
487		desc->last_cookie = nfs_readdir_array_index_cookie(array);
488}
489
490static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
491{
492	desc->current_index = 0;
493	desc->last_cookie = 0;
494	desc->folio_index = 0;
495}
496
497static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
498				      struct nfs_readdir_descriptor *desc)
499{
500	loff_t diff = desc->ctx->pos - desc->current_index;
501	unsigned int index;
502
503	if (diff < 0)
504		goto out_eof;
505	if (diff >= array->size) {
506		if (array->folio_is_eof)
507			goto out_eof;
508		nfs_readdir_seek_next_array(array, desc);
509		return -EAGAIN;
510	}
511
512	index = (unsigned int)diff;
513	desc->dir_cookie = array->array[index].cookie;
514	desc->cache_entry_index = index;
515	return 0;
516out_eof:
517	desc->eof = true;
518	return -EBADCOOKIE;
519}
520
521static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
522					      u64 cookie)
523{
524	if (!array->cookies_are_ordered)
525		return true;
526	/* Optimisation for monotonically increasing cookies */
527	if (cookie >= array->last_cookie)
528		return false;
529	if (array->size && cookie < array->array[0].cookie)
530		return false;
531	return true;
532}
533
534static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
535					 struct nfs_readdir_descriptor *desc)
536{
537	unsigned int i;
538	int status = -EAGAIN;
539
540	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
541		goto check_eof;
542
543	for (i = 0; i < array->size; i++) {
544		if (array->array[i].cookie == desc->dir_cookie) {
545			if (nfs_readdir_use_cookie(desc->file))
546				desc->ctx->pos = desc->dir_cookie;
547			else
548				desc->ctx->pos = desc->current_index + i;
549			desc->cache_entry_index = i;
550			return 0;
551		}
552	}
553check_eof:
554	if (array->folio_is_eof) {
555		status = -EBADCOOKIE;
556		if (desc->dir_cookie == array->last_cookie)
557			desc->eof = true;
558	} else
559		nfs_readdir_seek_next_array(array, desc);
560	return status;
561}
562
563static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
564{
565	struct nfs_cache_array *array;
566	int status;
567
568	array = kmap_local_folio(desc->folio, 0);
569
570	if (desc->dir_cookie == 0)
571		status = nfs_readdir_search_for_pos(array, desc);
572	else
573		status = nfs_readdir_search_for_cookie(array, desc);
574
575	kunmap_local(array);
576	return status;
577}
578
579/* Fill a page with xdr information before transferring to the cache page */
580static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
581				  __be32 *verf, u64 cookie,
582				  struct page **pages, size_t bufsize,
583				  __be32 *verf_res)
584{
585	struct inode *inode = file_inode(desc->file);
586	struct nfs_readdir_arg arg = {
587		.dentry = file_dentry(desc->file),
588		.cred = desc->file->f_cred,
589		.verf = verf,
590		.cookie = cookie,
591		.pages = pages,
592		.page_len = bufsize,
593		.plus = desc->plus,
594	};
595	struct nfs_readdir_res res = {
596		.verf = verf_res,
597	};
598	unsigned long	timestamp, gencount;
599	int		error;
600
601 again:
602	timestamp = jiffies;
603	gencount = nfs_inc_attr_generation_counter();
604	desc->dir_verifier = nfs_save_change_attribute(inode);
605	error = NFS_PROTO(inode)->readdir(&arg, &res);
606	if (error < 0) {
607		/* We requested READDIRPLUS, but the server doesn't grok it */
608		if (error == -ENOTSUPP && desc->plus) {
609			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
610			desc->plus = arg.plus = false;
611			goto again;
612		}
613		goto error;
614	}
615	desc->timestamp = timestamp;
616	desc->gencount = gencount;
617error:
618	return error;
619}
620
621static int xdr_decode(struct nfs_readdir_descriptor *desc,
622		      struct nfs_entry *entry, struct xdr_stream *xdr)
623{
624	struct inode *inode = file_inode(desc->file);
625	int error;
626
627	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
628	if (error)
629		return error;
630	entry->fattr->time_start = desc->timestamp;
631	entry->fattr->gencount = desc->gencount;
632	return 0;
633}
634
635/* Match file and dirent using either filehandle or fileid
636 * Note: caller is responsible for checking the fsid
637 */
638static
639int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
640{
641	struct inode *inode;
642	struct nfs_inode *nfsi;
643
644	if (d_really_is_negative(dentry))
645		return 0;
646
647	inode = d_inode(dentry);
648	if (is_bad_inode(inode) || NFS_STALE(inode))
649		return 0;
650
651	nfsi = NFS_I(inode);
652	if (entry->fattr->fileid != nfsi->fileid)
653		return 0;
654	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
655		return 0;
656	return 1;
657}
658
659#define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
660
661static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
662				unsigned int cache_hits,
663				unsigned int cache_misses)
664{
665	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
666		return false;
667	if (ctx->pos == 0 ||
668	    cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
669		return true;
670	return false;
671}
672
673/*
674 * This function is called by the getattr code to request the
675 * use of readdirplus to accelerate any future lookups in the same
676 * directory.
677 */
678void nfs_readdir_record_entry_cache_hit(struct inode *dir)
679{
680	struct nfs_inode *nfsi = NFS_I(dir);
681	struct nfs_open_dir_context *ctx;
682
683	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
684	    S_ISDIR(dir->i_mode)) {
685		rcu_read_lock();
686		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
687			atomic_inc(&ctx->cache_hits);
688		rcu_read_unlock();
689	}
690}
691
692/*
693 * This function is mainly for use by nfs_getattr().
694 *
695 * If this is an 'ls -l', we want to force use of readdirplus.
696 */
697void nfs_readdir_record_entry_cache_miss(struct inode *dir)
698{
699	struct nfs_inode *nfsi = NFS_I(dir);
700	struct nfs_open_dir_context *ctx;
701
702	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
703	    S_ISDIR(dir->i_mode)) {
704		rcu_read_lock();
705		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
706			atomic_inc(&ctx->cache_misses);
707		rcu_read_unlock();
708	}
709}
710
711static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
712						unsigned int flags)
713{
714	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
715		return;
716	if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
717		return;
718	nfs_readdir_record_entry_cache_miss(dir);
719}
720
721static
722void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
723		unsigned long dir_verifier)
724{
725	struct qstr filename = QSTR_INIT(entry->name, entry->len);
726	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
727	struct dentry *dentry;
728	struct dentry *alias;
729	struct inode *inode;
730	int status;
731
732	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
733		return;
734	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
735		return;
736	if (filename.len == 0)
737		return;
738	/* Validate that the name doesn't contain any illegal '\0' */
739	if (strnlen(filename.name, filename.len) != filename.len)
740		return;
741	/* ...or '/' */
742	if (strnchr(filename.name, filename.len, '/'))
743		return;
744	if (filename.name[0] == '.') {
745		if (filename.len == 1)
746			return;
747		if (filename.len == 2 && filename.name[1] == '.')
748			return;
749	}
750	filename.hash = full_name_hash(parent, filename.name, filename.len);
751
752	dentry = d_lookup(parent, &filename);
753again:
754	if (!dentry) {
755		dentry = d_alloc_parallel(parent, &filename, &wq);
756		if (IS_ERR(dentry))
757			return;
758	}
759	if (!d_in_lookup(dentry)) {
760		/* Is there a mountpoint here? If so, just exit */
761		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
762					&entry->fattr->fsid))
763			goto out;
764		if (nfs_same_file(dentry, entry)) {
765			if (!entry->fh->size)
766				goto out;
767			nfs_set_verifier(dentry, dir_verifier);
768			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
769			if (!status)
770				nfs_setsecurity(d_inode(dentry), entry->fattr);
771			trace_nfs_readdir_lookup_revalidate(d_inode(parent),
772							    dentry, 0, status);
773			goto out;
774		} else {
775			trace_nfs_readdir_lookup_revalidate_failed(
776				d_inode(parent), dentry, 0);
777			d_invalidate(dentry);
778			dput(dentry);
779			dentry = NULL;
780			goto again;
781		}
782	}
783	if (!entry->fh->size) {
784		d_lookup_done(dentry);
785		goto out;
786	}
787
788	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
789	alias = d_splice_alias(inode, dentry);
790	d_lookup_done(dentry);
791	if (alias) {
792		if (IS_ERR(alias))
793			goto out;
794		dput(dentry);
795		dentry = alias;
796	}
797	nfs_set_verifier(dentry, dir_verifier);
798	trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
799out:
800	dput(dentry);
801}
802
803static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
804				    struct nfs_entry *entry,
805				    struct xdr_stream *stream)
806{
807	int ret;
808
809	if (entry->fattr->label)
810		entry->fattr->label->len = NFS4_MAXLABELLEN;
811	ret = xdr_decode(desc, entry, stream);
812	if (ret || !desc->plus)
813		return ret;
814	nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
815	return 0;
816}
817
818/* Perform conversion from xdr to cache array */
819static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
820				    struct nfs_entry *entry,
821				    struct page **xdr_pages, unsigned int buflen,
822				    struct folio **arrays, size_t narrays,
823				    u64 change_attr)
824{
825	struct address_space *mapping = desc->file->f_mapping;
826	struct folio *new, *folio = *arrays;
827	struct xdr_stream stream;
828	struct page *scratch;
829	struct xdr_buf buf;
830	u64 cookie;
831	int status;
832
833	scratch = alloc_page(GFP_KERNEL);
834	if (scratch == NULL)
835		return -ENOMEM;
836
837	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
838	xdr_set_scratch_page(&stream, scratch);
839
840	do {
841		status = nfs_readdir_entry_decode(desc, entry, &stream);
842		if (status != 0)
843			break;
844
845		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
846		if (status != -ENOSPC)
847			continue;
848
849		if (folio->mapping != mapping) {
850			if (!--narrays)
851				break;
852			new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL);
853			if (!new)
854				break;
855			arrays++;
856			*arrays = folio = new;
857		} else {
858			new = nfs_readdir_folio_get_next(mapping, cookie,
859							 change_attr);
860			if (!new)
861				break;
862			if (folio != *arrays)
863				nfs_readdir_folio_unlock_and_put(folio);
864			folio = new;
865		}
866		desc->folio_index_max++;
867		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
868	} while (!status && !entry->eof);
869
870	switch (status) {
871	case -EBADCOOKIE:
872		if (!entry->eof)
873			break;
874		nfs_readdir_folio_set_eof(folio);
875		fallthrough;
876	case -EAGAIN:
877		status = 0;
878		break;
879	case -ENOSPC:
880		status = 0;
881		if (!desc->plus)
882			break;
883		while (!nfs_readdir_entry_decode(desc, entry, &stream))
884			;
885	}
886
887	if (folio != *arrays)
888		nfs_readdir_folio_unlock_and_put(folio);
889
890	put_page(scratch);
891	return status;
892}
893
894static void nfs_readdir_free_pages(struct page **pages, size_t npages)
895{
896	while (npages--)
897		put_page(pages[npages]);
898	kfree(pages);
899}
900
901/*
902 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
903 * to nfs_readdir_free_pages()
904 */
905static struct page **nfs_readdir_alloc_pages(size_t npages)
906{
907	struct page **pages;
908	size_t i;
909
910	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
911	if (!pages)
912		return NULL;
913	for (i = 0; i < npages; i++) {
914		struct page *page = alloc_page(GFP_KERNEL);
915		if (page == NULL)
916			goto out_freepages;
917		pages[i] = page;
918	}
919	return pages;
920
921out_freepages:
922	nfs_readdir_free_pages(pages, i);
923	return NULL;
924}
925
926static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
927				    __be32 *verf_arg, __be32 *verf_res,
928				    struct folio **arrays, size_t narrays)
929{
930	u64 change_attr;
931	struct page **pages;
932	struct folio *folio = *arrays;
933	struct nfs_entry *entry;
934	size_t array_size;
935	struct inode *inode = file_inode(desc->file);
936	unsigned int dtsize = desc->dtsize;
937	unsigned int pglen;
938	int status = -ENOMEM;
939
940	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
941	if (!entry)
942		return -ENOMEM;
943	entry->cookie = nfs_readdir_folio_last_cookie(folio);
944	entry->fh = nfs_alloc_fhandle();
945	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
946	entry->server = NFS_SERVER(inode);
947	if (entry->fh == NULL || entry->fattr == NULL)
948		goto out;
949
950	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
951	pages = nfs_readdir_alloc_pages(array_size);
952	if (!pages)
953		goto out;
954
955	change_attr = inode_peek_iversion_raw(inode);
956	status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
957					dtsize, verf_res);
958	if (status < 0)
959		goto free_pages;
960
961	pglen = status;
962	if (pglen != 0)
963		status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
964						  arrays, narrays, change_attr);
965	else
966		nfs_readdir_folio_set_eof(folio);
967	desc->buffer_fills++;
968
969free_pages:
970	nfs_readdir_free_pages(pages, array_size);
971out:
972	nfs_free_fattr(entry->fattr);
973	nfs_free_fhandle(entry->fh);
974	kfree(entry);
975	return status;
976}
977
978static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
979{
980	folio_put(desc->folio);
981	desc->folio = NULL;
982}
983
984static void
985nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
986{
987	folio_unlock(desc->folio);
988	nfs_readdir_folio_put(desc);
989}
990
991static struct folio *
992nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
993{
994	struct address_space *mapping = desc->file->f_mapping;
995	u64 change_attr = inode_peek_iversion_raw(mapping->host);
996	u64 cookie = desc->last_cookie;
997	struct folio *folio;
998
999	folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr);
1000	if (!folio)
1001		return NULL;
1002	if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio))
1003		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
1004	return folio;
1005}
1006
1007/*
1008 * Returns 0 if desc->dir_cookie was found on page desc->page_index
1009 * and locks the page to prevent removal from the page cache.
1010 */
1011static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1012{
1013	struct inode *inode = file_inode(desc->file);
1014	struct nfs_inode *nfsi = NFS_I(inode);
1015	__be32 verf[NFS_DIR_VERIFIER_SIZE];
1016	int res;
1017
1018	desc->folio = nfs_readdir_folio_get_cached(desc);
1019	if (!desc->folio)
1020		return -ENOMEM;
1021	if (nfs_readdir_folio_needs_filling(desc->folio)) {
1022		/* Grow the dtsize if we had to go back for more pages */
1023		if (desc->folio_index == desc->folio_index_max)
1024			nfs_grow_dtsize(desc);
1025		desc->folio_index_max = desc->folio_index;
1026		trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1027					     desc->last_cookie,
1028					     desc->folio->index, desc->dtsize);
1029		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1030					       &desc->folio, 1);
1031		if (res < 0) {
1032			nfs_readdir_folio_unlock_and_put_cached(desc);
1033			trace_nfs_readdir_cache_fill_done(inode, res);
1034			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1035				invalidate_inode_pages2(desc->file->f_mapping);
1036				nfs_readdir_rewind_search(desc);
1037				trace_nfs_readdir_invalidate_cache_range(
1038					inode, 0, MAX_LFS_FILESIZE);
1039				return -EAGAIN;
1040			}
1041			return res;
1042		}
1043		/*
1044		 * Set the cookie verifier if the page cache was empty
1045		 */
1046		if (desc->last_cookie == 0 &&
1047		    memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1048			memcpy(nfsi->cookieverf, verf,
1049			       sizeof(nfsi->cookieverf));
1050			invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1051						      -1);
1052			trace_nfs_readdir_invalidate_cache_range(
1053				inode, 1, MAX_LFS_FILESIZE);
1054		}
1055		desc->clear_cache = false;
1056	}
1057	res = nfs_readdir_search_array(desc);
1058	if (res == 0)
1059		return 0;
1060	nfs_readdir_folio_unlock_and_put_cached(desc);
1061	return res;
1062}
1063
1064/* Search for desc->dir_cookie from the beginning of the page cache */
1065static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1066{
1067	int res;
1068
1069	do {
1070		res = find_and_lock_cache_page(desc);
1071	} while (res == -EAGAIN);
1072	return res;
1073}
1074
1075#define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1076
1077/*
1078 * Once we've found the start of the dirent within a page: fill 'er up...
1079 */
1080static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1081			   const __be32 *verf)
1082{
1083	struct file	*file = desc->file;
1084	struct nfs_cache_array *array;
1085	unsigned int i;
1086	bool first_emit = !desc->dir_cookie;
1087
1088	array = kmap_local_folio(desc->folio, 0);
1089	for (i = desc->cache_entry_index; i < array->size; i++) {
1090		struct nfs_cache_array_entry *ent;
1091
1092		/*
1093		 * nfs_readdir_handle_cache_misses return force clear at
1094		 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for
1095		 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1
1096		 * entries need be emitted here.
1097		 */
1098		if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) {
1099			desc->eob = true;
1100			break;
1101		}
1102
1103		ent = &array->array[i];
1104		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1105		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1106			desc->eob = true;
1107			break;
1108		}
1109		memcpy(desc->verf, verf, sizeof(desc->verf));
1110		if (i == array->size - 1) {
1111			desc->dir_cookie = array->last_cookie;
1112			nfs_readdir_seek_next_array(array, desc);
1113		} else {
1114			desc->dir_cookie = array->array[i + 1].cookie;
1115			desc->last_cookie = array->array[0].cookie;
1116		}
1117		if (nfs_readdir_use_cookie(file))
1118			desc->ctx->pos = desc->dir_cookie;
1119		else
1120			desc->ctx->pos++;
1121	}
1122	if (array->folio_is_eof)
1123		desc->eof = !desc->eob;
1124
1125	kunmap_local(array);
1126	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1127			(unsigned long long)desc->dir_cookie);
1128}
1129
1130/*
1131 * If we cannot find a cookie in our cache, we suspect that this is
1132 * because it points to a deleted file, so we ask the server to return
1133 * whatever it thinks is the next entry. We then feed this to filldir.
1134 * If all goes well, we should then be able to find our way round the
1135 * cache on the next call to readdir_search_pagecache();
1136 *
1137 * NOTE: we cannot add the anonymous page to the pagecache because
1138 *	 the data it contains might not be page aligned. Besides,
1139 *	 we should already have a complete representation of the
1140 *	 directory in the page cache by the time we get here.
1141 */
1142static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1143{
1144	struct folio	**arrays;
1145	size_t		i, sz = 512;
1146	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1147	int		status = -ENOMEM;
1148
1149	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1150			(unsigned long long)desc->dir_cookie);
1151
1152	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1153	if (!arrays)
1154		goto out;
1155	arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL);
1156	if (!arrays[0])
1157		goto out;
1158
1159	desc->folio_index = 0;
1160	desc->cache_entry_index = 0;
1161	desc->last_cookie = desc->dir_cookie;
1162	desc->folio_index_max = 0;
1163
1164	trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1165				   -1, desc->dtsize);
1166
1167	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1168	if (status < 0) {
1169		trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1170		goto out_free;
1171	}
1172
1173	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1174		desc->folio = arrays[i];
1175		nfs_do_filldir(desc, verf);
1176	}
1177	desc->folio = NULL;
1178
1179	/*
1180	 * Grow the dtsize if we have to go back for more pages,
1181	 * or shrink it if we're reading too many.
1182	 */
1183	if (!desc->eof) {
1184		if (!desc->eob)
1185			nfs_grow_dtsize(desc);
1186		else if (desc->buffer_fills == 1 &&
1187			 i < (desc->folio_index_max >> 1))
1188			nfs_shrink_dtsize(desc);
1189	}
1190out_free:
1191	for (i = 0; i < sz && arrays[i]; i++)
1192		nfs_readdir_folio_array_free(arrays[i]);
1193out:
1194	if (!nfs_readdir_use_cookie(desc->file))
1195		nfs_readdir_rewind_search(desc);
1196	desc->folio_index_max = -1;
1197	kfree(arrays);
1198	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1199	return status;
1200}
1201
1202static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1203					    struct nfs_readdir_descriptor *desc,
1204					    unsigned int cache_misses,
1205					    bool force_clear)
1206{
1207	if (desc->ctx->pos == 0 || !desc->plus)
1208		return false;
1209	if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1210		return false;
1211	trace_nfs_readdir_force_readdirplus(inode);
1212	return true;
1213}
1214
1215/* The file offset position represents the dirent entry number.  A
1216   last cookie cache takes care of the common case of reading the
1217   whole directory.
1218 */
1219static int nfs_readdir(struct file *file, struct dir_context *ctx)
1220{
1221	struct dentry	*dentry = file_dentry(file);
1222	struct inode	*inode = d_inode(dentry);
1223	struct nfs_inode *nfsi = NFS_I(inode);
1224	struct nfs_open_dir_context *dir_ctx = file->private_data;
1225	struct nfs_readdir_descriptor *desc;
1226	unsigned int cache_hits, cache_misses;
1227	bool force_clear;
1228	int res;
1229
1230	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1231			file, (long long)ctx->pos);
1232	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1233
1234	/*
1235	 * ctx->pos points to the dirent entry number.
1236	 * *desc->dir_cookie has the cookie for the next entry. We have
1237	 * to either find the entry with the appropriate number or
1238	 * revalidate the cookie.
1239	 */
1240	nfs_revalidate_mapping(inode, file->f_mapping);
1241
1242	res = -ENOMEM;
1243	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1244	if (!desc)
1245		goto out;
1246	desc->file = file;
1247	desc->ctx = ctx;
1248	desc->folio_index_max = -1;
1249
1250	spin_lock(&file->f_lock);
1251	desc->dir_cookie = dir_ctx->dir_cookie;
1252	desc->folio_index = dir_ctx->page_index;
1253	desc->last_cookie = dir_ctx->last_cookie;
1254	desc->attr_gencount = dir_ctx->attr_gencount;
1255	desc->eof = dir_ctx->eof;
1256	nfs_set_dtsize(desc, dir_ctx->dtsize);
1257	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1258	cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1259	cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1260	force_clear = dir_ctx->force_clear;
1261	spin_unlock(&file->f_lock);
1262
1263	if (desc->eof) {
1264		res = 0;
1265		goto out_free;
1266	}
1267
1268	desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1269	force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1270						      force_clear);
1271	desc->clear_cache = force_clear;
1272
1273	do {
1274		res = readdir_search_pagecache(desc);
1275
1276		if (res == -EBADCOOKIE) {
1277			res = 0;
1278			/* This means either end of directory */
1279			if (desc->dir_cookie && !desc->eof) {
1280				/* Or that the server has 'lost' a cookie */
1281				res = uncached_readdir(desc);
1282				if (res == 0)
1283					continue;
1284				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1285					res = 0;
1286			}
1287			break;
1288		}
1289		if (res == -ETOOSMALL && desc->plus) {
1290			nfs_zap_caches(inode);
1291			desc->plus = false;
1292			desc->eof = false;
1293			continue;
1294		}
1295		if (res < 0)
1296			break;
1297
1298		nfs_do_filldir(desc, nfsi->cookieverf);
1299		nfs_readdir_folio_unlock_and_put_cached(desc);
1300		if (desc->folio_index == desc->folio_index_max)
1301			desc->clear_cache = force_clear;
1302	} while (!desc->eob && !desc->eof);
1303
1304	spin_lock(&file->f_lock);
1305	dir_ctx->dir_cookie = desc->dir_cookie;
1306	dir_ctx->last_cookie = desc->last_cookie;
1307	dir_ctx->attr_gencount = desc->attr_gencount;
1308	dir_ctx->page_index = desc->folio_index;
1309	dir_ctx->force_clear = force_clear;
1310	dir_ctx->eof = desc->eof;
1311	dir_ctx->dtsize = desc->dtsize;
1312	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1313	spin_unlock(&file->f_lock);
1314out_free:
1315	kfree(desc);
1316
1317out:
1318	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1319	return res;
1320}
1321
1322static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1323{
1324	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1325
1326	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1327			filp, offset, whence);
1328
1329	switch (whence) {
1330	default:
1331		return -EINVAL;
1332	case SEEK_SET:
1333		if (offset < 0)
1334			return -EINVAL;
1335		spin_lock(&filp->f_lock);
1336		break;
1337	case SEEK_CUR:
1338		if (offset == 0)
1339			return filp->f_pos;
1340		spin_lock(&filp->f_lock);
1341		offset += filp->f_pos;
1342		if (offset < 0) {
1343			spin_unlock(&filp->f_lock);
1344			return -EINVAL;
1345		}
1346	}
1347	if (offset != filp->f_pos) {
1348		filp->f_pos = offset;
1349		dir_ctx->page_index = 0;
1350		if (!nfs_readdir_use_cookie(filp)) {
1351			dir_ctx->dir_cookie = 0;
1352			dir_ctx->last_cookie = 0;
1353		} else {
1354			dir_ctx->dir_cookie = offset;
1355			dir_ctx->last_cookie = offset;
1356		}
1357		dir_ctx->eof = false;
1358	}
1359	spin_unlock(&filp->f_lock);
1360	return offset;
1361}
1362
1363/*
1364 * All directory operations under NFS are synchronous, so fsync()
1365 * is a dummy operation.
1366 */
1367static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1368			 int datasync)
1369{
1370	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1371
1372	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1373	return 0;
1374}
1375
1376/**
1377 * nfs_force_lookup_revalidate - Mark the directory as having changed
1378 * @dir: pointer to directory inode
1379 *
1380 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1381 * full lookup on all child dentries of 'dir' whenever a change occurs
1382 * on the server that might have invalidated our dcache.
1383 *
1384 * Note that we reserve bit '0' as a tag to let us know when a dentry
1385 * was revalidated while holding a delegation on its inode.
1386 *
1387 * The caller should be holding dir->i_lock
1388 */
1389void nfs_force_lookup_revalidate(struct inode *dir)
1390{
1391	NFS_I(dir)->cache_change_attribute += 2;
1392}
1393EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1394
1395/**
1396 * nfs_verify_change_attribute - Detects NFS remote directory changes
1397 * @dir: pointer to parent directory inode
1398 * @verf: previously saved change attribute
1399 *
1400 * Return "false" if the verifiers doesn't match the change attribute.
1401 * This would usually indicate that the directory contents have changed on
1402 * the server, and that any dentries need revalidating.
1403 */
1404static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1405{
1406	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1407}
1408
1409static void nfs_set_verifier_delegated(unsigned long *verf)
1410{
1411	*verf |= 1UL;
1412}
1413
1414#if IS_ENABLED(CONFIG_NFS_V4)
1415static void nfs_unset_verifier_delegated(unsigned long *verf)
1416{
1417	*verf &= ~1UL;
1418}
1419#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1420
1421static bool nfs_test_verifier_delegated(unsigned long verf)
1422{
1423	return verf & 1;
1424}
1425
1426static bool nfs_verifier_is_delegated(struct dentry *dentry)
1427{
1428	return nfs_test_verifier_delegated(dentry->d_time);
1429}
1430
1431static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1432{
1433	struct inode *inode = d_inode(dentry);
1434	struct inode *dir = d_inode(dentry->d_parent);
1435
1436	if (!nfs_verify_change_attribute(dir, verf))
1437		return;
1438	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1439		nfs_set_verifier_delegated(&verf);
1440	dentry->d_time = verf;
1441}
1442
1443/**
1444 * nfs_set_verifier - save a parent directory verifier in the dentry
1445 * @dentry: pointer to dentry
1446 * @verf: verifier to save
1447 *
1448 * Saves the parent directory verifier in @dentry. If the inode has
1449 * a delegation, we also tag the dentry as having been revalidated
1450 * while holding a delegation so that we know we don't have to
1451 * look it up again after a directory change.
1452 */
1453void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1454{
1455
1456	spin_lock(&dentry->d_lock);
1457	nfs_set_verifier_locked(dentry, verf);
1458	spin_unlock(&dentry->d_lock);
1459}
1460EXPORT_SYMBOL_GPL(nfs_set_verifier);
1461
1462#if IS_ENABLED(CONFIG_NFS_V4)
1463/**
1464 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1465 * @inode: pointer to inode
1466 *
1467 * Iterates through the dentries in the inode alias list and clears
1468 * the tag used to indicate that the dentry has been revalidated
1469 * while holding a delegation.
1470 * This function is intended for use when the delegation is being
1471 * returned or revoked.
1472 */
1473void nfs_clear_verifier_delegated(struct inode *inode)
1474{
1475	struct dentry *alias;
1476
1477	if (!inode)
1478		return;
1479	spin_lock(&inode->i_lock);
1480	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1481		spin_lock(&alias->d_lock);
1482		nfs_unset_verifier_delegated(&alias->d_time);
1483		spin_unlock(&alias->d_lock);
1484	}
1485	spin_unlock(&inode->i_lock);
1486}
1487EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1488#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1489
1490static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1491{
1492	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1493	    d_really_is_negative(dentry))
1494		return dentry->d_time == inode_peek_iversion_raw(dir);
1495	return nfs_verify_change_attribute(dir, dentry->d_time);
1496}
1497
1498/*
1499 * A check for whether or not the parent directory has changed.
1500 * In the case it has, we assume that the dentries are untrustworthy
1501 * and may need to be looked up again.
1502 * If rcu_walk prevents us from performing a full check, return 0.
1503 */
1504static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1505			      int rcu_walk)
1506{
1507	if (IS_ROOT(dentry))
1508		return 1;
1509	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1510		return 0;
1511	if (!nfs_dentry_verify_change(dir, dentry))
1512		return 0;
1513	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1514	if (nfs_mapping_need_revalidate_inode(dir)) {
1515		if (rcu_walk)
1516			return 0;
1517		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1518			return 0;
1519	}
1520	if (!nfs_dentry_verify_change(dir, dentry))
1521		return 0;
1522	return 1;
1523}
1524
1525/*
1526 * Use intent information to check whether or not we're going to do
1527 * an O_EXCL create using this path component.
1528 */
1529static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1530{
1531	if (NFS_PROTO(dir)->version == 2)
1532		return 0;
1533	return flags & LOOKUP_EXCL;
1534}
1535
1536/*
1537 * Inode and filehandle revalidation for lookups.
1538 *
1539 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1540 * or if the intent information indicates that we're about to open this
1541 * particular file and the "nocto" mount flag is not set.
1542 *
1543 */
1544static
1545int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1546{
1547	struct nfs_server *server = NFS_SERVER(inode);
1548	int ret;
1549
1550	if (IS_AUTOMOUNT(inode))
1551		return 0;
1552
1553	if (flags & LOOKUP_OPEN) {
1554		switch (inode->i_mode & S_IFMT) {
1555		case S_IFREG:
1556			/* A NFSv4 OPEN will revalidate later */
1557			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1558				goto out;
1559			fallthrough;
1560		case S_IFDIR:
1561			if (server->flags & NFS_MOUNT_NOCTO)
1562				break;
1563			/* NFS close-to-open cache consistency validation */
1564			goto out_force;
1565		}
1566	}
1567
1568	/* VFS wants an on-the-wire revalidation */
1569	if (flags & LOOKUP_REVAL)
1570		goto out_force;
1571out:
1572	if (inode->i_nlink > 0 ||
1573	    (inode->i_nlink == 0 &&
1574	     test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1575		return 0;
1576	else
1577		return -ESTALE;
1578out_force:
1579	if (flags & LOOKUP_RCU)
1580		return -ECHILD;
1581	ret = __nfs_revalidate_inode(server, inode);
1582	if (ret != 0)
1583		return ret;
1584	goto out;
1585}
1586
1587static void nfs_mark_dir_for_revalidate(struct inode *inode)
1588{
1589	spin_lock(&inode->i_lock);
1590	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1591	spin_unlock(&inode->i_lock);
1592}
1593
1594/*
1595 * We judge how long we want to trust negative
1596 * dentries by looking at the parent inode mtime.
1597 *
1598 * If parent mtime has changed, we revalidate, else we wait for a
1599 * period corresponding to the parent's attribute cache timeout value.
1600 *
1601 * If LOOKUP_RCU prevents us from performing a full check, return 1
1602 * suggesting a reval is needed.
1603 *
1604 * Note that when creating a new file, or looking up a rename target,
1605 * then it shouldn't be necessary to revalidate a negative dentry.
1606 */
1607static inline
1608int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1609		       unsigned int flags)
1610{
1611	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1612		return 0;
1613	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1614		return 1;
1615	/* Case insensitive server? Revalidate negative dentries */
1616	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1617		return 1;
1618	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1619}
1620
1621static int
1622nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1623			   struct inode *inode, int error)
1624{
1625	switch (error) {
1626	case 1:
1627		break;
1628	case 0:
1629		/*
1630		 * We can't d_drop the root of a disconnected tree:
1631		 * its d_hash is on the s_anon list and d_drop() would hide
1632		 * it from shrink_dcache_for_unmount(), leading to busy
1633		 * inodes on unmount and further oopses.
1634		 */
1635		if (inode && IS_ROOT(dentry))
1636			error = 1;
1637		break;
1638	}
1639	trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1640	return error;
1641}
1642
1643static int
1644nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1645			       unsigned int flags)
1646{
1647	int ret = 1;
1648	if (nfs_neg_need_reval(dir, dentry, flags)) {
1649		if (flags & LOOKUP_RCU)
1650			return -ECHILD;
1651		ret = 0;
1652	}
1653	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1654}
1655
1656static int
1657nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1658				struct inode *inode)
1659{
1660	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1661	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1662}
1663
1664static int nfs_lookup_revalidate_dentry(struct inode *dir,
1665					struct dentry *dentry,
1666					struct inode *inode, unsigned int flags)
1667{
1668	struct nfs_fh *fhandle;
1669	struct nfs_fattr *fattr;
1670	unsigned long dir_verifier;
1671	int ret;
1672
1673	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1674
1675	ret = -ENOMEM;
1676	fhandle = nfs_alloc_fhandle();
1677	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1678	if (fhandle == NULL || fattr == NULL)
1679		goto out;
1680
1681	dir_verifier = nfs_save_change_attribute(dir);
1682	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1683	if (ret < 0) {
1684		switch (ret) {
1685		case -ESTALE:
1686		case -ENOENT:
1687			ret = 0;
1688			break;
1689		case -ETIMEDOUT:
1690			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1691				ret = 1;
1692		}
1693		goto out;
1694	}
1695
1696	/* Request help from readdirplus */
1697	nfs_lookup_advise_force_readdirplus(dir, flags);
1698
1699	ret = 0;
1700	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1701		goto out;
1702	if (nfs_refresh_inode(inode, fattr) < 0)
1703		goto out;
1704
1705	nfs_setsecurity(inode, fattr);
1706	nfs_set_verifier(dentry, dir_verifier);
1707
1708	ret = 1;
1709out:
1710	nfs_free_fattr(fattr);
1711	nfs_free_fhandle(fhandle);
1712
1713	/*
1714	 * If the lookup failed despite the dentry change attribute being
1715	 * a match, then we should revalidate the directory cache.
1716	 */
1717	if (!ret && nfs_dentry_verify_change(dir, dentry))
1718		nfs_mark_dir_for_revalidate(dir);
1719	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1720}
1721
1722/*
1723 * This is called every time the dcache has a lookup hit,
1724 * and we should check whether we can really trust that
1725 * lookup.
1726 *
1727 * NOTE! The hit can be a negative hit too, don't assume
1728 * we have an inode!
1729 *
1730 * If the parent directory is seen to have changed, we throw out the
1731 * cached dentry and do a new lookup.
1732 */
1733static int
1734nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1735			 unsigned int flags)
1736{
1737	struct inode *inode;
1738	int error;
1739
1740	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1741	inode = d_inode(dentry);
1742
1743	if (!inode)
1744		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1745
1746	if (is_bad_inode(inode)) {
1747		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1748				__func__, dentry);
1749		goto out_bad;
1750	}
1751
1752	if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1753	    nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1754		goto out_bad;
1755
1756	if (nfs_verifier_is_delegated(dentry))
1757		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1758
1759	/* Force a full look up iff the parent directory has changed */
1760	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1761	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1762		error = nfs_lookup_verify_inode(inode, flags);
1763		if (error) {
1764			if (error == -ESTALE)
1765				nfs_mark_dir_for_revalidate(dir);
1766			goto out_bad;
1767		}
1768		goto out_valid;
1769	}
1770
1771	if (flags & LOOKUP_RCU)
1772		return -ECHILD;
1773
1774	if (NFS_STALE(inode))
1775		goto out_bad;
1776
1777	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1778out_valid:
1779	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1780out_bad:
1781	if (flags & LOOKUP_RCU)
1782		return -ECHILD;
1783	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1784}
1785
1786static int
1787__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1788			int (*reval)(struct inode *, struct dentry *, unsigned int))
1789{
1790	struct dentry *parent;
1791	struct inode *dir;
1792	int ret;
1793
1794	if (flags & LOOKUP_RCU) {
1795		if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1796			return -ECHILD;
1797		parent = READ_ONCE(dentry->d_parent);
1798		dir = d_inode_rcu(parent);
1799		if (!dir)
1800			return -ECHILD;
1801		ret = reval(dir, dentry, flags);
1802		if (parent != READ_ONCE(dentry->d_parent))
1803			return -ECHILD;
1804	} else {
1805		/* Wait for unlink to complete */
1806		wait_var_event(&dentry->d_fsdata,
1807			       dentry->d_fsdata != NFS_FSDATA_BLOCKED);
1808		parent = dget_parent(dentry);
1809		ret = reval(d_inode(parent), dentry, flags);
1810		dput(parent);
1811	}
1812	return ret;
1813}
1814
1815static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1816{
1817	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1818}
1819
1820/*
1821 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1822 * when we don't really care about the dentry name. This is called when a
1823 * pathwalk ends on a dentry that was not found via a normal lookup in the
1824 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1825 *
1826 * In this situation, we just want to verify that the inode itself is OK
1827 * since the dentry might have changed on the server.
1828 */
1829static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1830{
1831	struct inode *inode = d_inode(dentry);
1832	int error = 0;
1833
1834	/*
1835	 * I believe we can only get a negative dentry here in the case of a
1836	 * procfs-style symlink. Just assume it's correct for now, but we may
1837	 * eventually need to do something more here.
1838	 */
1839	if (!inode) {
1840		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1841				__func__, dentry);
1842		return 1;
1843	}
1844
1845	if (is_bad_inode(inode)) {
1846		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1847				__func__, dentry);
1848		return 0;
1849	}
1850
1851	error = nfs_lookup_verify_inode(inode, flags);
1852	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1853			__func__, inode->i_ino, error ? "invalid" : "valid");
1854	return !error;
1855}
1856
1857/*
1858 * This is called from dput() when d_count is going to 0.
1859 */
1860static int nfs_dentry_delete(const struct dentry *dentry)
1861{
1862	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1863		dentry, dentry->d_flags);
1864
1865	/* Unhash any dentry with a stale inode */
1866	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1867		return 1;
1868
1869	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1870		/* Unhash it, so that ->d_iput() would be called */
1871		return 1;
1872	}
1873	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1874		/* Unhash it, so that ancestors of killed async unlink
1875		 * files will be cleaned up during umount */
1876		return 1;
1877	}
1878	return 0;
1879
1880}
1881
1882/* Ensure that we revalidate inode->i_nlink */
1883static void nfs_drop_nlink(struct inode *inode)
1884{
1885	spin_lock(&inode->i_lock);
1886	/* drop the inode if we're reasonably sure this is the last link */
1887	if (inode->i_nlink > 0)
1888		drop_nlink(inode);
1889	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1890	nfs_set_cache_invalid(
1891		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1892			       NFS_INO_INVALID_NLINK);
1893	spin_unlock(&inode->i_lock);
1894}
1895
1896/*
1897 * Called when the dentry loses inode.
1898 * We use it to clean up silly-renamed files.
1899 */
1900static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1901{
1902	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1903		nfs_complete_unlink(dentry, inode);
1904		nfs_drop_nlink(inode);
1905	}
1906	iput(inode);
1907}
1908
1909static void nfs_d_release(struct dentry *dentry)
1910{
1911	/* free cached devname value, if it survived that far */
1912	if (unlikely(dentry->d_fsdata)) {
1913		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1914			WARN_ON(1);
1915		else
1916			kfree(dentry->d_fsdata);
1917	}
1918}
1919
1920const struct dentry_operations nfs_dentry_operations = {
1921	.d_revalidate	= nfs_lookup_revalidate,
1922	.d_weak_revalidate	= nfs_weak_revalidate,
1923	.d_delete	= nfs_dentry_delete,
1924	.d_iput		= nfs_dentry_iput,
1925	.d_automount	= nfs_d_automount,
1926	.d_release	= nfs_d_release,
1927};
1928EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1929
1930struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1931{
1932	struct dentry *res;
1933	struct inode *inode = NULL;
1934	struct nfs_fh *fhandle = NULL;
1935	struct nfs_fattr *fattr = NULL;
1936	unsigned long dir_verifier;
1937	int error;
1938
1939	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1940	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1941
1942	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1943		return ERR_PTR(-ENAMETOOLONG);
1944
1945	/*
1946	 * If we're doing an exclusive create, optimize away the lookup
1947	 * but don't hash the dentry.
1948	 */
1949	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1950		return NULL;
1951
1952	res = ERR_PTR(-ENOMEM);
1953	fhandle = nfs_alloc_fhandle();
1954	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1955	if (fhandle == NULL || fattr == NULL)
1956		goto out;
1957
1958	dir_verifier = nfs_save_change_attribute(dir);
1959	trace_nfs_lookup_enter(dir, dentry, flags);
1960	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1961	if (error == -ENOENT) {
1962		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1963			dir_verifier = inode_peek_iversion_raw(dir);
1964		goto no_entry;
1965	}
1966	if (error < 0) {
1967		res = ERR_PTR(error);
1968		goto out;
1969	}
1970	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1971	res = ERR_CAST(inode);
1972	if (IS_ERR(res))
1973		goto out;
1974
1975	/* Notify readdir to use READDIRPLUS */
1976	nfs_lookup_advise_force_readdirplus(dir, flags);
1977
1978no_entry:
1979	res = d_splice_alias(inode, dentry);
1980	if (res != NULL) {
1981		if (IS_ERR(res))
1982			goto out;
1983		dentry = res;
1984	}
1985	nfs_set_verifier(dentry, dir_verifier);
1986out:
1987	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1988	nfs_free_fattr(fattr);
1989	nfs_free_fhandle(fhandle);
1990	return res;
1991}
1992EXPORT_SYMBOL_GPL(nfs_lookup);
1993
1994void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1995{
1996	/* Case insensitive server? Revalidate dentries */
1997	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1998		d_prune_aliases(inode);
1999}
2000EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
2001
2002#if IS_ENABLED(CONFIG_NFS_V4)
2003static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
2004
2005const struct dentry_operations nfs4_dentry_operations = {
2006	.d_revalidate	= nfs4_lookup_revalidate,
2007	.d_weak_revalidate	= nfs_weak_revalidate,
2008	.d_delete	= nfs_dentry_delete,
2009	.d_iput		= nfs_dentry_iput,
2010	.d_automount	= nfs_d_automount,
2011	.d_release	= nfs_d_release,
2012};
2013EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2014
2015static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2016{
2017	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2018}
2019
2020static int do_open(struct inode *inode, struct file *filp)
2021{
2022	nfs_fscache_open_file(inode, filp);
2023	return 0;
2024}
2025
2026static int nfs_finish_open(struct nfs_open_context *ctx,
2027			   struct dentry *dentry,
2028			   struct file *file, unsigned open_flags)
2029{
2030	int err;
2031
2032	err = finish_open(file, dentry, do_open);
2033	if (err)
2034		goto out;
2035	if (S_ISREG(file_inode(file)->i_mode))
2036		nfs_file_set_open_context(file, ctx);
2037	else
2038		err = -EOPENSTALE;
2039out:
2040	return err;
2041}
2042
2043int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2044		    struct file *file, unsigned open_flags,
2045		    umode_t mode)
2046{
2047	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2048	struct nfs_open_context *ctx;
2049	struct dentry *res;
2050	struct iattr attr = { .ia_valid = ATTR_OPEN };
2051	struct inode *inode;
2052	unsigned int lookup_flags = 0;
2053	unsigned long dir_verifier;
2054	bool switched = false;
2055	int created = 0;
2056	int err;
2057
2058	/* Expect a negative dentry */
2059	BUG_ON(d_inode(dentry));
2060
2061	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2062			dir->i_sb->s_id, dir->i_ino, dentry);
2063
2064	err = nfs_check_flags(open_flags);
2065	if (err)
2066		return err;
2067
2068	/* NFS only supports OPEN on regular files */
2069	if ((open_flags & O_DIRECTORY)) {
2070		if (!d_in_lookup(dentry)) {
2071			/*
2072			 * Hashed negative dentry with O_DIRECTORY: dentry was
2073			 * revalidated and is fine, no need to perform lookup
2074			 * again
2075			 */
2076			return -ENOENT;
2077		}
2078		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2079		goto no_open;
2080	}
2081
2082	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2083		return -ENAMETOOLONG;
2084
2085	if (open_flags & O_CREAT) {
2086		struct nfs_server *server = NFS_SERVER(dir);
2087
2088		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2089			mode &= ~current_umask();
2090
2091		attr.ia_valid |= ATTR_MODE;
2092		attr.ia_mode = mode;
2093	}
2094	if (open_flags & O_TRUNC) {
2095		attr.ia_valid |= ATTR_SIZE;
2096		attr.ia_size = 0;
2097	}
2098
2099	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2100		d_drop(dentry);
2101		switched = true;
2102		dentry = d_alloc_parallel(dentry->d_parent,
2103					  &dentry->d_name, &wq);
2104		if (IS_ERR(dentry))
2105			return PTR_ERR(dentry);
2106		if (unlikely(!d_in_lookup(dentry)))
2107			return finish_no_open(file, dentry);
2108	}
2109
2110	ctx = create_nfs_open_context(dentry, open_flags, file);
2111	err = PTR_ERR(ctx);
2112	if (IS_ERR(ctx))
2113		goto out;
2114
2115	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2116	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2117	if (created)
2118		file->f_mode |= FMODE_CREATED;
2119	if (IS_ERR(inode)) {
2120		err = PTR_ERR(inode);
2121		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2122		put_nfs_open_context(ctx);
2123		d_drop(dentry);
2124		switch (err) {
2125		case -ENOENT:
2126			d_splice_alias(NULL, dentry);
2127			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2128				dir_verifier = inode_peek_iversion_raw(dir);
2129			else
2130				dir_verifier = nfs_save_change_attribute(dir);
2131			nfs_set_verifier(dentry, dir_verifier);
2132			break;
2133		case -EISDIR:
2134		case -ENOTDIR:
2135			goto no_open;
2136		case -ELOOP:
2137			if (!(open_flags & O_NOFOLLOW))
2138				goto no_open;
2139			break;
2140			/* case -EINVAL: */
2141		default:
2142			break;
2143		}
2144		goto out;
2145	}
2146	file->f_mode |= FMODE_CAN_ODIRECT;
2147
2148	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2149	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2150	put_nfs_open_context(ctx);
2151out:
2152	if (unlikely(switched)) {
2153		d_lookup_done(dentry);
2154		dput(dentry);
2155	}
2156	return err;
2157
2158no_open:
2159	res = nfs_lookup(dir, dentry, lookup_flags);
2160	if (!res) {
2161		inode = d_inode(dentry);
2162		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2163		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2164			res = ERR_PTR(-ENOTDIR);
2165		else if (inode && S_ISREG(inode->i_mode))
2166			res = ERR_PTR(-EOPENSTALE);
2167	} else if (!IS_ERR(res)) {
2168		inode = d_inode(res);
2169		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2170		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2171			dput(res);
2172			res = ERR_PTR(-ENOTDIR);
2173		} else if (inode && S_ISREG(inode->i_mode)) {
2174			dput(res);
2175			res = ERR_PTR(-EOPENSTALE);
2176		}
2177	}
2178	if (switched) {
2179		d_lookup_done(dentry);
2180		if (!res)
2181			res = dentry;
2182		else
2183			dput(dentry);
2184	}
2185	if (IS_ERR(res))
2186		return PTR_ERR(res);
2187	return finish_no_open(file, res);
2188}
2189EXPORT_SYMBOL_GPL(nfs_atomic_open);
2190
2191static int
2192nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2193			  unsigned int flags)
2194{
2195	struct inode *inode;
2196
2197	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2198		goto full_reval;
2199	if (d_mountpoint(dentry))
2200		goto full_reval;
2201
2202	inode = d_inode(dentry);
2203
2204	/* We can't create new files in nfs_open_revalidate(), so we
2205	 * optimize away revalidation of negative dentries.
2206	 */
2207	if (inode == NULL)
2208		goto full_reval;
2209
2210	if (nfs_verifier_is_delegated(dentry))
2211		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2212
2213	/* NFS only supports OPEN on regular files */
2214	if (!S_ISREG(inode->i_mode))
2215		goto full_reval;
2216
2217	/* We cannot do exclusive creation on a positive dentry */
2218	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2219		goto reval_dentry;
2220
2221	/* Check if the directory changed */
2222	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2223		goto reval_dentry;
2224
2225	/* Let f_op->open() actually open (and revalidate) the file */
2226	return 1;
2227reval_dentry:
2228	if (flags & LOOKUP_RCU)
2229		return -ECHILD;
2230	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2231
2232full_reval:
2233	return nfs_do_lookup_revalidate(dir, dentry, flags);
2234}
2235
2236static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2237{
2238	return __nfs_lookup_revalidate(dentry, flags,
2239			nfs4_do_lookup_revalidate);
2240}
2241
2242#endif /* CONFIG_NFSV4 */
2243
2244struct dentry *
2245nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2246				struct nfs_fattr *fattr)
2247{
2248	struct dentry *parent = dget_parent(dentry);
2249	struct inode *dir = d_inode(parent);
2250	struct inode *inode;
2251	struct dentry *d;
2252	int error;
2253
2254	d_drop(dentry);
2255
2256	if (fhandle->size == 0) {
2257		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2258		if (error)
2259			goto out_error;
2260	}
2261	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2262	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2263		struct nfs_server *server = NFS_SB(dentry->d_sb);
2264		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2265				fattr, NULL);
2266		if (error < 0)
2267			goto out_error;
2268	}
2269	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2270	d = d_splice_alias(inode, dentry);
2271out:
2272	dput(parent);
2273	return d;
2274out_error:
2275	d = ERR_PTR(error);
2276	goto out;
2277}
2278EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2279
2280/*
2281 * Code common to create, mkdir, and mknod.
2282 */
2283int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2284				struct nfs_fattr *fattr)
2285{
2286	struct dentry *d;
2287
2288	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2289	if (IS_ERR(d))
2290		return PTR_ERR(d);
2291
2292	/* Callers don't care */
2293	dput(d);
2294	return 0;
2295}
2296EXPORT_SYMBOL_GPL(nfs_instantiate);
2297
2298/*
2299 * Following a failed create operation, we drop the dentry rather
2300 * than retain a negative dentry. This avoids a problem in the event
2301 * that the operation succeeded on the server, but an error in the
2302 * reply path made it appear to have failed.
2303 */
2304int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2305	       struct dentry *dentry, umode_t mode, bool excl)
2306{
2307	struct iattr attr;
2308	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2309	int error;
2310
2311	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2312			dir->i_sb->s_id, dir->i_ino, dentry);
2313
2314	attr.ia_mode = mode;
2315	attr.ia_valid = ATTR_MODE;
2316
2317	trace_nfs_create_enter(dir, dentry, open_flags);
2318	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2319	trace_nfs_create_exit(dir, dentry, open_flags, error);
2320	if (error != 0)
2321		goto out_err;
2322	return 0;
2323out_err:
2324	d_drop(dentry);
2325	return error;
2326}
2327EXPORT_SYMBOL_GPL(nfs_create);
2328
2329/*
2330 * See comments for nfs_proc_create regarding failed operations.
2331 */
2332int
2333nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2334	  struct dentry *dentry, umode_t mode, dev_t rdev)
2335{
2336	struct iattr attr;
2337	int status;
2338
2339	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2340			dir->i_sb->s_id, dir->i_ino, dentry);
2341
2342	attr.ia_mode = mode;
2343	attr.ia_valid = ATTR_MODE;
2344
2345	trace_nfs_mknod_enter(dir, dentry);
2346	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2347	trace_nfs_mknod_exit(dir, dentry, status);
2348	if (status != 0)
2349		goto out_err;
2350	return 0;
2351out_err:
2352	d_drop(dentry);
2353	return status;
2354}
2355EXPORT_SYMBOL_GPL(nfs_mknod);
2356
2357/*
2358 * See comments for nfs_proc_create regarding failed operations.
2359 */
2360int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2361	      struct dentry *dentry, umode_t mode)
2362{
2363	struct iattr attr;
2364	int error;
2365
2366	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2367			dir->i_sb->s_id, dir->i_ino, dentry);
2368
2369	attr.ia_valid = ATTR_MODE;
2370	attr.ia_mode = mode | S_IFDIR;
2371
2372	trace_nfs_mkdir_enter(dir, dentry);
2373	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2374	trace_nfs_mkdir_exit(dir, dentry, error);
2375	if (error != 0)
2376		goto out_err;
2377	return 0;
2378out_err:
2379	d_drop(dentry);
2380	return error;
2381}
2382EXPORT_SYMBOL_GPL(nfs_mkdir);
2383
2384static void nfs_dentry_handle_enoent(struct dentry *dentry)
2385{
2386	if (simple_positive(dentry))
2387		d_delete(dentry);
2388}
2389
2390static void nfs_dentry_remove_handle_error(struct inode *dir,
2391					   struct dentry *dentry, int error)
2392{
2393	switch (error) {
2394	case -ENOENT:
2395		if (d_really_is_positive(dentry))
2396			d_delete(dentry);
2397		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2398		break;
2399	case 0:
2400		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2401		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2402	}
2403}
2404
2405int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2406{
2407	int error;
2408
2409	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2410			dir->i_sb->s_id, dir->i_ino, dentry);
2411
2412	trace_nfs_rmdir_enter(dir, dentry);
2413	if (d_really_is_positive(dentry)) {
2414		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2415		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2416		/* Ensure the VFS deletes this inode */
2417		switch (error) {
2418		case 0:
2419			clear_nlink(d_inode(dentry));
2420			break;
2421		case -ENOENT:
2422			nfs_dentry_handle_enoent(dentry);
2423		}
2424		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2425	} else
2426		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2427	nfs_dentry_remove_handle_error(dir, dentry, error);
2428	trace_nfs_rmdir_exit(dir, dentry, error);
2429
2430	return error;
2431}
2432EXPORT_SYMBOL_GPL(nfs_rmdir);
2433
2434/*
2435 * Remove a file after making sure there are no pending writes,
2436 * and after checking that the file has only one user.
2437 *
2438 * We invalidate the attribute cache and free the inode prior to the operation
2439 * to avoid possible races if the server reuses the inode.
2440 */
2441static int nfs_safe_remove(struct dentry *dentry)
2442{
2443	struct inode *dir = d_inode(dentry->d_parent);
2444	struct inode *inode = d_inode(dentry);
2445	int error = -EBUSY;
2446
2447	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2448
2449	/* If the dentry was sillyrenamed, we simply call d_delete() */
2450	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2451		error = 0;
2452		goto out;
2453	}
2454
2455	trace_nfs_remove_enter(dir, dentry);
2456	if (inode != NULL) {
2457		error = NFS_PROTO(dir)->remove(dir, dentry);
2458		if (error == 0)
2459			nfs_drop_nlink(inode);
2460	} else
2461		error = NFS_PROTO(dir)->remove(dir, dentry);
2462	if (error == -ENOENT)
2463		nfs_dentry_handle_enoent(dentry);
2464	trace_nfs_remove_exit(dir, dentry, error);
2465out:
2466	return error;
2467}
2468
2469/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2470 *  belongs to an active ".nfs..." file and we return -EBUSY.
2471 *
2472 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2473 */
2474int nfs_unlink(struct inode *dir, struct dentry *dentry)
2475{
2476	int error;
2477
2478	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2479		dir->i_ino, dentry);
2480
2481	trace_nfs_unlink_enter(dir, dentry);
2482	spin_lock(&dentry->d_lock);
2483	if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2484					     &NFS_I(d_inode(dentry))->flags)) {
2485		spin_unlock(&dentry->d_lock);
2486		/* Start asynchronous writeout of the inode */
2487		write_inode_now(d_inode(dentry), 0);
2488		error = nfs_sillyrename(dir, dentry);
2489		goto out;
2490	}
2491	/* We must prevent any concurrent open until the unlink
2492	 * completes.  ->d_revalidate will wait for ->d_fsdata
2493	 * to clear.  We set it here to ensure no lookup succeeds until
2494	 * the unlink is complete on the server.
2495	 */
2496	error = -ETXTBSY;
2497	if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2498	    WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2499		spin_unlock(&dentry->d_lock);
2500		goto out;
2501	}
2502	/* old devname */
2503	kfree(dentry->d_fsdata);
2504	dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2505
2506	spin_unlock(&dentry->d_lock);
2507	error = nfs_safe_remove(dentry);
2508	nfs_dentry_remove_handle_error(dir, dentry, error);
2509	dentry->d_fsdata = NULL;
2510	wake_up_var(&dentry->d_fsdata);
2511out:
2512	trace_nfs_unlink_exit(dir, dentry, error);
2513	return error;
2514}
2515EXPORT_SYMBOL_GPL(nfs_unlink);
2516
2517/*
2518 * To create a symbolic link, most file systems instantiate a new inode,
2519 * add a page to it containing the path, then write it out to the disk
2520 * using prepare_write/commit_write.
2521 *
2522 * Unfortunately the NFS client can't create the in-core inode first
2523 * because it needs a file handle to create an in-core inode (see
2524 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2525 * symlink request has completed on the server.
2526 *
2527 * So instead we allocate a raw page, copy the symname into it, then do
2528 * the SYMLINK request with the page as the buffer.  If it succeeds, we
2529 * now have a new file handle and can instantiate an in-core NFS inode
2530 * and move the raw page into its mapping.
2531 */
2532int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2533		struct dentry *dentry, const char *symname)
2534{
2535	struct page *page;
2536	char *kaddr;
2537	struct iattr attr;
2538	unsigned int pathlen = strlen(symname);
2539	int error;
2540
2541	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2542		dir->i_ino, dentry, symname);
2543
2544	if (pathlen > PAGE_SIZE)
2545		return -ENAMETOOLONG;
2546
2547	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2548	attr.ia_valid = ATTR_MODE;
2549
2550	page = alloc_page(GFP_USER);
2551	if (!page)
2552		return -ENOMEM;
2553
2554	kaddr = page_address(page);
2555	memcpy(kaddr, symname, pathlen);
2556	if (pathlen < PAGE_SIZE)
2557		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2558
2559	trace_nfs_symlink_enter(dir, dentry);
2560	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2561	trace_nfs_symlink_exit(dir, dentry, error);
2562	if (error != 0) {
2563		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2564			dir->i_sb->s_id, dir->i_ino,
2565			dentry, symname, error);
2566		d_drop(dentry);
2567		__free_page(page);
2568		return error;
2569	}
2570
2571	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2572
2573	/*
2574	 * No big deal if we can't add this page to the page cache here.
2575	 * READLINK will get the missing page from the server if needed.
2576	 */
2577	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2578							GFP_KERNEL)) {
2579		SetPageUptodate(page);
2580		unlock_page(page);
2581		/*
2582		 * add_to_page_cache_lru() grabs an extra page refcount.
2583		 * Drop it here to avoid leaking this page later.
2584		 */
2585		put_page(page);
2586	} else
2587		__free_page(page);
2588
2589	return 0;
2590}
2591EXPORT_SYMBOL_GPL(nfs_symlink);
2592
2593int
2594nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2595{
2596	struct inode *inode = d_inode(old_dentry);
2597	int error;
2598
2599	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2600		old_dentry, dentry);
2601
2602	trace_nfs_link_enter(inode, dir, dentry);
2603	d_drop(dentry);
2604	if (S_ISREG(inode->i_mode))
2605		nfs_sync_inode(inode);
2606	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2607	if (error == 0) {
2608		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2609		ihold(inode);
2610		d_add(dentry, inode);
2611	}
2612	trace_nfs_link_exit(inode, dir, dentry, error);
2613	return error;
2614}
2615EXPORT_SYMBOL_GPL(nfs_link);
2616
2617static void
2618nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2619{
2620	struct dentry *new_dentry = data->new_dentry;
2621
2622	new_dentry->d_fsdata = NULL;
2623	wake_up_var(&new_dentry->d_fsdata);
2624}
2625
2626/*
2627 * RENAME
2628 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2629 * different file handle for the same inode after a rename (e.g. when
2630 * moving to a different directory). A fail-safe method to do so would
2631 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2632 * rename the old file using the sillyrename stuff. This way, the original
2633 * file in old_dir will go away when the last process iput()s the inode.
2634 *
2635 * FIXED.
2636 *
2637 * It actually works quite well. One needs to have the possibility for
2638 * at least one ".nfs..." file in each directory the file ever gets
2639 * moved or linked to which happens automagically with the new
2640 * implementation that only depends on the dcache stuff instead of
2641 * using the inode layer
2642 *
2643 * Unfortunately, things are a little more complicated than indicated
2644 * above. For a cross-directory move, we want to make sure we can get
2645 * rid of the old inode after the operation.  This means there must be
2646 * no pending writes (if it's a file), and the use count must be 1.
2647 * If these conditions are met, we can drop the dentries before doing
2648 * the rename.
2649 */
2650int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2651	       struct dentry *old_dentry, struct inode *new_dir,
2652	       struct dentry *new_dentry, unsigned int flags)
2653{
2654	struct inode *old_inode = d_inode(old_dentry);
2655	struct inode *new_inode = d_inode(new_dentry);
2656	struct dentry *dentry = NULL;
2657	struct rpc_task *task;
2658	bool must_unblock = false;
2659	int error = -EBUSY;
2660
2661	if (flags)
2662		return -EINVAL;
2663
2664	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2665		 old_dentry, new_dentry,
2666		 d_count(new_dentry));
2667
2668	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2669	/*
2670	 * For non-directories, check whether the target is busy and if so,
2671	 * make a copy of the dentry and then do a silly-rename. If the
2672	 * silly-rename succeeds, the copied dentry is hashed and becomes
2673	 * the new target.
2674	 */
2675	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2676		/* We must prevent any concurrent open until the unlink
2677		 * completes.  ->d_revalidate will wait for ->d_fsdata
2678		 * to clear.  We set it here to ensure no lookup succeeds until
2679		 * the unlink is complete on the server.
2680		 */
2681		error = -ETXTBSY;
2682		if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2683		    WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2684			goto out;
2685		if (new_dentry->d_fsdata) {
2686			/* old devname */
2687			kfree(new_dentry->d_fsdata);
2688			new_dentry->d_fsdata = NULL;
2689		}
2690
2691		spin_lock(&new_dentry->d_lock);
2692		if (d_count(new_dentry) > 2) {
2693			int err;
2694
2695			spin_unlock(&new_dentry->d_lock);
2696
2697			/* copy the target dentry's name */
2698			dentry = d_alloc(new_dentry->d_parent,
2699					 &new_dentry->d_name);
2700			if (!dentry)
2701				goto out;
2702
2703			/* silly-rename the existing target ... */
2704			err = nfs_sillyrename(new_dir, new_dentry);
2705			if (err)
2706				goto out;
2707
2708			new_dentry = dentry;
2709			new_inode = NULL;
2710		} else {
2711			new_dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2712			must_unblock = true;
2713			spin_unlock(&new_dentry->d_lock);
2714		}
2715
2716	}
2717
2718	if (S_ISREG(old_inode->i_mode))
2719		nfs_sync_inode(old_inode);
2720	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2721				must_unblock ? nfs_unblock_rename : NULL);
2722	if (IS_ERR(task)) {
2723		error = PTR_ERR(task);
2724		goto out;
2725	}
2726
2727	error = rpc_wait_for_completion_task(task);
2728	if (error != 0) {
2729		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2730		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2731		smp_wmb();
2732	} else
2733		error = task->tk_status;
2734	rpc_put_task(task);
2735	/* Ensure the inode attributes are revalidated */
2736	if (error == 0) {
2737		spin_lock(&old_inode->i_lock);
2738		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2739		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2740							 NFS_INO_INVALID_CTIME |
2741							 NFS_INO_REVAL_FORCED);
2742		spin_unlock(&old_inode->i_lock);
2743	}
2744out:
2745	trace_nfs_rename_exit(old_dir, old_dentry,
2746			new_dir, new_dentry, error);
2747	if (!error) {
2748		if (new_inode != NULL)
2749			nfs_drop_nlink(new_inode);
2750		/*
2751		 * The d_move() should be here instead of in an async RPC completion
2752		 * handler because we need the proper locks to move the dentry.  If
2753		 * we're interrupted by a signal, the async RPC completion handler
2754		 * should mark the directories for revalidation.
2755		 */
2756		d_move(old_dentry, new_dentry);
2757		nfs_set_verifier(old_dentry,
2758					nfs_save_change_attribute(new_dir));
2759	} else if (error == -ENOENT)
2760		nfs_dentry_handle_enoent(old_dentry);
2761
2762	/* new dentry created? */
2763	if (dentry)
2764		dput(dentry);
2765	return error;
2766}
2767EXPORT_SYMBOL_GPL(nfs_rename);
2768
2769static DEFINE_SPINLOCK(nfs_access_lru_lock);
2770static LIST_HEAD(nfs_access_lru_list);
2771static atomic_long_t nfs_access_nr_entries;
2772
2773static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2774module_param(nfs_access_max_cachesize, ulong, 0644);
2775MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2776
2777static void nfs_access_free_entry(struct nfs_access_entry *entry)
2778{
2779	put_group_info(entry->group_info);
2780	kfree_rcu(entry, rcu_head);
2781	smp_mb__before_atomic();
2782	atomic_long_dec(&nfs_access_nr_entries);
2783	smp_mb__after_atomic();
2784}
2785
2786static void nfs_access_free_list(struct list_head *head)
2787{
2788	struct nfs_access_entry *cache;
2789
2790	while (!list_empty(head)) {
2791		cache = list_entry(head->next, struct nfs_access_entry, lru);
2792		list_del(&cache->lru);
2793		nfs_access_free_entry(cache);
2794	}
2795}
2796
2797static unsigned long
2798nfs_do_access_cache_scan(unsigned int nr_to_scan)
2799{
2800	LIST_HEAD(head);
2801	struct nfs_inode *nfsi, *next;
2802	struct nfs_access_entry *cache;
2803	long freed = 0;
2804
2805	spin_lock(&nfs_access_lru_lock);
2806	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2807		struct inode *inode;
2808
2809		if (nr_to_scan-- == 0)
2810			break;
2811		inode = &nfsi->vfs_inode;
2812		spin_lock(&inode->i_lock);
2813		if (list_empty(&nfsi->access_cache_entry_lru))
2814			goto remove_lru_entry;
2815		cache = list_entry(nfsi->access_cache_entry_lru.next,
2816				struct nfs_access_entry, lru);
2817		list_move(&cache->lru, &head);
2818		rb_erase(&cache->rb_node, &nfsi->access_cache);
2819		freed++;
2820		if (!list_empty(&nfsi->access_cache_entry_lru))
2821			list_move_tail(&nfsi->access_cache_inode_lru,
2822					&nfs_access_lru_list);
2823		else {
2824remove_lru_entry:
2825			list_del_init(&nfsi->access_cache_inode_lru);
2826			smp_mb__before_atomic();
2827			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2828			smp_mb__after_atomic();
2829		}
2830		spin_unlock(&inode->i_lock);
2831	}
2832	spin_unlock(&nfs_access_lru_lock);
2833	nfs_access_free_list(&head);
2834	return freed;
2835}
2836
2837unsigned long
2838nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2839{
2840	int nr_to_scan = sc->nr_to_scan;
2841	gfp_t gfp_mask = sc->gfp_mask;
2842
2843	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2844		return SHRINK_STOP;
2845	return nfs_do_access_cache_scan(nr_to_scan);
2846}
2847
2848
2849unsigned long
2850nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2851{
2852	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2853}
2854
2855static void
2856nfs_access_cache_enforce_limit(void)
2857{
2858	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2859	unsigned long diff;
2860	unsigned int nr_to_scan;
2861
2862	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2863		return;
2864	nr_to_scan = 100;
2865	diff = nr_entries - nfs_access_max_cachesize;
2866	if (diff < nr_to_scan)
2867		nr_to_scan = diff;
2868	nfs_do_access_cache_scan(nr_to_scan);
2869}
2870
2871static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2872{
2873	struct rb_root *root_node = &nfsi->access_cache;
2874	struct rb_node *n;
2875	struct nfs_access_entry *entry;
2876
2877	/* Unhook entries from the cache */
2878	while ((n = rb_first(root_node)) != NULL) {
2879		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2880		rb_erase(n, root_node);
2881		list_move(&entry->lru, head);
2882	}
2883	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2884}
2885
2886void nfs_access_zap_cache(struct inode *inode)
2887{
2888	LIST_HEAD(head);
2889
2890	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2891		return;
2892	/* Remove from global LRU init */
2893	spin_lock(&nfs_access_lru_lock);
2894	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2895		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2896
2897	spin_lock(&inode->i_lock);
2898	__nfs_access_zap_cache(NFS_I(inode), &head);
2899	spin_unlock(&inode->i_lock);
2900	spin_unlock(&nfs_access_lru_lock);
2901	nfs_access_free_list(&head);
2902}
2903EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2904
2905static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2906{
2907	struct group_info *ga, *gb;
2908	int g;
2909
2910	if (uid_lt(a->fsuid, b->fsuid))
2911		return -1;
2912	if (uid_gt(a->fsuid, b->fsuid))
2913		return 1;
2914
2915	if (gid_lt(a->fsgid, b->fsgid))
2916		return -1;
2917	if (gid_gt(a->fsgid, b->fsgid))
2918		return 1;
2919
2920	ga = a->group_info;
2921	gb = b->group_info;
2922	if (ga == gb)
2923		return 0;
2924	if (ga == NULL)
2925		return -1;
2926	if (gb == NULL)
2927		return 1;
2928	if (ga->ngroups < gb->ngroups)
2929		return -1;
2930	if (ga->ngroups > gb->ngroups)
2931		return 1;
2932
2933	for (g = 0; g < ga->ngroups; g++) {
2934		if (gid_lt(ga->gid[g], gb->gid[g]))
2935			return -1;
2936		if (gid_gt(ga->gid[g], gb->gid[g]))
2937			return 1;
2938	}
2939	return 0;
2940}
2941
2942static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2943{
2944	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2945
2946	while (n != NULL) {
2947		struct nfs_access_entry *entry =
2948			rb_entry(n, struct nfs_access_entry, rb_node);
2949		int cmp = access_cmp(cred, entry);
2950
2951		if (cmp < 0)
2952			n = n->rb_left;
2953		else if (cmp > 0)
2954			n = n->rb_right;
2955		else
2956			return entry;
2957	}
2958	return NULL;
2959}
2960
2961static u64 nfs_access_login_time(const struct task_struct *task,
2962				 const struct cred *cred)
2963{
2964	const struct task_struct *parent;
2965	const struct cred *pcred;
2966	u64 ret;
2967
2968	rcu_read_lock();
2969	for (;;) {
2970		parent = rcu_dereference(task->real_parent);
2971		pcred = __task_cred(parent);
2972		if (parent == task || cred_fscmp(pcred, cred) != 0)
2973			break;
2974		task = parent;
2975	}
2976	ret = task->start_time;
2977	rcu_read_unlock();
2978	return ret;
2979}
2980
2981static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2982{
2983	struct nfs_inode *nfsi = NFS_I(inode);
2984	u64 login_time = nfs_access_login_time(current, cred);
2985	struct nfs_access_entry *cache;
2986	bool retry = true;
2987	int err;
2988
2989	spin_lock(&inode->i_lock);
2990	for(;;) {
2991		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2992			goto out_zap;
2993		cache = nfs_access_search_rbtree(inode, cred);
2994		err = -ENOENT;
2995		if (cache == NULL)
2996			goto out;
2997		/* Found an entry, is our attribute cache valid? */
2998		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2999			break;
3000		if (!retry)
3001			break;
3002		err = -ECHILD;
3003		if (!may_block)
3004			goto out;
3005		spin_unlock(&inode->i_lock);
3006		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3007		if (err)
3008			return err;
3009		spin_lock(&inode->i_lock);
3010		retry = false;
3011	}
3012	err = -ENOENT;
3013	if ((s64)(login_time - cache->timestamp) > 0)
3014		goto out;
3015	*mask = cache->mask;
3016	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3017	err = 0;
3018out:
3019	spin_unlock(&inode->i_lock);
3020	return err;
3021out_zap:
3022	spin_unlock(&inode->i_lock);
3023	nfs_access_zap_cache(inode);
3024	return -ENOENT;
3025}
3026
3027static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3028{
3029	/* Only check the most recently returned cache entry,
3030	 * but do it without locking.
3031	 */
3032	struct nfs_inode *nfsi = NFS_I(inode);
3033	u64 login_time = nfs_access_login_time(current, cred);
3034	struct nfs_access_entry *cache;
3035	int err = -ECHILD;
3036	struct list_head *lh;
3037
3038	rcu_read_lock();
3039	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3040		goto out;
3041	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3042	cache = list_entry(lh, struct nfs_access_entry, lru);
3043	if (lh == &nfsi->access_cache_entry_lru ||
3044	    access_cmp(cred, cache) != 0)
3045		cache = NULL;
3046	if (cache == NULL)
3047		goto out;
3048	if ((s64)(login_time - cache->timestamp) > 0)
3049		goto out;
3050	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3051		goto out;
3052	*mask = cache->mask;
3053	err = 0;
3054out:
3055	rcu_read_unlock();
3056	return err;
3057}
3058
3059int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3060			  u32 *mask, bool may_block)
3061{
3062	int status;
3063
3064	status = nfs_access_get_cached_rcu(inode, cred, mask);
3065	if (status != 0)
3066		status = nfs_access_get_cached_locked(inode, cred, mask,
3067		    may_block);
3068
3069	return status;
3070}
3071EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3072
3073static void nfs_access_add_rbtree(struct inode *inode,
3074				  struct nfs_access_entry *set,
3075				  const struct cred *cred)
3076{
3077	struct nfs_inode *nfsi = NFS_I(inode);
3078	struct rb_root *root_node = &nfsi->access_cache;
3079	struct rb_node **p = &root_node->rb_node;
3080	struct rb_node *parent = NULL;
3081	struct nfs_access_entry *entry;
3082	int cmp;
3083
3084	spin_lock(&inode->i_lock);
3085	while (*p != NULL) {
3086		parent = *p;
3087		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3088		cmp = access_cmp(cred, entry);
3089
3090		if (cmp < 0)
3091			p = &parent->rb_left;
3092		else if (cmp > 0)
3093			p = &parent->rb_right;
3094		else
3095			goto found;
3096	}
3097	rb_link_node(&set->rb_node, parent, p);
3098	rb_insert_color(&set->rb_node, root_node);
3099	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3100	spin_unlock(&inode->i_lock);
3101	return;
3102found:
3103	rb_replace_node(parent, &set->rb_node, root_node);
3104	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3105	list_del(&entry->lru);
3106	spin_unlock(&inode->i_lock);
3107	nfs_access_free_entry(entry);
3108}
3109
3110void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3111			  const struct cred *cred)
3112{
3113	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3114	if (cache == NULL)
3115		return;
3116	RB_CLEAR_NODE(&cache->rb_node);
3117	cache->fsuid = cred->fsuid;
3118	cache->fsgid = cred->fsgid;
3119	cache->group_info = get_group_info(cred->group_info);
3120	cache->mask = set->mask;
3121	cache->timestamp = ktime_get_ns();
3122
3123	/* The above field assignments must be visible
3124	 * before this item appears on the lru.  We cannot easily
3125	 * use rcu_assign_pointer, so just force the memory barrier.
3126	 */
3127	smp_wmb();
3128	nfs_access_add_rbtree(inode, cache, cred);
3129
3130	/* Update accounting */
3131	smp_mb__before_atomic();
3132	atomic_long_inc(&nfs_access_nr_entries);
3133	smp_mb__after_atomic();
3134
3135	/* Add inode to global LRU list */
3136	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3137		spin_lock(&nfs_access_lru_lock);
3138		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3139			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3140					&nfs_access_lru_list);
3141		spin_unlock(&nfs_access_lru_lock);
3142	}
3143	nfs_access_cache_enforce_limit();
3144}
3145EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3146
3147#define NFS_MAY_READ (NFS_ACCESS_READ)
3148#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3149		NFS_ACCESS_EXTEND | \
3150		NFS_ACCESS_DELETE)
3151#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3152		NFS_ACCESS_EXTEND)
3153#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3154#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3155#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3156static int
3157nfs_access_calc_mask(u32 access_result, umode_t umode)
3158{
3159	int mask = 0;
3160
3161	if (access_result & NFS_MAY_READ)
3162		mask |= MAY_READ;
3163	if (S_ISDIR(umode)) {
3164		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3165			mask |= MAY_WRITE;
3166		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3167			mask |= MAY_EXEC;
3168	} else if (S_ISREG(umode)) {
3169		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3170			mask |= MAY_WRITE;
3171		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3172			mask |= MAY_EXEC;
3173	} else if (access_result & NFS_MAY_WRITE)
3174			mask |= MAY_WRITE;
3175	return mask;
3176}
3177
3178void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3179{
3180	entry->mask = access_result;
3181}
3182EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3183
3184static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3185{
3186	struct nfs_access_entry cache;
3187	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3188	int cache_mask = -1;
3189	int status;
3190
3191	trace_nfs_access_enter(inode);
3192
3193	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3194	if (status == 0)
3195		goto out_cached;
3196
3197	status = -ECHILD;
3198	if (!may_block)
3199		goto out;
3200
3201	/*
3202	 * Determine which access bits we want to ask for...
3203	 */
3204	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3205		     nfs_access_xattr_mask(NFS_SERVER(inode));
3206	if (S_ISDIR(inode->i_mode))
3207		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3208	else
3209		cache.mask |= NFS_ACCESS_EXECUTE;
3210	status = NFS_PROTO(inode)->access(inode, &cache, cred);
3211	if (status != 0) {
3212		if (status == -ESTALE) {
3213			if (!S_ISDIR(inode->i_mode))
3214				nfs_set_inode_stale(inode);
3215			else
3216				nfs_zap_caches(inode);
3217		}
3218		goto out;
3219	}
3220	nfs_access_add_cache(inode, &cache, cred);
3221out_cached:
3222	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3223	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3224		status = -EACCES;
3225out:
3226	trace_nfs_access_exit(inode, mask, cache_mask, status);
3227	return status;
3228}
3229
3230static int nfs_open_permission_mask(int openflags)
3231{
3232	int mask = 0;
3233
3234	if (openflags & __FMODE_EXEC) {
3235		/* ONLY check exec rights */
3236		mask = MAY_EXEC;
3237	} else {
3238		if ((openflags & O_ACCMODE) != O_WRONLY)
3239			mask |= MAY_READ;
3240		if ((openflags & O_ACCMODE) != O_RDONLY)
3241			mask |= MAY_WRITE;
3242	}
3243
3244	return mask;
3245}
3246
3247int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3248{
3249	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3250}
3251EXPORT_SYMBOL_GPL(nfs_may_open);
3252
3253static int nfs_execute_ok(struct inode *inode, int mask)
3254{
3255	struct nfs_server *server = NFS_SERVER(inode);
3256	int ret = 0;
3257
3258	if (S_ISDIR(inode->i_mode))
3259		return 0;
3260	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3261		if (mask & MAY_NOT_BLOCK)
3262			return -ECHILD;
3263		ret = __nfs_revalidate_inode(server, inode);
3264	}
3265	if (ret == 0 && !execute_ok(inode))
3266		ret = -EACCES;
3267	return ret;
3268}
3269
3270int nfs_permission(struct mnt_idmap *idmap,
3271		   struct inode *inode,
3272		   int mask)
3273{
3274	const struct cred *cred = current_cred();
3275	int res = 0;
3276
3277	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3278
3279	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3280		goto out;
3281	/* Is this sys_access() ? */
3282	if (mask & (MAY_ACCESS | MAY_CHDIR))
3283		goto force_lookup;
3284
3285	switch (inode->i_mode & S_IFMT) {
3286		case S_IFLNK:
3287			goto out;
3288		case S_IFREG:
3289			if ((mask & MAY_OPEN) &&
3290			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3291				return 0;
3292			break;
3293		case S_IFDIR:
3294			/*
3295			 * Optimize away all write operations, since the server
3296			 * will check permissions when we perform the op.
3297			 */
3298			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3299				goto out;
3300	}
3301
3302force_lookup:
3303	if (!NFS_PROTO(inode)->access)
3304		goto out_notsup;
3305
3306	res = nfs_do_access(inode, cred, mask);
3307out:
3308	if (!res && (mask & MAY_EXEC))
3309		res = nfs_execute_ok(inode, mask);
3310
3311	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3312		inode->i_sb->s_id, inode->i_ino, mask, res);
3313	return res;
3314out_notsup:
3315	if (mask & MAY_NOT_BLOCK)
3316		return -ECHILD;
3317
3318	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3319						  NFS_INO_INVALID_OTHER);
3320	if (res == 0)
3321		res = generic_permission(&nop_mnt_idmap, inode, mask);
3322	goto out;
3323}
3324EXPORT_SYMBOL_GPL(nfs_permission);
3325