xref: /kernel/linux/linux-6.6/fs/namei.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  linux/fs/namei.c
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 */
7
8/*
9 * Some corrections by tytso.
10 */
11
12/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18#include <linux/init.h>
19#include <linux/export.h>
20#include <linux/kernel.h>
21#include <linux/slab.h>
22#include <linux/fs.h>
23#include <linux/filelock.h>
24#include <linux/namei.h>
25#include <linux/pagemap.h>
26#include <linux/sched/mm.h>
27#include <linux/fsnotify.h>
28#include <linux/personality.h>
29#include <linux/security.h>
30#include <linux/ima.h>
31#include <linux/syscalls.h>
32#include <linux/mount.h>
33#include <linux/audit.h>
34#include <linux/capability.h>
35#include <linux/file.h>
36#include <linux/fcntl.h>
37#include <linux/device_cgroup.h>
38#include <linux/fs_struct.h>
39#include <linux/posix_acl.h>
40#include <linux/hash.h>
41#include <linux/bitops.h>
42#include <linux/init_task.h>
43#include <linux/uaccess.h>
44
45#include "internal.h"
46#include "mount.h"
47
48/* [Feb-1997 T. Schoebel-Theuer]
49 * Fundamental changes in the pathname lookup mechanisms (namei)
50 * were necessary because of omirr.  The reason is that omirr needs
51 * to know the _real_ pathname, not the user-supplied one, in case
52 * of symlinks (and also when transname replacements occur).
53 *
54 * The new code replaces the old recursive symlink resolution with
55 * an iterative one (in case of non-nested symlink chains).  It does
56 * this with calls to <fs>_follow_link().
57 * As a side effect, dir_namei(), _namei() and follow_link() are now
58 * replaced with a single function lookup_dentry() that can handle all
59 * the special cases of the former code.
60 *
61 * With the new dcache, the pathname is stored at each inode, at least as
62 * long as the refcount of the inode is positive.  As a side effect, the
63 * size of the dcache depends on the inode cache and thus is dynamic.
64 *
65 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
66 * resolution to correspond with current state of the code.
67 *
68 * Note that the symlink resolution is not *completely* iterative.
69 * There is still a significant amount of tail- and mid- recursion in
70 * the algorithm.  Also, note that <fs>_readlink() is not used in
71 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
72 * may return different results than <fs>_follow_link().  Many virtual
73 * filesystems (including /proc) exhibit this behavior.
74 */
75
76/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
77 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
78 * and the name already exists in form of a symlink, try to create the new
79 * name indicated by the symlink. The old code always complained that the
80 * name already exists, due to not following the symlink even if its target
81 * is nonexistent.  The new semantics affects also mknod() and link() when
82 * the name is a symlink pointing to a non-existent name.
83 *
84 * I don't know which semantics is the right one, since I have no access
85 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
86 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
87 * "old" one. Personally, I think the new semantics is much more logical.
88 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
89 * file does succeed in both HP-UX and SunOs, but not in Solaris
90 * and in the old Linux semantics.
91 */
92
93/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
94 * semantics.  See the comments in "open_namei" and "do_link" below.
95 *
96 * [10-Sep-98 Alan Modra] Another symlink change.
97 */
98
99/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
100 *	inside the path - always follow.
101 *	in the last component in creation/removal/renaming - never follow.
102 *	if LOOKUP_FOLLOW passed - follow.
103 *	if the pathname has trailing slashes - follow.
104 *	otherwise - don't follow.
105 * (applied in that order).
106 *
107 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
108 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
109 * During the 2.4 we need to fix the userland stuff depending on it -
110 * hopefully we will be able to get rid of that wart in 2.5. So far only
111 * XEmacs seems to be relying on it...
112 */
113/*
114 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
115 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
116 * any extra contention...
117 */
118
119/* In order to reduce some races, while at the same time doing additional
120 * checking and hopefully speeding things up, we copy filenames to the
121 * kernel data space before using them..
122 *
123 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
124 * PATH_MAX includes the nul terminator --RR.
125 */
126
127#define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
128
129struct filename *
130getname_flags(const char __user *filename, int flags, int *empty)
131{
132	struct filename *result;
133	char *kname;
134	int len;
135
136	result = audit_reusename(filename);
137	if (result)
138		return result;
139
140	result = __getname();
141	if (unlikely(!result))
142		return ERR_PTR(-ENOMEM);
143
144	/*
145	 * First, try to embed the struct filename inside the names_cache
146	 * allocation
147	 */
148	kname = (char *)result->iname;
149	result->name = kname;
150
151	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152	if (unlikely(len < 0)) {
153		__putname(result);
154		return ERR_PTR(len);
155	}
156
157	/*
158	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159	 * separate struct filename so we can dedicate the entire
160	 * names_cache allocation for the pathname, and re-do the copy from
161	 * userland.
162	 */
163	if (unlikely(len == EMBEDDED_NAME_MAX)) {
164		const size_t size = offsetof(struct filename, iname[1]);
165		kname = (char *)result;
166
167		/*
168		 * size is chosen that way we to guarantee that
169		 * result->iname[0] is within the same object and that
170		 * kname can't be equal to result->iname, no matter what.
171		 */
172		result = kzalloc(size, GFP_KERNEL);
173		if (unlikely(!result)) {
174			__putname(kname);
175			return ERR_PTR(-ENOMEM);
176		}
177		result->name = kname;
178		len = strncpy_from_user(kname, filename, PATH_MAX);
179		if (unlikely(len < 0)) {
180			__putname(kname);
181			kfree(result);
182			return ERR_PTR(len);
183		}
184		if (unlikely(len == PATH_MAX)) {
185			__putname(kname);
186			kfree(result);
187			return ERR_PTR(-ENAMETOOLONG);
188		}
189	}
190
191	atomic_set(&result->refcnt, 1);
192	/* The empty path is special. */
193	if (unlikely(!len)) {
194		if (empty)
195			*empty = 1;
196		if (!(flags & LOOKUP_EMPTY)) {
197			putname(result);
198			return ERR_PTR(-ENOENT);
199		}
200	}
201
202	result->uptr = filename;
203	result->aname = NULL;
204	audit_getname(result);
205	return result;
206}
207
208struct filename *
209getname_uflags(const char __user *filename, int uflags)
210{
211	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
212
213	return getname_flags(filename, flags, NULL);
214}
215
216struct filename *
217getname(const char __user * filename)
218{
219	return getname_flags(filename, 0, NULL);
220}
221
222struct filename *
223getname_kernel(const char * filename)
224{
225	struct filename *result;
226	int len = strlen(filename) + 1;
227
228	result = __getname();
229	if (unlikely(!result))
230		return ERR_PTR(-ENOMEM);
231
232	if (len <= EMBEDDED_NAME_MAX) {
233		result->name = (char *)result->iname;
234	} else if (len <= PATH_MAX) {
235		const size_t size = offsetof(struct filename, iname[1]);
236		struct filename *tmp;
237
238		tmp = kmalloc(size, GFP_KERNEL);
239		if (unlikely(!tmp)) {
240			__putname(result);
241			return ERR_PTR(-ENOMEM);
242		}
243		tmp->name = (char *)result;
244		result = tmp;
245	} else {
246		__putname(result);
247		return ERR_PTR(-ENAMETOOLONG);
248	}
249	memcpy((char *)result->name, filename, len);
250	result->uptr = NULL;
251	result->aname = NULL;
252	atomic_set(&result->refcnt, 1);
253	audit_getname(result);
254
255	return result;
256}
257EXPORT_SYMBOL(getname_kernel);
258
259void putname(struct filename *name)
260{
261	if (IS_ERR(name))
262		return;
263
264	if (WARN_ON_ONCE(!atomic_read(&name->refcnt)))
265		return;
266
267	if (!atomic_dec_and_test(&name->refcnt))
268		return;
269
270	if (name->name != name->iname) {
271		__putname(name->name);
272		kfree(name);
273	} else
274		__putname(name);
275}
276EXPORT_SYMBOL(putname);
277
278/**
279 * check_acl - perform ACL permission checking
280 * @idmap:	idmap of the mount the inode was found from
281 * @inode:	inode to check permissions on
282 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
283 *
284 * This function performs the ACL permission checking. Since this function
285 * retrieve POSIX acls it needs to know whether it is called from a blocking or
286 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
287 *
288 * If the inode has been found through an idmapped mount the idmap of
289 * the vfsmount must be passed through @idmap. This function will then take
290 * care to map the inode according to @idmap before checking permissions.
291 * On non-idmapped mounts or if permission checking is to be performed on the
292 * raw inode simply passs @nop_mnt_idmap.
293 */
294static int check_acl(struct mnt_idmap *idmap,
295		     struct inode *inode, int mask)
296{
297#ifdef CONFIG_FS_POSIX_ACL
298	struct posix_acl *acl;
299
300	if (mask & MAY_NOT_BLOCK) {
301		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
302	        if (!acl)
303	                return -EAGAIN;
304		/* no ->get_inode_acl() calls in RCU mode... */
305		if (is_uncached_acl(acl))
306			return -ECHILD;
307	        return posix_acl_permission(idmap, inode, acl, mask);
308	}
309
310	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
311	if (IS_ERR(acl))
312		return PTR_ERR(acl);
313	if (acl) {
314	        int error = posix_acl_permission(idmap, inode, acl, mask);
315	        posix_acl_release(acl);
316	        return error;
317	}
318#endif
319
320	return -EAGAIN;
321}
322
323/**
324 * acl_permission_check - perform basic UNIX permission checking
325 * @idmap:	idmap of the mount the inode was found from
326 * @inode:	inode to check permissions on
327 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
328 *
329 * This function performs the basic UNIX permission checking. Since this
330 * function may retrieve POSIX acls it needs to know whether it is called from a
331 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
332 *
333 * If the inode has been found through an idmapped mount the idmap of
334 * the vfsmount must be passed through @idmap. This function will then take
335 * care to map the inode according to @idmap before checking permissions.
336 * On non-idmapped mounts or if permission checking is to be performed on the
337 * raw inode simply passs @nop_mnt_idmap.
338 */
339static int acl_permission_check(struct mnt_idmap *idmap,
340				struct inode *inode, int mask)
341{
342	unsigned int mode = inode->i_mode;
343	vfsuid_t vfsuid;
344
345	/* Are we the owner? If so, ACL's don't matter */
346	vfsuid = i_uid_into_vfsuid(idmap, inode);
347	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
348		mask &= 7;
349		mode >>= 6;
350		return (mask & ~mode) ? -EACCES : 0;
351	}
352
353	/* Do we have ACL's? */
354	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
355		int error = check_acl(idmap, inode, mask);
356		if (error != -EAGAIN)
357			return error;
358	}
359
360	/* Only RWX matters for group/other mode bits */
361	mask &= 7;
362
363	/*
364	 * Are the group permissions different from
365	 * the other permissions in the bits we care
366	 * about? Need to check group ownership if so.
367	 */
368	if (mask & (mode ^ (mode >> 3))) {
369		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
370		if (vfsgid_in_group_p(vfsgid))
371			mode >>= 3;
372	}
373
374	/* Bits in 'mode' clear that we require? */
375	return (mask & ~mode) ? -EACCES : 0;
376}
377
378/**
379 * generic_permission -  check for access rights on a Posix-like filesystem
380 * @idmap:	idmap of the mount the inode was found from
381 * @inode:	inode to check access rights for
382 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
383 *		%MAY_NOT_BLOCK ...)
384 *
385 * Used to check for read/write/execute permissions on a file.
386 * We use "fsuid" for this, letting us set arbitrary permissions
387 * for filesystem access without changing the "normal" uids which
388 * are used for other things.
389 *
390 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
391 * request cannot be satisfied (eg. requires blocking or too much complexity).
392 * It would then be called again in ref-walk mode.
393 *
394 * If the inode has been found through an idmapped mount the idmap of
395 * the vfsmount must be passed through @idmap. This function will then take
396 * care to map the inode according to @idmap before checking permissions.
397 * On non-idmapped mounts or if permission checking is to be performed on the
398 * raw inode simply passs @nop_mnt_idmap.
399 */
400int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
401		       int mask)
402{
403	int ret;
404
405	/*
406	 * Do the basic permission checks.
407	 */
408	ret = acl_permission_check(idmap, inode, mask);
409	if (ret != -EACCES)
410		return ret;
411
412	if (S_ISDIR(inode->i_mode)) {
413		/* DACs are overridable for directories */
414		if (!(mask & MAY_WRITE))
415			if (capable_wrt_inode_uidgid(idmap, inode,
416						     CAP_DAC_READ_SEARCH))
417				return 0;
418		if (capable_wrt_inode_uidgid(idmap, inode,
419					     CAP_DAC_OVERRIDE))
420			return 0;
421		return -EACCES;
422	}
423
424	/*
425	 * Searching includes executable on directories, else just read.
426	 */
427	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
428	if (mask == MAY_READ)
429		if (capable_wrt_inode_uidgid(idmap, inode,
430					     CAP_DAC_READ_SEARCH))
431			return 0;
432	/*
433	 * Read/write DACs are always overridable.
434	 * Executable DACs are overridable when there is
435	 * at least one exec bit set.
436	 */
437	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
438		if (capable_wrt_inode_uidgid(idmap, inode,
439					     CAP_DAC_OVERRIDE))
440			return 0;
441
442	return -EACCES;
443}
444EXPORT_SYMBOL(generic_permission);
445
446/**
447 * do_inode_permission - UNIX permission checking
448 * @idmap:	idmap of the mount the inode was found from
449 * @inode:	inode to check permissions on
450 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
451 *
452 * We _really_ want to just do "generic_permission()" without
453 * even looking at the inode->i_op values. So we keep a cache
454 * flag in inode->i_opflags, that says "this has not special
455 * permission function, use the fast case".
456 */
457static inline int do_inode_permission(struct mnt_idmap *idmap,
458				      struct inode *inode, int mask)
459{
460	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
461		if (likely(inode->i_op->permission))
462			return inode->i_op->permission(idmap, inode, mask);
463
464		/* This gets set once for the inode lifetime */
465		spin_lock(&inode->i_lock);
466		inode->i_opflags |= IOP_FASTPERM;
467		spin_unlock(&inode->i_lock);
468	}
469	return generic_permission(idmap, inode, mask);
470}
471
472/**
473 * sb_permission - Check superblock-level permissions
474 * @sb: Superblock of inode to check permission on
475 * @inode: Inode to check permission on
476 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
477 *
478 * Separate out file-system wide checks from inode-specific permission checks.
479 */
480static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
481{
482	if (unlikely(mask & MAY_WRITE)) {
483		umode_t mode = inode->i_mode;
484
485		/* Nobody gets write access to a read-only fs. */
486		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
487			return -EROFS;
488	}
489	return 0;
490}
491
492/**
493 * inode_permission - Check for access rights to a given inode
494 * @idmap:	idmap of the mount the inode was found from
495 * @inode:	Inode to check permission on
496 * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
497 *
498 * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
499 * this, letting us set arbitrary permissions for filesystem access without
500 * changing the "normal" UIDs which are used for other things.
501 *
502 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
503 */
504int inode_permission(struct mnt_idmap *idmap,
505		     struct inode *inode, int mask)
506{
507	int retval;
508
509	retval = sb_permission(inode->i_sb, inode, mask);
510	if (retval)
511		return retval;
512
513	if (unlikely(mask & MAY_WRITE)) {
514		/*
515		 * Nobody gets write access to an immutable file.
516		 */
517		if (IS_IMMUTABLE(inode))
518			return -EPERM;
519
520		/*
521		 * Updating mtime will likely cause i_uid and i_gid to be
522		 * written back improperly if their true value is unknown
523		 * to the vfs.
524		 */
525		if (HAS_UNMAPPED_ID(idmap, inode))
526			return -EACCES;
527	}
528
529	retval = do_inode_permission(idmap, inode, mask);
530	if (retval)
531		return retval;
532
533	retval = devcgroup_inode_permission(inode, mask);
534	if (retval)
535		return retval;
536
537	return security_inode_permission(inode, mask);
538}
539EXPORT_SYMBOL(inode_permission);
540
541/**
542 * path_get - get a reference to a path
543 * @path: path to get the reference to
544 *
545 * Given a path increment the reference count to the dentry and the vfsmount.
546 */
547void path_get(const struct path *path)
548{
549	mntget(path->mnt);
550	dget(path->dentry);
551}
552EXPORT_SYMBOL(path_get);
553
554/**
555 * path_put - put a reference to a path
556 * @path: path to put the reference to
557 *
558 * Given a path decrement the reference count to the dentry and the vfsmount.
559 */
560void path_put(const struct path *path)
561{
562	dput(path->dentry);
563	mntput(path->mnt);
564}
565EXPORT_SYMBOL(path_put);
566
567#define EMBEDDED_LEVELS 2
568struct nameidata {
569	struct path	path;
570	struct qstr	last;
571	struct path	root;
572	struct inode	*inode; /* path.dentry.d_inode */
573	unsigned int	flags, state;
574	unsigned	seq, next_seq, m_seq, r_seq;
575	int		last_type;
576	unsigned	depth;
577	int		total_link_count;
578	struct saved {
579		struct path link;
580		struct delayed_call done;
581		const char *name;
582		unsigned seq;
583	} *stack, internal[EMBEDDED_LEVELS];
584	struct filename	*name;
585	struct nameidata *saved;
586	unsigned	root_seq;
587	int		dfd;
588	vfsuid_t	dir_vfsuid;
589	umode_t		dir_mode;
590} __randomize_layout;
591
592#define ND_ROOT_PRESET 1
593#define ND_ROOT_GRABBED 2
594#define ND_JUMPED 4
595
596static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
597{
598	struct nameidata *old = current->nameidata;
599	p->stack = p->internal;
600	p->depth = 0;
601	p->dfd = dfd;
602	p->name = name;
603	p->path.mnt = NULL;
604	p->path.dentry = NULL;
605	p->total_link_count = old ? old->total_link_count : 0;
606	p->saved = old;
607	current->nameidata = p;
608}
609
610static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
611			  const struct path *root)
612{
613	__set_nameidata(p, dfd, name);
614	p->state = 0;
615	if (unlikely(root)) {
616		p->state = ND_ROOT_PRESET;
617		p->root = *root;
618	}
619}
620
621static void restore_nameidata(void)
622{
623	struct nameidata *now = current->nameidata, *old = now->saved;
624
625	current->nameidata = old;
626	if (old)
627		old->total_link_count = now->total_link_count;
628	if (now->stack != now->internal)
629		kfree(now->stack);
630}
631
632static bool nd_alloc_stack(struct nameidata *nd)
633{
634	struct saved *p;
635
636	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
637			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
638	if (unlikely(!p))
639		return false;
640	memcpy(p, nd->internal, sizeof(nd->internal));
641	nd->stack = p;
642	return true;
643}
644
645/**
646 * path_connected - Verify that a dentry is below mnt.mnt_root
647 * @mnt: The mountpoint to check.
648 * @dentry: The dentry to check.
649 *
650 * Rename can sometimes move a file or directory outside of a bind
651 * mount, path_connected allows those cases to be detected.
652 */
653static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
654{
655	struct super_block *sb = mnt->mnt_sb;
656
657	/* Bind mounts can have disconnected paths */
658	if (mnt->mnt_root == sb->s_root)
659		return true;
660
661	return is_subdir(dentry, mnt->mnt_root);
662}
663
664static void drop_links(struct nameidata *nd)
665{
666	int i = nd->depth;
667	while (i--) {
668		struct saved *last = nd->stack + i;
669		do_delayed_call(&last->done);
670		clear_delayed_call(&last->done);
671	}
672}
673
674static void leave_rcu(struct nameidata *nd)
675{
676	nd->flags &= ~LOOKUP_RCU;
677	nd->seq = nd->next_seq = 0;
678	rcu_read_unlock();
679}
680
681static void terminate_walk(struct nameidata *nd)
682{
683	drop_links(nd);
684	if (!(nd->flags & LOOKUP_RCU)) {
685		int i;
686		path_put(&nd->path);
687		for (i = 0; i < nd->depth; i++)
688			path_put(&nd->stack[i].link);
689		if (nd->state & ND_ROOT_GRABBED) {
690			path_put(&nd->root);
691			nd->state &= ~ND_ROOT_GRABBED;
692		}
693	} else {
694		leave_rcu(nd);
695	}
696	nd->depth = 0;
697	nd->path.mnt = NULL;
698	nd->path.dentry = NULL;
699}
700
701/* path_put is needed afterwards regardless of success or failure */
702static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
703{
704	int res = __legitimize_mnt(path->mnt, mseq);
705	if (unlikely(res)) {
706		if (res > 0)
707			path->mnt = NULL;
708		path->dentry = NULL;
709		return false;
710	}
711	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
712		path->dentry = NULL;
713		return false;
714	}
715	return !read_seqcount_retry(&path->dentry->d_seq, seq);
716}
717
718static inline bool legitimize_path(struct nameidata *nd,
719			    struct path *path, unsigned seq)
720{
721	return __legitimize_path(path, seq, nd->m_seq);
722}
723
724static bool legitimize_links(struct nameidata *nd)
725{
726	int i;
727	if (unlikely(nd->flags & LOOKUP_CACHED)) {
728		drop_links(nd);
729		nd->depth = 0;
730		return false;
731	}
732	for (i = 0; i < nd->depth; i++) {
733		struct saved *last = nd->stack + i;
734		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
735			drop_links(nd);
736			nd->depth = i + 1;
737			return false;
738		}
739	}
740	return true;
741}
742
743static bool legitimize_root(struct nameidata *nd)
744{
745	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
746	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
747		return true;
748	nd->state |= ND_ROOT_GRABBED;
749	return legitimize_path(nd, &nd->root, nd->root_seq);
750}
751
752/*
753 * Path walking has 2 modes, rcu-walk and ref-walk (see
754 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
755 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
756 * normal reference counts on dentries and vfsmounts to transition to ref-walk
757 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
758 * got stuck, so ref-walk may continue from there. If this is not successful
759 * (eg. a seqcount has changed), then failure is returned and it's up to caller
760 * to restart the path walk from the beginning in ref-walk mode.
761 */
762
763/**
764 * try_to_unlazy - try to switch to ref-walk mode.
765 * @nd: nameidata pathwalk data
766 * Returns: true on success, false on failure
767 *
768 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
769 * for ref-walk mode.
770 * Must be called from rcu-walk context.
771 * Nothing should touch nameidata between try_to_unlazy() failure and
772 * terminate_walk().
773 */
774static bool try_to_unlazy(struct nameidata *nd)
775{
776	struct dentry *parent = nd->path.dentry;
777
778	BUG_ON(!(nd->flags & LOOKUP_RCU));
779
780	if (unlikely(!legitimize_links(nd)))
781		goto out1;
782	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
783		goto out;
784	if (unlikely(!legitimize_root(nd)))
785		goto out;
786	leave_rcu(nd);
787	BUG_ON(nd->inode != parent->d_inode);
788	return true;
789
790out1:
791	nd->path.mnt = NULL;
792	nd->path.dentry = NULL;
793out:
794	leave_rcu(nd);
795	return false;
796}
797
798/**
799 * try_to_unlazy_next - try to switch to ref-walk mode.
800 * @nd: nameidata pathwalk data
801 * @dentry: next dentry to step into
802 * Returns: true on success, false on failure
803 *
804 * Similar to try_to_unlazy(), but here we have the next dentry already
805 * picked by rcu-walk and want to legitimize that in addition to the current
806 * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
807 * Nothing should touch nameidata between try_to_unlazy_next() failure and
808 * terminate_walk().
809 */
810static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
811{
812	int res;
813	BUG_ON(!(nd->flags & LOOKUP_RCU));
814
815	if (unlikely(!legitimize_links(nd)))
816		goto out2;
817	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
818	if (unlikely(res)) {
819		if (res > 0)
820			goto out2;
821		goto out1;
822	}
823	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
824		goto out1;
825
826	/*
827	 * We need to move both the parent and the dentry from the RCU domain
828	 * to be properly refcounted. And the sequence number in the dentry
829	 * validates *both* dentry counters, since we checked the sequence
830	 * number of the parent after we got the child sequence number. So we
831	 * know the parent must still be valid if the child sequence number is
832	 */
833	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
834		goto out;
835	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
836		goto out_dput;
837	/*
838	 * Sequence counts matched. Now make sure that the root is
839	 * still valid and get it if required.
840	 */
841	if (unlikely(!legitimize_root(nd)))
842		goto out_dput;
843	leave_rcu(nd);
844	return true;
845
846out2:
847	nd->path.mnt = NULL;
848out1:
849	nd->path.dentry = NULL;
850out:
851	leave_rcu(nd);
852	return false;
853out_dput:
854	leave_rcu(nd);
855	dput(dentry);
856	return false;
857}
858
859static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
860{
861	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
862		return dentry->d_op->d_revalidate(dentry, flags);
863	else
864		return 1;
865}
866
867/**
868 * complete_walk - successful completion of path walk
869 * @nd:  pointer nameidata
870 *
871 * If we had been in RCU mode, drop out of it and legitimize nd->path.
872 * Revalidate the final result, unless we'd already done that during
873 * the path walk or the filesystem doesn't ask for it.  Return 0 on
874 * success, -error on failure.  In case of failure caller does not
875 * need to drop nd->path.
876 */
877static int complete_walk(struct nameidata *nd)
878{
879	struct dentry *dentry = nd->path.dentry;
880	int status;
881
882	if (nd->flags & LOOKUP_RCU) {
883		/*
884		 * We don't want to zero nd->root for scoped-lookups or
885		 * externally-managed nd->root.
886		 */
887		if (!(nd->state & ND_ROOT_PRESET))
888			if (!(nd->flags & LOOKUP_IS_SCOPED))
889				nd->root.mnt = NULL;
890		nd->flags &= ~LOOKUP_CACHED;
891		if (!try_to_unlazy(nd))
892			return -ECHILD;
893	}
894
895	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
896		/*
897		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
898		 * ever step outside the root during lookup" and should already
899		 * be guaranteed by the rest of namei, we want to avoid a namei
900		 * BUG resulting in userspace being given a path that was not
901		 * scoped within the root at some point during the lookup.
902		 *
903		 * So, do a final sanity-check to make sure that in the
904		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
905		 * we won't silently return an fd completely outside of the
906		 * requested root to userspace.
907		 *
908		 * Userspace could move the path outside the root after this
909		 * check, but as discussed elsewhere this is not a concern (the
910		 * resolved file was inside the root at some point).
911		 */
912		if (!path_is_under(&nd->path, &nd->root))
913			return -EXDEV;
914	}
915
916	if (likely(!(nd->state & ND_JUMPED)))
917		return 0;
918
919	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
920		return 0;
921
922	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
923	if (status > 0)
924		return 0;
925
926	if (!status)
927		status = -ESTALE;
928
929	return status;
930}
931
932static int set_root(struct nameidata *nd)
933{
934	struct fs_struct *fs = current->fs;
935
936	/*
937	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
938	 * still have to ensure it doesn't happen because it will cause a breakout
939	 * from the dirfd.
940	 */
941	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
942		return -ENOTRECOVERABLE;
943
944	if (nd->flags & LOOKUP_RCU) {
945		unsigned seq;
946
947		do {
948			seq = read_seqcount_begin(&fs->seq);
949			nd->root = fs->root;
950			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
951		} while (read_seqcount_retry(&fs->seq, seq));
952	} else {
953		get_fs_root(fs, &nd->root);
954		nd->state |= ND_ROOT_GRABBED;
955	}
956	return 0;
957}
958
959static int nd_jump_root(struct nameidata *nd)
960{
961	if (unlikely(nd->flags & LOOKUP_BENEATH))
962		return -EXDEV;
963	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
964		/* Absolute path arguments to path_init() are allowed. */
965		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
966			return -EXDEV;
967	}
968	if (!nd->root.mnt) {
969		int error = set_root(nd);
970		if (error)
971			return error;
972	}
973	if (nd->flags & LOOKUP_RCU) {
974		struct dentry *d;
975		nd->path = nd->root;
976		d = nd->path.dentry;
977		nd->inode = d->d_inode;
978		nd->seq = nd->root_seq;
979		if (read_seqcount_retry(&d->d_seq, nd->seq))
980			return -ECHILD;
981	} else {
982		path_put(&nd->path);
983		nd->path = nd->root;
984		path_get(&nd->path);
985		nd->inode = nd->path.dentry->d_inode;
986	}
987	nd->state |= ND_JUMPED;
988	return 0;
989}
990
991/*
992 * Helper to directly jump to a known parsed path from ->get_link,
993 * caller must have taken a reference to path beforehand.
994 */
995int nd_jump_link(const struct path *path)
996{
997	int error = -ELOOP;
998	struct nameidata *nd = current->nameidata;
999
1000	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1001		goto err;
1002
1003	error = -EXDEV;
1004	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1005		if (nd->path.mnt != path->mnt)
1006			goto err;
1007	}
1008	/* Not currently safe for scoped-lookups. */
1009	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1010		goto err;
1011
1012	path_put(&nd->path);
1013	nd->path = *path;
1014	nd->inode = nd->path.dentry->d_inode;
1015	nd->state |= ND_JUMPED;
1016	return 0;
1017
1018err:
1019	path_put(path);
1020	return error;
1021}
1022
1023static inline void put_link(struct nameidata *nd)
1024{
1025	struct saved *last = nd->stack + --nd->depth;
1026	do_delayed_call(&last->done);
1027	if (!(nd->flags & LOOKUP_RCU))
1028		path_put(&last->link);
1029}
1030
1031static int sysctl_protected_symlinks __read_mostly;
1032static int sysctl_protected_hardlinks __read_mostly;
1033static int sysctl_protected_fifos __read_mostly;
1034static int sysctl_protected_regular __read_mostly;
1035
1036#ifdef CONFIG_SYSCTL
1037static struct ctl_table namei_sysctls[] = {
1038	{
1039		.procname	= "protected_symlinks",
1040		.data		= &sysctl_protected_symlinks,
1041		.maxlen		= sizeof(int),
1042		.mode		= 0644,
1043		.proc_handler	= proc_dointvec_minmax,
1044		.extra1		= SYSCTL_ZERO,
1045		.extra2		= SYSCTL_ONE,
1046	},
1047	{
1048		.procname	= "protected_hardlinks",
1049		.data		= &sysctl_protected_hardlinks,
1050		.maxlen		= sizeof(int),
1051		.mode		= 0644,
1052		.proc_handler	= proc_dointvec_minmax,
1053		.extra1		= SYSCTL_ZERO,
1054		.extra2		= SYSCTL_ONE,
1055	},
1056	{
1057		.procname	= "protected_fifos",
1058		.data		= &sysctl_protected_fifos,
1059		.maxlen		= sizeof(int),
1060		.mode		= 0644,
1061		.proc_handler	= proc_dointvec_minmax,
1062		.extra1		= SYSCTL_ZERO,
1063		.extra2		= SYSCTL_TWO,
1064	},
1065	{
1066		.procname	= "protected_regular",
1067		.data		= &sysctl_protected_regular,
1068		.maxlen		= sizeof(int),
1069		.mode		= 0644,
1070		.proc_handler	= proc_dointvec_minmax,
1071		.extra1		= SYSCTL_ZERO,
1072		.extra2		= SYSCTL_TWO,
1073	},
1074	{ }
1075};
1076
1077static int __init init_fs_namei_sysctls(void)
1078{
1079	register_sysctl_init("fs", namei_sysctls);
1080	return 0;
1081}
1082fs_initcall(init_fs_namei_sysctls);
1083
1084#endif /* CONFIG_SYSCTL */
1085
1086/**
1087 * may_follow_link - Check symlink following for unsafe situations
1088 * @nd: nameidata pathwalk data
1089 * @inode: Used for idmapping.
1090 *
1091 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1092 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1093 * in a sticky world-writable directory. This is to protect privileged
1094 * processes from failing races against path names that may change out
1095 * from under them by way of other users creating malicious symlinks.
1096 * It will permit symlinks to be followed only when outside a sticky
1097 * world-writable directory, or when the uid of the symlink and follower
1098 * match, or when the directory owner matches the symlink's owner.
1099 *
1100 * Returns 0 if following the symlink is allowed, -ve on error.
1101 */
1102static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1103{
1104	struct mnt_idmap *idmap;
1105	vfsuid_t vfsuid;
1106
1107	if (!sysctl_protected_symlinks)
1108		return 0;
1109
1110	idmap = mnt_idmap(nd->path.mnt);
1111	vfsuid = i_uid_into_vfsuid(idmap, inode);
1112	/* Allowed if owner and follower match. */
1113	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1114		return 0;
1115
1116	/* Allowed if parent directory not sticky and world-writable. */
1117	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1118		return 0;
1119
1120	/* Allowed if parent directory and link owner match. */
1121	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1122		return 0;
1123
1124	if (nd->flags & LOOKUP_RCU)
1125		return -ECHILD;
1126
1127	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1128	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1129	return -EACCES;
1130}
1131
1132/**
1133 * safe_hardlink_source - Check for safe hardlink conditions
1134 * @idmap: idmap of the mount the inode was found from
1135 * @inode: the source inode to hardlink from
1136 *
1137 * Return false if at least one of the following conditions:
1138 *    - inode is not a regular file
1139 *    - inode is setuid
1140 *    - inode is setgid and group-exec
1141 *    - access failure for read and write
1142 *
1143 * Otherwise returns true.
1144 */
1145static bool safe_hardlink_source(struct mnt_idmap *idmap,
1146				 struct inode *inode)
1147{
1148	umode_t mode = inode->i_mode;
1149
1150	/* Special files should not get pinned to the filesystem. */
1151	if (!S_ISREG(mode))
1152		return false;
1153
1154	/* Setuid files should not get pinned to the filesystem. */
1155	if (mode & S_ISUID)
1156		return false;
1157
1158	/* Executable setgid files should not get pinned to the filesystem. */
1159	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1160		return false;
1161
1162	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1163	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1164		return false;
1165
1166	return true;
1167}
1168
1169/**
1170 * may_linkat - Check permissions for creating a hardlink
1171 * @idmap: idmap of the mount the inode was found from
1172 * @link:  the source to hardlink from
1173 *
1174 * Block hardlink when all of:
1175 *  - sysctl_protected_hardlinks enabled
1176 *  - fsuid does not match inode
1177 *  - hardlink source is unsafe (see safe_hardlink_source() above)
1178 *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1179 *
1180 * If the inode has been found through an idmapped mount the idmap of
1181 * the vfsmount must be passed through @idmap. This function will then take
1182 * care to map the inode according to @idmap before checking permissions.
1183 * On non-idmapped mounts or if permission checking is to be performed on the
1184 * raw inode simply pass @nop_mnt_idmap.
1185 *
1186 * Returns 0 if successful, -ve on error.
1187 */
1188int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1189{
1190	struct inode *inode = link->dentry->d_inode;
1191
1192	/* Inode writeback is not safe when the uid or gid are invalid. */
1193	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1194	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1195		return -EOVERFLOW;
1196
1197	if (!sysctl_protected_hardlinks)
1198		return 0;
1199
1200	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1201	 * otherwise, it must be a safe source.
1202	 */
1203	if (safe_hardlink_source(idmap, inode) ||
1204	    inode_owner_or_capable(idmap, inode))
1205		return 0;
1206
1207	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1208	return -EPERM;
1209}
1210
1211/**
1212 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1213 *			  should be allowed, or not, on files that already
1214 *			  exist.
1215 * @idmap: idmap of the mount the inode was found from
1216 * @nd: nameidata pathwalk data
1217 * @inode: the inode of the file to open
1218 *
1219 * Block an O_CREAT open of a FIFO (or a regular file) when:
1220 *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1221 *   - the file already exists
1222 *   - we are in a sticky directory
1223 *   - we don't own the file
1224 *   - the owner of the directory doesn't own the file
1225 *   - the directory is world writable
1226 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1227 * the directory doesn't have to be world writable: being group writable will
1228 * be enough.
1229 *
1230 * If the inode has been found through an idmapped mount the idmap of
1231 * the vfsmount must be passed through @idmap. This function will then take
1232 * care to map the inode according to @idmap before checking permissions.
1233 * On non-idmapped mounts or if permission checking is to be performed on the
1234 * raw inode simply pass @nop_mnt_idmap.
1235 *
1236 * Returns 0 if the open is allowed, -ve on error.
1237 */
1238static int may_create_in_sticky(struct mnt_idmap *idmap,
1239				struct nameidata *nd, struct inode *const inode)
1240{
1241	umode_t dir_mode = nd->dir_mode;
1242	vfsuid_t dir_vfsuid = nd->dir_vfsuid;
1243
1244	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1245	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1246	    likely(!(dir_mode & S_ISVTX)) ||
1247	    vfsuid_eq(i_uid_into_vfsuid(idmap, inode), dir_vfsuid) ||
1248	    vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid()))
1249		return 0;
1250
1251	if (likely(dir_mode & 0002) ||
1252	    (dir_mode & 0020 &&
1253	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1254	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1255		const char *operation = S_ISFIFO(inode->i_mode) ?
1256					"sticky_create_fifo" :
1257					"sticky_create_regular";
1258		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1259		return -EACCES;
1260	}
1261	return 0;
1262}
1263
1264/*
1265 * follow_up - Find the mountpoint of path's vfsmount
1266 *
1267 * Given a path, find the mountpoint of its source file system.
1268 * Replace @path with the path of the mountpoint in the parent mount.
1269 * Up is towards /.
1270 *
1271 * Return 1 if we went up a level and 0 if we were already at the
1272 * root.
1273 */
1274int follow_up(struct path *path)
1275{
1276	struct mount *mnt = real_mount(path->mnt);
1277	struct mount *parent;
1278	struct dentry *mountpoint;
1279
1280	read_seqlock_excl(&mount_lock);
1281	parent = mnt->mnt_parent;
1282	if (parent == mnt) {
1283		read_sequnlock_excl(&mount_lock);
1284		return 0;
1285	}
1286	mntget(&parent->mnt);
1287	mountpoint = dget(mnt->mnt_mountpoint);
1288	read_sequnlock_excl(&mount_lock);
1289	dput(path->dentry);
1290	path->dentry = mountpoint;
1291	mntput(path->mnt);
1292	path->mnt = &parent->mnt;
1293	return 1;
1294}
1295EXPORT_SYMBOL(follow_up);
1296
1297static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1298				  struct path *path, unsigned *seqp)
1299{
1300	while (mnt_has_parent(m)) {
1301		struct dentry *mountpoint = m->mnt_mountpoint;
1302
1303		m = m->mnt_parent;
1304		if (unlikely(root->dentry == mountpoint &&
1305			     root->mnt == &m->mnt))
1306			break;
1307		if (mountpoint != m->mnt.mnt_root) {
1308			path->mnt = &m->mnt;
1309			path->dentry = mountpoint;
1310			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1311			return true;
1312		}
1313	}
1314	return false;
1315}
1316
1317static bool choose_mountpoint(struct mount *m, const struct path *root,
1318			      struct path *path)
1319{
1320	bool found;
1321
1322	rcu_read_lock();
1323	while (1) {
1324		unsigned seq, mseq = read_seqbegin(&mount_lock);
1325
1326		found = choose_mountpoint_rcu(m, root, path, &seq);
1327		if (unlikely(!found)) {
1328			if (!read_seqretry(&mount_lock, mseq))
1329				break;
1330		} else {
1331			if (likely(__legitimize_path(path, seq, mseq)))
1332				break;
1333			rcu_read_unlock();
1334			path_put(path);
1335			rcu_read_lock();
1336		}
1337	}
1338	rcu_read_unlock();
1339	return found;
1340}
1341
1342/*
1343 * Perform an automount
1344 * - return -EISDIR to tell follow_managed() to stop and return the path we
1345 *   were called with.
1346 */
1347static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1348{
1349	struct dentry *dentry = path->dentry;
1350
1351	/* We don't want to mount if someone's just doing a stat -
1352	 * unless they're stat'ing a directory and appended a '/' to
1353	 * the name.
1354	 *
1355	 * We do, however, want to mount if someone wants to open or
1356	 * create a file of any type under the mountpoint, wants to
1357	 * traverse through the mountpoint or wants to open the
1358	 * mounted directory.  Also, autofs may mark negative dentries
1359	 * as being automount points.  These will need the attentions
1360	 * of the daemon to instantiate them before they can be used.
1361	 */
1362	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1363			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1364	    dentry->d_inode)
1365		return -EISDIR;
1366
1367	if (count && (*count)++ >= MAXSYMLINKS)
1368		return -ELOOP;
1369
1370	return finish_automount(dentry->d_op->d_automount(path), path);
1371}
1372
1373/*
1374 * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1375 * dentries are pinned but not locked here, so negative dentry can go
1376 * positive right under us.  Use of smp_load_acquire() provides a barrier
1377 * sufficient for ->d_inode and ->d_flags consistency.
1378 */
1379static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1380			     int *count, unsigned lookup_flags)
1381{
1382	struct vfsmount *mnt = path->mnt;
1383	bool need_mntput = false;
1384	int ret = 0;
1385
1386	while (flags & DCACHE_MANAGED_DENTRY) {
1387		/* Allow the filesystem to manage the transit without i_mutex
1388		 * being held. */
1389		if (flags & DCACHE_MANAGE_TRANSIT) {
1390			ret = path->dentry->d_op->d_manage(path, false);
1391			flags = smp_load_acquire(&path->dentry->d_flags);
1392			if (ret < 0)
1393				break;
1394		}
1395
1396		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1397			struct vfsmount *mounted = lookup_mnt(path);
1398			if (mounted) {		// ... in our namespace
1399				dput(path->dentry);
1400				if (need_mntput)
1401					mntput(path->mnt);
1402				path->mnt = mounted;
1403				path->dentry = dget(mounted->mnt_root);
1404				// here we know it's positive
1405				flags = path->dentry->d_flags;
1406				need_mntput = true;
1407				continue;
1408			}
1409		}
1410
1411		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1412			break;
1413
1414		// uncovered automount point
1415		ret = follow_automount(path, count, lookup_flags);
1416		flags = smp_load_acquire(&path->dentry->d_flags);
1417		if (ret < 0)
1418			break;
1419	}
1420
1421	if (ret == -EISDIR)
1422		ret = 0;
1423	// possible if you race with several mount --move
1424	if (need_mntput && path->mnt == mnt)
1425		mntput(path->mnt);
1426	if (!ret && unlikely(d_flags_negative(flags)))
1427		ret = -ENOENT;
1428	*jumped = need_mntput;
1429	return ret;
1430}
1431
1432static inline int traverse_mounts(struct path *path, bool *jumped,
1433				  int *count, unsigned lookup_flags)
1434{
1435	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1436
1437	/* fastpath */
1438	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1439		*jumped = false;
1440		if (unlikely(d_flags_negative(flags)))
1441			return -ENOENT;
1442		return 0;
1443	}
1444	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1445}
1446
1447int follow_down_one(struct path *path)
1448{
1449	struct vfsmount *mounted;
1450
1451	mounted = lookup_mnt(path);
1452	if (mounted) {
1453		dput(path->dentry);
1454		mntput(path->mnt);
1455		path->mnt = mounted;
1456		path->dentry = dget(mounted->mnt_root);
1457		return 1;
1458	}
1459	return 0;
1460}
1461EXPORT_SYMBOL(follow_down_one);
1462
1463/*
1464 * Follow down to the covering mount currently visible to userspace.  At each
1465 * point, the filesystem owning that dentry may be queried as to whether the
1466 * caller is permitted to proceed or not.
1467 */
1468int follow_down(struct path *path, unsigned int flags)
1469{
1470	struct vfsmount *mnt = path->mnt;
1471	bool jumped;
1472	int ret = traverse_mounts(path, &jumped, NULL, flags);
1473
1474	if (path->mnt != mnt)
1475		mntput(mnt);
1476	return ret;
1477}
1478EXPORT_SYMBOL(follow_down);
1479
1480/*
1481 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1482 * we meet a managed dentry that would need blocking.
1483 */
1484static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1485{
1486	struct dentry *dentry = path->dentry;
1487	unsigned int flags = dentry->d_flags;
1488
1489	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1490		return true;
1491
1492	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1493		return false;
1494
1495	for (;;) {
1496		/*
1497		 * Don't forget we might have a non-mountpoint managed dentry
1498		 * that wants to block transit.
1499		 */
1500		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1501			int res = dentry->d_op->d_manage(path, true);
1502			if (res)
1503				return res == -EISDIR;
1504			flags = dentry->d_flags;
1505		}
1506
1507		if (flags & DCACHE_MOUNTED) {
1508			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1509			if (mounted) {
1510				path->mnt = &mounted->mnt;
1511				dentry = path->dentry = mounted->mnt.mnt_root;
1512				nd->state |= ND_JUMPED;
1513				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1514				flags = dentry->d_flags;
1515				// makes sure that non-RCU pathwalk could reach
1516				// this state.
1517				if (read_seqretry(&mount_lock, nd->m_seq))
1518					return false;
1519				continue;
1520			}
1521			if (read_seqretry(&mount_lock, nd->m_seq))
1522				return false;
1523		}
1524		return !(flags & DCACHE_NEED_AUTOMOUNT);
1525	}
1526}
1527
1528static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1529			  struct path *path)
1530{
1531	bool jumped;
1532	int ret;
1533
1534	path->mnt = nd->path.mnt;
1535	path->dentry = dentry;
1536	if (nd->flags & LOOKUP_RCU) {
1537		unsigned int seq = nd->next_seq;
1538		if (likely(__follow_mount_rcu(nd, path)))
1539			return 0;
1540		// *path and nd->next_seq might've been clobbered
1541		path->mnt = nd->path.mnt;
1542		path->dentry = dentry;
1543		nd->next_seq = seq;
1544		if (!try_to_unlazy_next(nd, dentry))
1545			return -ECHILD;
1546	}
1547	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1548	if (jumped) {
1549		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1550			ret = -EXDEV;
1551		else
1552			nd->state |= ND_JUMPED;
1553	}
1554	if (unlikely(ret)) {
1555		dput(path->dentry);
1556		if (path->mnt != nd->path.mnt)
1557			mntput(path->mnt);
1558	}
1559	return ret;
1560}
1561
1562/*
1563 * This looks up the name in dcache and possibly revalidates the found dentry.
1564 * NULL is returned if the dentry does not exist in the cache.
1565 */
1566static struct dentry *lookup_dcache(const struct qstr *name,
1567				    struct dentry *dir,
1568				    unsigned int flags)
1569{
1570	struct dentry *dentry = d_lookup(dir, name);
1571	if (dentry) {
1572		int error = d_revalidate(dentry, flags);
1573		if (unlikely(error <= 0)) {
1574			if (!error)
1575				d_invalidate(dentry);
1576			dput(dentry);
1577			return ERR_PTR(error);
1578		}
1579	}
1580	return dentry;
1581}
1582
1583/*
1584 * Parent directory has inode locked exclusive.  This is one
1585 * and only case when ->lookup() gets called on non in-lookup
1586 * dentries - as the matter of fact, this only gets called
1587 * when directory is guaranteed to have no in-lookup children
1588 * at all.
1589 */
1590struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1591				    struct dentry *base,
1592				    unsigned int flags)
1593{
1594	struct dentry *dentry = lookup_dcache(name, base, flags);
1595	struct dentry *old;
1596	struct inode *dir = base->d_inode;
1597
1598	if (dentry)
1599		return dentry;
1600
1601	/* Don't create child dentry for a dead directory. */
1602	if (unlikely(IS_DEADDIR(dir)))
1603		return ERR_PTR(-ENOENT);
1604
1605	dentry = d_alloc(base, name);
1606	if (unlikely(!dentry))
1607		return ERR_PTR(-ENOMEM);
1608
1609	old = dir->i_op->lookup(dir, dentry, flags);
1610	if (unlikely(old)) {
1611		dput(dentry);
1612		dentry = old;
1613	}
1614	return dentry;
1615}
1616EXPORT_SYMBOL(lookup_one_qstr_excl);
1617
1618static struct dentry *lookup_fast(struct nameidata *nd)
1619{
1620	struct dentry *dentry, *parent = nd->path.dentry;
1621	int status = 1;
1622
1623	/*
1624	 * Rename seqlock is not required here because in the off chance
1625	 * of a false negative due to a concurrent rename, the caller is
1626	 * going to fall back to non-racy lookup.
1627	 */
1628	if (nd->flags & LOOKUP_RCU) {
1629		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1630		if (unlikely(!dentry)) {
1631			if (!try_to_unlazy(nd))
1632				return ERR_PTR(-ECHILD);
1633			return NULL;
1634		}
1635
1636		/*
1637		 * This sequence count validates that the parent had no
1638		 * changes while we did the lookup of the dentry above.
1639		 */
1640		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1641			return ERR_PTR(-ECHILD);
1642
1643		status = d_revalidate(dentry, nd->flags);
1644		if (likely(status > 0))
1645			return dentry;
1646		if (!try_to_unlazy_next(nd, dentry))
1647			return ERR_PTR(-ECHILD);
1648		if (status == -ECHILD)
1649			/* we'd been told to redo it in non-rcu mode */
1650			status = d_revalidate(dentry, nd->flags);
1651	} else {
1652		dentry = __d_lookup(parent, &nd->last);
1653		if (unlikely(!dentry))
1654			return NULL;
1655		status = d_revalidate(dentry, nd->flags);
1656	}
1657	if (unlikely(status <= 0)) {
1658		if (!status)
1659			d_invalidate(dentry);
1660		dput(dentry);
1661		return ERR_PTR(status);
1662	}
1663	return dentry;
1664}
1665
1666/* Fast lookup failed, do it the slow way */
1667static struct dentry *__lookup_slow(const struct qstr *name,
1668				    struct dentry *dir,
1669				    unsigned int flags)
1670{
1671	struct dentry *dentry, *old;
1672	struct inode *inode = dir->d_inode;
1673	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1674
1675	/* Don't go there if it's already dead */
1676	if (unlikely(IS_DEADDIR(inode)))
1677		return ERR_PTR(-ENOENT);
1678again:
1679	dentry = d_alloc_parallel(dir, name, &wq);
1680	if (IS_ERR(dentry))
1681		return dentry;
1682	if (unlikely(!d_in_lookup(dentry))) {
1683		int error = d_revalidate(dentry, flags);
1684		if (unlikely(error <= 0)) {
1685			if (!error) {
1686				d_invalidate(dentry);
1687				dput(dentry);
1688				goto again;
1689			}
1690			dput(dentry);
1691			dentry = ERR_PTR(error);
1692		}
1693	} else {
1694		old = inode->i_op->lookup(inode, dentry, flags);
1695		d_lookup_done(dentry);
1696		if (unlikely(old)) {
1697			dput(dentry);
1698			dentry = old;
1699		}
1700	}
1701	return dentry;
1702}
1703
1704static struct dentry *lookup_slow(const struct qstr *name,
1705				  struct dentry *dir,
1706				  unsigned int flags)
1707{
1708	struct inode *inode = dir->d_inode;
1709	struct dentry *res;
1710	inode_lock_shared(inode);
1711	res = __lookup_slow(name, dir, flags);
1712	inode_unlock_shared(inode);
1713	return res;
1714}
1715
1716static inline int may_lookup(struct mnt_idmap *idmap,
1717			     struct nameidata *nd)
1718{
1719	if (nd->flags & LOOKUP_RCU) {
1720		int err = inode_permission(idmap, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1721		if (err != -ECHILD || !try_to_unlazy(nd))
1722			return err;
1723	}
1724	return inode_permission(idmap, nd->inode, MAY_EXEC);
1725}
1726
1727static int reserve_stack(struct nameidata *nd, struct path *link)
1728{
1729	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1730		return -ELOOP;
1731
1732	if (likely(nd->depth != EMBEDDED_LEVELS))
1733		return 0;
1734	if (likely(nd->stack != nd->internal))
1735		return 0;
1736	if (likely(nd_alloc_stack(nd)))
1737		return 0;
1738
1739	if (nd->flags & LOOKUP_RCU) {
1740		// we need to grab link before we do unlazy.  And we can't skip
1741		// unlazy even if we fail to grab the link - cleanup needs it
1742		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1743
1744		if (!try_to_unlazy(nd) || !grabbed_link)
1745			return -ECHILD;
1746
1747		if (nd_alloc_stack(nd))
1748			return 0;
1749	}
1750	return -ENOMEM;
1751}
1752
1753enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1754
1755static const char *pick_link(struct nameidata *nd, struct path *link,
1756		     struct inode *inode, int flags)
1757{
1758	struct saved *last;
1759	const char *res;
1760	int error = reserve_stack(nd, link);
1761
1762	if (unlikely(error)) {
1763		if (!(nd->flags & LOOKUP_RCU))
1764			path_put(link);
1765		return ERR_PTR(error);
1766	}
1767	last = nd->stack + nd->depth++;
1768	last->link = *link;
1769	clear_delayed_call(&last->done);
1770	last->seq = nd->next_seq;
1771
1772	if (flags & WALK_TRAILING) {
1773		error = may_follow_link(nd, inode);
1774		if (unlikely(error))
1775			return ERR_PTR(error);
1776	}
1777
1778	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1779			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1780		return ERR_PTR(-ELOOP);
1781
1782	if (!(nd->flags & LOOKUP_RCU)) {
1783		touch_atime(&last->link);
1784		cond_resched();
1785	} else if (atime_needs_update(&last->link, inode)) {
1786		if (!try_to_unlazy(nd))
1787			return ERR_PTR(-ECHILD);
1788		touch_atime(&last->link);
1789	}
1790
1791	error = security_inode_follow_link(link->dentry, inode,
1792					   nd->flags & LOOKUP_RCU);
1793	if (unlikely(error))
1794		return ERR_PTR(error);
1795
1796	res = READ_ONCE(inode->i_link);
1797	if (!res) {
1798		const char * (*get)(struct dentry *, struct inode *,
1799				struct delayed_call *);
1800		get = inode->i_op->get_link;
1801		if (nd->flags & LOOKUP_RCU) {
1802			res = get(NULL, inode, &last->done);
1803			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1804				res = get(link->dentry, inode, &last->done);
1805		} else {
1806			res = get(link->dentry, inode, &last->done);
1807		}
1808		if (!res)
1809			goto all_done;
1810		if (IS_ERR(res))
1811			return res;
1812	}
1813	if (*res == '/') {
1814		error = nd_jump_root(nd);
1815		if (unlikely(error))
1816			return ERR_PTR(error);
1817		while (unlikely(*++res == '/'))
1818			;
1819	}
1820	if (*res)
1821		return res;
1822all_done: // pure jump
1823	put_link(nd);
1824	return NULL;
1825}
1826
1827/*
1828 * Do we need to follow links? We _really_ want to be able
1829 * to do this check without having to look at inode->i_op,
1830 * so we keep a cache of "no, this doesn't need follow_link"
1831 * for the common case.
1832 *
1833 * NOTE: dentry must be what nd->next_seq had been sampled from.
1834 */
1835static const char *step_into(struct nameidata *nd, int flags,
1836		     struct dentry *dentry)
1837{
1838	struct path path;
1839	struct inode *inode;
1840	int err = handle_mounts(nd, dentry, &path);
1841
1842	if (err < 0)
1843		return ERR_PTR(err);
1844	inode = path.dentry->d_inode;
1845	if (likely(!d_is_symlink(path.dentry)) ||
1846	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1847	   (flags & WALK_NOFOLLOW)) {
1848		/* not a symlink or should not follow */
1849		if (nd->flags & LOOKUP_RCU) {
1850			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1851				return ERR_PTR(-ECHILD);
1852			if (unlikely(!inode))
1853				return ERR_PTR(-ENOENT);
1854		} else {
1855			dput(nd->path.dentry);
1856			if (nd->path.mnt != path.mnt)
1857				mntput(nd->path.mnt);
1858		}
1859		nd->path = path;
1860		nd->inode = inode;
1861		nd->seq = nd->next_seq;
1862		return NULL;
1863	}
1864	if (nd->flags & LOOKUP_RCU) {
1865		/* make sure that d_is_symlink above matches inode */
1866		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1867			return ERR_PTR(-ECHILD);
1868	} else {
1869		if (path.mnt == nd->path.mnt)
1870			mntget(path.mnt);
1871	}
1872	return pick_link(nd, &path, inode, flags);
1873}
1874
1875static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1876{
1877	struct dentry *parent, *old;
1878
1879	if (path_equal(&nd->path, &nd->root))
1880		goto in_root;
1881	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1882		struct path path;
1883		unsigned seq;
1884		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1885					   &nd->root, &path, &seq))
1886			goto in_root;
1887		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1888			return ERR_PTR(-ECHILD);
1889		nd->path = path;
1890		nd->inode = path.dentry->d_inode;
1891		nd->seq = seq;
1892		// makes sure that non-RCU pathwalk could reach this state
1893		if (read_seqretry(&mount_lock, nd->m_seq))
1894			return ERR_PTR(-ECHILD);
1895		/* we know that mountpoint was pinned */
1896	}
1897	old = nd->path.dentry;
1898	parent = old->d_parent;
1899	nd->next_seq = read_seqcount_begin(&parent->d_seq);
1900	// makes sure that non-RCU pathwalk could reach this state
1901	if (read_seqcount_retry(&old->d_seq, nd->seq))
1902		return ERR_PTR(-ECHILD);
1903	if (unlikely(!path_connected(nd->path.mnt, parent)))
1904		return ERR_PTR(-ECHILD);
1905	return parent;
1906in_root:
1907	if (read_seqretry(&mount_lock, nd->m_seq))
1908		return ERR_PTR(-ECHILD);
1909	if (unlikely(nd->flags & LOOKUP_BENEATH))
1910		return ERR_PTR(-ECHILD);
1911	nd->next_seq = nd->seq;
1912	return nd->path.dentry;
1913}
1914
1915static struct dentry *follow_dotdot(struct nameidata *nd)
1916{
1917	struct dentry *parent;
1918
1919	if (path_equal(&nd->path, &nd->root))
1920		goto in_root;
1921	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1922		struct path path;
1923
1924		if (!choose_mountpoint(real_mount(nd->path.mnt),
1925				       &nd->root, &path))
1926			goto in_root;
1927		path_put(&nd->path);
1928		nd->path = path;
1929		nd->inode = path.dentry->d_inode;
1930		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1931			return ERR_PTR(-EXDEV);
1932	}
1933	/* rare case of legitimate dget_parent()... */
1934	parent = dget_parent(nd->path.dentry);
1935	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1936		dput(parent);
1937		return ERR_PTR(-ENOENT);
1938	}
1939	return parent;
1940
1941in_root:
1942	if (unlikely(nd->flags & LOOKUP_BENEATH))
1943		return ERR_PTR(-EXDEV);
1944	return dget(nd->path.dentry);
1945}
1946
1947static const char *handle_dots(struct nameidata *nd, int type)
1948{
1949	if (type == LAST_DOTDOT) {
1950		const char *error = NULL;
1951		struct dentry *parent;
1952
1953		if (!nd->root.mnt) {
1954			error = ERR_PTR(set_root(nd));
1955			if (error)
1956				return error;
1957		}
1958		if (nd->flags & LOOKUP_RCU)
1959			parent = follow_dotdot_rcu(nd);
1960		else
1961			parent = follow_dotdot(nd);
1962		if (IS_ERR(parent))
1963			return ERR_CAST(parent);
1964		error = step_into(nd, WALK_NOFOLLOW, parent);
1965		if (unlikely(error))
1966			return error;
1967
1968		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1969			/*
1970			 * If there was a racing rename or mount along our
1971			 * path, then we can't be sure that ".." hasn't jumped
1972			 * above nd->root (and so userspace should retry or use
1973			 * some fallback).
1974			 */
1975			smp_rmb();
1976			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
1977				return ERR_PTR(-EAGAIN);
1978			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
1979				return ERR_PTR(-EAGAIN);
1980		}
1981	}
1982	return NULL;
1983}
1984
1985static const char *walk_component(struct nameidata *nd, int flags)
1986{
1987	struct dentry *dentry;
1988	/*
1989	 * "." and ".." are special - ".." especially so because it has
1990	 * to be able to know about the current root directory and
1991	 * parent relationships.
1992	 */
1993	if (unlikely(nd->last_type != LAST_NORM)) {
1994		if (!(flags & WALK_MORE) && nd->depth)
1995			put_link(nd);
1996		return handle_dots(nd, nd->last_type);
1997	}
1998	dentry = lookup_fast(nd);
1999	if (IS_ERR(dentry))
2000		return ERR_CAST(dentry);
2001	if (unlikely(!dentry)) {
2002		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2003		if (IS_ERR(dentry))
2004			return ERR_CAST(dentry);
2005	}
2006	if (!(flags & WALK_MORE) && nd->depth)
2007		put_link(nd);
2008	return step_into(nd, flags, dentry);
2009}
2010
2011/*
2012 * We can do the critical dentry name comparison and hashing
2013 * operations one word at a time, but we are limited to:
2014 *
2015 * - Architectures with fast unaligned word accesses. We could
2016 *   do a "get_unaligned()" if this helps and is sufficiently
2017 *   fast.
2018 *
2019 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2020 *   do not trap on the (extremely unlikely) case of a page
2021 *   crossing operation.
2022 *
2023 * - Furthermore, we need an efficient 64-bit compile for the
2024 *   64-bit case in order to generate the "number of bytes in
2025 *   the final mask". Again, that could be replaced with a
2026 *   efficient population count instruction or similar.
2027 */
2028#ifdef CONFIG_DCACHE_WORD_ACCESS
2029
2030#include <asm/word-at-a-time.h>
2031
2032#ifdef HASH_MIX
2033
2034/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2035
2036#elif defined(CONFIG_64BIT)
2037/*
2038 * Register pressure in the mixing function is an issue, particularly
2039 * on 32-bit x86, but almost any function requires one state value and
2040 * one temporary.  Instead, use a function designed for two state values
2041 * and no temporaries.
2042 *
2043 * This function cannot create a collision in only two iterations, so
2044 * we have two iterations to achieve avalanche.  In those two iterations,
2045 * we have six layers of mixing, which is enough to spread one bit's
2046 * influence out to 2^6 = 64 state bits.
2047 *
2048 * Rotate constants are scored by considering either 64 one-bit input
2049 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2050 * probability of that delta causing a change to each of the 128 output
2051 * bits, using a sample of random initial states.
2052 *
2053 * The Shannon entropy of the computed probabilities is then summed
2054 * to produce a score.  Ideally, any input change has a 50% chance of
2055 * toggling any given output bit.
2056 *
2057 * Mixing scores (in bits) for (12,45):
2058 * Input delta: 1-bit      2-bit
2059 * 1 round:     713.3    42542.6
2060 * 2 rounds:   2753.7   140389.8
2061 * 3 rounds:   5954.1   233458.2
2062 * 4 rounds:   7862.6   256672.2
2063 * Perfect:    8192     258048
2064 *            (64*128) (64*63/2 * 128)
2065 */
2066#define HASH_MIX(x, y, a)	\
2067	(	x ^= (a),	\
2068	y ^= x,	x = rol64(x,12),\
2069	x += y,	y = rol64(y,45),\
2070	y *= 9			)
2071
2072/*
2073 * Fold two longs into one 32-bit hash value.  This must be fast, but
2074 * latency isn't quite as critical, as there is a fair bit of additional
2075 * work done before the hash value is used.
2076 */
2077static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2078{
2079	y ^= x * GOLDEN_RATIO_64;
2080	y *= GOLDEN_RATIO_64;
2081	return y >> 32;
2082}
2083
2084#else	/* 32-bit case */
2085
2086/*
2087 * Mixing scores (in bits) for (7,20):
2088 * Input delta: 1-bit      2-bit
2089 * 1 round:     330.3     9201.6
2090 * 2 rounds:   1246.4    25475.4
2091 * 3 rounds:   1907.1    31295.1
2092 * 4 rounds:   2042.3    31718.6
2093 * Perfect:    2048      31744
2094 *            (32*64)   (32*31/2 * 64)
2095 */
2096#define HASH_MIX(x, y, a)	\
2097	(	x ^= (a),	\
2098	y ^= x,	x = rol32(x, 7),\
2099	x += y,	y = rol32(y,20),\
2100	y *= 9			)
2101
2102static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2103{
2104	/* Use arch-optimized multiply if one exists */
2105	return __hash_32(y ^ __hash_32(x));
2106}
2107
2108#endif
2109
2110/*
2111 * Return the hash of a string of known length.  This is carfully
2112 * designed to match hash_name(), which is the more critical function.
2113 * In particular, we must end by hashing a final word containing 0..7
2114 * payload bytes, to match the way that hash_name() iterates until it
2115 * finds the delimiter after the name.
2116 */
2117unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2118{
2119	unsigned long a, x = 0, y = (unsigned long)salt;
2120
2121	for (;;) {
2122		if (!len)
2123			goto done;
2124		a = load_unaligned_zeropad(name);
2125		if (len < sizeof(unsigned long))
2126			break;
2127		HASH_MIX(x, y, a);
2128		name += sizeof(unsigned long);
2129		len -= sizeof(unsigned long);
2130	}
2131	x ^= a & bytemask_from_count(len);
2132done:
2133	return fold_hash(x, y);
2134}
2135EXPORT_SYMBOL(full_name_hash);
2136
2137/* Return the "hash_len" (hash and length) of a null-terminated string */
2138u64 hashlen_string(const void *salt, const char *name)
2139{
2140	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2141	unsigned long adata, mask, len;
2142	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2143
2144	len = 0;
2145	goto inside;
2146
2147	do {
2148		HASH_MIX(x, y, a);
2149		len += sizeof(unsigned long);
2150inside:
2151		a = load_unaligned_zeropad(name+len);
2152	} while (!has_zero(a, &adata, &constants));
2153
2154	adata = prep_zero_mask(a, adata, &constants);
2155	mask = create_zero_mask(adata);
2156	x ^= a & zero_bytemask(mask);
2157
2158	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2159}
2160EXPORT_SYMBOL(hashlen_string);
2161
2162/*
2163 * Calculate the length and hash of the path component, and
2164 * return the "hash_len" as the result.
2165 */
2166static inline u64 hash_name(const void *salt, const char *name)
2167{
2168	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2169	unsigned long adata, bdata, mask, len;
2170	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2171
2172	len = 0;
2173	goto inside;
2174
2175	do {
2176		HASH_MIX(x, y, a);
2177		len += sizeof(unsigned long);
2178inside:
2179		a = load_unaligned_zeropad(name+len);
2180		b = a ^ REPEAT_BYTE('/');
2181	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2182
2183	adata = prep_zero_mask(a, adata, &constants);
2184	bdata = prep_zero_mask(b, bdata, &constants);
2185	mask = create_zero_mask(adata | bdata);
2186	x ^= a & zero_bytemask(mask);
2187
2188	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2189}
2190
2191#else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2192
2193/* Return the hash of a string of known length */
2194unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2195{
2196	unsigned long hash = init_name_hash(salt);
2197	while (len--)
2198		hash = partial_name_hash((unsigned char)*name++, hash);
2199	return end_name_hash(hash);
2200}
2201EXPORT_SYMBOL(full_name_hash);
2202
2203/* Return the "hash_len" (hash and length) of a null-terminated string */
2204u64 hashlen_string(const void *salt, const char *name)
2205{
2206	unsigned long hash = init_name_hash(salt);
2207	unsigned long len = 0, c;
2208
2209	c = (unsigned char)*name;
2210	while (c) {
2211		len++;
2212		hash = partial_name_hash(c, hash);
2213		c = (unsigned char)name[len];
2214	}
2215	return hashlen_create(end_name_hash(hash), len);
2216}
2217EXPORT_SYMBOL(hashlen_string);
2218
2219/*
2220 * We know there's a real path component here of at least
2221 * one character.
2222 */
2223static inline u64 hash_name(const void *salt, const char *name)
2224{
2225	unsigned long hash = init_name_hash(salt);
2226	unsigned long len = 0, c;
2227
2228	c = (unsigned char)*name;
2229	do {
2230		len++;
2231		hash = partial_name_hash(c, hash);
2232		c = (unsigned char)name[len];
2233	} while (c && c != '/');
2234	return hashlen_create(end_name_hash(hash), len);
2235}
2236
2237#endif
2238
2239/*
2240 * Name resolution.
2241 * This is the basic name resolution function, turning a pathname into
2242 * the final dentry. We expect 'base' to be positive and a directory.
2243 *
2244 * Returns 0 and nd will have valid dentry and mnt on success.
2245 * Returns error and drops reference to input namei data on failure.
2246 */
2247static int link_path_walk(const char *name, struct nameidata *nd)
2248{
2249	int depth = 0; // depth <= nd->depth
2250	int err;
2251
2252	nd->last_type = LAST_ROOT;
2253	nd->flags |= LOOKUP_PARENT;
2254	if (IS_ERR(name))
2255		return PTR_ERR(name);
2256	while (*name=='/')
2257		name++;
2258	if (!*name) {
2259		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2260		return 0;
2261	}
2262
2263	/* At this point we know we have a real path component. */
2264	for(;;) {
2265		struct mnt_idmap *idmap;
2266		const char *link;
2267		u64 hash_len;
2268		int type;
2269
2270		idmap = mnt_idmap(nd->path.mnt);
2271		err = may_lookup(idmap, nd);
2272		if (err)
2273			return err;
2274
2275		hash_len = hash_name(nd->path.dentry, name);
2276
2277		type = LAST_NORM;
2278		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2279			case 2:
2280				if (name[1] == '.') {
2281					type = LAST_DOTDOT;
2282					nd->state |= ND_JUMPED;
2283				}
2284				break;
2285			case 1:
2286				type = LAST_DOT;
2287		}
2288		if (likely(type == LAST_NORM)) {
2289			struct dentry *parent = nd->path.dentry;
2290			nd->state &= ~ND_JUMPED;
2291			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2292				struct qstr this = { { .hash_len = hash_len }, .name = name };
2293				err = parent->d_op->d_hash(parent, &this);
2294				if (err < 0)
2295					return err;
2296				hash_len = this.hash_len;
2297				name = this.name;
2298			}
2299		}
2300
2301		nd->last.hash_len = hash_len;
2302		nd->last.name = name;
2303		nd->last_type = type;
2304
2305		name += hashlen_len(hash_len);
2306		if (!*name)
2307			goto OK;
2308		/*
2309		 * If it wasn't NUL, we know it was '/'. Skip that
2310		 * slash, and continue until no more slashes.
2311		 */
2312		do {
2313			name++;
2314		} while (unlikely(*name == '/'));
2315		if (unlikely(!*name)) {
2316OK:
2317			/* pathname or trailing symlink, done */
2318			if (!depth) {
2319				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2320				nd->dir_mode = nd->inode->i_mode;
2321				nd->flags &= ~LOOKUP_PARENT;
2322				return 0;
2323			}
2324			/* last component of nested symlink */
2325			name = nd->stack[--depth].name;
2326			link = walk_component(nd, 0);
2327		} else {
2328			/* not the last component */
2329			link = walk_component(nd, WALK_MORE);
2330		}
2331		if (unlikely(link)) {
2332			if (IS_ERR(link))
2333				return PTR_ERR(link);
2334			/* a symlink to follow */
2335			nd->stack[depth++].name = name;
2336			name = link;
2337			continue;
2338		}
2339		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2340			if (nd->flags & LOOKUP_RCU) {
2341				if (!try_to_unlazy(nd))
2342					return -ECHILD;
2343			}
2344			return -ENOTDIR;
2345		}
2346	}
2347}
2348
2349/* must be paired with terminate_walk() */
2350static const char *path_init(struct nameidata *nd, unsigned flags)
2351{
2352	int error;
2353	const char *s = nd->name->name;
2354
2355	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2356	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2357		return ERR_PTR(-EAGAIN);
2358
2359	if (!*s)
2360		flags &= ~LOOKUP_RCU;
2361	if (flags & LOOKUP_RCU)
2362		rcu_read_lock();
2363	else
2364		nd->seq = nd->next_seq = 0;
2365
2366	nd->flags = flags;
2367	nd->state |= ND_JUMPED;
2368
2369	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2370	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2371	smp_rmb();
2372
2373	if (nd->state & ND_ROOT_PRESET) {
2374		struct dentry *root = nd->root.dentry;
2375		struct inode *inode = root->d_inode;
2376		if (*s && unlikely(!d_can_lookup(root)))
2377			return ERR_PTR(-ENOTDIR);
2378		nd->path = nd->root;
2379		nd->inode = inode;
2380		if (flags & LOOKUP_RCU) {
2381			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2382			nd->root_seq = nd->seq;
2383		} else {
2384			path_get(&nd->path);
2385		}
2386		return s;
2387	}
2388
2389	nd->root.mnt = NULL;
2390
2391	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2392	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2393		error = nd_jump_root(nd);
2394		if (unlikely(error))
2395			return ERR_PTR(error);
2396		return s;
2397	}
2398
2399	/* Relative pathname -- get the starting-point it is relative to. */
2400	if (nd->dfd == AT_FDCWD) {
2401		if (flags & LOOKUP_RCU) {
2402			struct fs_struct *fs = current->fs;
2403			unsigned seq;
2404
2405			do {
2406				seq = read_seqcount_begin(&fs->seq);
2407				nd->path = fs->pwd;
2408				nd->inode = nd->path.dentry->d_inode;
2409				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2410			} while (read_seqcount_retry(&fs->seq, seq));
2411		} else {
2412			get_fs_pwd(current->fs, &nd->path);
2413			nd->inode = nd->path.dentry->d_inode;
2414		}
2415	} else {
2416		/* Caller must check execute permissions on the starting path component */
2417		struct fd f = fdget_raw(nd->dfd);
2418		struct dentry *dentry;
2419
2420		if (!f.file)
2421			return ERR_PTR(-EBADF);
2422
2423		dentry = f.file->f_path.dentry;
2424
2425		if (*s && unlikely(!d_can_lookup(dentry))) {
2426			fdput(f);
2427			return ERR_PTR(-ENOTDIR);
2428		}
2429
2430		nd->path = f.file->f_path;
2431		if (flags & LOOKUP_RCU) {
2432			nd->inode = nd->path.dentry->d_inode;
2433			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2434		} else {
2435			path_get(&nd->path);
2436			nd->inode = nd->path.dentry->d_inode;
2437		}
2438		fdput(f);
2439	}
2440
2441	/* For scoped-lookups we need to set the root to the dirfd as well. */
2442	if (flags & LOOKUP_IS_SCOPED) {
2443		nd->root = nd->path;
2444		if (flags & LOOKUP_RCU) {
2445			nd->root_seq = nd->seq;
2446		} else {
2447			path_get(&nd->root);
2448			nd->state |= ND_ROOT_GRABBED;
2449		}
2450	}
2451	return s;
2452}
2453
2454static inline const char *lookup_last(struct nameidata *nd)
2455{
2456	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2457		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2458
2459	return walk_component(nd, WALK_TRAILING);
2460}
2461
2462static int handle_lookup_down(struct nameidata *nd)
2463{
2464	if (!(nd->flags & LOOKUP_RCU))
2465		dget(nd->path.dentry);
2466	nd->next_seq = nd->seq;
2467	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2468}
2469
2470/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2471static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2472{
2473	const char *s = path_init(nd, flags);
2474	int err;
2475
2476	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2477		err = handle_lookup_down(nd);
2478		if (unlikely(err < 0))
2479			s = ERR_PTR(err);
2480	}
2481
2482	while (!(err = link_path_walk(s, nd)) &&
2483	       (s = lookup_last(nd)) != NULL)
2484		;
2485	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2486		err = handle_lookup_down(nd);
2487		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2488	}
2489	if (!err)
2490		err = complete_walk(nd);
2491
2492	if (!err && nd->flags & LOOKUP_DIRECTORY)
2493		if (!d_can_lookup(nd->path.dentry))
2494			err = -ENOTDIR;
2495	if (!err) {
2496		*path = nd->path;
2497		nd->path.mnt = NULL;
2498		nd->path.dentry = NULL;
2499	}
2500	terminate_walk(nd);
2501	return err;
2502}
2503
2504int filename_lookup(int dfd, struct filename *name, unsigned flags,
2505		    struct path *path, struct path *root)
2506{
2507	int retval;
2508	struct nameidata nd;
2509	if (IS_ERR(name))
2510		return PTR_ERR(name);
2511	set_nameidata(&nd, dfd, name, root);
2512	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2513	if (unlikely(retval == -ECHILD))
2514		retval = path_lookupat(&nd, flags, path);
2515	if (unlikely(retval == -ESTALE))
2516		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2517
2518	if (likely(!retval))
2519		audit_inode(name, path->dentry,
2520			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2521	restore_nameidata();
2522	return retval;
2523}
2524
2525/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2526static int path_parentat(struct nameidata *nd, unsigned flags,
2527				struct path *parent)
2528{
2529	const char *s = path_init(nd, flags);
2530	int err = link_path_walk(s, nd);
2531	if (!err)
2532		err = complete_walk(nd);
2533	if (!err) {
2534		*parent = nd->path;
2535		nd->path.mnt = NULL;
2536		nd->path.dentry = NULL;
2537	}
2538	terminate_walk(nd);
2539	return err;
2540}
2541
2542/* Note: this does not consume "name" */
2543static int __filename_parentat(int dfd, struct filename *name,
2544			       unsigned int flags, struct path *parent,
2545			       struct qstr *last, int *type,
2546			       const struct path *root)
2547{
2548	int retval;
2549	struct nameidata nd;
2550
2551	if (IS_ERR(name))
2552		return PTR_ERR(name);
2553	set_nameidata(&nd, dfd, name, root);
2554	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2555	if (unlikely(retval == -ECHILD))
2556		retval = path_parentat(&nd, flags, parent);
2557	if (unlikely(retval == -ESTALE))
2558		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2559	if (likely(!retval)) {
2560		*last = nd.last;
2561		*type = nd.last_type;
2562		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2563	}
2564	restore_nameidata();
2565	return retval;
2566}
2567
2568static int filename_parentat(int dfd, struct filename *name,
2569			     unsigned int flags, struct path *parent,
2570			     struct qstr *last, int *type)
2571{
2572	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2573}
2574
2575/* does lookup, returns the object with parent locked */
2576static struct dentry *__kern_path_locked(struct filename *name, struct path *path)
2577{
2578	struct dentry *d;
2579	struct qstr last;
2580	int type, error;
2581
2582	error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type);
2583	if (error)
2584		return ERR_PTR(error);
2585	if (unlikely(type != LAST_NORM)) {
2586		path_put(path);
2587		return ERR_PTR(-EINVAL);
2588	}
2589	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2590	d = lookup_one_qstr_excl(&last, path->dentry, 0);
2591	if (IS_ERR(d)) {
2592		inode_unlock(path->dentry->d_inode);
2593		path_put(path);
2594	}
2595	return d;
2596}
2597
2598struct dentry *kern_path_locked(const char *name, struct path *path)
2599{
2600	struct filename *filename = getname_kernel(name);
2601	struct dentry *res = __kern_path_locked(filename, path);
2602
2603	putname(filename);
2604	return res;
2605}
2606
2607int kern_path(const char *name, unsigned int flags, struct path *path)
2608{
2609	struct filename *filename = getname_kernel(name);
2610	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2611
2612	putname(filename);
2613	return ret;
2614
2615}
2616EXPORT_SYMBOL(kern_path);
2617
2618/**
2619 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2620 * @filename: filename structure
2621 * @flags: lookup flags
2622 * @parent: pointer to struct path to fill
2623 * @last: last component
2624 * @type: type of the last component
2625 * @root: pointer to struct path of the base directory
2626 */
2627int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2628			   struct path *parent, struct qstr *last, int *type,
2629			   const struct path *root)
2630{
2631	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2632				    type, root);
2633}
2634EXPORT_SYMBOL(vfs_path_parent_lookup);
2635
2636/**
2637 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2638 * @dentry:  pointer to dentry of the base directory
2639 * @mnt: pointer to vfs mount of the base directory
2640 * @name: pointer to file name
2641 * @flags: lookup flags
2642 * @path: pointer to struct path to fill
2643 */
2644int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2645		    const char *name, unsigned int flags,
2646		    struct path *path)
2647{
2648	struct filename *filename;
2649	struct path root = {.mnt = mnt, .dentry = dentry};
2650	int ret;
2651
2652	filename = getname_kernel(name);
2653	/* the first argument of filename_lookup() is ignored with root */
2654	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2655	putname(filename);
2656	return ret;
2657}
2658EXPORT_SYMBOL(vfs_path_lookup);
2659
2660static int lookup_one_common(struct mnt_idmap *idmap,
2661			     const char *name, struct dentry *base, int len,
2662			     struct qstr *this)
2663{
2664	this->name = name;
2665	this->len = len;
2666	this->hash = full_name_hash(base, name, len);
2667	if (!len)
2668		return -EACCES;
2669
2670	if (unlikely(name[0] == '.')) {
2671		if (len < 2 || (len == 2 && name[1] == '.'))
2672			return -EACCES;
2673	}
2674
2675	while (len--) {
2676		unsigned int c = *(const unsigned char *)name++;
2677		if (c == '/' || c == '\0')
2678			return -EACCES;
2679	}
2680	/*
2681	 * See if the low-level filesystem might want
2682	 * to use its own hash..
2683	 */
2684	if (base->d_flags & DCACHE_OP_HASH) {
2685		int err = base->d_op->d_hash(base, this);
2686		if (err < 0)
2687			return err;
2688	}
2689
2690	return inode_permission(idmap, base->d_inode, MAY_EXEC);
2691}
2692
2693/**
2694 * try_lookup_one_len - filesystem helper to lookup single pathname component
2695 * @name:	pathname component to lookup
2696 * @base:	base directory to lookup from
2697 * @len:	maximum length @len should be interpreted to
2698 *
2699 * Look up a dentry by name in the dcache, returning NULL if it does not
2700 * currently exist.  The function does not try to create a dentry.
2701 *
2702 * Note that this routine is purely a helper for filesystem usage and should
2703 * not be called by generic code.
2704 *
2705 * The caller must hold base->i_mutex.
2706 */
2707struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2708{
2709	struct qstr this;
2710	int err;
2711
2712	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2713
2714	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2715	if (err)
2716		return ERR_PTR(err);
2717
2718	return lookup_dcache(&this, base, 0);
2719}
2720EXPORT_SYMBOL(try_lookup_one_len);
2721
2722/**
2723 * lookup_one_len - filesystem helper to lookup single pathname component
2724 * @name:	pathname component to lookup
2725 * @base:	base directory to lookup from
2726 * @len:	maximum length @len should be interpreted to
2727 *
2728 * Note that this routine is purely a helper for filesystem usage and should
2729 * not be called by generic code.
2730 *
2731 * The caller must hold base->i_mutex.
2732 */
2733struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2734{
2735	struct dentry *dentry;
2736	struct qstr this;
2737	int err;
2738
2739	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2740
2741	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2742	if (err)
2743		return ERR_PTR(err);
2744
2745	dentry = lookup_dcache(&this, base, 0);
2746	return dentry ? dentry : __lookup_slow(&this, base, 0);
2747}
2748EXPORT_SYMBOL(lookup_one_len);
2749
2750/**
2751 * lookup_one - filesystem helper to lookup single pathname component
2752 * @idmap:	idmap of the mount the lookup is performed from
2753 * @name:	pathname component to lookup
2754 * @base:	base directory to lookup from
2755 * @len:	maximum length @len should be interpreted to
2756 *
2757 * Note that this routine is purely a helper for filesystem usage and should
2758 * not be called by generic code.
2759 *
2760 * The caller must hold base->i_mutex.
2761 */
2762struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2763			  struct dentry *base, int len)
2764{
2765	struct dentry *dentry;
2766	struct qstr this;
2767	int err;
2768
2769	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2770
2771	err = lookup_one_common(idmap, name, base, len, &this);
2772	if (err)
2773		return ERR_PTR(err);
2774
2775	dentry = lookup_dcache(&this, base, 0);
2776	return dentry ? dentry : __lookup_slow(&this, base, 0);
2777}
2778EXPORT_SYMBOL(lookup_one);
2779
2780/**
2781 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2782 * @idmap:	idmap of the mount the lookup is performed from
2783 * @name:	pathname component to lookup
2784 * @base:	base directory to lookup from
2785 * @len:	maximum length @len should be interpreted to
2786 *
2787 * Note that this routine is purely a helper for filesystem usage and should
2788 * not be called by generic code.
2789 *
2790 * Unlike lookup_one_len, it should be called without the parent
2791 * i_mutex held, and will take the i_mutex itself if necessary.
2792 */
2793struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2794				   const char *name, struct dentry *base,
2795				   int len)
2796{
2797	struct qstr this;
2798	int err;
2799	struct dentry *ret;
2800
2801	err = lookup_one_common(idmap, name, base, len, &this);
2802	if (err)
2803		return ERR_PTR(err);
2804
2805	ret = lookup_dcache(&this, base, 0);
2806	if (!ret)
2807		ret = lookup_slow(&this, base, 0);
2808	return ret;
2809}
2810EXPORT_SYMBOL(lookup_one_unlocked);
2811
2812/**
2813 * lookup_one_positive_unlocked - filesystem helper to lookup single
2814 *				  pathname component
2815 * @idmap:	idmap of the mount the lookup is performed from
2816 * @name:	pathname component to lookup
2817 * @base:	base directory to lookup from
2818 * @len:	maximum length @len should be interpreted to
2819 *
2820 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2821 * known positive or ERR_PTR(). This is what most of the users want.
2822 *
2823 * Note that pinned negative with unlocked parent _can_ become positive at any
2824 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2825 * positives have >d_inode stable, so this one avoids such problems.
2826 *
2827 * Note that this routine is purely a helper for filesystem usage and should
2828 * not be called by generic code.
2829 *
2830 * The helper should be called without i_mutex held.
2831 */
2832struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2833					    const char *name,
2834					    struct dentry *base, int len)
2835{
2836	struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2837
2838	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2839		dput(ret);
2840		ret = ERR_PTR(-ENOENT);
2841	}
2842	return ret;
2843}
2844EXPORT_SYMBOL(lookup_one_positive_unlocked);
2845
2846/**
2847 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2848 * @name:	pathname component to lookup
2849 * @base:	base directory to lookup from
2850 * @len:	maximum length @len should be interpreted to
2851 *
2852 * Note that this routine is purely a helper for filesystem usage and should
2853 * not be called by generic code.
2854 *
2855 * Unlike lookup_one_len, it should be called without the parent
2856 * i_mutex held, and will take the i_mutex itself if necessary.
2857 */
2858struct dentry *lookup_one_len_unlocked(const char *name,
2859				       struct dentry *base, int len)
2860{
2861	return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
2862}
2863EXPORT_SYMBOL(lookup_one_len_unlocked);
2864
2865/*
2866 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2867 * on negatives.  Returns known positive or ERR_PTR(); that's what
2868 * most of the users want.  Note that pinned negative with unlocked parent
2869 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2870 * need to be very careful; pinned positives have ->d_inode stable, so
2871 * this one avoids such problems.
2872 */
2873struct dentry *lookup_positive_unlocked(const char *name,
2874				       struct dentry *base, int len)
2875{
2876	return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
2877}
2878EXPORT_SYMBOL(lookup_positive_unlocked);
2879
2880#ifdef CONFIG_UNIX98_PTYS
2881int path_pts(struct path *path)
2882{
2883	/* Find something mounted on "pts" in the same directory as
2884	 * the input path.
2885	 */
2886	struct dentry *parent = dget_parent(path->dentry);
2887	struct dentry *child;
2888	struct qstr this = QSTR_INIT("pts", 3);
2889
2890	if (unlikely(!path_connected(path->mnt, parent))) {
2891		dput(parent);
2892		return -ENOENT;
2893	}
2894	dput(path->dentry);
2895	path->dentry = parent;
2896	child = d_hash_and_lookup(parent, &this);
2897	if (IS_ERR_OR_NULL(child))
2898		return -ENOENT;
2899
2900	path->dentry = child;
2901	dput(parent);
2902	follow_down(path, 0);
2903	return 0;
2904}
2905#endif
2906
2907int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2908		 struct path *path, int *empty)
2909{
2910	struct filename *filename = getname_flags(name, flags, empty);
2911	int ret = filename_lookup(dfd, filename, flags, path, NULL);
2912
2913	putname(filename);
2914	return ret;
2915}
2916EXPORT_SYMBOL(user_path_at_empty);
2917
2918int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2919		   struct inode *inode)
2920{
2921	kuid_t fsuid = current_fsuid();
2922
2923	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
2924		return 0;
2925	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
2926		return 0;
2927	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
2928}
2929EXPORT_SYMBOL(__check_sticky);
2930
2931/*
2932 *	Check whether we can remove a link victim from directory dir, check
2933 *  whether the type of victim is right.
2934 *  1. We can't do it if dir is read-only (done in permission())
2935 *  2. We should have write and exec permissions on dir
2936 *  3. We can't remove anything from append-only dir
2937 *  4. We can't do anything with immutable dir (done in permission())
2938 *  5. If the sticky bit on dir is set we should either
2939 *	a. be owner of dir, or
2940 *	b. be owner of victim, or
2941 *	c. have CAP_FOWNER capability
2942 *  6. If the victim is append-only or immutable we can't do antyhing with
2943 *     links pointing to it.
2944 *  7. If the victim has an unknown uid or gid we can't change the inode.
2945 *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2946 *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2947 * 10. We can't remove a root or mountpoint.
2948 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2949 *     nfs_async_unlink().
2950 */
2951static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
2952		      struct dentry *victim, bool isdir)
2953{
2954	struct inode *inode = d_backing_inode(victim);
2955	int error;
2956
2957	if (d_is_negative(victim))
2958		return -ENOENT;
2959	BUG_ON(!inode);
2960
2961	BUG_ON(victim->d_parent->d_inode != dir);
2962
2963	/* Inode writeback is not safe when the uid or gid are invalid. */
2964	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2965	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
2966		return -EOVERFLOW;
2967
2968	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2969
2970	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
2971	if (error)
2972		return error;
2973	if (IS_APPEND(dir))
2974		return -EPERM;
2975
2976	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
2977	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2978	    HAS_UNMAPPED_ID(idmap, inode))
2979		return -EPERM;
2980	if (isdir) {
2981		if (!d_is_dir(victim))
2982			return -ENOTDIR;
2983		if (IS_ROOT(victim))
2984			return -EBUSY;
2985	} else if (d_is_dir(victim))
2986		return -EISDIR;
2987	if (IS_DEADDIR(dir))
2988		return -ENOENT;
2989	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2990		return -EBUSY;
2991	return 0;
2992}
2993
2994/*	Check whether we can create an object with dentry child in directory
2995 *  dir.
2996 *  1. We can't do it if child already exists (open has special treatment for
2997 *     this case, but since we are inlined it's OK)
2998 *  2. We can't do it if dir is read-only (done in permission())
2999 *  3. We can't do it if the fs can't represent the fsuid or fsgid.
3000 *  4. We should have write and exec permissions on dir
3001 *  5. We can't do it if dir is immutable (done in permission())
3002 */
3003static inline int may_create(struct mnt_idmap *idmap,
3004			     struct inode *dir, struct dentry *child)
3005{
3006	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3007	if (child->d_inode)
3008		return -EEXIST;
3009	if (IS_DEADDIR(dir))
3010		return -ENOENT;
3011	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3012		return -EOVERFLOW;
3013
3014	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3015}
3016
3017static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3018{
3019	struct dentry *p;
3020
3021	p = d_ancestor(p2, p1);
3022	if (p) {
3023		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3024		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3025		return p;
3026	}
3027
3028	p = d_ancestor(p1, p2);
3029	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3030	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3031	return p;
3032}
3033
3034/*
3035 * p1 and p2 should be directories on the same fs.
3036 */
3037struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3038{
3039	if (p1 == p2) {
3040		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3041		return NULL;
3042	}
3043
3044	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3045	return lock_two_directories(p1, p2);
3046}
3047EXPORT_SYMBOL(lock_rename);
3048
3049/*
3050 * c1 and p2 should be on the same fs.
3051 */
3052struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3053{
3054	if (READ_ONCE(c1->d_parent) == p2) {
3055		/*
3056		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3057		 */
3058		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3059		/*
3060		 * now that p2 is locked, nobody can move in or out of it,
3061		 * so the test below is safe.
3062		 */
3063		if (likely(c1->d_parent == p2))
3064			return NULL;
3065
3066		/*
3067		 * c1 got moved out of p2 while we'd been taking locks;
3068		 * unlock and fall back to slow case.
3069		 */
3070		inode_unlock(p2->d_inode);
3071	}
3072
3073	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3074	/*
3075	 * nobody can move out of any directories on this fs.
3076	 */
3077	if (likely(c1->d_parent != p2))
3078		return lock_two_directories(c1->d_parent, p2);
3079
3080	/*
3081	 * c1 got moved into p2 while we were taking locks;
3082	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3083	 * for consistency with lock_rename().
3084	 */
3085	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3086	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3087	return NULL;
3088}
3089EXPORT_SYMBOL(lock_rename_child);
3090
3091void unlock_rename(struct dentry *p1, struct dentry *p2)
3092{
3093	inode_unlock(p1->d_inode);
3094	if (p1 != p2) {
3095		inode_unlock(p2->d_inode);
3096		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3097	}
3098}
3099EXPORT_SYMBOL(unlock_rename);
3100
3101/**
3102 * mode_strip_umask - handle vfs umask stripping
3103 * @dir:	parent directory of the new inode
3104 * @mode:	mode of the new inode to be created in @dir
3105 *
3106 * Umask stripping depends on whether or not the filesystem supports POSIX
3107 * ACLs. If the filesystem doesn't support it umask stripping is done directly
3108 * in here. If the filesystem does support POSIX ACLs umask stripping is
3109 * deferred until the filesystem calls posix_acl_create().
3110 *
3111 * Returns: mode
3112 */
3113static inline umode_t mode_strip_umask(const struct inode *dir, umode_t mode)
3114{
3115	if (!IS_POSIXACL(dir))
3116		mode &= ~current_umask();
3117	return mode;
3118}
3119
3120/**
3121 * vfs_prepare_mode - prepare the mode to be used for a new inode
3122 * @idmap:	idmap of the mount the inode was found from
3123 * @dir:	parent directory of the new inode
3124 * @mode:	mode of the new inode
3125 * @mask_perms:	allowed permission by the vfs
3126 * @type:	type of file to be created
3127 *
3128 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3129 * object to be created.
3130 *
3131 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3132 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3133 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3134 * POSIX ACL supporting filesystems.
3135 *
3136 * Note that it's currently valid for @type to be 0 if a directory is created.
3137 * Filesystems raise that flag individually and we need to check whether each
3138 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3139 * non-zero type.
3140 *
3141 * Returns: mode to be passed to the filesystem
3142 */
3143static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3144				       const struct inode *dir, umode_t mode,
3145				       umode_t mask_perms, umode_t type)
3146{
3147	mode = mode_strip_sgid(idmap, dir, mode);
3148	mode = mode_strip_umask(dir, mode);
3149
3150	/*
3151	 * Apply the vfs mandated allowed permission mask and set the type of
3152	 * file to be created before we call into the filesystem.
3153	 */
3154	mode &= (mask_perms & ~S_IFMT);
3155	mode |= (type & S_IFMT);
3156
3157	return mode;
3158}
3159
3160/**
3161 * vfs_create - create new file
3162 * @idmap:	idmap of the mount the inode was found from
3163 * @dir:	inode of @dentry
3164 * @dentry:	pointer to dentry of the base directory
3165 * @mode:	mode of the new file
3166 * @want_excl:	whether the file must not yet exist
3167 *
3168 * Create a new file.
3169 *
3170 * If the inode has been found through an idmapped mount the idmap of
3171 * the vfsmount must be passed through @idmap. This function will then take
3172 * care to map the inode according to @idmap before checking permissions.
3173 * On non-idmapped mounts or if permission checking is to be performed on the
3174 * raw inode simply passs @nop_mnt_idmap.
3175 */
3176int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3177	       struct dentry *dentry, umode_t mode, bool want_excl)
3178{
3179	int error;
3180
3181	error = may_create(idmap, dir, dentry);
3182	if (error)
3183		return error;
3184
3185	if (!dir->i_op->create)
3186		return -EACCES;	/* shouldn't it be ENOSYS? */
3187
3188	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3189	error = security_inode_create(dir, dentry, mode);
3190	if (error)
3191		return error;
3192	error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3193	if (!error)
3194		fsnotify_create(dir, dentry);
3195	return error;
3196}
3197EXPORT_SYMBOL(vfs_create);
3198
3199int vfs_mkobj(struct dentry *dentry, umode_t mode,
3200		int (*f)(struct dentry *, umode_t, void *),
3201		void *arg)
3202{
3203	struct inode *dir = dentry->d_parent->d_inode;
3204	int error = may_create(&nop_mnt_idmap, dir, dentry);
3205	if (error)
3206		return error;
3207
3208	mode &= S_IALLUGO;
3209	mode |= S_IFREG;
3210	error = security_inode_create(dir, dentry, mode);
3211	if (error)
3212		return error;
3213	error = f(dentry, mode, arg);
3214	if (!error)
3215		fsnotify_create(dir, dentry);
3216	return error;
3217}
3218EXPORT_SYMBOL(vfs_mkobj);
3219
3220bool may_open_dev(const struct path *path)
3221{
3222	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3223		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3224}
3225
3226static int may_open(struct mnt_idmap *idmap, const struct path *path,
3227		    int acc_mode, int flag)
3228{
3229	struct dentry *dentry = path->dentry;
3230	struct inode *inode = dentry->d_inode;
3231	int error;
3232
3233	if (!inode)
3234		return -ENOENT;
3235
3236	switch (inode->i_mode & S_IFMT) {
3237	case S_IFLNK:
3238		return -ELOOP;
3239	case S_IFDIR:
3240		if (acc_mode & MAY_WRITE)
3241			return -EISDIR;
3242		if (acc_mode & MAY_EXEC)
3243			return -EACCES;
3244		break;
3245	case S_IFBLK:
3246	case S_IFCHR:
3247		if (!may_open_dev(path))
3248			return -EACCES;
3249		fallthrough;
3250	case S_IFIFO:
3251	case S_IFSOCK:
3252		if (acc_mode & MAY_EXEC)
3253			return -EACCES;
3254		flag &= ~O_TRUNC;
3255		break;
3256	case S_IFREG:
3257		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3258			return -EACCES;
3259		break;
3260	}
3261
3262	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3263	if (error)
3264		return error;
3265
3266	/*
3267	 * An append-only file must be opened in append mode for writing.
3268	 */
3269	if (IS_APPEND(inode)) {
3270		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3271			return -EPERM;
3272		if (flag & O_TRUNC)
3273			return -EPERM;
3274	}
3275
3276	/* O_NOATIME can only be set by the owner or superuser */
3277	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3278		return -EPERM;
3279
3280	return 0;
3281}
3282
3283static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3284{
3285	const struct path *path = &filp->f_path;
3286	struct inode *inode = path->dentry->d_inode;
3287	int error = get_write_access(inode);
3288	if (error)
3289		return error;
3290
3291	error = security_file_truncate(filp);
3292	if (!error) {
3293		error = do_truncate(idmap, path->dentry, 0,
3294				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3295				    filp);
3296	}
3297	put_write_access(inode);
3298	return error;
3299}
3300
3301static inline int open_to_namei_flags(int flag)
3302{
3303	if ((flag & O_ACCMODE) == 3)
3304		flag--;
3305	return flag;
3306}
3307
3308static int may_o_create(struct mnt_idmap *idmap,
3309			const struct path *dir, struct dentry *dentry,
3310			umode_t mode)
3311{
3312	int error = security_path_mknod(dir, dentry, mode, 0);
3313	if (error)
3314		return error;
3315
3316	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3317		return -EOVERFLOW;
3318
3319	error = inode_permission(idmap, dir->dentry->d_inode,
3320				 MAY_WRITE | MAY_EXEC);
3321	if (error)
3322		return error;
3323
3324	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3325}
3326
3327/*
3328 * Attempt to atomically look up, create and open a file from a negative
3329 * dentry.
3330 *
3331 * Returns 0 if successful.  The file will have been created and attached to
3332 * @file by the filesystem calling finish_open().
3333 *
3334 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3335 * be set.  The caller will need to perform the open themselves.  @path will
3336 * have been updated to point to the new dentry.  This may be negative.
3337 *
3338 * Returns an error code otherwise.
3339 */
3340static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3341				  struct file *file,
3342				  int open_flag, umode_t mode)
3343{
3344	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3345	struct inode *dir =  nd->path.dentry->d_inode;
3346	int error;
3347
3348	if (nd->flags & LOOKUP_DIRECTORY)
3349		open_flag |= O_DIRECTORY;
3350
3351	file->f_path.dentry = DENTRY_NOT_SET;
3352	file->f_path.mnt = nd->path.mnt;
3353	error = dir->i_op->atomic_open(dir, dentry, file,
3354				       open_to_namei_flags(open_flag), mode);
3355	d_lookup_done(dentry);
3356	if (!error) {
3357		if (file->f_mode & FMODE_OPENED) {
3358			if (unlikely(dentry != file->f_path.dentry)) {
3359				dput(dentry);
3360				dentry = dget(file->f_path.dentry);
3361			}
3362		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3363			error = -EIO;
3364		} else {
3365			if (file->f_path.dentry) {
3366				dput(dentry);
3367				dentry = file->f_path.dentry;
3368			}
3369			if (unlikely(d_is_negative(dentry)))
3370				error = -ENOENT;
3371		}
3372	}
3373	if (error) {
3374		dput(dentry);
3375		dentry = ERR_PTR(error);
3376	}
3377	return dentry;
3378}
3379
3380/*
3381 * Look up and maybe create and open the last component.
3382 *
3383 * Must be called with parent locked (exclusive in O_CREAT case).
3384 *
3385 * Returns 0 on success, that is, if
3386 *  the file was successfully atomically created (if necessary) and opened, or
3387 *  the file was not completely opened at this time, though lookups and
3388 *  creations were performed.
3389 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3390 * In the latter case dentry returned in @path might be negative if O_CREAT
3391 * hadn't been specified.
3392 *
3393 * An error code is returned on failure.
3394 */
3395static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3396				  const struct open_flags *op,
3397				  bool got_write)
3398{
3399	struct mnt_idmap *idmap;
3400	struct dentry *dir = nd->path.dentry;
3401	struct inode *dir_inode = dir->d_inode;
3402	int open_flag = op->open_flag;
3403	struct dentry *dentry;
3404	int error, create_error = 0;
3405	umode_t mode = op->mode;
3406	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3407
3408	if (unlikely(IS_DEADDIR(dir_inode)))
3409		return ERR_PTR(-ENOENT);
3410
3411	file->f_mode &= ~FMODE_CREATED;
3412	dentry = d_lookup(dir, &nd->last);
3413	for (;;) {
3414		if (!dentry) {
3415			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3416			if (IS_ERR(dentry))
3417				return dentry;
3418		}
3419		if (d_in_lookup(dentry))
3420			break;
3421
3422		error = d_revalidate(dentry, nd->flags);
3423		if (likely(error > 0))
3424			break;
3425		if (error)
3426			goto out_dput;
3427		d_invalidate(dentry);
3428		dput(dentry);
3429		dentry = NULL;
3430	}
3431	if (dentry->d_inode) {
3432		/* Cached positive dentry: will open in f_op->open */
3433		return dentry;
3434	}
3435
3436	/*
3437	 * Checking write permission is tricky, bacuse we don't know if we are
3438	 * going to actually need it: O_CREAT opens should work as long as the
3439	 * file exists.  But checking existence breaks atomicity.  The trick is
3440	 * to check access and if not granted clear O_CREAT from the flags.
3441	 *
3442	 * Another problem is returing the "right" error value (e.g. for an
3443	 * O_EXCL open we want to return EEXIST not EROFS).
3444	 */
3445	if (unlikely(!got_write))
3446		open_flag &= ~O_TRUNC;
3447	idmap = mnt_idmap(nd->path.mnt);
3448	if (open_flag & O_CREAT) {
3449		if (open_flag & O_EXCL)
3450			open_flag &= ~O_TRUNC;
3451		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3452		if (likely(got_write))
3453			create_error = may_o_create(idmap, &nd->path,
3454						    dentry, mode);
3455		else
3456			create_error = -EROFS;
3457	}
3458	if (create_error)
3459		open_flag &= ~O_CREAT;
3460	if (dir_inode->i_op->atomic_open) {
3461		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3462		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3463			dentry = ERR_PTR(create_error);
3464		return dentry;
3465	}
3466
3467	if (d_in_lookup(dentry)) {
3468		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3469							     nd->flags);
3470		d_lookup_done(dentry);
3471		if (unlikely(res)) {
3472			if (IS_ERR(res)) {
3473				error = PTR_ERR(res);
3474				goto out_dput;
3475			}
3476			dput(dentry);
3477			dentry = res;
3478		}
3479	}
3480
3481	/* Negative dentry, just create the file */
3482	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3483		file->f_mode |= FMODE_CREATED;
3484		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3485		if (!dir_inode->i_op->create) {
3486			error = -EACCES;
3487			goto out_dput;
3488		}
3489
3490		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3491						mode, open_flag & O_EXCL);
3492		if (error)
3493			goto out_dput;
3494	}
3495	if (unlikely(create_error) && !dentry->d_inode) {
3496		error = create_error;
3497		goto out_dput;
3498	}
3499	return dentry;
3500
3501out_dput:
3502	dput(dentry);
3503	return ERR_PTR(error);
3504}
3505
3506static const char *open_last_lookups(struct nameidata *nd,
3507		   struct file *file, const struct open_flags *op)
3508{
3509	struct dentry *dir = nd->path.dentry;
3510	int open_flag = op->open_flag;
3511	bool got_write = false;
3512	struct dentry *dentry;
3513	const char *res;
3514
3515	nd->flags |= op->intent;
3516
3517	if (nd->last_type != LAST_NORM) {
3518		if (nd->depth)
3519			put_link(nd);
3520		return handle_dots(nd, nd->last_type);
3521	}
3522
3523	if (!(open_flag & O_CREAT)) {
3524		if (nd->last.name[nd->last.len])
3525			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3526		/* we _can_ be in RCU mode here */
3527		dentry = lookup_fast(nd);
3528		if (IS_ERR(dentry))
3529			return ERR_CAST(dentry);
3530		if (likely(dentry))
3531			goto finish_lookup;
3532
3533		BUG_ON(nd->flags & LOOKUP_RCU);
3534	} else {
3535		/* create side of things */
3536		if (nd->flags & LOOKUP_RCU) {
3537			if (!try_to_unlazy(nd))
3538				return ERR_PTR(-ECHILD);
3539		}
3540		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3541		/* trailing slashes? */
3542		if (unlikely(nd->last.name[nd->last.len]))
3543			return ERR_PTR(-EISDIR);
3544	}
3545
3546	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3547		got_write = !mnt_want_write(nd->path.mnt);
3548		/*
3549		 * do _not_ fail yet - we might not need that or fail with
3550		 * a different error; let lookup_open() decide; we'll be
3551		 * dropping this one anyway.
3552		 */
3553	}
3554	if (open_flag & O_CREAT)
3555		inode_lock(dir->d_inode);
3556	else
3557		inode_lock_shared(dir->d_inode);
3558	dentry = lookup_open(nd, file, op, got_write);
3559	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3560		fsnotify_create(dir->d_inode, dentry);
3561	if (open_flag & O_CREAT)
3562		inode_unlock(dir->d_inode);
3563	else
3564		inode_unlock_shared(dir->d_inode);
3565
3566	if (got_write)
3567		mnt_drop_write(nd->path.mnt);
3568
3569	if (IS_ERR(dentry))
3570		return ERR_CAST(dentry);
3571
3572	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3573		dput(nd->path.dentry);
3574		nd->path.dentry = dentry;
3575		return NULL;
3576	}
3577
3578finish_lookup:
3579	if (nd->depth)
3580		put_link(nd);
3581	res = step_into(nd, WALK_TRAILING, dentry);
3582	if (unlikely(res))
3583		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3584	return res;
3585}
3586
3587/*
3588 * Handle the last step of open()
3589 */
3590static int do_open(struct nameidata *nd,
3591		   struct file *file, const struct open_flags *op)
3592{
3593	struct mnt_idmap *idmap;
3594	int open_flag = op->open_flag;
3595	bool do_truncate;
3596	int acc_mode;
3597	int error;
3598
3599	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3600		error = complete_walk(nd);
3601		if (error)
3602			return error;
3603	}
3604	if (!(file->f_mode & FMODE_CREATED))
3605		audit_inode(nd->name, nd->path.dentry, 0);
3606	idmap = mnt_idmap(nd->path.mnt);
3607	if (open_flag & O_CREAT) {
3608		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3609			return -EEXIST;
3610		if (d_is_dir(nd->path.dentry))
3611			return -EISDIR;
3612		error = may_create_in_sticky(idmap, nd,
3613					     d_backing_inode(nd->path.dentry));
3614		if (unlikely(error))
3615			return error;
3616	}
3617	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3618		return -ENOTDIR;
3619
3620	do_truncate = false;
3621	acc_mode = op->acc_mode;
3622	if (file->f_mode & FMODE_CREATED) {
3623		/* Don't check for write permission, don't truncate */
3624		open_flag &= ~O_TRUNC;
3625		acc_mode = 0;
3626	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3627		error = mnt_want_write(nd->path.mnt);
3628		if (error)
3629			return error;
3630		do_truncate = true;
3631	}
3632	error = may_open(idmap, &nd->path, acc_mode, open_flag);
3633	if (!error && !(file->f_mode & FMODE_OPENED))
3634		error = vfs_open(&nd->path, file);
3635	if (!error)
3636		error = ima_file_check(file, op->acc_mode);
3637	if (!error && do_truncate)
3638		error = handle_truncate(idmap, file);
3639	if (unlikely(error > 0)) {
3640		WARN_ON(1);
3641		error = -EINVAL;
3642	}
3643	if (do_truncate)
3644		mnt_drop_write(nd->path.mnt);
3645	return error;
3646}
3647
3648/**
3649 * vfs_tmpfile - create tmpfile
3650 * @idmap:	idmap of the mount the inode was found from
3651 * @parentpath:	pointer to the path of the base directory
3652 * @file:	file descriptor of the new tmpfile
3653 * @mode:	mode of the new tmpfile
3654 *
3655 * Create a temporary file.
3656 *
3657 * If the inode has been found through an idmapped mount the idmap of
3658 * the vfsmount must be passed through @idmap. This function will then take
3659 * care to map the inode according to @idmap before checking permissions.
3660 * On non-idmapped mounts or if permission checking is to be performed on the
3661 * raw inode simply passs @nop_mnt_idmap.
3662 */
3663static int vfs_tmpfile(struct mnt_idmap *idmap,
3664		       const struct path *parentpath,
3665		       struct file *file, umode_t mode)
3666{
3667	struct dentry *child;
3668	struct inode *dir = d_inode(parentpath->dentry);
3669	struct inode *inode;
3670	int error;
3671	int open_flag = file->f_flags;
3672
3673	/* we want directory to be writable */
3674	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3675	if (error)
3676		return error;
3677	if (!dir->i_op->tmpfile)
3678		return -EOPNOTSUPP;
3679	child = d_alloc(parentpath->dentry, &slash_name);
3680	if (unlikely(!child))
3681		return -ENOMEM;
3682	file->f_path.mnt = parentpath->mnt;
3683	file->f_path.dentry = child;
3684	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3685	error = dir->i_op->tmpfile(idmap, dir, file, mode);
3686	dput(child);
3687	if (error)
3688		return error;
3689	/* Don't check for other permissions, the inode was just created */
3690	error = may_open(idmap, &file->f_path, 0, file->f_flags);
3691	if (error)
3692		return error;
3693	inode = file_inode(file);
3694	if (!(open_flag & O_EXCL)) {
3695		spin_lock(&inode->i_lock);
3696		inode->i_state |= I_LINKABLE;
3697		spin_unlock(&inode->i_lock);
3698	}
3699	ima_post_create_tmpfile(idmap, inode);
3700	return 0;
3701}
3702
3703/**
3704 * kernel_tmpfile_open - open a tmpfile for kernel internal use
3705 * @idmap:	idmap of the mount the inode was found from
3706 * @parentpath:	path of the base directory
3707 * @mode:	mode of the new tmpfile
3708 * @open_flag:	flags
3709 * @cred:	credentials for open
3710 *
3711 * Create and open a temporary file.  The file is not accounted in nr_files,
3712 * hence this is only for kernel internal use, and must not be installed into
3713 * file tables or such.
3714 */
3715struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3716				 const struct path *parentpath,
3717				 umode_t mode, int open_flag,
3718				 const struct cred *cred)
3719{
3720	struct file *file;
3721	int error;
3722
3723	file = alloc_empty_file_noaccount(open_flag, cred);
3724	if (IS_ERR(file))
3725		return file;
3726
3727	error = vfs_tmpfile(idmap, parentpath, file, mode);
3728	if (error) {
3729		fput(file);
3730		file = ERR_PTR(error);
3731	}
3732	return file;
3733}
3734EXPORT_SYMBOL(kernel_tmpfile_open);
3735
3736static int do_tmpfile(struct nameidata *nd, unsigned flags,
3737		const struct open_flags *op,
3738		struct file *file)
3739{
3740	struct path path;
3741	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3742
3743	if (unlikely(error))
3744		return error;
3745	error = mnt_want_write(path.mnt);
3746	if (unlikely(error))
3747		goto out;
3748	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3749	if (error)
3750		goto out2;
3751	audit_inode(nd->name, file->f_path.dentry, 0);
3752out2:
3753	mnt_drop_write(path.mnt);
3754out:
3755	path_put(&path);
3756	return error;
3757}
3758
3759static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3760{
3761	struct path path;
3762	int error = path_lookupat(nd, flags, &path);
3763	if (!error) {
3764		audit_inode(nd->name, path.dentry, 0);
3765		error = vfs_open(&path, file);
3766		path_put(&path);
3767	}
3768	return error;
3769}
3770
3771static struct file *path_openat(struct nameidata *nd,
3772			const struct open_flags *op, unsigned flags)
3773{
3774	struct file *file;
3775	int error;
3776
3777	file = alloc_empty_file(op->open_flag, current_cred());
3778	if (IS_ERR(file))
3779		return file;
3780
3781	if (unlikely(file->f_flags & __O_TMPFILE)) {
3782		error = do_tmpfile(nd, flags, op, file);
3783	} else if (unlikely(file->f_flags & O_PATH)) {
3784		error = do_o_path(nd, flags, file);
3785	} else {
3786		const char *s = path_init(nd, flags);
3787		while (!(error = link_path_walk(s, nd)) &&
3788		       (s = open_last_lookups(nd, file, op)) != NULL)
3789			;
3790		if (!error)
3791			error = do_open(nd, file, op);
3792		terminate_walk(nd);
3793	}
3794	if (likely(!error)) {
3795		if (likely(file->f_mode & FMODE_OPENED))
3796			return file;
3797		WARN_ON(1);
3798		error = -EINVAL;
3799	}
3800	fput(file);
3801	if (error == -EOPENSTALE) {
3802		if (flags & LOOKUP_RCU)
3803			error = -ECHILD;
3804		else
3805			error = -ESTALE;
3806	}
3807	return ERR_PTR(error);
3808}
3809
3810struct file *do_filp_open(int dfd, struct filename *pathname,
3811		const struct open_flags *op)
3812{
3813	struct nameidata nd;
3814	int flags = op->lookup_flags;
3815	struct file *filp;
3816
3817	set_nameidata(&nd, dfd, pathname, NULL);
3818	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3819	if (unlikely(filp == ERR_PTR(-ECHILD)))
3820		filp = path_openat(&nd, op, flags);
3821	if (unlikely(filp == ERR_PTR(-ESTALE)))
3822		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3823	restore_nameidata();
3824	return filp;
3825}
3826
3827struct file *do_file_open_root(const struct path *root,
3828		const char *name, const struct open_flags *op)
3829{
3830	struct nameidata nd;
3831	struct file *file;
3832	struct filename *filename;
3833	int flags = op->lookup_flags;
3834
3835	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3836		return ERR_PTR(-ELOOP);
3837
3838	filename = getname_kernel(name);
3839	if (IS_ERR(filename))
3840		return ERR_CAST(filename);
3841
3842	set_nameidata(&nd, -1, filename, root);
3843	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3844	if (unlikely(file == ERR_PTR(-ECHILD)))
3845		file = path_openat(&nd, op, flags);
3846	if (unlikely(file == ERR_PTR(-ESTALE)))
3847		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3848	restore_nameidata();
3849	putname(filename);
3850	return file;
3851}
3852
3853static struct dentry *filename_create(int dfd, struct filename *name,
3854				      struct path *path, unsigned int lookup_flags)
3855{
3856	struct dentry *dentry = ERR_PTR(-EEXIST);
3857	struct qstr last;
3858	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3859	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3860	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3861	int type;
3862	int err2;
3863	int error;
3864
3865	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3866	if (error)
3867		return ERR_PTR(error);
3868
3869	/*
3870	 * Yucky last component or no last component at all?
3871	 * (foo/., foo/.., /////)
3872	 */
3873	if (unlikely(type != LAST_NORM))
3874		goto out;
3875
3876	/* don't fail immediately if it's r/o, at least try to report other errors */
3877	err2 = mnt_want_write(path->mnt);
3878	/*
3879	 * Do the final lookup.  Suppress 'create' if there is a trailing
3880	 * '/', and a directory wasn't requested.
3881	 */
3882	if (last.name[last.len] && !want_dir)
3883		create_flags = 0;
3884	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3885	dentry = lookup_one_qstr_excl(&last, path->dentry,
3886				      reval_flag | create_flags);
3887	if (IS_ERR(dentry))
3888		goto unlock;
3889
3890	error = -EEXIST;
3891	if (d_is_positive(dentry))
3892		goto fail;
3893
3894	/*
3895	 * Special case - lookup gave negative, but... we had foo/bar/
3896	 * From the vfs_mknod() POV we just have a negative dentry -
3897	 * all is fine. Let's be bastards - you had / on the end, you've
3898	 * been asking for (non-existent) directory. -ENOENT for you.
3899	 */
3900	if (unlikely(!create_flags)) {
3901		error = -ENOENT;
3902		goto fail;
3903	}
3904	if (unlikely(err2)) {
3905		error = err2;
3906		goto fail;
3907	}
3908	return dentry;
3909fail:
3910	dput(dentry);
3911	dentry = ERR_PTR(error);
3912unlock:
3913	inode_unlock(path->dentry->d_inode);
3914	if (!err2)
3915		mnt_drop_write(path->mnt);
3916out:
3917	path_put(path);
3918	return dentry;
3919}
3920
3921struct dentry *kern_path_create(int dfd, const char *pathname,
3922				struct path *path, unsigned int lookup_flags)
3923{
3924	struct filename *filename = getname_kernel(pathname);
3925	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3926
3927	putname(filename);
3928	return res;
3929}
3930EXPORT_SYMBOL(kern_path_create);
3931
3932void done_path_create(struct path *path, struct dentry *dentry)
3933{
3934	dput(dentry);
3935	inode_unlock(path->dentry->d_inode);
3936	mnt_drop_write(path->mnt);
3937	path_put(path);
3938}
3939EXPORT_SYMBOL(done_path_create);
3940
3941inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3942				struct path *path, unsigned int lookup_flags)
3943{
3944	struct filename *filename = getname(pathname);
3945	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3946
3947	putname(filename);
3948	return res;
3949}
3950EXPORT_SYMBOL(user_path_create);
3951
3952/**
3953 * vfs_mknod - create device node or file
3954 * @idmap:	idmap of the mount the inode was found from
3955 * @dir:	inode of @dentry
3956 * @dentry:	pointer to dentry of the base directory
3957 * @mode:	mode of the new device node or file
3958 * @dev:	device number of device to create
3959 *
3960 * Create a device node or file.
3961 *
3962 * If the inode has been found through an idmapped mount the idmap of
3963 * the vfsmount must be passed through @idmap. This function will then take
3964 * care to map the inode according to @idmap before checking permissions.
3965 * On non-idmapped mounts or if permission checking is to be performed on the
3966 * raw inode simply passs @nop_mnt_idmap.
3967 */
3968int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
3969	      struct dentry *dentry, umode_t mode, dev_t dev)
3970{
3971	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3972	int error = may_create(idmap, dir, dentry);
3973
3974	if (error)
3975		return error;
3976
3977	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3978	    !capable(CAP_MKNOD))
3979		return -EPERM;
3980
3981	if (!dir->i_op->mknod)
3982		return -EPERM;
3983
3984	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3985	error = devcgroup_inode_mknod(mode, dev);
3986	if (error)
3987		return error;
3988
3989	error = security_inode_mknod(dir, dentry, mode, dev);
3990	if (error)
3991		return error;
3992
3993	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
3994	if (!error)
3995		fsnotify_create(dir, dentry);
3996	return error;
3997}
3998EXPORT_SYMBOL(vfs_mknod);
3999
4000static int may_mknod(umode_t mode)
4001{
4002	switch (mode & S_IFMT) {
4003	case S_IFREG:
4004	case S_IFCHR:
4005	case S_IFBLK:
4006	case S_IFIFO:
4007	case S_IFSOCK:
4008	case 0: /* zero mode translates to S_IFREG */
4009		return 0;
4010	case S_IFDIR:
4011		return -EPERM;
4012	default:
4013		return -EINVAL;
4014	}
4015}
4016
4017static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4018		unsigned int dev)
4019{
4020	struct mnt_idmap *idmap;
4021	struct dentry *dentry;
4022	struct path path;
4023	int error;
4024	unsigned int lookup_flags = 0;
4025
4026	error = may_mknod(mode);
4027	if (error)
4028		goto out1;
4029retry:
4030	dentry = filename_create(dfd, name, &path, lookup_flags);
4031	error = PTR_ERR(dentry);
4032	if (IS_ERR(dentry))
4033		goto out1;
4034
4035	error = security_path_mknod(&path, dentry,
4036			mode_strip_umask(path.dentry->d_inode, mode), dev);
4037	if (error)
4038		goto out2;
4039
4040	idmap = mnt_idmap(path.mnt);
4041	switch (mode & S_IFMT) {
4042		case 0: case S_IFREG:
4043			error = vfs_create(idmap, path.dentry->d_inode,
4044					   dentry, mode, true);
4045			if (!error)
4046				ima_post_path_mknod(idmap, dentry);
4047			break;
4048		case S_IFCHR: case S_IFBLK:
4049			error = vfs_mknod(idmap, path.dentry->d_inode,
4050					  dentry, mode, new_decode_dev(dev));
4051			break;
4052		case S_IFIFO: case S_IFSOCK:
4053			error = vfs_mknod(idmap, path.dentry->d_inode,
4054					  dentry, mode, 0);
4055			break;
4056	}
4057out2:
4058	done_path_create(&path, dentry);
4059	if (retry_estale(error, lookup_flags)) {
4060		lookup_flags |= LOOKUP_REVAL;
4061		goto retry;
4062	}
4063out1:
4064	putname(name);
4065	return error;
4066}
4067
4068SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4069		unsigned int, dev)
4070{
4071	return do_mknodat(dfd, getname(filename), mode, dev);
4072}
4073
4074SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4075{
4076	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4077}
4078
4079/**
4080 * vfs_mkdir - create directory
4081 * @idmap:	idmap of the mount the inode was found from
4082 * @dir:	inode of @dentry
4083 * @dentry:	pointer to dentry of the base directory
4084 * @mode:	mode of the new directory
4085 *
4086 * Create a directory.
4087 *
4088 * If the inode has been found through an idmapped mount the idmap of
4089 * the vfsmount must be passed through @idmap. This function will then take
4090 * care to map the inode according to @idmap before checking permissions.
4091 * On non-idmapped mounts or if permission checking is to be performed on the
4092 * raw inode simply passs @nop_mnt_idmap.
4093 */
4094int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4095	      struct dentry *dentry, umode_t mode)
4096{
4097	int error;
4098	unsigned max_links = dir->i_sb->s_max_links;
4099
4100	error = may_create(idmap, dir, dentry);
4101	if (error)
4102		return error;
4103
4104	if (!dir->i_op->mkdir)
4105		return -EPERM;
4106
4107	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4108	error = security_inode_mkdir(dir, dentry, mode);
4109	if (error)
4110		return error;
4111
4112	if (max_links && dir->i_nlink >= max_links)
4113		return -EMLINK;
4114
4115	error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4116	if (!error)
4117		fsnotify_mkdir(dir, dentry);
4118	return error;
4119}
4120EXPORT_SYMBOL(vfs_mkdir);
4121
4122int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4123{
4124	struct dentry *dentry;
4125	struct path path;
4126	int error;
4127	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4128
4129retry:
4130	dentry = filename_create(dfd, name, &path, lookup_flags);
4131	error = PTR_ERR(dentry);
4132	if (IS_ERR(dentry))
4133		goto out_putname;
4134
4135	error = security_path_mkdir(&path, dentry,
4136			mode_strip_umask(path.dentry->d_inode, mode));
4137	if (!error) {
4138		error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4139				  dentry, mode);
4140	}
4141	done_path_create(&path, dentry);
4142	if (retry_estale(error, lookup_flags)) {
4143		lookup_flags |= LOOKUP_REVAL;
4144		goto retry;
4145	}
4146out_putname:
4147	putname(name);
4148	return error;
4149}
4150
4151SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4152{
4153	return do_mkdirat(dfd, getname(pathname), mode);
4154}
4155
4156SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4157{
4158	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4159}
4160
4161/**
4162 * vfs_rmdir - remove directory
4163 * @idmap:	idmap of the mount the inode was found from
4164 * @dir:	inode of @dentry
4165 * @dentry:	pointer to dentry of the base directory
4166 *
4167 * Remove a directory.
4168 *
4169 * If the inode has been found through an idmapped mount the idmap of
4170 * the vfsmount must be passed through @idmap. This function will then take
4171 * care to map the inode according to @idmap before checking permissions.
4172 * On non-idmapped mounts or if permission checking is to be performed on the
4173 * raw inode simply passs @nop_mnt_idmap.
4174 */
4175int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4176		     struct dentry *dentry)
4177{
4178	int error = may_delete(idmap, dir, dentry, 1);
4179
4180	if (error)
4181		return error;
4182
4183	if (!dir->i_op->rmdir)
4184		return -EPERM;
4185
4186	dget(dentry);
4187	inode_lock(dentry->d_inode);
4188
4189	error = -EBUSY;
4190	if (is_local_mountpoint(dentry) ||
4191	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4192		goto out;
4193
4194	error = security_inode_rmdir(dir, dentry);
4195	if (error)
4196		goto out;
4197
4198	error = dir->i_op->rmdir(dir, dentry);
4199	if (error)
4200		goto out;
4201
4202	shrink_dcache_parent(dentry);
4203	dentry->d_inode->i_flags |= S_DEAD;
4204	dont_mount(dentry);
4205	detach_mounts(dentry);
4206
4207out:
4208	inode_unlock(dentry->d_inode);
4209	dput(dentry);
4210	if (!error)
4211		d_delete_notify(dir, dentry);
4212	return error;
4213}
4214EXPORT_SYMBOL(vfs_rmdir);
4215
4216int do_rmdir(int dfd, struct filename *name)
4217{
4218	int error;
4219	struct dentry *dentry;
4220	struct path path;
4221	struct qstr last;
4222	int type;
4223	unsigned int lookup_flags = 0;
4224retry:
4225	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4226	if (error)
4227		goto exit1;
4228
4229	switch (type) {
4230	case LAST_DOTDOT:
4231		error = -ENOTEMPTY;
4232		goto exit2;
4233	case LAST_DOT:
4234		error = -EINVAL;
4235		goto exit2;
4236	case LAST_ROOT:
4237		error = -EBUSY;
4238		goto exit2;
4239	}
4240
4241	error = mnt_want_write(path.mnt);
4242	if (error)
4243		goto exit2;
4244
4245	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4246	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4247	error = PTR_ERR(dentry);
4248	if (IS_ERR(dentry))
4249		goto exit3;
4250	if (!dentry->d_inode) {
4251		error = -ENOENT;
4252		goto exit4;
4253	}
4254	error = security_path_rmdir(&path, dentry);
4255	if (error)
4256		goto exit4;
4257	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4258exit4:
4259	dput(dentry);
4260exit3:
4261	inode_unlock(path.dentry->d_inode);
4262	mnt_drop_write(path.mnt);
4263exit2:
4264	path_put(&path);
4265	if (retry_estale(error, lookup_flags)) {
4266		lookup_flags |= LOOKUP_REVAL;
4267		goto retry;
4268	}
4269exit1:
4270	putname(name);
4271	return error;
4272}
4273
4274SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4275{
4276	return do_rmdir(AT_FDCWD, getname(pathname));
4277}
4278
4279/**
4280 * vfs_unlink - unlink a filesystem object
4281 * @idmap:	idmap of the mount the inode was found from
4282 * @dir:	parent directory
4283 * @dentry:	victim
4284 * @delegated_inode: returns victim inode, if the inode is delegated.
4285 *
4286 * The caller must hold dir->i_mutex.
4287 *
4288 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4289 * return a reference to the inode in delegated_inode.  The caller
4290 * should then break the delegation on that inode and retry.  Because
4291 * breaking a delegation may take a long time, the caller should drop
4292 * dir->i_mutex before doing so.
4293 *
4294 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4295 * be appropriate for callers that expect the underlying filesystem not
4296 * to be NFS exported.
4297 *
4298 * If the inode has been found through an idmapped mount the idmap of
4299 * the vfsmount must be passed through @idmap. This function will then take
4300 * care to map the inode according to @idmap before checking permissions.
4301 * On non-idmapped mounts or if permission checking is to be performed on the
4302 * raw inode simply passs @nop_mnt_idmap.
4303 */
4304int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4305	       struct dentry *dentry, struct inode **delegated_inode)
4306{
4307	struct inode *target = dentry->d_inode;
4308	int error = may_delete(idmap, dir, dentry, 0);
4309
4310	if (error)
4311		return error;
4312
4313	if (!dir->i_op->unlink)
4314		return -EPERM;
4315
4316	inode_lock(target);
4317	if (IS_SWAPFILE(target))
4318		error = -EPERM;
4319	else if (is_local_mountpoint(dentry))
4320		error = -EBUSY;
4321	else {
4322		error = security_inode_unlink(dir, dentry);
4323		if (!error) {
4324			error = try_break_deleg(target, delegated_inode);
4325			if (error)
4326				goto out;
4327			error = dir->i_op->unlink(dir, dentry);
4328			if (!error) {
4329				dont_mount(dentry);
4330				detach_mounts(dentry);
4331			}
4332		}
4333	}
4334out:
4335	inode_unlock(target);
4336
4337	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4338	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4339		fsnotify_unlink(dir, dentry);
4340	} else if (!error) {
4341		fsnotify_link_count(target);
4342		d_delete_notify(dir, dentry);
4343	}
4344
4345	return error;
4346}
4347EXPORT_SYMBOL(vfs_unlink);
4348
4349/*
4350 * Make sure that the actual truncation of the file will occur outside its
4351 * directory's i_mutex.  Truncate can take a long time if there is a lot of
4352 * writeout happening, and we don't want to prevent access to the directory
4353 * while waiting on the I/O.
4354 */
4355int do_unlinkat(int dfd, struct filename *name)
4356{
4357	int error;
4358	struct dentry *dentry;
4359	struct path path;
4360	struct qstr last;
4361	int type;
4362	struct inode *inode = NULL;
4363	struct inode *delegated_inode = NULL;
4364	unsigned int lookup_flags = 0;
4365retry:
4366	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4367	if (error)
4368		goto exit1;
4369
4370	error = -EISDIR;
4371	if (type != LAST_NORM)
4372		goto exit2;
4373
4374	error = mnt_want_write(path.mnt);
4375	if (error)
4376		goto exit2;
4377retry_deleg:
4378	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4379	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4380	error = PTR_ERR(dentry);
4381	if (!IS_ERR(dentry)) {
4382
4383		/* Why not before? Because we want correct error value */
4384		if (last.name[last.len])
4385			goto slashes;
4386		inode = dentry->d_inode;
4387		if (d_is_negative(dentry))
4388			goto slashes;
4389		ihold(inode);
4390		error = security_path_unlink(&path, dentry);
4391		if (error)
4392			goto exit3;
4393		error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4394				   dentry, &delegated_inode);
4395exit3:
4396		dput(dentry);
4397	}
4398	inode_unlock(path.dentry->d_inode);
4399	if (inode)
4400		iput(inode);	/* truncate the inode here */
4401	inode = NULL;
4402	if (delegated_inode) {
4403		error = break_deleg_wait(&delegated_inode);
4404		if (!error)
4405			goto retry_deleg;
4406	}
4407	mnt_drop_write(path.mnt);
4408exit2:
4409	path_put(&path);
4410	if (retry_estale(error, lookup_flags)) {
4411		lookup_flags |= LOOKUP_REVAL;
4412		inode = NULL;
4413		goto retry;
4414	}
4415exit1:
4416	putname(name);
4417	return error;
4418
4419slashes:
4420	if (d_is_negative(dentry))
4421		error = -ENOENT;
4422	else if (d_is_dir(dentry))
4423		error = -EISDIR;
4424	else
4425		error = -ENOTDIR;
4426	goto exit3;
4427}
4428
4429SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4430{
4431	if ((flag & ~AT_REMOVEDIR) != 0)
4432		return -EINVAL;
4433
4434	if (flag & AT_REMOVEDIR)
4435		return do_rmdir(dfd, getname(pathname));
4436	return do_unlinkat(dfd, getname(pathname));
4437}
4438
4439SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4440{
4441	return do_unlinkat(AT_FDCWD, getname(pathname));
4442}
4443
4444/**
4445 * vfs_symlink - create symlink
4446 * @idmap:	idmap of the mount the inode was found from
4447 * @dir:	inode of @dentry
4448 * @dentry:	pointer to dentry of the base directory
4449 * @oldname:	name of the file to link to
4450 *
4451 * Create a symlink.
4452 *
4453 * If the inode has been found through an idmapped mount the idmap of
4454 * the vfsmount must be passed through @idmap. This function will then take
4455 * care to map the inode according to @idmap before checking permissions.
4456 * On non-idmapped mounts or if permission checking is to be performed on the
4457 * raw inode simply passs @nop_mnt_idmap.
4458 */
4459int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4460		struct dentry *dentry, const char *oldname)
4461{
4462	int error;
4463
4464	error = may_create(idmap, dir, dentry);
4465	if (error)
4466		return error;
4467
4468	if (!dir->i_op->symlink)
4469		return -EPERM;
4470
4471	error = security_inode_symlink(dir, dentry, oldname);
4472	if (error)
4473		return error;
4474
4475	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4476	if (!error)
4477		fsnotify_create(dir, dentry);
4478	return error;
4479}
4480EXPORT_SYMBOL(vfs_symlink);
4481
4482int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4483{
4484	int error;
4485	struct dentry *dentry;
4486	struct path path;
4487	unsigned int lookup_flags = 0;
4488
4489	if (IS_ERR(from)) {
4490		error = PTR_ERR(from);
4491		goto out_putnames;
4492	}
4493retry:
4494	dentry = filename_create(newdfd, to, &path, lookup_flags);
4495	error = PTR_ERR(dentry);
4496	if (IS_ERR(dentry))
4497		goto out_putnames;
4498
4499	error = security_path_symlink(&path, dentry, from->name);
4500	if (!error)
4501		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4502				    dentry, from->name);
4503	done_path_create(&path, dentry);
4504	if (retry_estale(error, lookup_flags)) {
4505		lookup_flags |= LOOKUP_REVAL;
4506		goto retry;
4507	}
4508out_putnames:
4509	putname(to);
4510	putname(from);
4511	return error;
4512}
4513
4514SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4515		int, newdfd, const char __user *, newname)
4516{
4517	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4518}
4519
4520SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4521{
4522	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4523}
4524
4525/**
4526 * vfs_link - create a new link
4527 * @old_dentry:	object to be linked
4528 * @idmap:	idmap of the mount
4529 * @dir:	new parent
4530 * @new_dentry:	where to create the new link
4531 * @delegated_inode: returns inode needing a delegation break
4532 *
4533 * The caller must hold dir->i_mutex
4534 *
4535 * If vfs_link discovers a delegation on the to-be-linked file in need
4536 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4537 * inode in delegated_inode.  The caller should then break the delegation
4538 * and retry.  Because breaking a delegation may take a long time, the
4539 * caller should drop the i_mutex before doing so.
4540 *
4541 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4542 * be appropriate for callers that expect the underlying filesystem not
4543 * to be NFS exported.
4544 *
4545 * If the inode has been found through an idmapped mount the idmap of
4546 * the vfsmount must be passed through @idmap. This function will then take
4547 * care to map the inode according to @idmap before checking permissions.
4548 * On non-idmapped mounts or if permission checking is to be performed on the
4549 * raw inode simply passs @nop_mnt_idmap.
4550 */
4551int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4552	     struct inode *dir, struct dentry *new_dentry,
4553	     struct inode **delegated_inode)
4554{
4555	struct inode *inode = old_dentry->d_inode;
4556	unsigned max_links = dir->i_sb->s_max_links;
4557	int error;
4558
4559	if (!inode)
4560		return -ENOENT;
4561
4562	error = may_create(idmap, dir, new_dentry);
4563	if (error)
4564		return error;
4565
4566	if (dir->i_sb != inode->i_sb)
4567		return -EXDEV;
4568
4569	/*
4570	 * A link to an append-only or immutable file cannot be created.
4571	 */
4572	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4573		return -EPERM;
4574	/*
4575	 * Updating the link count will likely cause i_uid and i_gid to
4576	 * be writen back improperly if their true value is unknown to
4577	 * the vfs.
4578	 */
4579	if (HAS_UNMAPPED_ID(idmap, inode))
4580		return -EPERM;
4581	if (!dir->i_op->link)
4582		return -EPERM;
4583	if (S_ISDIR(inode->i_mode))
4584		return -EPERM;
4585
4586	error = security_inode_link(old_dentry, dir, new_dentry);
4587	if (error)
4588		return error;
4589
4590	inode_lock(inode);
4591	/* Make sure we don't allow creating hardlink to an unlinked file */
4592	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4593		error =  -ENOENT;
4594	else if (max_links && inode->i_nlink >= max_links)
4595		error = -EMLINK;
4596	else {
4597		error = try_break_deleg(inode, delegated_inode);
4598		if (!error)
4599			error = dir->i_op->link(old_dentry, dir, new_dentry);
4600	}
4601
4602	if (!error && (inode->i_state & I_LINKABLE)) {
4603		spin_lock(&inode->i_lock);
4604		inode->i_state &= ~I_LINKABLE;
4605		spin_unlock(&inode->i_lock);
4606	}
4607	inode_unlock(inode);
4608	if (!error)
4609		fsnotify_link(dir, inode, new_dentry);
4610	return error;
4611}
4612EXPORT_SYMBOL(vfs_link);
4613
4614/*
4615 * Hardlinks are often used in delicate situations.  We avoid
4616 * security-related surprises by not following symlinks on the
4617 * newname.  --KAB
4618 *
4619 * We don't follow them on the oldname either to be compatible
4620 * with linux 2.0, and to avoid hard-linking to directories
4621 * and other special files.  --ADM
4622 */
4623int do_linkat(int olddfd, struct filename *old, int newdfd,
4624	      struct filename *new, int flags)
4625{
4626	struct mnt_idmap *idmap;
4627	struct dentry *new_dentry;
4628	struct path old_path, new_path;
4629	struct inode *delegated_inode = NULL;
4630	int how = 0;
4631	int error;
4632
4633	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4634		error = -EINVAL;
4635		goto out_putnames;
4636	}
4637	/*
4638	 * To use null names we require CAP_DAC_READ_SEARCH
4639	 * This ensures that not everyone will be able to create
4640	 * handlink using the passed filedescriptor.
4641	 */
4642	if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4643		error = -ENOENT;
4644		goto out_putnames;
4645	}
4646
4647	if (flags & AT_SYMLINK_FOLLOW)
4648		how |= LOOKUP_FOLLOW;
4649retry:
4650	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4651	if (error)
4652		goto out_putnames;
4653
4654	new_dentry = filename_create(newdfd, new, &new_path,
4655					(how & LOOKUP_REVAL));
4656	error = PTR_ERR(new_dentry);
4657	if (IS_ERR(new_dentry))
4658		goto out_putpath;
4659
4660	error = -EXDEV;
4661	if (old_path.mnt != new_path.mnt)
4662		goto out_dput;
4663	idmap = mnt_idmap(new_path.mnt);
4664	error = may_linkat(idmap, &old_path);
4665	if (unlikely(error))
4666		goto out_dput;
4667	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4668	if (error)
4669		goto out_dput;
4670	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4671			 new_dentry, &delegated_inode);
4672out_dput:
4673	done_path_create(&new_path, new_dentry);
4674	if (delegated_inode) {
4675		error = break_deleg_wait(&delegated_inode);
4676		if (!error) {
4677			path_put(&old_path);
4678			goto retry;
4679		}
4680	}
4681	if (retry_estale(error, how)) {
4682		path_put(&old_path);
4683		how |= LOOKUP_REVAL;
4684		goto retry;
4685	}
4686out_putpath:
4687	path_put(&old_path);
4688out_putnames:
4689	putname(old);
4690	putname(new);
4691
4692	return error;
4693}
4694
4695SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4696		int, newdfd, const char __user *, newname, int, flags)
4697{
4698	return do_linkat(olddfd, getname_uflags(oldname, flags),
4699		newdfd, getname(newname), flags);
4700}
4701
4702SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4703{
4704	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4705}
4706
4707/**
4708 * vfs_rename - rename a filesystem object
4709 * @rd:		pointer to &struct renamedata info
4710 *
4711 * The caller must hold multiple mutexes--see lock_rename()).
4712 *
4713 * If vfs_rename discovers a delegation in need of breaking at either
4714 * the source or destination, it will return -EWOULDBLOCK and return a
4715 * reference to the inode in delegated_inode.  The caller should then
4716 * break the delegation and retry.  Because breaking a delegation may
4717 * take a long time, the caller should drop all locks before doing
4718 * so.
4719 *
4720 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4721 * be appropriate for callers that expect the underlying filesystem not
4722 * to be NFS exported.
4723 *
4724 * The worst of all namespace operations - renaming directory. "Perverted"
4725 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4726 * Problems:
4727 *
4728 *	a) we can get into loop creation.
4729 *	b) race potential - two innocent renames can create a loop together.
4730 *	   That's where 4.4BSD screws up. Current fix: serialization on
4731 *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4732 *	   story.
4733 *	c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4734 *	   and source (if it's a non-directory or a subdirectory that moves to
4735 *	   different parent).
4736 *	   And that - after we got ->i_mutex on parents (until then we don't know
4737 *	   whether the target exists).  Solution: try to be smart with locking
4738 *	   order for inodes.  We rely on the fact that tree topology may change
4739 *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4740 *	   move will be locked.  Thus we can rank directories by the tree
4741 *	   (ancestors first) and rank all non-directories after them.
4742 *	   That works since everybody except rename does "lock parent, lookup,
4743 *	   lock child" and rename is under ->s_vfs_rename_mutex.
4744 *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4745 *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4746 *	   we'd better make sure that there's no link(2) for them.
4747 *	d) conversion from fhandle to dentry may come in the wrong moment - when
4748 *	   we are removing the target. Solution: we will have to grab ->i_mutex
4749 *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4750 *	   ->i_mutex on parents, which works but leads to some truly excessive
4751 *	   locking].
4752 */
4753int vfs_rename(struct renamedata *rd)
4754{
4755	int error;
4756	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4757	struct dentry *old_dentry = rd->old_dentry;
4758	struct dentry *new_dentry = rd->new_dentry;
4759	struct inode **delegated_inode = rd->delegated_inode;
4760	unsigned int flags = rd->flags;
4761	bool is_dir = d_is_dir(old_dentry);
4762	struct inode *source = old_dentry->d_inode;
4763	struct inode *target = new_dentry->d_inode;
4764	bool new_is_dir = false;
4765	unsigned max_links = new_dir->i_sb->s_max_links;
4766	struct name_snapshot old_name;
4767	bool lock_old_subdir, lock_new_subdir;
4768
4769	if (source == target)
4770		return 0;
4771
4772	error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4773	if (error)
4774		return error;
4775
4776	if (!target) {
4777		error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4778	} else {
4779		new_is_dir = d_is_dir(new_dentry);
4780
4781		if (!(flags & RENAME_EXCHANGE))
4782			error = may_delete(rd->new_mnt_idmap, new_dir,
4783					   new_dentry, is_dir);
4784		else
4785			error = may_delete(rd->new_mnt_idmap, new_dir,
4786					   new_dentry, new_is_dir);
4787	}
4788	if (error)
4789		return error;
4790
4791	if (!old_dir->i_op->rename)
4792		return -EPERM;
4793
4794	/*
4795	 * If we are going to change the parent - check write permissions,
4796	 * we'll need to flip '..'.
4797	 */
4798	if (new_dir != old_dir) {
4799		if (is_dir) {
4800			error = inode_permission(rd->old_mnt_idmap, source,
4801						 MAY_WRITE);
4802			if (error)
4803				return error;
4804		}
4805		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4806			error = inode_permission(rd->new_mnt_idmap, target,
4807						 MAY_WRITE);
4808			if (error)
4809				return error;
4810		}
4811	}
4812
4813	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4814				      flags);
4815	if (error)
4816		return error;
4817
4818	take_dentry_name_snapshot(&old_name, old_dentry);
4819	dget(new_dentry);
4820	/*
4821	 * Lock children.
4822	 * The source subdirectory needs to be locked on cross-directory
4823	 * rename or cross-directory exchange since its parent changes.
4824	 * The target subdirectory needs to be locked on cross-directory
4825	 * exchange due to parent change and on any rename due to becoming
4826	 * a victim.
4827	 * Non-directories need locking in all cases (for NFS reasons);
4828	 * they get locked after any subdirectories (in inode address order).
4829	 *
4830	 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
4831	 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
4832	 */
4833	lock_old_subdir = new_dir != old_dir;
4834	lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
4835	if (is_dir) {
4836		if (lock_old_subdir)
4837			inode_lock_nested(source, I_MUTEX_CHILD);
4838		if (target && (!new_is_dir || lock_new_subdir))
4839			inode_lock(target);
4840	} else if (new_is_dir) {
4841		if (lock_new_subdir)
4842			inode_lock_nested(target, I_MUTEX_CHILD);
4843		inode_lock(source);
4844	} else {
4845		lock_two_nondirectories(source, target);
4846	}
4847
4848	error = -EPERM;
4849	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4850		goto out;
4851
4852	error = -EBUSY;
4853	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4854		goto out;
4855
4856	if (max_links && new_dir != old_dir) {
4857		error = -EMLINK;
4858		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4859			goto out;
4860		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4861		    old_dir->i_nlink >= max_links)
4862			goto out;
4863	}
4864	if (!is_dir) {
4865		error = try_break_deleg(source, delegated_inode);
4866		if (error)
4867			goto out;
4868	}
4869	if (target && !new_is_dir) {
4870		error = try_break_deleg(target, delegated_inode);
4871		if (error)
4872			goto out;
4873	}
4874	error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
4875				      new_dir, new_dentry, flags);
4876	if (error)
4877		goto out;
4878
4879	if (!(flags & RENAME_EXCHANGE) && target) {
4880		if (is_dir) {
4881			shrink_dcache_parent(new_dentry);
4882			target->i_flags |= S_DEAD;
4883		}
4884		dont_mount(new_dentry);
4885		detach_mounts(new_dentry);
4886	}
4887	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4888		if (!(flags & RENAME_EXCHANGE))
4889			d_move(old_dentry, new_dentry);
4890		else
4891			d_exchange(old_dentry, new_dentry);
4892	}
4893out:
4894	if (!is_dir || lock_old_subdir)
4895		inode_unlock(source);
4896	if (target && (!new_is_dir || lock_new_subdir))
4897		inode_unlock(target);
4898	dput(new_dentry);
4899	if (!error) {
4900		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4901			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4902		if (flags & RENAME_EXCHANGE) {
4903			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4904				      new_is_dir, NULL, new_dentry);
4905		}
4906	}
4907	release_dentry_name_snapshot(&old_name);
4908
4909	return error;
4910}
4911EXPORT_SYMBOL(vfs_rename);
4912
4913int do_renameat2(int olddfd, struct filename *from, int newdfd,
4914		 struct filename *to, unsigned int flags)
4915{
4916	struct renamedata rd;
4917	struct dentry *old_dentry, *new_dentry;
4918	struct dentry *trap;
4919	struct path old_path, new_path;
4920	struct qstr old_last, new_last;
4921	int old_type, new_type;
4922	struct inode *delegated_inode = NULL;
4923	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4924	bool should_retry = false;
4925	int error = -EINVAL;
4926
4927	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4928		goto put_names;
4929
4930	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4931	    (flags & RENAME_EXCHANGE))
4932		goto put_names;
4933
4934	if (flags & RENAME_EXCHANGE)
4935		target_flags = 0;
4936
4937retry:
4938	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4939				  &old_last, &old_type);
4940	if (error)
4941		goto put_names;
4942
4943	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4944				  &new_type);
4945	if (error)
4946		goto exit1;
4947
4948	error = -EXDEV;
4949	if (old_path.mnt != new_path.mnt)
4950		goto exit2;
4951
4952	error = -EBUSY;
4953	if (old_type != LAST_NORM)
4954		goto exit2;
4955
4956	if (flags & RENAME_NOREPLACE)
4957		error = -EEXIST;
4958	if (new_type != LAST_NORM)
4959		goto exit2;
4960
4961	error = mnt_want_write(old_path.mnt);
4962	if (error)
4963		goto exit2;
4964
4965retry_deleg:
4966	trap = lock_rename(new_path.dentry, old_path.dentry);
4967
4968	old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
4969					  lookup_flags);
4970	error = PTR_ERR(old_dentry);
4971	if (IS_ERR(old_dentry))
4972		goto exit3;
4973	/* source must exist */
4974	error = -ENOENT;
4975	if (d_is_negative(old_dentry))
4976		goto exit4;
4977	new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
4978					  lookup_flags | target_flags);
4979	error = PTR_ERR(new_dentry);
4980	if (IS_ERR(new_dentry))
4981		goto exit4;
4982	error = -EEXIST;
4983	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4984		goto exit5;
4985	if (flags & RENAME_EXCHANGE) {
4986		error = -ENOENT;
4987		if (d_is_negative(new_dentry))
4988			goto exit5;
4989
4990		if (!d_is_dir(new_dentry)) {
4991			error = -ENOTDIR;
4992			if (new_last.name[new_last.len])
4993				goto exit5;
4994		}
4995	}
4996	/* unless the source is a directory trailing slashes give -ENOTDIR */
4997	if (!d_is_dir(old_dentry)) {
4998		error = -ENOTDIR;
4999		if (old_last.name[old_last.len])
5000			goto exit5;
5001		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5002			goto exit5;
5003	}
5004	/* source should not be ancestor of target */
5005	error = -EINVAL;
5006	if (old_dentry == trap)
5007		goto exit5;
5008	/* target should not be an ancestor of source */
5009	if (!(flags & RENAME_EXCHANGE))
5010		error = -ENOTEMPTY;
5011	if (new_dentry == trap)
5012		goto exit5;
5013
5014	error = security_path_rename(&old_path, old_dentry,
5015				     &new_path, new_dentry, flags);
5016	if (error)
5017		goto exit5;
5018
5019	rd.old_dir	   = old_path.dentry->d_inode;
5020	rd.old_dentry	   = old_dentry;
5021	rd.old_mnt_idmap   = mnt_idmap(old_path.mnt);
5022	rd.new_dir	   = new_path.dentry->d_inode;
5023	rd.new_dentry	   = new_dentry;
5024	rd.new_mnt_idmap   = mnt_idmap(new_path.mnt);
5025	rd.delegated_inode = &delegated_inode;
5026	rd.flags	   = flags;
5027	error = vfs_rename(&rd);
5028exit5:
5029	dput(new_dentry);
5030exit4:
5031	dput(old_dentry);
5032exit3:
5033	unlock_rename(new_path.dentry, old_path.dentry);
5034	if (delegated_inode) {
5035		error = break_deleg_wait(&delegated_inode);
5036		if (!error)
5037			goto retry_deleg;
5038	}
5039	mnt_drop_write(old_path.mnt);
5040exit2:
5041	if (retry_estale(error, lookup_flags))
5042		should_retry = true;
5043	path_put(&new_path);
5044exit1:
5045	path_put(&old_path);
5046	if (should_retry) {
5047		should_retry = false;
5048		lookup_flags |= LOOKUP_REVAL;
5049		goto retry;
5050	}
5051put_names:
5052	putname(from);
5053	putname(to);
5054	return error;
5055}
5056
5057SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5058		int, newdfd, const char __user *, newname, unsigned int, flags)
5059{
5060	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5061				flags);
5062}
5063
5064SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5065		int, newdfd, const char __user *, newname)
5066{
5067	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5068				0);
5069}
5070
5071SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5072{
5073	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5074				getname(newname), 0);
5075}
5076
5077int readlink_copy(char __user *buffer, int buflen, const char *link)
5078{
5079	int len = PTR_ERR(link);
5080	if (IS_ERR(link))
5081		goto out;
5082
5083	len = strlen(link);
5084	if (len > (unsigned) buflen)
5085		len = buflen;
5086	if (copy_to_user(buffer, link, len))
5087		len = -EFAULT;
5088out:
5089	return len;
5090}
5091
5092/**
5093 * vfs_readlink - copy symlink body into userspace buffer
5094 * @dentry: dentry on which to get symbolic link
5095 * @buffer: user memory pointer
5096 * @buflen: size of buffer
5097 *
5098 * Does not touch atime.  That's up to the caller if necessary
5099 *
5100 * Does not call security hook.
5101 */
5102int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5103{
5104	struct inode *inode = d_inode(dentry);
5105	DEFINE_DELAYED_CALL(done);
5106	const char *link;
5107	int res;
5108
5109	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5110		if (unlikely(inode->i_op->readlink))
5111			return inode->i_op->readlink(dentry, buffer, buflen);
5112
5113		if (!d_is_symlink(dentry))
5114			return -EINVAL;
5115
5116		spin_lock(&inode->i_lock);
5117		inode->i_opflags |= IOP_DEFAULT_READLINK;
5118		spin_unlock(&inode->i_lock);
5119	}
5120
5121	link = READ_ONCE(inode->i_link);
5122	if (!link) {
5123		link = inode->i_op->get_link(dentry, inode, &done);
5124		if (IS_ERR(link))
5125			return PTR_ERR(link);
5126	}
5127	res = readlink_copy(buffer, buflen, link);
5128	do_delayed_call(&done);
5129	return res;
5130}
5131EXPORT_SYMBOL(vfs_readlink);
5132
5133/**
5134 * vfs_get_link - get symlink body
5135 * @dentry: dentry on which to get symbolic link
5136 * @done: caller needs to free returned data with this
5137 *
5138 * Calls security hook and i_op->get_link() on the supplied inode.
5139 *
5140 * It does not touch atime.  That's up to the caller if necessary.
5141 *
5142 * Does not work on "special" symlinks like /proc/$$/fd/N
5143 */
5144const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5145{
5146	const char *res = ERR_PTR(-EINVAL);
5147	struct inode *inode = d_inode(dentry);
5148
5149	if (d_is_symlink(dentry)) {
5150		res = ERR_PTR(security_inode_readlink(dentry));
5151		if (!res)
5152			res = inode->i_op->get_link(dentry, inode, done);
5153	}
5154	return res;
5155}
5156EXPORT_SYMBOL(vfs_get_link);
5157
5158/* get the link contents into pagecache */
5159const char *page_get_link(struct dentry *dentry, struct inode *inode,
5160			  struct delayed_call *callback)
5161{
5162	char *kaddr;
5163	struct page *page;
5164	struct address_space *mapping = inode->i_mapping;
5165
5166	if (!dentry) {
5167		page = find_get_page(mapping, 0);
5168		if (!page)
5169			return ERR_PTR(-ECHILD);
5170		if (!PageUptodate(page)) {
5171			put_page(page);
5172			return ERR_PTR(-ECHILD);
5173		}
5174	} else {
5175		page = read_mapping_page(mapping, 0, NULL);
5176		if (IS_ERR(page))
5177			return (char*)page;
5178	}
5179	set_delayed_call(callback, page_put_link, page);
5180	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5181	kaddr = page_address(page);
5182	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5183	return kaddr;
5184}
5185
5186EXPORT_SYMBOL(page_get_link);
5187
5188void page_put_link(void *arg)
5189{
5190	put_page(arg);
5191}
5192EXPORT_SYMBOL(page_put_link);
5193
5194int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5195{
5196	DEFINE_DELAYED_CALL(done);
5197	int res = readlink_copy(buffer, buflen,
5198				page_get_link(dentry, d_inode(dentry),
5199					      &done));
5200	do_delayed_call(&done);
5201	return res;
5202}
5203EXPORT_SYMBOL(page_readlink);
5204
5205int page_symlink(struct inode *inode, const char *symname, int len)
5206{
5207	struct address_space *mapping = inode->i_mapping;
5208	const struct address_space_operations *aops = mapping->a_ops;
5209	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5210	struct page *page;
5211	void *fsdata = NULL;
5212	int err;
5213	unsigned int flags;
5214
5215retry:
5216	if (nofs)
5217		flags = memalloc_nofs_save();
5218	err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5219	if (nofs)
5220		memalloc_nofs_restore(flags);
5221	if (err)
5222		goto fail;
5223
5224	memcpy(page_address(page), symname, len-1);
5225
5226	err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5227							page, fsdata);
5228	if (err < 0)
5229		goto fail;
5230	if (err < len-1)
5231		goto retry;
5232
5233	mark_inode_dirty(inode);
5234	return 0;
5235fail:
5236	return err;
5237}
5238EXPORT_SYMBOL(page_symlink);
5239
5240const struct inode_operations page_symlink_inode_operations = {
5241	.get_link	= page_get_link,
5242};
5243EXPORT_SYMBOL(page_symlink_inode_operations);
5244