xref: /kernel/linux/linux-6.6/fs/kernfs/file.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/kernfs/file.c - kernfs file implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10#include <linux/fs.h>
11#include <linux/seq_file.h>
12#include <linux/slab.h>
13#include <linux/poll.h>
14#include <linux/pagemap.h>
15#include <linux/sched/mm.h>
16#include <linux/fsnotify.h>
17#include <linux/uio.h>
18
19#include "kernfs-internal.h"
20
21struct kernfs_open_node {
22	struct rcu_head		rcu_head;
23	atomic_t		event;
24	wait_queue_head_t	poll;
25	struct list_head	files; /* goes through kernfs_open_file.list */
26	unsigned int		nr_mmapped;
27	unsigned int		nr_to_release;
28};
29
30/*
31 * kernfs_notify() may be called from any context and bounces notifications
32 * through a work item.  To minimize space overhead in kernfs_node, the
33 * pending queue is implemented as a singly linked list of kernfs_nodes.
34 * The list is terminated with the self pointer so that whether a
35 * kernfs_node is on the list or not can be determined by testing the next
36 * pointer for %NULL.
37 */
38#define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
39
40static DEFINE_SPINLOCK(kernfs_notify_lock);
41static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
42
43static inline struct mutex *kernfs_open_file_mutex_ptr(struct kernfs_node *kn)
44{
45	int idx = hash_ptr(kn, NR_KERNFS_LOCK_BITS);
46
47	return &kernfs_locks->open_file_mutex[idx];
48}
49
50static inline struct mutex *kernfs_open_file_mutex_lock(struct kernfs_node *kn)
51{
52	struct mutex *lock;
53
54	lock = kernfs_open_file_mutex_ptr(kn);
55
56	mutex_lock(lock);
57
58	return lock;
59}
60
61/**
62 * of_on - Get the kernfs_open_node of the specified kernfs_open_file
63 * @of: target kernfs_open_file
64 *
65 * Return: the kernfs_open_node of the kernfs_open_file
66 */
67static struct kernfs_open_node *of_on(struct kernfs_open_file *of)
68{
69	return rcu_dereference_protected(of->kn->attr.open,
70					 !list_empty(&of->list));
71}
72
73/**
74 * kernfs_deref_open_node_locked - Get kernfs_open_node corresponding to @kn
75 *
76 * @kn: target kernfs_node.
77 *
78 * Fetch and return ->attr.open of @kn when caller holds the
79 * kernfs_open_file_mutex_ptr(kn).
80 *
81 * Update of ->attr.open happens under kernfs_open_file_mutex_ptr(kn). So when
82 * the caller guarantees that this mutex is being held, other updaters can't
83 * change ->attr.open and this means that we can safely deref ->attr.open
84 * outside RCU read-side critical section.
85 *
86 * The caller needs to make sure that kernfs_open_file_mutex is held.
87 *
88 * Return: @kn->attr.open when kernfs_open_file_mutex is held.
89 */
90static struct kernfs_open_node *
91kernfs_deref_open_node_locked(struct kernfs_node *kn)
92{
93	return rcu_dereference_protected(kn->attr.open,
94				lockdep_is_held(kernfs_open_file_mutex_ptr(kn)));
95}
96
97static struct kernfs_open_file *kernfs_of(struct file *file)
98{
99	return ((struct seq_file *)file->private_data)->private;
100}
101
102/*
103 * Determine the kernfs_ops for the given kernfs_node.  This function must
104 * be called while holding an active reference.
105 */
106static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
107{
108	if (kn->flags & KERNFS_LOCKDEP)
109		lockdep_assert_held(kn);
110	return kn->attr.ops;
111}
112
113/*
114 * As kernfs_seq_stop() is also called after kernfs_seq_start() or
115 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
116 * a seq_file iteration which is fully initialized with an active reference
117 * or an aborted kernfs_seq_start() due to get_active failure.  The
118 * position pointer is the only context for each seq_file iteration and
119 * thus the stop condition should be encoded in it.  As the return value is
120 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
121 * choice to indicate get_active failure.
122 *
123 * Unfortunately, this is complicated due to the optional custom seq_file
124 * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
125 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
126 * custom seq_file operations and thus can't decide whether put_active
127 * should be performed or not only on ERR_PTR(-ENODEV).
128 *
129 * This is worked around by factoring out the custom seq_stop() and
130 * put_active part into kernfs_seq_stop_active(), skipping it from
131 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
132 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
133 * that kernfs_seq_stop_active() is skipped only after get_active failure.
134 */
135static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
136{
137	struct kernfs_open_file *of = sf->private;
138	const struct kernfs_ops *ops = kernfs_ops(of->kn);
139
140	if (ops->seq_stop)
141		ops->seq_stop(sf, v);
142	kernfs_put_active(of->kn);
143}
144
145static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
146{
147	struct kernfs_open_file *of = sf->private;
148	const struct kernfs_ops *ops;
149
150	/*
151	 * @of->mutex nests outside active ref and is primarily to ensure that
152	 * the ops aren't called concurrently for the same open file.
153	 */
154	mutex_lock(&of->mutex);
155	if (!kernfs_get_active(of->kn))
156		return ERR_PTR(-ENODEV);
157
158	ops = kernfs_ops(of->kn);
159	if (ops->seq_start) {
160		void *next = ops->seq_start(sf, ppos);
161		/* see the comment above kernfs_seq_stop_active() */
162		if (next == ERR_PTR(-ENODEV))
163			kernfs_seq_stop_active(sf, next);
164		return next;
165	}
166	return single_start(sf, ppos);
167}
168
169static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
170{
171	struct kernfs_open_file *of = sf->private;
172	const struct kernfs_ops *ops = kernfs_ops(of->kn);
173
174	if (ops->seq_next) {
175		void *next = ops->seq_next(sf, v, ppos);
176		/* see the comment above kernfs_seq_stop_active() */
177		if (next == ERR_PTR(-ENODEV))
178			kernfs_seq_stop_active(sf, next);
179		return next;
180	} else {
181		/*
182		 * The same behavior and code as single_open(), always
183		 * terminate after the initial read.
184		 */
185		++*ppos;
186		return NULL;
187	}
188}
189
190static void kernfs_seq_stop(struct seq_file *sf, void *v)
191{
192	struct kernfs_open_file *of = sf->private;
193
194	if (v != ERR_PTR(-ENODEV))
195		kernfs_seq_stop_active(sf, v);
196	mutex_unlock(&of->mutex);
197}
198
199static int kernfs_seq_show(struct seq_file *sf, void *v)
200{
201	struct kernfs_open_file *of = sf->private;
202
203	of->event = atomic_read(&of_on(of)->event);
204
205	return of->kn->attr.ops->seq_show(sf, v);
206}
207
208static const struct seq_operations kernfs_seq_ops = {
209	.start = kernfs_seq_start,
210	.next = kernfs_seq_next,
211	.stop = kernfs_seq_stop,
212	.show = kernfs_seq_show,
213};
214
215/*
216 * As reading a bin file can have side-effects, the exact offset and bytes
217 * specified in read(2) call should be passed to the read callback making
218 * it difficult to use seq_file.  Implement simplistic custom buffering for
219 * bin files.
220 */
221static ssize_t kernfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
222{
223	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
224	ssize_t len = min_t(size_t, iov_iter_count(iter), PAGE_SIZE);
225	const struct kernfs_ops *ops;
226	char *buf;
227
228	buf = of->prealloc_buf;
229	if (buf)
230		mutex_lock(&of->prealloc_mutex);
231	else
232		buf = kmalloc(len, GFP_KERNEL);
233	if (!buf)
234		return -ENOMEM;
235
236	/*
237	 * @of->mutex nests outside active ref and is used both to ensure that
238	 * the ops aren't called concurrently for the same open file.
239	 */
240	mutex_lock(&of->mutex);
241	if (!kernfs_get_active(of->kn)) {
242		len = -ENODEV;
243		mutex_unlock(&of->mutex);
244		goto out_free;
245	}
246
247	of->event = atomic_read(&of_on(of)->event);
248
249	ops = kernfs_ops(of->kn);
250	if (ops->read)
251		len = ops->read(of, buf, len, iocb->ki_pos);
252	else
253		len = -EINVAL;
254
255	kernfs_put_active(of->kn);
256	mutex_unlock(&of->mutex);
257
258	if (len < 0)
259		goto out_free;
260
261	if (copy_to_iter(buf, len, iter) != len) {
262		len = -EFAULT;
263		goto out_free;
264	}
265
266	iocb->ki_pos += len;
267
268 out_free:
269	if (buf == of->prealloc_buf)
270		mutex_unlock(&of->prealloc_mutex);
271	else
272		kfree(buf);
273	return len;
274}
275
276static ssize_t kernfs_fop_read_iter(struct kiocb *iocb, struct iov_iter *iter)
277{
278	if (kernfs_of(iocb->ki_filp)->kn->flags & KERNFS_HAS_SEQ_SHOW)
279		return seq_read_iter(iocb, iter);
280	return kernfs_file_read_iter(iocb, iter);
281}
282
283/*
284 * Copy data in from userland and pass it to the matching kernfs write
285 * operation.
286 *
287 * There is no easy way for us to know if userspace is only doing a partial
288 * write, so we don't support them. We expect the entire buffer to come on
289 * the first write.  Hint: if you're writing a value, first read the file,
290 * modify only the value you're changing, then write entire buffer
291 * back.
292 */
293static ssize_t kernfs_fop_write_iter(struct kiocb *iocb, struct iov_iter *iter)
294{
295	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
296	ssize_t len = iov_iter_count(iter);
297	const struct kernfs_ops *ops;
298	char *buf;
299
300	if (of->atomic_write_len) {
301		if (len > of->atomic_write_len)
302			return -E2BIG;
303	} else {
304		len = min_t(size_t, len, PAGE_SIZE);
305	}
306
307	buf = of->prealloc_buf;
308	if (buf)
309		mutex_lock(&of->prealloc_mutex);
310	else
311		buf = kmalloc(len + 1, GFP_KERNEL);
312	if (!buf)
313		return -ENOMEM;
314
315	if (copy_from_iter(buf, len, iter) != len) {
316		len = -EFAULT;
317		goto out_free;
318	}
319	buf[len] = '\0';	/* guarantee string termination */
320
321	/*
322	 * @of->mutex nests outside active ref and is used both to ensure that
323	 * the ops aren't called concurrently for the same open file.
324	 */
325	mutex_lock(&of->mutex);
326	if (!kernfs_get_active(of->kn)) {
327		mutex_unlock(&of->mutex);
328		len = -ENODEV;
329		goto out_free;
330	}
331
332	ops = kernfs_ops(of->kn);
333	if (ops->write)
334		len = ops->write(of, buf, len, iocb->ki_pos);
335	else
336		len = -EINVAL;
337
338	kernfs_put_active(of->kn);
339	mutex_unlock(&of->mutex);
340
341	if (len > 0)
342		iocb->ki_pos += len;
343
344out_free:
345	if (buf == of->prealloc_buf)
346		mutex_unlock(&of->prealloc_mutex);
347	else
348		kfree(buf);
349	return len;
350}
351
352static void kernfs_vma_open(struct vm_area_struct *vma)
353{
354	struct file *file = vma->vm_file;
355	struct kernfs_open_file *of = kernfs_of(file);
356
357	if (!of->vm_ops)
358		return;
359
360	if (!kernfs_get_active(of->kn))
361		return;
362
363	if (of->vm_ops->open)
364		of->vm_ops->open(vma);
365
366	kernfs_put_active(of->kn);
367}
368
369static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
370{
371	struct file *file = vmf->vma->vm_file;
372	struct kernfs_open_file *of = kernfs_of(file);
373	vm_fault_t ret;
374
375	if (!of->vm_ops)
376		return VM_FAULT_SIGBUS;
377
378	if (!kernfs_get_active(of->kn))
379		return VM_FAULT_SIGBUS;
380
381	ret = VM_FAULT_SIGBUS;
382	if (of->vm_ops->fault)
383		ret = of->vm_ops->fault(vmf);
384
385	kernfs_put_active(of->kn);
386	return ret;
387}
388
389static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
390{
391	struct file *file = vmf->vma->vm_file;
392	struct kernfs_open_file *of = kernfs_of(file);
393	vm_fault_t ret;
394
395	if (!of->vm_ops)
396		return VM_FAULT_SIGBUS;
397
398	if (!kernfs_get_active(of->kn))
399		return VM_FAULT_SIGBUS;
400
401	ret = 0;
402	if (of->vm_ops->page_mkwrite)
403		ret = of->vm_ops->page_mkwrite(vmf);
404	else
405		file_update_time(file);
406
407	kernfs_put_active(of->kn);
408	return ret;
409}
410
411static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
412			     void *buf, int len, int write)
413{
414	struct file *file = vma->vm_file;
415	struct kernfs_open_file *of = kernfs_of(file);
416	int ret;
417
418	if (!of->vm_ops)
419		return -EINVAL;
420
421	if (!kernfs_get_active(of->kn))
422		return -EINVAL;
423
424	ret = -EINVAL;
425	if (of->vm_ops->access)
426		ret = of->vm_ops->access(vma, addr, buf, len, write);
427
428	kernfs_put_active(of->kn);
429	return ret;
430}
431
432#ifdef CONFIG_NUMA
433static int kernfs_vma_set_policy(struct vm_area_struct *vma,
434				 struct mempolicy *new)
435{
436	struct file *file = vma->vm_file;
437	struct kernfs_open_file *of = kernfs_of(file);
438	int ret;
439
440	if (!of->vm_ops)
441		return 0;
442
443	if (!kernfs_get_active(of->kn))
444		return -EINVAL;
445
446	ret = 0;
447	if (of->vm_ops->set_policy)
448		ret = of->vm_ops->set_policy(vma, new);
449
450	kernfs_put_active(of->kn);
451	return ret;
452}
453
454static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
455					       unsigned long addr)
456{
457	struct file *file = vma->vm_file;
458	struct kernfs_open_file *of = kernfs_of(file);
459	struct mempolicy *pol;
460
461	if (!of->vm_ops)
462		return vma->vm_policy;
463
464	if (!kernfs_get_active(of->kn))
465		return vma->vm_policy;
466
467	pol = vma->vm_policy;
468	if (of->vm_ops->get_policy)
469		pol = of->vm_ops->get_policy(vma, addr);
470
471	kernfs_put_active(of->kn);
472	return pol;
473}
474
475#endif
476
477static const struct vm_operations_struct kernfs_vm_ops = {
478	.open		= kernfs_vma_open,
479	.fault		= kernfs_vma_fault,
480	.page_mkwrite	= kernfs_vma_page_mkwrite,
481	.access		= kernfs_vma_access,
482#ifdef CONFIG_NUMA
483	.set_policy	= kernfs_vma_set_policy,
484	.get_policy	= kernfs_vma_get_policy,
485#endif
486};
487
488static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
489{
490	struct kernfs_open_file *of = kernfs_of(file);
491	const struct kernfs_ops *ops;
492	int rc;
493
494	/*
495	 * mmap path and of->mutex are prone to triggering spurious lockdep
496	 * warnings and we don't want to add spurious locking dependency
497	 * between the two.  Check whether mmap is actually implemented
498	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
499	 * comment in kernfs_file_open() for more details.
500	 */
501	if (!(of->kn->flags & KERNFS_HAS_MMAP))
502		return -ENODEV;
503
504	mutex_lock(&of->mutex);
505
506	rc = -ENODEV;
507	if (!kernfs_get_active(of->kn))
508		goto out_unlock;
509
510	ops = kernfs_ops(of->kn);
511	rc = ops->mmap(of, vma);
512	if (rc)
513		goto out_put;
514
515	/*
516	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
517	 * to satisfy versions of X which crash if the mmap fails: that
518	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
519	 */
520	if (vma->vm_file != file)
521		goto out_put;
522
523	rc = -EINVAL;
524	if (of->mmapped && of->vm_ops != vma->vm_ops)
525		goto out_put;
526
527	/*
528	 * It is not possible to successfully wrap close.
529	 * So error if someone is trying to use close.
530	 */
531	if (vma->vm_ops && vma->vm_ops->close)
532		goto out_put;
533
534	rc = 0;
535	of->mmapped = true;
536	of_on(of)->nr_mmapped++;
537	of->vm_ops = vma->vm_ops;
538	vma->vm_ops = &kernfs_vm_ops;
539out_put:
540	kernfs_put_active(of->kn);
541out_unlock:
542	mutex_unlock(&of->mutex);
543
544	return rc;
545}
546
547/**
548 *	kernfs_get_open_node - get or create kernfs_open_node
549 *	@kn: target kernfs_node
550 *	@of: kernfs_open_file for this instance of open
551 *
552 *	If @kn->attr.open exists, increment its reference count; otherwise,
553 *	create one.  @of is chained to the files list.
554 *
555 *	Locking:
556 *	Kernel thread context (may sleep).
557 *
558 *	Return:
559 *	%0 on success, -errno on failure.
560 */
561static int kernfs_get_open_node(struct kernfs_node *kn,
562				struct kernfs_open_file *of)
563{
564	struct kernfs_open_node *on;
565	struct mutex *mutex;
566
567	mutex = kernfs_open_file_mutex_lock(kn);
568	on = kernfs_deref_open_node_locked(kn);
569
570	if (!on) {
571		/* not there, initialize a new one */
572		on = kzalloc(sizeof(*on), GFP_KERNEL);
573		if (!on) {
574			mutex_unlock(mutex);
575			return -ENOMEM;
576		}
577		atomic_set(&on->event, 1);
578		init_waitqueue_head(&on->poll);
579		INIT_LIST_HEAD(&on->files);
580		rcu_assign_pointer(kn->attr.open, on);
581	}
582
583	list_add_tail(&of->list, &on->files);
584	if (kn->flags & KERNFS_HAS_RELEASE)
585		on->nr_to_release++;
586
587	mutex_unlock(mutex);
588	return 0;
589}
590
591/**
592 *	kernfs_unlink_open_file - Unlink @of from @kn.
593 *
594 *	@kn: target kernfs_node
595 *	@of: associated kernfs_open_file
596 *	@open_failed: ->open() failed, cancel ->release()
597 *
598 *	Unlink @of from list of @kn's associated open files. If list of
599 *	associated open files becomes empty, disassociate and free
600 *	kernfs_open_node.
601 *
602 *	LOCKING:
603 *	None.
604 */
605static void kernfs_unlink_open_file(struct kernfs_node *kn,
606				    struct kernfs_open_file *of,
607				    bool open_failed)
608{
609	struct kernfs_open_node *on;
610	struct mutex *mutex;
611
612	mutex = kernfs_open_file_mutex_lock(kn);
613
614	on = kernfs_deref_open_node_locked(kn);
615	if (!on) {
616		mutex_unlock(mutex);
617		return;
618	}
619
620	if (of) {
621		if (kn->flags & KERNFS_HAS_RELEASE) {
622			WARN_ON_ONCE(of->released == open_failed);
623			if (open_failed)
624				on->nr_to_release--;
625		}
626		if (of->mmapped)
627			on->nr_mmapped--;
628		list_del(&of->list);
629	}
630
631	if (list_empty(&on->files)) {
632		rcu_assign_pointer(kn->attr.open, NULL);
633		kfree_rcu(on, rcu_head);
634	}
635
636	mutex_unlock(mutex);
637}
638
639static int kernfs_fop_open(struct inode *inode, struct file *file)
640{
641	struct kernfs_node *kn = inode->i_private;
642	struct kernfs_root *root = kernfs_root(kn);
643	const struct kernfs_ops *ops;
644	struct kernfs_open_file *of;
645	bool has_read, has_write, has_mmap;
646	int error = -EACCES;
647
648	if (!kernfs_get_active(kn))
649		return -ENODEV;
650
651	ops = kernfs_ops(kn);
652
653	has_read = ops->seq_show || ops->read || ops->mmap;
654	has_write = ops->write || ops->mmap;
655	has_mmap = ops->mmap;
656
657	/* see the flag definition for details */
658	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
659		if ((file->f_mode & FMODE_WRITE) &&
660		    (!(inode->i_mode & S_IWUGO) || !has_write))
661			goto err_out;
662
663		if ((file->f_mode & FMODE_READ) &&
664		    (!(inode->i_mode & S_IRUGO) || !has_read))
665			goto err_out;
666	}
667
668	/* allocate a kernfs_open_file for the file */
669	error = -ENOMEM;
670	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
671	if (!of)
672		goto err_out;
673
674	/*
675	 * The following is done to give a different lockdep key to
676	 * @of->mutex for files which implement mmap.  This is a rather
677	 * crude way to avoid false positive lockdep warning around
678	 * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and
679	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
680	 * which mm->mmap_lock nests, while holding @of->mutex.  As each
681	 * open file has a separate mutex, it's okay as long as those don't
682	 * happen on the same file.  At this point, we can't easily give
683	 * each file a separate locking class.  Let's differentiate on
684	 * whether the file has mmap or not for now.
685	 *
686	 * Both paths of the branch look the same.  They're supposed to
687	 * look that way and give @of->mutex different static lockdep keys.
688	 */
689	if (has_mmap)
690		mutex_init(&of->mutex);
691	else
692		mutex_init(&of->mutex);
693
694	of->kn = kn;
695	of->file = file;
696
697	/*
698	 * Write path needs to atomic_write_len outside active reference.
699	 * Cache it in open_file.  See kernfs_fop_write_iter() for details.
700	 */
701	of->atomic_write_len = ops->atomic_write_len;
702
703	error = -EINVAL;
704	/*
705	 * ->seq_show is incompatible with ->prealloc,
706	 * as seq_read does its own allocation.
707	 * ->read must be used instead.
708	 */
709	if (ops->prealloc && ops->seq_show)
710		goto err_free;
711	if (ops->prealloc) {
712		int len = of->atomic_write_len ?: PAGE_SIZE;
713		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
714		error = -ENOMEM;
715		if (!of->prealloc_buf)
716			goto err_free;
717		mutex_init(&of->prealloc_mutex);
718	}
719
720	/*
721	 * Always instantiate seq_file even if read access doesn't use
722	 * seq_file or is not requested.  This unifies private data access
723	 * and readable regular files are the vast majority anyway.
724	 */
725	if (ops->seq_show)
726		error = seq_open(file, &kernfs_seq_ops);
727	else
728		error = seq_open(file, NULL);
729	if (error)
730		goto err_free;
731
732	of->seq_file = file->private_data;
733	of->seq_file->private = of;
734
735	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
736	if (file->f_mode & FMODE_WRITE)
737		file->f_mode |= FMODE_PWRITE;
738
739	/* make sure we have open node struct */
740	error = kernfs_get_open_node(kn, of);
741	if (error)
742		goto err_seq_release;
743
744	if (ops->open) {
745		/* nobody has access to @of yet, skip @of->mutex */
746		error = ops->open(of);
747		if (error)
748			goto err_put_node;
749	}
750
751	/* open succeeded, put active references */
752	kernfs_put_active(kn);
753	return 0;
754
755err_put_node:
756	kernfs_unlink_open_file(kn, of, true);
757err_seq_release:
758	seq_release(inode, file);
759err_free:
760	kfree(of->prealloc_buf);
761	kfree(of);
762err_out:
763	kernfs_put_active(kn);
764	return error;
765}
766
767/* used from release/drain to ensure that ->release() is called exactly once */
768static void kernfs_release_file(struct kernfs_node *kn,
769				struct kernfs_open_file *of)
770{
771	/*
772	 * @of is guaranteed to have no other file operations in flight and
773	 * we just want to synchronize release and drain paths.
774	 * @kernfs_open_file_mutex_ptr(kn) is enough. @of->mutex can't be used
775	 * here because drain path may be called from places which can
776	 * cause circular dependency.
777	 */
778	lockdep_assert_held(kernfs_open_file_mutex_ptr(kn));
779
780	if (!of->released) {
781		/*
782		 * A file is never detached without being released and we
783		 * need to be able to release files which are deactivated
784		 * and being drained.  Don't use kernfs_ops().
785		 */
786		kn->attr.ops->release(of);
787		of->released = true;
788		of_on(of)->nr_to_release--;
789	}
790}
791
792static int kernfs_fop_release(struct inode *inode, struct file *filp)
793{
794	struct kernfs_node *kn = inode->i_private;
795	struct kernfs_open_file *of = kernfs_of(filp);
796
797	if (kn->flags & KERNFS_HAS_RELEASE) {
798		struct mutex *mutex;
799
800		mutex = kernfs_open_file_mutex_lock(kn);
801		kernfs_release_file(kn, of);
802		mutex_unlock(mutex);
803	}
804
805	kernfs_unlink_open_file(kn, of, false);
806	seq_release(inode, filp);
807	kfree(of->prealloc_buf);
808	kfree(of);
809
810	return 0;
811}
812
813bool kernfs_should_drain_open_files(struct kernfs_node *kn)
814{
815	struct kernfs_open_node *on;
816	bool ret;
817
818	/*
819	 * @kn being deactivated guarantees that @kn->attr.open can't change
820	 * beneath us making the lockless test below safe.
821	 */
822	WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
823
824	rcu_read_lock();
825	on = rcu_dereference(kn->attr.open);
826	ret = on && (on->nr_mmapped || on->nr_to_release);
827	rcu_read_unlock();
828
829	return ret;
830}
831
832void kernfs_drain_open_files(struct kernfs_node *kn)
833{
834	struct kernfs_open_node *on;
835	struct kernfs_open_file *of;
836	struct mutex *mutex;
837
838	mutex = kernfs_open_file_mutex_lock(kn);
839	on = kernfs_deref_open_node_locked(kn);
840	if (!on) {
841		mutex_unlock(mutex);
842		return;
843	}
844
845	list_for_each_entry(of, &on->files, list) {
846		struct inode *inode = file_inode(of->file);
847
848		if (of->mmapped) {
849			unmap_mapping_range(inode->i_mapping, 0, 0, 1);
850			of->mmapped = false;
851			on->nr_mmapped--;
852		}
853
854		if (kn->flags & KERNFS_HAS_RELEASE)
855			kernfs_release_file(kn, of);
856	}
857
858	WARN_ON_ONCE(on->nr_mmapped || on->nr_to_release);
859	mutex_unlock(mutex);
860}
861
862/*
863 * Kernfs attribute files are pollable.  The idea is that you read
864 * the content and then you use 'poll' or 'select' to wait for
865 * the content to change.  When the content changes (assuming the
866 * manager for the kobject supports notification), poll will
867 * return EPOLLERR|EPOLLPRI, and select will return the fd whether
868 * it is waiting for read, write, or exceptions.
869 * Once poll/select indicates that the value has changed, you
870 * need to close and re-open the file, or seek to 0 and read again.
871 * Reminder: this only works for attributes which actively support
872 * it, and it is not possible to test an attribute from userspace
873 * to see if it supports poll (Neither 'poll' nor 'select' return
874 * an appropriate error code).  When in doubt, set a suitable timeout value.
875 */
876__poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait)
877{
878	struct kernfs_open_node *on = of_on(of);
879
880	poll_wait(of->file, &on->poll, wait);
881
882	if (of->event != atomic_read(&on->event))
883		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
884
885	return DEFAULT_POLLMASK;
886}
887
888static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
889{
890	struct kernfs_open_file *of = kernfs_of(filp);
891	struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
892	__poll_t ret;
893
894	if (!kernfs_get_active(kn))
895		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
896
897	if (kn->attr.ops->poll)
898		ret = kn->attr.ops->poll(of, wait);
899	else
900		ret = kernfs_generic_poll(of, wait);
901
902	kernfs_put_active(kn);
903	return ret;
904}
905
906static void kernfs_notify_workfn(struct work_struct *work)
907{
908	struct kernfs_node *kn;
909	struct kernfs_super_info *info;
910	struct kernfs_root *root;
911repeat:
912	/* pop one off the notify_list */
913	spin_lock_irq(&kernfs_notify_lock);
914	kn = kernfs_notify_list;
915	if (kn == KERNFS_NOTIFY_EOL) {
916		spin_unlock_irq(&kernfs_notify_lock);
917		return;
918	}
919	kernfs_notify_list = kn->attr.notify_next;
920	kn->attr.notify_next = NULL;
921	spin_unlock_irq(&kernfs_notify_lock);
922
923	root = kernfs_root(kn);
924	/* kick fsnotify */
925
926	down_read(&root->kernfs_supers_rwsem);
927	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
928		struct kernfs_node *parent;
929		struct inode *p_inode = NULL;
930		struct inode *inode;
931		struct qstr name;
932
933		/*
934		 * We want fsnotify_modify() on @kn but as the
935		 * modifications aren't originating from userland don't
936		 * have the matching @file available.  Look up the inodes
937		 * and generate the events manually.
938		 */
939		inode = ilookup(info->sb, kernfs_ino(kn));
940		if (!inode)
941			continue;
942
943		name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name));
944		parent = kernfs_get_parent(kn);
945		if (parent) {
946			p_inode = ilookup(info->sb, kernfs_ino(parent));
947			if (p_inode) {
948				fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD,
949					 inode, FSNOTIFY_EVENT_INODE,
950					 p_inode, &name, inode, 0);
951				iput(p_inode);
952			}
953
954			kernfs_put(parent);
955		}
956
957		if (!p_inode)
958			fsnotify_inode(inode, FS_MODIFY);
959
960		iput(inode);
961	}
962
963	up_read(&root->kernfs_supers_rwsem);
964	kernfs_put(kn);
965	goto repeat;
966}
967
968/**
969 * kernfs_notify - notify a kernfs file
970 * @kn: file to notify
971 *
972 * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
973 * context.
974 */
975void kernfs_notify(struct kernfs_node *kn)
976{
977	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
978	unsigned long flags;
979	struct kernfs_open_node *on;
980
981	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
982		return;
983
984	/* kick poll immediately */
985	rcu_read_lock();
986	on = rcu_dereference(kn->attr.open);
987	if (on) {
988		atomic_inc(&on->event);
989		wake_up_interruptible(&on->poll);
990	}
991	rcu_read_unlock();
992
993	/* schedule work to kick fsnotify */
994	spin_lock_irqsave(&kernfs_notify_lock, flags);
995	if (!kn->attr.notify_next) {
996		kernfs_get(kn);
997		kn->attr.notify_next = kernfs_notify_list;
998		kernfs_notify_list = kn;
999		schedule_work(&kernfs_notify_work);
1000	}
1001	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
1002}
1003EXPORT_SYMBOL_GPL(kernfs_notify);
1004
1005const struct file_operations kernfs_file_fops = {
1006	.read_iter	= kernfs_fop_read_iter,
1007	.write_iter	= kernfs_fop_write_iter,
1008	.llseek		= generic_file_llseek,
1009	.mmap		= kernfs_fop_mmap,
1010	.open		= kernfs_fop_open,
1011	.release	= kernfs_fop_release,
1012	.poll		= kernfs_fop_poll,
1013	.fsync		= noop_fsync,
1014	.splice_read	= copy_splice_read,
1015	.splice_write	= iter_file_splice_write,
1016};
1017
1018/**
1019 * __kernfs_create_file - kernfs internal function to create a file
1020 * @parent: directory to create the file in
1021 * @name: name of the file
1022 * @mode: mode of the file
1023 * @uid: uid of the file
1024 * @gid: gid of the file
1025 * @size: size of the file
1026 * @ops: kernfs operations for the file
1027 * @priv: private data for the file
1028 * @ns: optional namespace tag of the file
1029 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
1030 *
1031 * Return: the created node on success, ERR_PTR() value on error.
1032 */
1033struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
1034					 const char *name,
1035					 umode_t mode, kuid_t uid, kgid_t gid,
1036					 loff_t size,
1037					 const struct kernfs_ops *ops,
1038					 void *priv, const void *ns,
1039					 struct lock_class_key *key)
1040{
1041	struct kernfs_node *kn;
1042	unsigned flags;
1043	int rc;
1044
1045	flags = KERNFS_FILE;
1046
1047	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
1048			     uid, gid, flags);
1049	if (!kn)
1050		return ERR_PTR(-ENOMEM);
1051
1052	kn->attr.ops = ops;
1053	kn->attr.size = size;
1054	kn->ns = ns;
1055	kn->priv = priv;
1056
1057#ifdef CONFIG_DEBUG_LOCK_ALLOC
1058	if (key) {
1059		lockdep_init_map(&kn->dep_map, "kn->active", key, 0);
1060		kn->flags |= KERNFS_LOCKDEP;
1061	}
1062#endif
1063
1064	/*
1065	 * kn->attr.ops is accessible only while holding active ref.  We
1066	 * need to know whether some ops are implemented outside active
1067	 * ref.  Cache their existence in flags.
1068	 */
1069	if (ops->seq_show)
1070		kn->flags |= KERNFS_HAS_SEQ_SHOW;
1071	if (ops->mmap)
1072		kn->flags |= KERNFS_HAS_MMAP;
1073	if (ops->release)
1074		kn->flags |= KERNFS_HAS_RELEASE;
1075
1076	rc = kernfs_add_one(kn);
1077	if (rc) {
1078		kernfs_put(kn);
1079		return ERR_PTR(rc);
1080	}
1081	return kn;
1082}
1083