xref: /kernel/linux/linux-6.6/fs/kernfs/dir.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/kernfs/dir.c - kernfs directory implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10#include <linux/sched.h>
11#include <linux/fs.h>
12#include <linux/namei.h>
13#include <linux/idr.h>
14#include <linux/slab.h>
15#include <linux/security.h>
16#include <linux/hash.h>
17
18#include "kernfs-internal.h"
19
20static DEFINE_RWLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
21/*
22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
24 * will perform wakeups when releasing console_sem. Holding rename_lock
25 * will introduce deadlock if the scheduler reads the kernfs_name in the
26 * wakeup path.
27 */
28static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
29static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by pr_cont_lock */
30static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
31
32#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
33
34static bool __kernfs_active(struct kernfs_node *kn)
35{
36	return atomic_read(&kn->active) >= 0;
37}
38
39static bool kernfs_active(struct kernfs_node *kn)
40{
41	lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
42	return __kernfs_active(kn);
43}
44
45static bool kernfs_lockdep(struct kernfs_node *kn)
46{
47#ifdef CONFIG_DEBUG_LOCK_ALLOC
48	return kn->flags & KERNFS_LOCKDEP;
49#else
50	return false;
51#endif
52}
53
54static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
55{
56	if (!kn)
57		return strlcpy(buf, "(null)", buflen);
58
59	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
60}
61
62/* kernfs_node_depth - compute depth from @from to @to */
63static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
64{
65	size_t depth = 0;
66
67	while (to->parent && to != from) {
68		depth++;
69		to = to->parent;
70	}
71	return depth;
72}
73
74static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
75						  struct kernfs_node *b)
76{
77	size_t da, db;
78	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
79
80	if (ra != rb)
81		return NULL;
82
83	da = kernfs_depth(ra->kn, a);
84	db = kernfs_depth(rb->kn, b);
85
86	while (da > db) {
87		a = a->parent;
88		da--;
89	}
90	while (db > da) {
91		b = b->parent;
92		db--;
93	}
94
95	/* worst case b and a will be the same at root */
96	while (b != a) {
97		b = b->parent;
98		a = a->parent;
99	}
100
101	return a;
102}
103
104/**
105 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
106 * where kn_from is treated as root of the path.
107 * @kn_from: kernfs node which should be treated as root for the path
108 * @kn_to: kernfs node to which path is needed
109 * @buf: buffer to copy the path into
110 * @buflen: size of @buf
111 *
112 * We need to handle couple of scenarios here:
113 * [1] when @kn_from is an ancestor of @kn_to at some level
114 * kn_from: /n1/n2/n3
115 * kn_to:   /n1/n2/n3/n4/n5
116 * result:  /n4/n5
117 *
118 * [2] when @kn_from is on a different hierarchy and we need to find common
119 * ancestor between @kn_from and @kn_to.
120 * kn_from: /n1/n2/n3/n4
121 * kn_to:   /n1/n2/n5
122 * result:  /../../n5
123 * OR
124 * kn_from: /n1/n2/n3/n4/n5   [depth=5]
125 * kn_to:   /n1/n2/n3         [depth=3]
126 * result:  /../..
127 *
128 * [3] when @kn_to is %NULL result will be "(null)"
129 *
130 * Return: the length of the full path.  If the full length is equal to or
131 * greater than @buflen, @buf contains the truncated path with the trailing
132 * '\0'.  On error, -errno is returned.
133 */
134static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
135					struct kernfs_node *kn_from,
136					char *buf, size_t buflen)
137{
138	struct kernfs_node *kn, *common;
139	const char parent_str[] = "/..";
140	size_t depth_from, depth_to, len = 0;
141	int i, j;
142
143	if (!kn_to)
144		return strlcpy(buf, "(null)", buflen);
145
146	if (!kn_from)
147		kn_from = kernfs_root(kn_to)->kn;
148
149	if (kn_from == kn_to)
150		return strlcpy(buf, "/", buflen);
151
152	common = kernfs_common_ancestor(kn_from, kn_to);
153	if (WARN_ON(!common))
154		return -EINVAL;
155
156	depth_to = kernfs_depth(common, kn_to);
157	depth_from = kernfs_depth(common, kn_from);
158
159	buf[0] = '\0';
160
161	for (i = 0; i < depth_from; i++)
162		len += strlcpy(buf + len, parent_str,
163			       len < buflen ? buflen - len : 0);
164
165	/* Calculate how many bytes we need for the rest */
166	for (i = depth_to - 1; i >= 0; i--) {
167		for (kn = kn_to, j = 0; j < i; j++)
168			kn = kn->parent;
169		len += strlcpy(buf + len, "/",
170			       len < buflen ? buflen - len : 0);
171		len += strlcpy(buf + len, kn->name,
172			       len < buflen ? buflen - len : 0);
173	}
174
175	return len;
176}
177
178/**
179 * kernfs_name - obtain the name of a given node
180 * @kn: kernfs_node of interest
181 * @buf: buffer to copy @kn's name into
182 * @buflen: size of @buf
183 *
184 * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
185 * similar to strlcpy().
186 *
187 * Fills buffer with "(null)" if @kn is %NULL.
188 *
189 * Return: the length of @kn's name and if @buf isn't long enough,
190 * it's filled up to @buflen-1 and nul terminated.
191 *
192 * This function can be called from any context.
193 */
194int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
195{
196	unsigned long flags;
197	int ret;
198
199	read_lock_irqsave(&kernfs_rename_lock, flags);
200	ret = kernfs_name_locked(kn, buf, buflen);
201	read_unlock_irqrestore(&kernfs_rename_lock, flags);
202	return ret;
203}
204
205/**
206 * kernfs_path_from_node - build path of node @to relative to @from.
207 * @from: parent kernfs_node relative to which we need to build the path
208 * @to: kernfs_node of interest
209 * @buf: buffer to copy @to's path into
210 * @buflen: size of @buf
211 *
212 * Builds @to's path relative to @from in @buf. @from and @to must
213 * be on the same kernfs-root. If @from is not parent of @to, then a relative
214 * path (which includes '..'s) as needed to reach from @from to @to is
215 * returned.
216 *
217 * Return: the length of the full path.  If the full length is equal to or
218 * greater than @buflen, @buf contains the truncated path with the trailing
219 * '\0'.  On error, -errno is returned.
220 */
221int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
222			  char *buf, size_t buflen)
223{
224	unsigned long flags;
225	int ret;
226
227	read_lock_irqsave(&kernfs_rename_lock, flags);
228	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
229	read_unlock_irqrestore(&kernfs_rename_lock, flags);
230	return ret;
231}
232EXPORT_SYMBOL_GPL(kernfs_path_from_node);
233
234/**
235 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
236 * @kn: kernfs_node of interest
237 *
238 * This function can be called from any context.
239 */
240void pr_cont_kernfs_name(struct kernfs_node *kn)
241{
242	unsigned long flags;
243
244	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
245
246	kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
247	pr_cont("%s", kernfs_pr_cont_buf);
248
249	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
250}
251
252/**
253 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
254 * @kn: kernfs_node of interest
255 *
256 * This function can be called from any context.
257 */
258void pr_cont_kernfs_path(struct kernfs_node *kn)
259{
260	unsigned long flags;
261	int sz;
262
263	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
264
265	sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
266				   sizeof(kernfs_pr_cont_buf));
267	if (sz < 0) {
268		pr_cont("(error)");
269		goto out;
270	}
271
272	if (sz >= sizeof(kernfs_pr_cont_buf)) {
273		pr_cont("(name too long)");
274		goto out;
275	}
276
277	pr_cont("%s", kernfs_pr_cont_buf);
278
279out:
280	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
281}
282
283/**
284 * kernfs_get_parent - determine the parent node and pin it
285 * @kn: kernfs_node of interest
286 *
287 * Determines @kn's parent, pins and returns it.  This function can be
288 * called from any context.
289 *
290 * Return: parent node of @kn
291 */
292struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
293{
294	struct kernfs_node *parent;
295	unsigned long flags;
296
297	read_lock_irqsave(&kernfs_rename_lock, flags);
298	parent = kn->parent;
299	kernfs_get(parent);
300	read_unlock_irqrestore(&kernfs_rename_lock, flags);
301
302	return parent;
303}
304
305/**
306 *	kernfs_name_hash - calculate hash of @ns + @name
307 *	@name: Null terminated string to hash
308 *	@ns:   Namespace tag to hash
309 *
310 *	Return: 31-bit hash of ns + name (so it fits in an off_t)
311 */
312static unsigned int kernfs_name_hash(const char *name, const void *ns)
313{
314	unsigned long hash = init_name_hash(ns);
315	unsigned int len = strlen(name);
316	while (len--)
317		hash = partial_name_hash(*name++, hash);
318	hash = end_name_hash(hash);
319	hash &= 0x7fffffffU;
320	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
321	if (hash < 2)
322		hash += 2;
323	if (hash >= INT_MAX)
324		hash = INT_MAX - 1;
325	return hash;
326}
327
328static int kernfs_name_compare(unsigned int hash, const char *name,
329			       const void *ns, const struct kernfs_node *kn)
330{
331	if (hash < kn->hash)
332		return -1;
333	if (hash > kn->hash)
334		return 1;
335	if (ns < kn->ns)
336		return -1;
337	if (ns > kn->ns)
338		return 1;
339	return strcmp(name, kn->name);
340}
341
342static int kernfs_sd_compare(const struct kernfs_node *left,
343			     const struct kernfs_node *right)
344{
345	return kernfs_name_compare(left->hash, left->name, left->ns, right);
346}
347
348/**
349 *	kernfs_link_sibling - link kernfs_node into sibling rbtree
350 *	@kn: kernfs_node of interest
351 *
352 *	Link @kn into its sibling rbtree which starts from
353 *	@kn->parent->dir.children.
354 *
355 *	Locking:
356 *	kernfs_rwsem held exclusive
357 *
358 *	Return:
359 *	%0 on success, -EEXIST on failure.
360 */
361static int kernfs_link_sibling(struct kernfs_node *kn)
362{
363	struct rb_node **node = &kn->parent->dir.children.rb_node;
364	struct rb_node *parent = NULL;
365
366	while (*node) {
367		struct kernfs_node *pos;
368		int result;
369
370		pos = rb_to_kn(*node);
371		parent = *node;
372		result = kernfs_sd_compare(kn, pos);
373		if (result < 0)
374			node = &pos->rb.rb_left;
375		else if (result > 0)
376			node = &pos->rb.rb_right;
377		else
378			return -EEXIST;
379	}
380
381	/* add new node and rebalance the tree */
382	rb_link_node(&kn->rb, parent, node);
383	rb_insert_color(&kn->rb, &kn->parent->dir.children);
384
385	/* successfully added, account subdir number */
386	down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
387	if (kernfs_type(kn) == KERNFS_DIR)
388		kn->parent->dir.subdirs++;
389	kernfs_inc_rev(kn->parent);
390	up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
391
392	return 0;
393}
394
395/**
396 *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
397 *	@kn: kernfs_node of interest
398 *
399 *	Try to unlink @kn from its sibling rbtree which starts from
400 *	kn->parent->dir.children.
401 *
402 *	Return: %true if @kn was actually removed,
403 *	%false if @kn wasn't on the rbtree.
404 *
405 *	Locking:
406 *	kernfs_rwsem held exclusive
407 */
408static bool kernfs_unlink_sibling(struct kernfs_node *kn)
409{
410	if (RB_EMPTY_NODE(&kn->rb))
411		return false;
412
413	down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
414	if (kernfs_type(kn) == KERNFS_DIR)
415		kn->parent->dir.subdirs--;
416	kernfs_inc_rev(kn->parent);
417	up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
418
419	rb_erase(&kn->rb, &kn->parent->dir.children);
420	RB_CLEAR_NODE(&kn->rb);
421	return true;
422}
423
424/**
425 *	kernfs_get_active - get an active reference to kernfs_node
426 *	@kn: kernfs_node to get an active reference to
427 *
428 *	Get an active reference of @kn.  This function is noop if @kn
429 *	is %NULL.
430 *
431 *	Return:
432 *	Pointer to @kn on success, %NULL on failure.
433 */
434struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
435{
436	if (unlikely(!kn))
437		return NULL;
438
439	if (!atomic_inc_unless_negative(&kn->active))
440		return NULL;
441
442	if (kernfs_lockdep(kn))
443		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
444	return kn;
445}
446
447/**
448 *	kernfs_put_active - put an active reference to kernfs_node
449 *	@kn: kernfs_node to put an active reference to
450 *
451 *	Put an active reference to @kn.  This function is noop if @kn
452 *	is %NULL.
453 */
454void kernfs_put_active(struct kernfs_node *kn)
455{
456	int v;
457
458	if (unlikely(!kn))
459		return;
460
461	if (kernfs_lockdep(kn))
462		rwsem_release(&kn->dep_map, _RET_IP_);
463	v = atomic_dec_return(&kn->active);
464	if (likely(v != KN_DEACTIVATED_BIAS))
465		return;
466
467	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
468}
469
470/**
471 * kernfs_drain - drain kernfs_node
472 * @kn: kernfs_node to drain
473 *
474 * Drain existing usages and nuke all existing mmaps of @kn.  Multiple
475 * removers may invoke this function concurrently on @kn and all will
476 * return after draining is complete.
477 */
478static void kernfs_drain(struct kernfs_node *kn)
479	__releases(&kernfs_root(kn)->kernfs_rwsem)
480	__acquires(&kernfs_root(kn)->kernfs_rwsem)
481{
482	struct kernfs_root *root = kernfs_root(kn);
483
484	lockdep_assert_held_write(&root->kernfs_rwsem);
485	WARN_ON_ONCE(kernfs_active(kn));
486
487	/*
488	 * Skip draining if already fully drained. This avoids draining and its
489	 * lockdep annotations for nodes which have never been activated
490	 * allowing embedding kernfs_remove() in create error paths without
491	 * worrying about draining.
492	 */
493	if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS &&
494	    !kernfs_should_drain_open_files(kn))
495		return;
496
497	up_write(&root->kernfs_rwsem);
498
499	if (kernfs_lockdep(kn)) {
500		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
501		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
502			lock_contended(&kn->dep_map, _RET_IP_);
503	}
504
505	wait_event(root->deactivate_waitq,
506		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
507
508	if (kernfs_lockdep(kn)) {
509		lock_acquired(&kn->dep_map, _RET_IP_);
510		rwsem_release(&kn->dep_map, _RET_IP_);
511	}
512
513	if (kernfs_should_drain_open_files(kn))
514		kernfs_drain_open_files(kn);
515
516	down_write(&root->kernfs_rwsem);
517}
518
519/**
520 * kernfs_get - get a reference count on a kernfs_node
521 * @kn: the target kernfs_node
522 */
523void kernfs_get(struct kernfs_node *kn)
524{
525	if (kn) {
526		WARN_ON(!atomic_read(&kn->count));
527		atomic_inc(&kn->count);
528	}
529}
530EXPORT_SYMBOL_GPL(kernfs_get);
531
532/**
533 * kernfs_put - put a reference count on a kernfs_node
534 * @kn: the target kernfs_node
535 *
536 * Put a reference count of @kn and destroy it if it reached zero.
537 */
538void kernfs_put(struct kernfs_node *kn)
539{
540	struct kernfs_node *parent;
541	struct kernfs_root *root;
542
543	if (!kn || !atomic_dec_and_test(&kn->count))
544		return;
545	root = kernfs_root(kn);
546 repeat:
547	/*
548	 * Moving/renaming is always done while holding reference.
549	 * kn->parent won't change beneath us.
550	 */
551	parent = kn->parent;
552
553	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
554		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
555		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
556
557	if (kernfs_type(kn) == KERNFS_LINK)
558		kernfs_put(kn->symlink.target_kn);
559
560	kfree_const(kn->name);
561
562	if (kn->iattr) {
563		simple_xattrs_free(&kn->iattr->xattrs, NULL);
564		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
565	}
566	spin_lock(&kernfs_idr_lock);
567	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
568	spin_unlock(&kernfs_idr_lock);
569	kmem_cache_free(kernfs_node_cache, kn);
570
571	kn = parent;
572	if (kn) {
573		if (atomic_dec_and_test(&kn->count))
574			goto repeat;
575	} else {
576		/* just released the root kn, free @root too */
577		idr_destroy(&root->ino_idr);
578		kfree(root);
579	}
580}
581EXPORT_SYMBOL_GPL(kernfs_put);
582
583/**
584 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
585 * @dentry: the dentry in question
586 *
587 * Return: the kernfs_node associated with @dentry.  If @dentry is not a
588 * kernfs one, %NULL is returned.
589 *
590 * While the returned kernfs_node will stay accessible as long as @dentry
591 * is accessible, the returned node can be in any state and the caller is
592 * fully responsible for determining what's accessible.
593 */
594struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
595{
596	if (dentry->d_sb->s_op == &kernfs_sops)
597		return kernfs_dentry_node(dentry);
598	return NULL;
599}
600
601static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
602					     struct kernfs_node *parent,
603					     const char *name, umode_t mode,
604					     kuid_t uid, kgid_t gid,
605					     unsigned flags)
606{
607	struct kernfs_node *kn;
608	u32 id_highbits;
609	int ret;
610
611	name = kstrdup_const(name, GFP_KERNEL);
612	if (!name)
613		return NULL;
614
615	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
616	if (!kn)
617		goto err_out1;
618
619	idr_preload(GFP_KERNEL);
620	spin_lock(&kernfs_idr_lock);
621	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
622	if (ret >= 0 && ret < root->last_id_lowbits)
623		root->id_highbits++;
624	id_highbits = root->id_highbits;
625	root->last_id_lowbits = ret;
626	spin_unlock(&kernfs_idr_lock);
627	idr_preload_end();
628	if (ret < 0)
629		goto err_out2;
630
631	kn->id = (u64)id_highbits << 32 | ret;
632
633	atomic_set(&kn->count, 1);
634	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
635	RB_CLEAR_NODE(&kn->rb);
636
637	kn->name = name;
638	kn->mode = mode;
639	kn->flags = flags;
640
641	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
642		struct iattr iattr = {
643			.ia_valid = ATTR_UID | ATTR_GID,
644			.ia_uid = uid,
645			.ia_gid = gid,
646		};
647
648		ret = __kernfs_setattr(kn, &iattr);
649		if (ret < 0)
650			goto err_out3;
651	}
652
653	if (parent) {
654		ret = security_kernfs_init_security(parent, kn);
655		if (ret)
656			goto err_out3;
657	}
658
659	return kn;
660
661 err_out3:
662	spin_lock(&kernfs_idr_lock);
663	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
664	spin_unlock(&kernfs_idr_lock);
665 err_out2:
666	kmem_cache_free(kernfs_node_cache, kn);
667 err_out1:
668	kfree_const(name);
669	return NULL;
670}
671
672struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
673				    const char *name, umode_t mode,
674				    kuid_t uid, kgid_t gid,
675				    unsigned flags)
676{
677	struct kernfs_node *kn;
678
679	if (parent->mode & S_ISGID) {
680		/* this code block imitates inode_init_owner() for
681		 * kernfs
682		 */
683
684		if (parent->iattr)
685			gid = parent->iattr->ia_gid;
686
687		if (flags & KERNFS_DIR)
688			mode |= S_ISGID;
689	}
690
691	kn = __kernfs_new_node(kernfs_root(parent), parent,
692			       name, mode, uid, gid, flags);
693	if (kn) {
694		kernfs_get(parent);
695		kn->parent = parent;
696	}
697	return kn;
698}
699
700/*
701 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
702 * @root: the kernfs root
703 * @id: the target node id
704 *
705 * @id's lower 32bits encode ino and upper gen.  If the gen portion is
706 * zero, all generations are matched.
707 *
708 * Return: %NULL on failure,
709 * otherwise a kernfs node with reference counter incremented.
710 */
711struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
712						   u64 id)
713{
714	struct kernfs_node *kn;
715	ino_t ino = kernfs_id_ino(id);
716	u32 gen = kernfs_id_gen(id);
717
718	spin_lock(&kernfs_idr_lock);
719
720	kn = idr_find(&root->ino_idr, (u32)ino);
721	if (!kn)
722		goto err_unlock;
723
724	if (sizeof(ino_t) >= sizeof(u64)) {
725		/* we looked up with the low 32bits, compare the whole */
726		if (kernfs_ino(kn) != ino)
727			goto err_unlock;
728	} else {
729		/* 0 matches all generations */
730		if (unlikely(gen && kernfs_gen(kn) != gen))
731			goto err_unlock;
732	}
733
734	/*
735	 * We should fail if @kn has never been activated and guarantee success
736	 * if the caller knows that @kn is active. Both can be achieved by
737	 * __kernfs_active() which tests @kn->active without kernfs_rwsem.
738	 */
739	if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count)))
740		goto err_unlock;
741
742	spin_unlock(&kernfs_idr_lock);
743	return kn;
744err_unlock:
745	spin_unlock(&kernfs_idr_lock);
746	return NULL;
747}
748
749/**
750 *	kernfs_add_one - add kernfs_node to parent without warning
751 *	@kn: kernfs_node to be added
752 *
753 *	The caller must already have initialized @kn->parent.  This
754 *	function increments nlink of the parent's inode if @kn is a
755 *	directory and link into the children list of the parent.
756 *
757 *	Return:
758 *	%0 on success, -EEXIST if entry with the given name already
759 *	exists.
760 */
761int kernfs_add_one(struct kernfs_node *kn)
762{
763	struct kernfs_node *parent = kn->parent;
764	struct kernfs_root *root = kernfs_root(parent);
765	struct kernfs_iattrs *ps_iattr;
766	bool has_ns;
767	int ret;
768
769	down_write(&root->kernfs_rwsem);
770
771	ret = -EINVAL;
772	has_ns = kernfs_ns_enabled(parent);
773	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
774		 has_ns ? "required" : "invalid", parent->name, kn->name))
775		goto out_unlock;
776
777	if (kernfs_type(parent) != KERNFS_DIR)
778		goto out_unlock;
779
780	ret = -ENOENT;
781	if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR))
782		goto out_unlock;
783
784	kn->hash = kernfs_name_hash(kn->name, kn->ns);
785
786	ret = kernfs_link_sibling(kn);
787	if (ret)
788		goto out_unlock;
789
790	/* Update timestamps on the parent */
791	down_write(&root->kernfs_iattr_rwsem);
792
793	ps_iattr = parent->iattr;
794	if (ps_iattr) {
795		ktime_get_real_ts64(&ps_iattr->ia_ctime);
796		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
797	}
798
799	up_write(&root->kernfs_iattr_rwsem);
800	up_write(&root->kernfs_rwsem);
801
802	/*
803	 * Activate the new node unless CREATE_DEACTIVATED is requested.
804	 * If not activated here, the kernfs user is responsible for
805	 * activating the node with kernfs_activate().  A node which hasn't
806	 * been activated is not visible to userland and its removal won't
807	 * trigger deactivation.
808	 */
809	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
810		kernfs_activate(kn);
811	return 0;
812
813out_unlock:
814	up_write(&root->kernfs_rwsem);
815	return ret;
816}
817
818/**
819 * kernfs_find_ns - find kernfs_node with the given name
820 * @parent: kernfs_node to search under
821 * @name: name to look for
822 * @ns: the namespace tag to use
823 *
824 * Look for kernfs_node with name @name under @parent.
825 *
826 * Return: pointer to the found kernfs_node on success, %NULL on failure.
827 */
828static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
829					  const unsigned char *name,
830					  const void *ns)
831{
832	struct rb_node *node = parent->dir.children.rb_node;
833	bool has_ns = kernfs_ns_enabled(parent);
834	unsigned int hash;
835
836	lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
837
838	if (has_ns != (bool)ns) {
839		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
840		     has_ns ? "required" : "invalid", parent->name, name);
841		return NULL;
842	}
843
844	hash = kernfs_name_hash(name, ns);
845	while (node) {
846		struct kernfs_node *kn;
847		int result;
848
849		kn = rb_to_kn(node);
850		result = kernfs_name_compare(hash, name, ns, kn);
851		if (result < 0)
852			node = node->rb_left;
853		else if (result > 0)
854			node = node->rb_right;
855		else
856			return kn;
857	}
858	return NULL;
859}
860
861static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
862					  const unsigned char *path,
863					  const void *ns)
864{
865	size_t len;
866	char *p, *name;
867
868	lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
869
870	spin_lock_irq(&kernfs_pr_cont_lock);
871
872	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
873
874	if (len >= sizeof(kernfs_pr_cont_buf)) {
875		spin_unlock_irq(&kernfs_pr_cont_lock);
876		return NULL;
877	}
878
879	p = kernfs_pr_cont_buf;
880
881	while ((name = strsep(&p, "/")) && parent) {
882		if (*name == '\0')
883			continue;
884		parent = kernfs_find_ns(parent, name, ns);
885	}
886
887	spin_unlock_irq(&kernfs_pr_cont_lock);
888
889	return parent;
890}
891
892/**
893 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
894 * @parent: kernfs_node to search under
895 * @name: name to look for
896 * @ns: the namespace tag to use
897 *
898 * Look for kernfs_node with name @name under @parent and get a reference
899 * if found.  This function may sleep.
900 *
901 * Return: pointer to the found kernfs_node on success, %NULL on failure.
902 */
903struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
904					   const char *name, const void *ns)
905{
906	struct kernfs_node *kn;
907	struct kernfs_root *root = kernfs_root(parent);
908
909	down_read(&root->kernfs_rwsem);
910	kn = kernfs_find_ns(parent, name, ns);
911	kernfs_get(kn);
912	up_read(&root->kernfs_rwsem);
913
914	return kn;
915}
916EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
917
918/**
919 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
920 * @parent: kernfs_node to search under
921 * @path: path to look for
922 * @ns: the namespace tag to use
923 *
924 * Look for kernfs_node with path @path under @parent and get a reference
925 * if found.  This function may sleep.
926 *
927 * Return: pointer to the found kernfs_node on success, %NULL on failure.
928 */
929struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
930					   const char *path, const void *ns)
931{
932	struct kernfs_node *kn;
933	struct kernfs_root *root = kernfs_root(parent);
934
935	down_read(&root->kernfs_rwsem);
936	kn = kernfs_walk_ns(parent, path, ns);
937	kernfs_get(kn);
938	up_read(&root->kernfs_rwsem);
939
940	return kn;
941}
942
943/**
944 * kernfs_create_root - create a new kernfs hierarchy
945 * @scops: optional syscall operations for the hierarchy
946 * @flags: KERNFS_ROOT_* flags
947 * @priv: opaque data associated with the new directory
948 *
949 * Return: the root of the new hierarchy on success, ERR_PTR() value on
950 * failure.
951 */
952struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
953				       unsigned int flags, void *priv)
954{
955	struct kernfs_root *root;
956	struct kernfs_node *kn;
957
958	root = kzalloc(sizeof(*root), GFP_KERNEL);
959	if (!root)
960		return ERR_PTR(-ENOMEM);
961
962	idr_init(&root->ino_idr);
963	init_rwsem(&root->kernfs_rwsem);
964	init_rwsem(&root->kernfs_iattr_rwsem);
965	init_rwsem(&root->kernfs_supers_rwsem);
966	INIT_LIST_HEAD(&root->supers);
967
968	/*
969	 * On 64bit ino setups, id is ino.  On 32bit, low 32bits are ino.
970	 * High bits generation.  The starting value for both ino and
971	 * genenration is 1.  Initialize upper 32bit allocation
972	 * accordingly.
973	 */
974	if (sizeof(ino_t) >= sizeof(u64))
975		root->id_highbits = 0;
976	else
977		root->id_highbits = 1;
978
979	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
980			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
981			       KERNFS_DIR);
982	if (!kn) {
983		idr_destroy(&root->ino_idr);
984		kfree(root);
985		return ERR_PTR(-ENOMEM);
986	}
987
988	kn->priv = priv;
989	kn->dir.root = root;
990
991	root->syscall_ops = scops;
992	root->flags = flags;
993	root->kn = kn;
994	init_waitqueue_head(&root->deactivate_waitq);
995
996	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
997		kernfs_activate(kn);
998
999	return root;
1000}
1001
1002/**
1003 * kernfs_destroy_root - destroy a kernfs hierarchy
1004 * @root: root of the hierarchy to destroy
1005 *
1006 * Destroy the hierarchy anchored at @root by removing all existing
1007 * directories and destroying @root.
1008 */
1009void kernfs_destroy_root(struct kernfs_root *root)
1010{
1011	/*
1012	 *  kernfs_remove holds kernfs_rwsem from the root so the root
1013	 *  shouldn't be freed during the operation.
1014	 */
1015	kernfs_get(root->kn);
1016	kernfs_remove(root->kn);
1017	kernfs_put(root->kn); /* will also free @root */
1018}
1019
1020/**
1021 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
1022 * @root: root to use to lookup
1023 *
1024 * Return: @root's kernfs_node
1025 */
1026struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
1027{
1028	return root->kn;
1029}
1030
1031/**
1032 * kernfs_create_dir_ns - create a directory
1033 * @parent: parent in which to create a new directory
1034 * @name: name of the new directory
1035 * @mode: mode of the new directory
1036 * @uid: uid of the new directory
1037 * @gid: gid of the new directory
1038 * @priv: opaque data associated with the new directory
1039 * @ns: optional namespace tag of the directory
1040 *
1041 * Return: the created node on success, ERR_PTR() value on failure.
1042 */
1043struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1044					 const char *name, umode_t mode,
1045					 kuid_t uid, kgid_t gid,
1046					 void *priv, const void *ns)
1047{
1048	struct kernfs_node *kn;
1049	int rc;
1050
1051	/* allocate */
1052	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1053			     uid, gid, KERNFS_DIR);
1054	if (!kn)
1055		return ERR_PTR(-ENOMEM);
1056
1057	kn->dir.root = parent->dir.root;
1058	kn->ns = ns;
1059	kn->priv = priv;
1060
1061	/* link in */
1062	rc = kernfs_add_one(kn);
1063	if (!rc)
1064		return kn;
1065
1066	kernfs_put(kn);
1067	return ERR_PTR(rc);
1068}
1069
1070/**
1071 * kernfs_create_empty_dir - create an always empty directory
1072 * @parent: parent in which to create a new directory
1073 * @name: name of the new directory
1074 *
1075 * Return: the created node on success, ERR_PTR() value on failure.
1076 */
1077struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1078					    const char *name)
1079{
1080	struct kernfs_node *kn;
1081	int rc;
1082
1083	/* allocate */
1084	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1085			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1086	if (!kn)
1087		return ERR_PTR(-ENOMEM);
1088
1089	kn->flags |= KERNFS_EMPTY_DIR;
1090	kn->dir.root = parent->dir.root;
1091	kn->ns = NULL;
1092	kn->priv = NULL;
1093
1094	/* link in */
1095	rc = kernfs_add_one(kn);
1096	if (!rc)
1097		return kn;
1098
1099	kernfs_put(kn);
1100	return ERR_PTR(rc);
1101}
1102
1103static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
1104{
1105	struct kernfs_node *kn;
1106	struct kernfs_root *root;
1107
1108	if (flags & LOOKUP_RCU)
1109		return -ECHILD;
1110
1111	/* Negative hashed dentry? */
1112	if (d_really_is_negative(dentry)) {
1113		struct kernfs_node *parent;
1114
1115		/* If the kernfs parent node has changed discard and
1116		 * proceed to ->lookup.
1117		 *
1118		 * There's nothing special needed here when getting the
1119		 * dentry parent, even if a concurrent rename is in
1120		 * progress. That's because the dentry is negative so
1121		 * it can only be the target of the rename and it will
1122		 * be doing a d_move() not a replace. Consequently the
1123		 * dentry d_parent won't change over the d_move().
1124		 *
1125		 * Also kernfs negative dentries transitioning from
1126		 * negative to positive during revalidate won't happen
1127		 * because they are invalidated on containing directory
1128		 * changes and the lookup re-done so that a new positive
1129		 * dentry can be properly created.
1130		 */
1131		root = kernfs_root_from_sb(dentry->d_sb);
1132		down_read(&root->kernfs_rwsem);
1133		parent = kernfs_dentry_node(dentry->d_parent);
1134		if (parent) {
1135			if (kernfs_dir_changed(parent, dentry)) {
1136				up_read(&root->kernfs_rwsem);
1137				return 0;
1138			}
1139		}
1140		up_read(&root->kernfs_rwsem);
1141
1142		/* The kernfs parent node hasn't changed, leave the
1143		 * dentry negative and return success.
1144		 */
1145		return 1;
1146	}
1147
1148	kn = kernfs_dentry_node(dentry);
1149	root = kernfs_root(kn);
1150	down_read(&root->kernfs_rwsem);
1151
1152	/* The kernfs node has been deactivated */
1153	if (!kernfs_active(kn))
1154		goto out_bad;
1155
1156	/* The kernfs node has been moved? */
1157	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
1158		goto out_bad;
1159
1160	/* The kernfs node has been renamed */
1161	if (strcmp(dentry->d_name.name, kn->name) != 0)
1162		goto out_bad;
1163
1164	/* The kernfs node has been moved to a different namespace */
1165	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
1166	    kernfs_info(dentry->d_sb)->ns != kn->ns)
1167		goto out_bad;
1168
1169	up_read(&root->kernfs_rwsem);
1170	return 1;
1171out_bad:
1172	up_read(&root->kernfs_rwsem);
1173	return 0;
1174}
1175
1176const struct dentry_operations kernfs_dops = {
1177	.d_revalidate	= kernfs_dop_revalidate,
1178};
1179
1180static struct dentry *kernfs_iop_lookup(struct inode *dir,
1181					struct dentry *dentry,
1182					unsigned int flags)
1183{
1184	struct kernfs_node *parent = dir->i_private;
1185	struct kernfs_node *kn;
1186	struct kernfs_root *root;
1187	struct inode *inode = NULL;
1188	const void *ns = NULL;
1189
1190	root = kernfs_root(parent);
1191	down_read(&root->kernfs_rwsem);
1192	if (kernfs_ns_enabled(parent))
1193		ns = kernfs_info(dir->i_sb)->ns;
1194
1195	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1196	/* attach dentry and inode */
1197	if (kn) {
1198		/* Inactive nodes are invisible to the VFS so don't
1199		 * create a negative.
1200		 */
1201		if (!kernfs_active(kn)) {
1202			up_read(&root->kernfs_rwsem);
1203			return NULL;
1204		}
1205		inode = kernfs_get_inode(dir->i_sb, kn);
1206		if (!inode)
1207			inode = ERR_PTR(-ENOMEM);
1208	}
1209	/*
1210	 * Needed for negative dentry validation.
1211	 * The negative dentry can be created in kernfs_iop_lookup()
1212	 * or transforms from positive dentry in dentry_unlink_inode()
1213	 * called from vfs_rmdir().
1214	 */
1215	if (!IS_ERR(inode))
1216		kernfs_set_rev(parent, dentry);
1217	up_read(&root->kernfs_rwsem);
1218
1219	/* instantiate and hash (possibly negative) dentry */
1220	return d_splice_alias(inode, dentry);
1221}
1222
1223static int kernfs_iop_mkdir(struct mnt_idmap *idmap,
1224			    struct inode *dir, struct dentry *dentry,
1225			    umode_t mode)
1226{
1227	struct kernfs_node *parent = dir->i_private;
1228	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1229	int ret;
1230
1231	if (!scops || !scops->mkdir)
1232		return -EPERM;
1233
1234	if (!kernfs_get_active(parent))
1235		return -ENODEV;
1236
1237	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1238
1239	kernfs_put_active(parent);
1240	return ret;
1241}
1242
1243static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1244{
1245	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1246	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1247	int ret;
1248
1249	if (!scops || !scops->rmdir)
1250		return -EPERM;
1251
1252	if (!kernfs_get_active(kn))
1253		return -ENODEV;
1254
1255	ret = scops->rmdir(kn);
1256
1257	kernfs_put_active(kn);
1258	return ret;
1259}
1260
1261static int kernfs_iop_rename(struct mnt_idmap *idmap,
1262			     struct inode *old_dir, struct dentry *old_dentry,
1263			     struct inode *new_dir, struct dentry *new_dentry,
1264			     unsigned int flags)
1265{
1266	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1267	struct kernfs_node *new_parent = new_dir->i_private;
1268	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1269	int ret;
1270
1271	if (flags)
1272		return -EINVAL;
1273
1274	if (!scops || !scops->rename)
1275		return -EPERM;
1276
1277	if (!kernfs_get_active(kn))
1278		return -ENODEV;
1279
1280	if (!kernfs_get_active(new_parent)) {
1281		kernfs_put_active(kn);
1282		return -ENODEV;
1283	}
1284
1285	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1286
1287	kernfs_put_active(new_parent);
1288	kernfs_put_active(kn);
1289	return ret;
1290}
1291
1292const struct inode_operations kernfs_dir_iops = {
1293	.lookup		= kernfs_iop_lookup,
1294	.permission	= kernfs_iop_permission,
1295	.setattr	= kernfs_iop_setattr,
1296	.getattr	= kernfs_iop_getattr,
1297	.listxattr	= kernfs_iop_listxattr,
1298
1299	.mkdir		= kernfs_iop_mkdir,
1300	.rmdir		= kernfs_iop_rmdir,
1301	.rename		= kernfs_iop_rename,
1302};
1303
1304static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1305{
1306	struct kernfs_node *last;
1307
1308	while (true) {
1309		struct rb_node *rbn;
1310
1311		last = pos;
1312
1313		if (kernfs_type(pos) != KERNFS_DIR)
1314			break;
1315
1316		rbn = rb_first(&pos->dir.children);
1317		if (!rbn)
1318			break;
1319
1320		pos = rb_to_kn(rbn);
1321	}
1322
1323	return last;
1324}
1325
1326/**
1327 * kernfs_next_descendant_post - find the next descendant for post-order walk
1328 * @pos: the current position (%NULL to initiate traversal)
1329 * @root: kernfs_node whose descendants to walk
1330 *
1331 * Find the next descendant to visit for post-order traversal of @root's
1332 * descendants.  @root is included in the iteration and the last node to be
1333 * visited.
1334 *
1335 * Return: the next descendant to visit or %NULL when done.
1336 */
1337static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1338						       struct kernfs_node *root)
1339{
1340	struct rb_node *rbn;
1341
1342	lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
1343
1344	/* if first iteration, visit leftmost descendant which may be root */
1345	if (!pos)
1346		return kernfs_leftmost_descendant(root);
1347
1348	/* if we visited @root, we're done */
1349	if (pos == root)
1350		return NULL;
1351
1352	/* if there's an unvisited sibling, visit its leftmost descendant */
1353	rbn = rb_next(&pos->rb);
1354	if (rbn)
1355		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1356
1357	/* no sibling left, visit parent */
1358	return pos->parent;
1359}
1360
1361static void kernfs_activate_one(struct kernfs_node *kn)
1362{
1363	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1364
1365	kn->flags |= KERNFS_ACTIVATED;
1366
1367	if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING)))
1368		return;
1369
1370	WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb));
1371	WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1372
1373	atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
1374}
1375
1376/**
1377 * kernfs_activate - activate a node which started deactivated
1378 * @kn: kernfs_node whose subtree is to be activated
1379 *
1380 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1381 * needs to be explicitly activated.  A node which hasn't been activated
1382 * isn't visible to userland and deactivation is skipped during its
1383 * removal.  This is useful to construct atomic init sequences where
1384 * creation of multiple nodes should either succeed or fail atomically.
1385 *
1386 * The caller is responsible for ensuring that this function is not called
1387 * after kernfs_remove*() is invoked on @kn.
1388 */
1389void kernfs_activate(struct kernfs_node *kn)
1390{
1391	struct kernfs_node *pos;
1392	struct kernfs_root *root = kernfs_root(kn);
1393
1394	down_write(&root->kernfs_rwsem);
1395
1396	pos = NULL;
1397	while ((pos = kernfs_next_descendant_post(pos, kn)))
1398		kernfs_activate_one(pos);
1399
1400	up_write(&root->kernfs_rwsem);
1401}
1402
1403/**
1404 * kernfs_show - show or hide a node
1405 * @kn: kernfs_node to show or hide
1406 * @show: whether to show or hide
1407 *
1408 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is
1409 * ignored in future activaitons. If %true, the mark is removed and activation
1410 * state is restored. This function won't implicitly activate a new node in a
1411 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet.
1412 *
1413 * To avoid recursion complexities, directories aren't supported for now.
1414 */
1415void kernfs_show(struct kernfs_node *kn, bool show)
1416{
1417	struct kernfs_root *root = kernfs_root(kn);
1418
1419	if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR))
1420		return;
1421
1422	down_write(&root->kernfs_rwsem);
1423
1424	if (show) {
1425		kn->flags &= ~KERNFS_HIDDEN;
1426		if (kn->flags & KERNFS_ACTIVATED)
1427			kernfs_activate_one(kn);
1428	} else {
1429		kn->flags |= KERNFS_HIDDEN;
1430		if (kernfs_active(kn))
1431			atomic_add(KN_DEACTIVATED_BIAS, &kn->active);
1432		kernfs_drain(kn);
1433	}
1434
1435	up_write(&root->kernfs_rwsem);
1436}
1437
1438static void __kernfs_remove(struct kernfs_node *kn)
1439{
1440	struct kernfs_node *pos;
1441
1442	/* Short-circuit if non-root @kn has already finished removal. */
1443	if (!kn)
1444		return;
1445
1446	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1447
1448	/*
1449	 * This is for kernfs_remove_self() which plays with active ref
1450	 * after removal.
1451	 */
1452	if (kn->parent && RB_EMPTY_NODE(&kn->rb))
1453		return;
1454
1455	pr_debug("kernfs %s: removing\n", kn->name);
1456
1457	/* prevent new usage by marking all nodes removing and deactivating */
1458	pos = NULL;
1459	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1460		pos->flags |= KERNFS_REMOVING;
1461		if (kernfs_active(pos))
1462			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1463	}
1464
1465	/* deactivate and unlink the subtree node-by-node */
1466	do {
1467		pos = kernfs_leftmost_descendant(kn);
1468
1469		/*
1470		 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's
1471		 * base ref could have been put by someone else by the time
1472		 * the function returns.  Make sure it doesn't go away
1473		 * underneath us.
1474		 */
1475		kernfs_get(pos);
1476
1477		kernfs_drain(pos);
1478
1479		/*
1480		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1481		 * to decide who's responsible for cleanups.
1482		 */
1483		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1484			struct kernfs_iattrs *ps_iattr =
1485				pos->parent ? pos->parent->iattr : NULL;
1486
1487			/* update timestamps on the parent */
1488			down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
1489
1490			if (ps_iattr) {
1491				ktime_get_real_ts64(&ps_iattr->ia_ctime);
1492				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1493			}
1494
1495			up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
1496			kernfs_put(pos);
1497		}
1498
1499		kernfs_put(pos);
1500	} while (pos != kn);
1501}
1502
1503/**
1504 * kernfs_remove - remove a kernfs_node recursively
1505 * @kn: the kernfs_node to remove
1506 *
1507 * Remove @kn along with all its subdirectories and files.
1508 */
1509void kernfs_remove(struct kernfs_node *kn)
1510{
1511	struct kernfs_root *root;
1512
1513	if (!kn)
1514		return;
1515
1516	root = kernfs_root(kn);
1517
1518	down_write(&root->kernfs_rwsem);
1519	__kernfs_remove(kn);
1520	up_write(&root->kernfs_rwsem);
1521}
1522
1523/**
1524 * kernfs_break_active_protection - break out of active protection
1525 * @kn: the self kernfs_node
1526 *
1527 * The caller must be running off of a kernfs operation which is invoked
1528 * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1529 * this function must also be matched with an invocation of
1530 * kernfs_unbreak_active_protection().
1531 *
1532 * This function releases the active reference of @kn the caller is
1533 * holding.  Once this function is called, @kn may be removed at any point
1534 * and the caller is solely responsible for ensuring that the objects it
1535 * dereferences are accessible.
1536 */
1537void kernfs_break_active_protection(struct kernfs_node *kn)
1538{
1539	/*
1540	 * Take out ourself out of the active ref dependency chain.  If
1541	 * we're called without an active ref, lockdep will complain.
1542	 */
1543	kernfs_put_active(kn);
1544}
1545
1546/**
1547 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1548 * @kn: the self kernfs_node
1549 *
1550 * If kernfs_break_active_protection() was called, this function must be
1551 * invoked before finishing the kernfs operation.  Note that while this
1552 * function restores the active reference, it doesn't and can't actually
1553 * restore the active protection - @kn may already or be in the process of
1554 * being removed.  Once kernfs_break_active_protection() is invoked, that
1555 * protection is irreversibly gone for the kernfs operation instance.
1556 *
1557 * While this function may be called at any point after
1558 * kernfs_break_active_protection() is invoked, its most useful location
1559 * would be right before the enclosing kernfs operation returns.
1560 */
1561void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1562{
1563	/*
1564	 * @kn->active could be in any state; however, the increment we do
1565	 * here will be undone as soon as the enclosing kernfs operation
1566	 * finishes and this temporary bump can't break anything.  If @kn
1567	 * is alive, nothing changes.  If @kn is being deactivated, the
1568	 * soon-to-follow put will either finish deactivation or restore
1569	 * deactivated state.  If @kn is already removed, the temporary
1570	 * bump is guaranteed to be gone before @kn is released.
1571	 */
1572	atomic_inc(&kn->active);
1573	if (kernfs_lockdep(kn))
1574		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1575}
1576
1577/**
1578 * kernfs_remove_self - remove a kernfs_node from its own method
1579 * @kn: the self kernfs_node to remove
1580 *
1581 * The caller must be running off of a kernfs operation which is invoked
1582 * with an active reference - e.g. one of kernfs_ops.  This can be used to
1583 * implement a file operation which deletes itself.
1584 *
1585 * For example, the "delete" file for a sysfs device directory can be
1586 * implemented by invoking kernfs_remove_self() on the "delete" file
1587 * itself.  This function breaks the circular dependency of trying to
1588 * deactivate self while holding an active ref itself.  It isn't necessary
1589 * to modify the usual removal path to use kernfs_remove_self().  The
1590 * "delete" implementation can simply invoke kernfs_remove_self() on self
1591 * before proceeding with the usual removal path.  kernfs will ignore later
1592 * kernfs_remove() on self.
1593 *
1594 * kernfs_remove_self() can be called multiple times concurrently on the
1595 * same kernfs_node.  Only the first one actually performs removal and
1596 * returns %true.  All others will wait until the kernfs operation which
1597 * won self-removal finishes and return %false.  Note that the losers wait
1598 * for the completion of not only the winning kernfs_remove_self() but also
1599 * the whole kernfs_ops which won the arbitration.  This can be used to
1600 * guarantee, for example, all concurrent writes to a "delete" file to
1601 * finish only after the whole operation is complete.
1602 *
1603 * Return: %true if @kn is removed by this call, otherwise %false.
1604 */
1605bool kernfs_remove_self(struct kernfs_node *kn)
1606{
1607	bool ret;
1608	struct kernfs_root *root = kernfs_root(kn);
1609
1610	down_write(&root->kernfs_rwsem);
1611	kernfs_break_active_protection(kn);
1612
1613	/*
1614	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1615	 * the first one will actually perform removal.  When the removal
1616	 * is complete, SUICIDED is set and the active ref is restored
1617	 * while kernfs_rwsem for held exclusive.  The ones which lost
1618	 * arbitration waits for SUICIDED && drained which can happen only
1619	 * after the enclosing kernfs operation which executed the winning
1620	 * instance of kernfs_remove_self() finished.
1621	 */
1622	if (!(kn->flags & KERNFS_SUICIDAL)) {
1623		kn->flags |= KERNFS_SUICIDAL;
1624		__kernfs_remove(kn);
1625		kn->flags |= KERNFS_SUICIDED;
1626		ret = true;
1627	} else {
1628		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1629		DEFINE_WAIT(wait);
1630
1631		while (true) {
1632			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1633
1634			if ((kn->flags & KERNFS_SUICIDED) &&
1635			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1636				break;
1637
1638			up_write(&root->kernfs_rwsem);
1639			schedule();
1640			down_write(&root->kernfs_rwsem);
1641		}
1642		finish_wait(waitq, &wait);
1643		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1644		ret = false;
1645	}
1646
1647	/*
1648	 * This must be done while kernfs_rwsem held exclusive; otherwise,
1649	 * waiting for SUICIDED && deactivated could finish prematurely.
1650	 */
1651	kernfs_unbreak_active_protection(kn);
1652
1653	up_write(&root->kernfs_rwsem);
1654	return ret;
1655}
1656
1657/**
1658 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1659 * @parent: parent of the target
1660 * @name: name of the kernfs_node to remove
1661 * @ns: namespace tag of the kernfs_node to remove
1662 *
1663 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1664 *
1665 * Return: %0 on success, -ENOENT if such entry doesn't exist.
1666 */
1667int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1668			     const void *ns)
1669{
1670	struct kernfs_node *kn;
1671	struct kernfs_root *root;
1672
1673	if (!parent) {
1674		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1675			name);
1676		return -ENOENT;
1677	}
1678
1679	root = kernfs_root(parent);
1680	down_write(&root->kernfs_rwsem);
1681
1682	kn = kernfs_find_ns(parent, name, ns);
1683	if (kn) {
1684		kernfs_get(kn);
1685		__kernfs_remove(kn);
1686		kernfs_put(kn);
1687	}
1688
1689	up_write(&root->kernfs_rwsem);
1690
1691	if (kn)
1692		return 0;
1693	else
1694		return -ENOENT;
1695}
1696
1697/**
1698 * kernfs_rename_ns - move and rename a kernfs_node
1699 * @kn: target node
1700 * @new_parent: new parent to put @sd under
1701 * @new_name: new name
1702 * @new_ns: new namespace tag
1703 *
1704 * Return: %0 on success, -errno on failure.
1705 */
1706int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1707		     const char *new_name, const void *new_ns)
1708{
1709	struct kernfs_node *old_parent;
1710	struct kernfs_root *root;
1711	const char *old_name = NULL;
1712	int error;
1713
1714	/* can't move or rename root */
1715	if (!kn->parent)
1716		return -EINVAL;
1717
1718	root = kernfs_root(kn);
1719	down_write(&root->kernfs_rwsem);
1720
1721	error = -ENOENT;
1722	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1723	    (new_parent->flags & KERNFS_EMPTY_DIR))
1724		goto out;
1725
1726	error = 0;
1727	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1728	    (strcmp(kn->name, new_name) == 0))
1729		goto out;	/* nothing to rename */
1730
1731	error = -EEXIST;
1732	if (kernfs_find_ns(new_parent, new_name, new_ns))
1733		goto out;
1734
1735	/* rename kernfs_node */
1736	if (strcmp(kn->name, new_name) != 0) {
1737		error = -ENOMEM;
1738		new_name = kstrdup_const(new_name, GFP_KERNEL);
1739		if (!new_name)
1740			goto out;
1741	} else {
1742		new_name = NULL;
1743	}
1744
1745	/*
1746	 * Move to the appropriate place in the appropriate directories rbtree.
1747	 */
1748	kernfs_unlink_sibling(kn);
1749	kernfs_get(new_parent);
1750
1751	/* rename_lock protects ->parent and ->name accessors */
1752	write_lock_irq(&kernfs_rename_lock);
1753
1754	old_parent = kn->parent;
1755	kn->parent = new_parent;
1756
1757	kn->ns = new_ns;
1758	if (new_name) {
1759		old_name = kn->name;
1760		kn->name = new_name;
1761	}
1762
1763	write_unlock_irq(&kernfs_rename_lock);
1764
1765	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1766	kernfs_link_sibling(kn);
1767
1768	kernfs_put(old_parent);
1769	kfree_const(old_name);
1770
1771	error = 0;
1772 out:
1773	up_write(&root->kernfs_rwsem);
1774	return error;
1775}
1776
1777static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1778{
1779	kernfs_put(filp->private_data);
1780	return 0;
1781}
1782
1783static struct kernfs_node *kernfs_dir_pos(const void *ns,
1784	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1785{
1786	if (pos) {
1787		int valid = kernfs_active(pos) &&
1788			pos->parent == parent && hash == pos->hash;
1789		kernfs_put(pos);
1790		if (!valid)
1791			pos = NULL;
1792	}
1793	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1794		struct rb_node *node = parent->dir.children.rb_node;
1795		while (node) {
1796			pos = rb_to_kn(node);
1797
1798			if (hash < pos->hash)
1799				node = node->rb_left;
1800			else if (hash > pos->hash)
1801				node = node->rb_right;
1802			else
1803				break;
1804		}
1805	}
1806	/* Skip over entries which are dying/dead or in the wrong namespace */
1807	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1808		struct rb_node *node = rb_next(&pos->rb);
1809		if (!node)
1810			pos = NULL;
1811		else
1812			pos = rb_to_kn(node);
1813	}
1814	return pos;
1815}
1816
1817static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1818	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1819{
1820	pos = kernfs_dir_pos(ns, parent, ino, pos);
1821	if (pos) {
1822		do {
1823			struct rb_node *node = rb_next(&pos->rb);
1824			if (!node)
1825				pos = NULL;
1826			else
1827				pos = rb_to_kn(node);
1828		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1829	}
1830	return pos;
1831}
1832
1833static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1834{
1835	struct dentry *dentry = file->f_path.dentry;
1836	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1837	struct kernfs_node *pos = file->private_data;
1838	struct kernfs_root *root;
1839	const void *ns = NULL;
1840
1841	if (!dir_emit_dots(file, ctx))
1842		return 0;
1843
1844	root = kernfs_root(parent);
1845	down_read(&root->kernfs_rwsem);
1846
1847	if (kernfs_ns_enabled(parent))
1848		ns = kernfs_info(dentry->d_sb)->ns;
1849
1850	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1851	     pos;
1852	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1853		const char *name = pos->name;
1854		unsigned int type = fs_umode_to_dtype(pos->mode);
1855		int len = strlen(name);
1856		ino_t ino = kernfs_ino(pos);
1857
1858		ctx->pos = pos->hash;
1859		file->private_data = pos;
1860		kernfs_get(pos);
1861
1862		up_read(&root->kernfs_rwsem);
1863		if (!dir_emit(ctx, name, len, ino, type))
1864			return 0;
1865		down_read(&root->kernfs_rwsem);
1866	}
1867	up_read(&root->kernfs_rwsem);
1868	file->private_data = NULL;
1869	ctx->pos = INT_MAX;
1870	return 0;
1871}
1872
1873const struct file_operations kernfs_dir_fops = {
1874	.read		= generic_read_dir,
1875	.iterate_shared	= kernfs_fop_readdir,
1876	.release	= kernfs_dir_fop_release,
1877	.llseek		= generic_file_llseek,
1878};
1879