xref: /kernel/linux/linux-6.6/fs/jbd2/journal.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * linux/fs/jbd2/journal.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates.  This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
15 *
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
20 */
21
22#include <linux/module.h>
23#include <linux/time.h>
24#include <linux/fs.h>
25#include <linux/jbd2.h>
26#include <linux/errno.h>
27#include <linux/slab.h>
28#include <linux/init.h>
29#include <linux/mm.h>
30#include <linux/freezer.h>
31#include <linux/pagemap.h>
32#include <linux/kthread.h>
33#include <linux/poison.h>
34#include <linux/proc_fs.h>
35#include <linux/seq_file.h>
36#include <linux/math64.h>
37#include <linux/hash.h>
38#include <linux/log2.h>
39#include <linux/vmalloc.h>
40#include <linux/backing-dev.h>
41#include <linux/bitops.h>
42#include <linux/ratelimit.h>
43#include <linux/sched/mm.h>
44
45#define CREATE_TRACE_POINTS
46#include <trace/events/jbd2.h>
47
48#include <linux/uaccess.h>
49#include <asm/page.h>
50
51#ifdef CONFIG_JBD2_DEBUG
52static ushort jbd2_journal_enable_debug __read_mostly;
53
54module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
55MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
56#endif
57
58EXPORT_SYMBOL(jbd2_journal_extend);
59EXPORT_SYMBOL(jbd2_journal_stop);
60EXPORT_SYMBOL(jbd2_journal_lock_updates);
61EXPORT_SYMBOL(jbd2_journal_unlock_updates);
62EXPORT_SYMBOL(jbd2_journal_get_write_access);
63EXPORT_SYMBOL(jbd2_journal_get_create_access);
64EXPORT_SYMBOL(jbd2_journal_get_undo_access);
65EXPORT_SYMBOL(jbd2_journal_set_triggers);
66EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
67EXPORT_SYMBOL(jbd2_journal_forget);
68EXPORT_SYMBOL(jbd2_journal_flush);
69EXPORT_SYMBOL(jbd2_journal_revoke);
70
71EXPORT_SYMBOL(jbd2_journal_init_dev);
72EXPORT_SYMBOL(jbd2_journal_init_inode);
73EXPORT_SYMBOL(jbd2_journal_check_used_features);
74EXPORT_SYMBOL(jbd2_journal_check_available_features);
75EXPORT_SYMBOL(jbd2_journal_set_features);
76EXPORT_SYMBOL(jbd2_journal_load);
77EXPORT_SYMBOL(jbd2_journal_destroy);
78EXPORT_SYMBOL(jbd2_journal_abort);
79EXPORT_SYMBOL(jbd2_journal_errno);
80EXPORT_SYMBOL(jbd2_journal_ack_err);
81EXPORT_SYMBOL(jbd2_journal_clear_err);
82EXPORT_SYMBOL(jbd2_log_wait_commit);
83EXPORT_SYMBOL(jbd2_journal_start_commit);
84EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85EXPORT_SYMBOL(jbd2_journal_wipe);
86EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87EXPORT_SYMBOL(jbd2_journal_invalidate_folio);
88EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89EXPORT_SYMBOL(jbd2_journal_force_commit);
90EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
91EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
92EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
93EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
94EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
95EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
96EXPORT_SYMBOL(jbd2_inode_cache);
97
98static int jbd2_journal_create_slab(size_t slab_size);
99
100#ifdef CONFIG_JBD2_DEBUG
101void __jbd2_debug(int level, const char *file, const char *func,
102		  unsigned int line, const char *fmt, ...)
103{
104	struct va_format vaf;
105	va_list args;
106
107	if (level > jbd2_journal_enable_debug)
108		return;
109	va_start(args, fmt);
110	vaf.fmt = fmt;
111	vaf.va = &args;
112	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
113	va_end(args);
114}
115#endif
116
117/* Checksumming functions */
118static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
119{
120	__u32 csum;
121	__be32 old_csum;
122
123	old_csum = sb->s_checksum;
124	sb->s_checksum = 0;
125	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
126	sb->s_checksum = old_csum;
127
128	return cpu_to_be32(csum);
129}
130
131/*
132 * Helper function used to manage commit timeouts
133 */
134
135static void commit_timeout(struct timer_list *t)
136{
137	journal_t *journal = from_timer(journal, t, j_commit_timer);
138
139	wake_up_process(journal->j_task);
140}
141
142/*
143 * kjournald2: The main thread function used to manage a logging device
144 * journal.
145 *
146 * This kernel thread is responsible for two things:
147 *
148 * 1) COMMIT:  Every so often we need to commit the current state of the
149 *    filesystem to disk.  The journal thread is responsible for writing
150 *    all of the metadata buffers to disk. If a fast commit is ongoing
151 *    journal thread waits until it's done and then continues from
152 *    there on.
153 *
154 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
155 *    of the data in that part of the log has been rewritten elsewhere on
156 *    the disk.  Flushing these old buffers to reclaim space in the log is
157 *    known as checkpointing, and this thread is responsible for that job.
158 */
159
160static int kjournald2(void *arg)
161{
162	journal_t *journal = arg;
163	transaction_t *transaction;
164
165	/*
166	 * Set up an interval timer which can be used to trigger a commit wakeup
167	 * after the commit interval expires
168	 */
169	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
170
171	set_freezable();
172
173	/* Record that the journal thread is running */
174	journal->j_task = current;
175	wake_up(&journal->j_wait_done_commit);
176
177	/*
178	 * Make sure that no allocations from this kernel thread will ever
179	 * recurse to the fs layer because we are responsible for the
180	 * transaction commit and any fs involvement might get stuck waiting for
181	 * the trasn. commit.
182	 */
183	memalloc_nofs_save();
184
185	/*
186	 * And now, wait forever for commit wakeup events.
187	 */
188	write_lock(&journal->j_state_lock);
189
190loop:
191	if (journal->j_flags & JBD2_UNMOUNT)
192		goto end_loop;
193
194	jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n",
195		journal->j_commit_sequence, journal->j_commit_request);
196
197	if (journal->j_commit_sequence != journal->j_commit_request) {
198		jbd2_debug(1, "OK, requests differ\n");
199		write_unlock(&journal->j_state_lock);
200		del_timer_sync(&journal->j_commit_timer);
201		jbd2_journal_commit_transaction(journal);
202		write_lock(&journal->j_state_lock);
203		goto loop;
204	}
205
206	wake_up(&journal->j_wait_done_commit);
207	if (freezing(current)) {
208		/*
209		 * The simpler the better. Flushing journal isn't a
210		 * good idea, because that depends on threads that may
211		 * be already stopped.
212		 */
213		jbd2_debug(1, "Now suspending kjournald2\n");
214		write_unlock(&journal->j_state_lock);
215		try_to_freeze();
216		write_lock(&journal->j_state_lock);
217	} else {
218		/*
219		 * We assume on resume that commits are already there,
220		 * so we don't sleep
221		 */
222		DEFINE_WAIT(wait);
223		int should_sleep = 1;
224
225		prepare_to_wait(&journal->j_wait_commit, &wait,
226				TASK_INTERRUPTIBLE);
227		if (journal->j_commit_sequence != journal->j_commit_request)
228			should_sleep = 0;
229		transaction = journal->j_running_transaction;
230		if (transaction && time_after_eq(jiffies,
231						transaction->t_expires))
232			should_sleep = 0;
233		if (journal->j_flags & JBD2_UNMOUNT)
234			should_sleep = 0;
235		if (should_sleep) {
236			write_unlock(&journal->j_state_lock);
237			schedule();
238			write_lock(&journal->j_state_lock);
239		}
240		finish_wait(&journal->j_wait_commit, &wait);
241	}
242
243	jbd2_debug(1, "kjournald2 wakes\n");
244
245	/*
246	 * Were we woken up by a commit wakeup event?
247	 */
248	transaction = journal->j_running_transaction;
249	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
250		journal->j_commit_request = transaction->t_tid;
251		jbd2_debug(1, "woke because of timeout\n");
252	}
253	goto loop;
254
255end_loop:
256	del_timer_sync(&journal->j_commit_timer);
257	journal->j_task = NULL;
258	wake_up(&journal->j_wait_done_commit);
259	jbd2_debug(1, "Journal thread exiting.\n");
260	write_unlock(&journal->j_state_lock);
261	return 0;
262}
263
264static int jbd2_journal_start_thread(journal_t *journal)
265{
266	struct task_struct *t;
267
268	t = kthread_run(kjournald2, journal, "jbd2/%s",
269			journal->j_devname);
270	if (IS_ERR(t))
271		return PTR_ERR(t);
272
273	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
274	return 0;
275}
276
277static void journal_kill_thread(journal_t *journal)
278{
279	write_lock(&journal->j_state_lock);
280	journal->j_flags |= JBD2_UNMOUNT;
281
282	while (journal->j_task) {
283		write_unlock(&journal->j_state_lock);
284		wake_up(&journal->j_wait_commit);
285		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
286		write_lock(&journal->j_state_lock);
287	}
288	write_unlock(&journal->j_state_lock);
289}
290
291/*
292 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
293 *
294 * Writes a metadata buffer to a given disk block.  The actual IO is not
295 * performed but a new buffer_head is constructed which labels the data
296 * to be written with the correct destination disk block.
297 *
298 * Any magic-number escaping which needs to be done will cause a
299 * copy-out here.  If the buffer happens to start with the
300 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
301 * magic number is only written to the log for descripter blocks.  In
302 * this case, we copy the data and replace the first word with 0, and we
303 * return a result code which indicates that this buffer needs to be
304 * marked as an escaped buffer in the corresponding log descriptor
305 * block.  The missing word can then be restored when the block is read
306 * during recovery.
307 *
308 * If the source buffer has already been modified by a new transaction
309 * since we took the last commit snapshot, we use the frozen copy of
310 * that data for IO. If we end up using the existing buffer_head's data
311 * for the write, then we have to make sure nobody modifies it while the
312 * IO is in progress. do_get_write_access() handles this.
313 *
314 * The function returns a pointer to the buffer_head to be used for IO.
315 *
316 *
317 * Return value:
318 *  <0: Error
319 * >=0: Finished OK
320 *
321 * On success:
322 * Bit 0 set == escape performed on the data
323 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
324 */
325
326int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
327				  struct journal_head  *jh_in,
328				  struct buffer_head **bh_out,
329				  sector_t blocknr)
330{
331	int need_copy_out = 0;
332	int done_copy_out = 0;
333	int do_escape = 0;
334	char *mapped_data;
335	struct buffer_head *new_bh;
336	struct folio *new_folio;
337	unsigned int new_offset;
338	struct buffer_head *bh_in = jh2bh(jh_in);
339	journal_t *journal = transaction->t_journal;
340
341	/*
342	 * The buffer really shouldn't be locked: only the current committing
343	 * transaction is allowed to write it, so nobody else is allowed
344	 * to do any IO.
345	 *
346	 * akpm: except if we're journalling data, and write() output is
347	 * also part of a shared mapping, and another thread has
348	 * decided to launch a writepage() against this buffer.
349	 */
350	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
351
352	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
353
354	/* keep subsequent assertions sane */
355	atomic_set(&new_bh->b_count, 1);
356
357	spin_lock(&jh_in->b_state_lock);
358repeat:
359	/*
360	 * If a new transaction has already done a buffer copy-out, then
361	 * we use that version of the data for the commit.
362	 */
363	if (jh_in->b_frozen_data) {
364		done_copy_out = 1;
365		new_folio = virt_to_folio(jh_in->b_frozen_data);
366		new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data);
367	} else {
368		new_folio = jh2bh(jh_in)->b_folio;
369		new_offset = offset_in_folio(new_folio, jh2bh(jh_in)->b_data);
370	}
371
372	mapped_data = kmap_local_folio(new_folio, new_offset);
373	/*
374	 * Fire data frozen trigger if data already wasn't frozen.  Do this
375	 * before checking for escaping, as the trigger may modify the magic
376	 * offset.  If a copy-out happens afterwards, it will have the correct
377	 * data in the buffer.
378	 */
379	if (!done_copy_out)
380		jbd2_buffer_frozen_trigger(jh_in, mapped_data,
381					   jh_in->b_triggers);
382
383	/*
384	 * Check for escaping
385	 */
386	if (*((__be32 *)mapped_data) == cpu_to_be32(JBD2_MAGIC_NUMBER)) {
387		need_copy_out = 1;
388		do_escape = 1;
389	}
390	kunmap_local(mapped_data);
391
392	/*
393	 * Do we need to do a data copy?
394	 */
395	if (need_copy_out && !done_copy_out) {
396		char *tmp;
397
398		spin_unlock(&jh_in->b_state_lock);
399		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
400		if (!tmp) {
401			brelse(new_bh);
402			return -ENOMEM;
403		}
404		spin_lock(&jh_in->b_state_lock);
405		if (jh_in->b_frozen_data) {
406			jbd2_free(tmp, bh_in->b_size);
407			goto repeat;
408		}
409
410		jh_in->b_frozen_data = tmp;
411		memcpy_from_folio(tmp, new_folio, new_offset, bh_in->b_size);
412
413		new_folio = virt_to_folio(tmp);
414		new_offset = offset_in_folio(new_folio, tmp);
415		done_copy_out = 1;
416
417		/*
418		 * This isn't strictly necessary, as we're using frozen
419		 * data for the escaping, but it keeps consistency with
420		 * b_frozen_data usage.
421		 */
422		jh_in->b_frozen_triggers = jh_in->b_triggers;
423	}
424
425	/*
426	 * Did we need to do an escaping?  Now we've done all the
427	 * copying, we can finally do so.
428	 */
429	if (do_escape) {
430		mapped_data = kmap_local_folio(new_folio, new_offset);
431		*((unsigned int *)mapped_data) = 0;
432		kunmap_local(mapped_data);
433	}
434
435	folio_set_bh(new_bh, new_folio, new_offset);
436	new_bh->b_size = bh_in->b_size;
437	new_bh->b_bdev = journal->j_dev;
438	new_bh->b_blocknr = blocknr;
439	new_bh->b_private = bh_in;
440	set_buffer_mapped(new_bh);
441	set_buffer_dirty(new_bh);
442
443	*bh_out = new_bh;
444
445	/*
446	 * The to-be-written buffer needs to get moved to the io queue,
447	 * and the original buffer whose contents we are shadowing or
448	 * copying is moved to the transaction's shadow queue.
449	 */
450	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
451	spin_lock(&journal->j_list_lock);
452	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
453	spin_unlock(&journal->j_list_lock);
454	set_buffer_shadow(bh_in);
455	spin_unlock(&jh_in->b_state_lock);
456
457	return do_escape | (done_copy_out << 1);
458}
459
460/*
461 * Allocation code for the journal file.  Manage the space left in the
462 * journal, so that we can begin checkpointing when appropriate.
463 */
464
465/*
466 * Called with j_state_lock locked for writing.
467 * Returns true if a transaction commit was started.
468 */
469static int __jbd2_log_start_commit(journal_t *journal, tid_t target)
470{
471	/* Return if the txn has already requested to be committed */
472	if (journal->j_commit_request == target)
473		return 0;
474
475	/*
476	 * The only transaction we can possibly wait upon is the
477	 * currently running transaction (if it exists).  Otherwise,
478	 * the target tid must be an old one.
479	 */
480	if (journal->j_running_transaction &&
481	    journal->j_running_transaction->t_tid == target) {
482		/*
483		 * We want a new commit: OK, mark the request and wakeup the
484		 * commit thread.  We do _not_ do the commit ourselves.
485		 */
486
487		journal->j_commit_request = target;
488		jbd2_debug(1, "JBD2: requesting commit %u/%u\n",
489			  journal->j_commit_request,
490			  journal->j_commit_sequence);
491		journal->j_running_transaction->t_requested = jiffies;
492		wake_up(&journal->j_wait_commit);
493		return 1;
494	} else if (!tid_geq(journal->j_commit_request, target))
495		/* This should never happen, but if it does, preserve
496		   the evidence before kjournald goes into a loop and
497		   increments j_commit_sequence beyond all recognition. */
498		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
499			  journal->j_commit_request,
500			  journal->j_commit_sequence,
501			  target, journal->j_running_transaction ?
502			  journal->j_running_transaction->t_tid : 0);
503	return 0;
504}
505
506int jbd2_log_start_commit(journal_t *journal, tid_t tid)
507{
508	int ret;
509
510	write_lock(&journal->j_state_lock);
511	ret = __jbd2_log_start_commit(journal, tid);
512	write_unlock(&journal->j_state_lock);
513	return ret;
514}
515
516/*
517 * Force and wait any uncommitted transactions.  We can only force the running
518 * transaction if we don't have an active handle, otherwise, we will deadlock.
519 * Returns: <0 in case of error,
520 *           0 if nothing to commit,
521 *           1 if transaction was successfully committed.
522 */
523static int __jbd2_journal_force_commit(journal_t *journal)
524{
525	transaction_t *transaction = NULL;
526	tid_t tid;
527	int need_to_start = 0, ret = 0;
528
529	read_lock(&journal->j_state_lock);
530	if (journal->j_running_transaction && !current->journal_info) {
531		transaction = journal->j_running_transaction;
532		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
533			need_to_start = 1;
534	} else if (journal->j_committing_transaction)
535		transaction = journal->j_committing_transaction;
536
537	if (!transaction) {
538		/* Nothing to commit */
539		read_unlock(&journal->j_state_lock);
540		return 0;
541	}
542	tid = transaction->t_tid;
543	read_unlock(&journal->j_state_lock);
544	if (need_to_start)
545		jbd2_log_start_commit(journal, tid);
546	ret = jbd2_log_wait_commit(journal, tid);
547	if (!ret)
548		ret = 1;
549
550	return ret;
551}
552
553/**
554 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
555 * calling process is not within transaction.
556 *
557 * @journal: journal to force
558 * Returns true if progress was made.
559 *
560 * This is used for forcing out undo-protected data which contains
561 * bitmaps, when the fs is running out of space.
562 */
563int jbd2_journal_force_commit_nested(journal_t *journal)
564{
565	int ret;
566
567	ret = __jbd2_journal_force_commit(journal);
568	return ret > 0;
569}
570
571/**
572 * jbd2_journal_force_commit() - force any uncommitted transactions
573 * @journal: journal to force
574 *
575 * Caller want unconditional commit. We can only force the running transaction
576 * if we don't have an active handle, otherwise, we will deadlock.
577 */
578int jbd2_journal_force_commit(journal_t *journal)
579{
580	int ret;
581
582	J_ASSERT(!current->journal_info);
583	ret = __jbd2_journal_force_commit(journal);
584	if (ret > 0)
585		ret = 0;
586	return ret;
587}
588
589/*
590 * Start a commit of the current running transaction (if any).  Returns true
591 * if a transaction is going to be committed (or is currently already
592 * committing), and fills its tid in at *ptid
593 */
594int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
595{
596	int ret = 0;
597
598	write_lock(&journal->j_state_lock);
599	if (journal->j_running_transaction) {
600		tid_t tid = journal->j_running_transaction->t_tid;
601
602		__jbd2_log_start_commit(journal, tid);
603		/* There's a running transaction and we've just made sure
604		 * it's commit has been scheduled. */
605		if (ptid)
606			*ptid = tid;
607		ret = 1;
608	} else if (journal->j_committing_transaction) {
609		/*
610		 * If commit has been started, then we have to wait for
611		 * completion of that transaction.
612		 */
613		if (ptid)
614			*ptid = journal->j_committing_transaction->t_tid;
615		ret = 1;
616	}
617	write_unlock(&journal->j_state_lock);
618	return ret;
619}
620
621/*
622 * Return 1 if a given transaction has not yet sent barrier request
623 * connected with a transaction commit. If 0 is returned, transaction
624 * may or may not have sent the barrier. Used to avoid sending barrier
625 * twice in common cases.
626 */
627int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
628{
629	int ret = 0;
630	transaction_t *commit_trans;
631
632	if (!(journal->j_flags & JBD2_BARRIER))
633		return 0;
634	read_lock(&journal->j_state_lock);
635	/* Transaction already committed? */
636	if (tid_geq(journal->j_commit_sequence, tid))
637		goto out;
638	commit_trans = journal->j_committing_transaction;
639	if (!commit_trans || commit_trans->t_tid != tid) {
640		ret = 1;
641		goto out;
642	}
643	/*
644	 * Transaction is being committed and we already proceeded to
645	 * submitting a flush to fs partition?
646	 */
647	if (journal->j_fs_dev != journal->j_dev) {
648		if (!commit_trans->t_need_data_flush ||
649		    commit_trans->t_state >= T_COMMIT_DFLUSH)
650			goto out;
651	} else {
652		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
653			goto out;
654	}
655	ret = 1;
656out:
657	read_unlock(&journal->j_state_lock);
658	return ret;
659}
660EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
661
662/*
663 * Wait for a specified commit to complete.
664 * The caller may not hold the journal lock.
665 */
666int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
667{
668	int err = 0;
669
670	read_lock(&journal->j_state_lock);
671#ifdef CONFIG_PROVE_LOCKING
672	/*
673	 * Some callers make sure transaction is already committing and in that
674	 * case we cannot block on open handles anymore. So don't warn in that
675	 * case.
676	 */
677	if (tid_gt(tid, journal->j_commit_sequence) &&
678	    (!journal->j_committing_transaction ||
679	     journal->j_committing_transaction->t_tid != tid)) {
680		read_unlock(&journal->j_state_lock);
681		jbd2_might_wait_for_commit(journal);
682		read_lock(&journal->j_state_lock);
683	}
684#endif
685#ifdef CONFIG_JBD2_DEBUG
686	if (!tid_geq(journal->j_commit_request, tid)) {
687		printk(KERN_ERR
688		       "%s: error: j_commit_request=%u, tid=%u\n",
689		       __func__, journal->j_commit_request, tid);
690	}
691#endif
692	while (tid_gt(tid, journal->j_commit_sequence)) {
693		jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
694				  tid, journal->j_commit_sequence);
695		read_unlock(&journal->j_state_lock);
696		wake_up(&journal->j_wait_commit);
697		wait_event(journal->j_wait_done_commit,
698				!tid_gt(tid, journal->j_commit_sequence));
699		read_lock(&journal->j_state_lock);
700	}
701	read_unlock(&journal->j_state_lock);
702
703	if (unlikely(is_journal_aborted(journal)))
704		err = -EIO;
705	return err;
706}
707
708/*
709 * Start a fast commit. If there's an ongoing fast or full commit wait for
710 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
711 * if a fast commit is not needed, either because there's an already a commit
712 * going on or this tid has already been committed. Returns -EINVAL if no jbd2
713 * commit has yet been performed.
714 */
715int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
716{
717	if (unlikely(is_journal_aborted(journal)))
718		return -EIO;
719	/*
720	 * Fast commits only allowed if at least one full commit has
721	 * been processed.
722	 */
723	if (!journal->j_stats.ts_tid)
724		return -EINVAL;
725
726	write_lock(&journal->j_state_lock);
727	if (tid <= journal->j_commit_sequence) {
728		write_unlock(&journal->j_state_lock);
729		return -EALREADY;
730	}
731
732	if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
733	    (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
734		DEFINE_WAIT(wait);
735
736		prepare_to_wait(&journal->j_fc_wait, &wait,
737				TASK_UNINTERRUPTIBLE);
738		write_unlock(&journal->j_state_lock);
739		schedule();
740		finish_wait(&journal->j_fc_wait, &wait);
741		return -EALREADY;
742	}
743	journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
744	write_unlock(&journal->j_state_lock);
745	jbd2_journal_lock_updates(journal);
746
747	return 0;
748}
749EXPORT_SYMBOL(jbd2_fc_begin_commit);
750
751/*
752 * Stop a fast commit. If fallback is set, this function starts commit of
753 * TID tid before any other fast commit can start.
754 */
755static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
756{
757	jbd2_journal_unlock_updates(journal);
758	if (journal->j_fc_cleanup_callback)
759		journal->j_fc_cleanup_callback(journal, 0, tid);
760	write_lock(&journal->j_state_lock);
761	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
762	if (fallback)
763		journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
764	write_unlock(&journal->j_state_lock);
765	wake_up(&journal->j_fc_wait);
766	if (fallback)
767		return jbd2_complete_transaction(journal, tid);
768	return 0;
769}
770
771int jbd2_fc_end_commit(journal_t *journal)
772{
773	return __jbd2_fc_end_commit(journal, 0, false);
774}
775EXPORT_SYMBOL(jbd2_fc_end_commit);
776
777int jbd2_fc_end_commit_fallback(journal_t *journal)
778{
779	tid_t tid;
780
781	read_lock(&journal->j_state_lock);
782	tid = journal->j_running_transaction ?
783		journal->j_running_transaction->t_tid : 0;
784	read_unlock(&journal->j_state_lock);
785	return __jbd2_fc_end_commit(journal, tid, true);
786}
787EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
788
789/* Return 1 when transaction with given tid has already committed. */
790int jbd2_transaction_committed(journal_t *journal, tid_t tid)
791{
792	int ret = 1;
793
794	read_lock(&journal->j_state_lock);
795	if (journal->j_running_transaction &&
796	    journal->j_running_transaction->t_tid == tid)
797		ret = 0;
798	if (journal->j_committing_transaction &&
799	    journal->j_committing_transaction->t_tid == tid)
800		ret = 0;
801	read_unlock(&journal->j_state_lock);
802	return ret;
803}
804EXPORT_SYMBOL(jbd2_transaction_committed);
805
806/*
807 * When this function returns the transaction corresponding to tid
808 * will be completed.  If the transaction has currently running, start
809 * committing that transaction before waiting for it to complete.  If
810 * the transaction id is stale, it is by definition already completed,
811 * so just return SUCCESS.
812 */
813int jbd2_complete_transaction(journal_t *journal, tid_t tid)
814{
815	int	need_to_wait = 1;
816
817	read_lock(&journal->j_state_lock);
818	if (journal->j_running_transaction &&
819	    journal->j_running_transaction->t_tid == tid) {
820		if (journal->j_commit_request != tid) {
821			/* transaction not yet started, so request it */
822			read_unlock(&journal->j_state_lock);
823			jbd2_log_start_commit(journal, tid);
824			goto wait_commit;
825		}
826	} else if (!(journal->j_committing_transaction &&
827		     journal->j_committing_transaction->t_tid == tid))
828		need_to_wait = 0;
829	read_unlock(&journal->j_state_lock);
830	if (!need_to_wait)
831		return 0;
832wait_commit:
833	return jbd2_log_wait_commit(journal, tid);
834}
835EXPORT_SYMBOL(jbd2_complete_transaction);
836
837/*
838 * Log buffer allocation routines:
839 */
840
841int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
842{
843	unsigned long blocknr;
844
845	write_lock(&journal->j_state_lock);
846	J_ASSERT(journal->j_free > 1);
847
848	blocknr = journal->j_head;
849	journal->j_head++;
850	journal->j_free--;
851	if (journal->j_head == journal->j_last)
852		journal->j_head = journal->j_first;
853	write_unlock(&journal->j_state_lock);
854	return jbd2_journal_bmap(journal, blocknr, retp);
855}
856
857/* Map one fast commit buffer for use by the file system */
858int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
859{
860	unsigned long long pblock;
861	unsigned long blocknr;
862	int ret = 0;
863	struct buffer_head *bh;
864	int fc_off;
865
866	*bh_out = NULL;
867
868	if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
869		fc_off = journal->j_fc_off;
870		blocknr = journal->j_fc_first + fc_off;
871		journal->j_fc_off++;
872	} else {
873		ret = -EINVAL;
874	}
875
876	if (ret)
877		return ret;
878
879	ret = jbd2_journal_bmap(journal, blocknr, &pblock);
880	if (ret)
881		return ret;
882
883	bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
884	if (!bh)
885		return -ENOMEM;
886
887
888	journal->j_fc_wbuf[fc_off] = bh;
889
890	*bh_out = bh;
891
892	return 0;
893}
894EXPORT_SYMBOL(jbd2_fc_get_buf);
895
896/*
897 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
898 * for completion.
899 */
900int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
901{
902	struct buffer_head *bh;
903	int i, j_fc_off;
904
905	j_fc_off = journal->j_fc_off;
906
907	/*
908	 * Wait in reverse order to minimize chances of us being woken up before
909	 * all IOs have completed
910	 */
911	for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
912		bh = journal->j_fc_wbuf[i];
913		wait_on_buffer(bh);
914		/*
915		 * Update j_fc_off so jbd2_fc_release_bufs can release remain
916		 * buffer head.
917		 */
918		if (unlikely(!buffer_uptodate(bh))) {
919			journal->j_fc_off = i + 1;
920			return -EIO;
921		}
922		put_bh(bh);
923		journal->j_fc_wbuf[i] = NULL;
924	}
925
926	return 0;
927}
928EXPORT_SYMBOL(jbd2_fc_wait_bufs);
929
930int jbd2_fc_release_bufs(journal_t *journal)
931{
932	struct buffer_head *bh;
933	int i, j_fc_off;
934
935	j_fc_off = journal->j_fc_off;
936
937	for (i = j_fc_off - 1; i >= 0; i--) {
938		bh = journal->j_fc_wbuf[i];
939		if (!bh)
940			break;
941		put_bh(bh);
942		journal->j_fc_wbuf[i] = NULL;
943	}
944
945	return 0;
946}
947EXPORT_SYMBOL(jbd2_fc_release_bufs);
948
949/*
950 * Conversion of logical to physical block numbers for the journal
951 *
952 * On external journals the journal blocks are identity-mapped, so
953 * this is a no-op.  If needed, we can use j_blk_offset - everything is
954 * ready.
955 */
956int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
957		 unsigned long long *retp)
958{
959	int err = 0;
960	unsigned long long ret;
961	sector_t block = blocknr;
962
963	if (journal->j_bmap) {
964		err = journal->j_bmap(journal, &block);
965		if (err == 0)
966			*retp = block;
967	} else if (journal->j_inode) {
968		ret = bmap(journal->j_inode, &block);
969
970		if (ret || !block) {
971			printk(KERN_ALERT "%s: journal block not found "
972					"at offset %lu on %s\n",
973			       __func__, blocknr, journal->j_devname);
974			err = -EIO;
975			jbd2_journal_abort(journal, err);
976		} else {
977			*retp = block;
978		}
979
980	} else {
981		*retp = blocknr; /* +journal->j_blk_offset */
982	}
983	return err;
984}
985
986/*
987 * We play buffer_head aliasing tricks to write data/metadata blocks to
988 * the journal without copying their contents, but for journal
989 * descriptor blocks we do need to generate bona fide buffers.
990 *
991 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
992 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
993 * But we don't bother doing that, so there will be coherency problems with
994 * mmaps of blockdevs which hold live JBD-controlled filesystems.
995 */
996struct buffer_head *
997jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
998{
999	journal_t *journal = transaction->t_journal;
1000	struct buffer_head *bh;
1001	unsigned long long blocknr;
1002	journal_header_t *header;
1003	int err;
1004
1005	err = jbd2_journal_next_log_block(journal, &blocknr);
1006
1007	if (err)
1008		return NULL;
1009
1010	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1011	if (!bh)
1012		return NULL;
1013	atomic_dec(&transaction->t_outstanding_credits);
1014	lock_buffer(bh);
1015	memset(bh->b_data, 0, journal->j_blocksize);
1016	header = (journal_header_t *)bh->b_data;
1017	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1018	header->h_blocktype = cpu_to_be32(type);
1019	header->h_sequence = cpu_to_be32(transaction->t_tid);
1020	set_buffer_uptodate(bh);
1021	unlock_buffer(bh);
1022	BUFFER_TRACE(bh, "return this buffer");
1023	return bh;
1024}
1025
1026void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1027{
1028	struct jbd2_journal_block_tail *tail;
1029	__u32 csum;
1030
1031	if (!jbd2_journal_has_csum_v2or3(j))
1032		return;
1033
1034	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1035			sizeof(struct jbd2_journal_block_tail));
1036	tail->t_checksum = 0;
1037	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1038	tail->t_checksum = cpu_to_be32(csum);
1039}
1040
1041/*
1042 * Return tid of the oldest transaction in the journal and block in the journal
1043 * where the transaction starts.
1044 *
1045 * If the journal is now empty, return which will be the next transaction ID
1046 * we will write and where will that transaction start.
1047 *
1048 * The return value is 0 if journal tail cannot be pushed any further, 1 if
1049 * it can.
1050 */
1051int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1052			      unsigned long *block)
1053{
1054	transaction_t *transaction;
1055	int ret;
1056
1057	read_lock(&journal->j_state_lock);
1058	spin_lock(&journal->j_list_lock);
1059	transaction = journal->j_checkpoint_transactions;
1060	if (transaction) {
1061		*tid = transaction->t_tid;
1062		*block = transaction->t_log_start;
1063	} else if ((transaction = journal->j_committing_transaction) != NULL) {
1064		*tid = transaction->t_tid;
1065		*block = transaction->t_log_start;
1066	} else if ((transaction = journal->j_running_transaction) != NULL) {
1067		*tid = transaction->t_tid;
1068		*block = journal->j_head;
1069	} else {
1070		*tid = journal->j_transaction_sequence;
1071		*block = journal->j_head;
1072	}
1073	ret = tid_gt(*tid, journal->j_tail_sequence);
1074	spin_unlock(&journal->j_list_lock);
1075	read_unlock(&journal->j_state_lock);
1076
1077	return ret;
1078}
1079
1080/*
1081 * Update information in journal structure and in on disk journal superblock
1082 * about log tail. This function does not check whether information passed in
1083 * really pushes log tail further. It's responsibility of the caller to make
1084 * sure provided log tail information is valid (e.g. by holding
1085 * j_checkpoint_mutex all the time between computing log tail and calling this
1086 * function as is the case with jbd2_cleanup_journal_tail()).
1087 *
1088 * Requires j_checkpoint_mutex
1089 */
1090int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1091{
1092	unsigned long freed;
1093	int ret;
1094
1095	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1096
1097	/*
1098	 * We cannot afford for write to remain in drive's caches since as
1099	 * soon as we update j_tail, next transaction can start reusing journal
1100	 * space and if we lose sb update during power failure we'd replay
1101	 * old transaction with possibly newly overwritten data.
1102	 */
1103	ret = jbd2_journal_update_sb_log_tail(journal, tid, block, REQ_FUA);
1104	if (ret)
1105		goto out;
1106
1107	write_lock(&journal->j_state_lock);
1108	freed = block - journal->j_tail;
1109	if (block < journal->j_tail)
1110		freed += journal->j_last - journal->j_first;
1111
1112	trace_jbd2_update_log_tail(journal, tid, block, freed);
1113	jbd2_debug(1,
1114		  "Cleaning journal tail from %u to %u (offset %lu), "
1115		  "freeing %lu\n",
1116		  journal->j_tail_sequence, tid, block, freed);
1117
1118	journal->j_free += freed;
1119	journal->j_tail_sequence = tid;
1120	journal->j_tail = block;
1121	write_unlock(&journal->j_state_lock);
1122
1123out:
1124	return ret;
1125}
1126
1127/*
1128 * This is a variation of __jbd2_update_log_tail which checks for validity of
1129 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1130 * with other threads updating log tail.
1131 */
1132void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1133{
1134	mutex_lock_io(&journal->j_checkpoint_mutex);
1135	if (tid_gt(tid, journal->j_tail_sequence))
1136		__jbd2_update_log_tail(journal, tid, block);
1137	mutex_unlock(&journal->j_checkpoint_mutex);
1138}
1139
1140struct jbd2_stats_proc_session {
1141	journal_t *journal;
1142	struct transaction_stats_s *stats;
1143	int start;
1144	int max;
1145};
1146
1147static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1148{
1149	return *pos ? NULL : SEQ_START_TOKEN;
1150}
1151
1152static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1153{
1154	(*pos)++;
1155	return NULL;
1156}
1157
1158static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1159{
1160	struct jbd2_stats_proc_session *s = seq->private;
1161
1162	if (v != SEQ_START_TOKEN)
1163		return 0;
1164	seq_printf(seq, "%lu transactions (%lu requested), "
1165		   "each up to %u blocks\n",
1166		   s->stats->ts_tid, s->stats->ts_requested,
1167		   s->journal->j_max_transaction_buffers);
1168	if (s->stats->ts_tid == 0)
1169		return 0;
1170	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1171	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1172	seq_printf(seq, "  %ums request delay\n",
1173	    (s->stats->ts_requested == 0) ? 0 :
1174	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1175			     s->stats->ts_requested));
1176	seq_printf(seq, "  %ums running transaction\n",
1177	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1178	seq_printf(seq, "  %ums transaction was being locked\n",
1179	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1180	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1181	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1182	seq_printf(seq, "  %ums logging transaction\n",
1183	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1184	seq_printf(seq, "  %lluus average transaction commit time\n",
1185		   div_u64(s->journal->j_average_commit_time, 1000));
1186	seq_printf(seq, "  %lu handles per transaction\n",
1187	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1188	seq_printf(seq, "  %lu blocks per transaction\n",
1189	    s->stats->run.rs_blocks / s->stats->ts_tid);
1190	seq_printf(seq, "  %lu logged blocks per transaction\n",
1191	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1192	return 0;
1193}
1194
1195static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1196{
1197}
1198
1199static const struct seq_operations jbd2_seq_info_ops = {
1200	.start  = jbd2_seq_info_start,
1201	.next   = jbd2_seq_info_next,
1202	.stop   = jbd2_seq_info_stop,
1203	.show   = jbd2_seq_info_show,
1204};
1205
1206static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1207{
1208	journal_t *journal = pde_data(inode);
1209	struct jbd2_stats_proc_session *s;
1210	int rc, size;
1211
1212	s = kmalloc(sizeof(*s), GFP_KERNEL);
1213	if (s == NULL)
1214		return -ENOMEM;
1215	size = sizeof(struct transaction_stats_s);
1216	s->stats = kmalloc(size, GFP_KERNEL);
1217	if (s->stats == NULL) {
1218		kfree(s);
1219		return -ENOMEM;
1220	}
1221	spin_lock(&journal->j_history_lock);
1222	memcpy(s->stats, &journal->j_stats, size);
1223	s->journal = journal;
1224	spin_unlock(&journal->j_history_lock);
1225
1226	rc = seq_open(file, &jbd2_seq_info_ops);
1227	if (rc == 0) {
1228		struct seq_file *m = file->private_data;
1229		m->private = s;
1230	} else {
1231		kfree(s->stats);
1232		kfree(s);
1233	}
1234	return rc;
1235
1236}
1237
1238static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1239{
1240	struct seq_file *seq = file->private_data;
1241	struct jbd2_stats_proc_session *s = seq->private;
1242	kfree(s->stats);
1243	kfree(s);
1244	return seq_release(inode, file);
1245}
1246
1247static const struct proc_ops jbd2_info_proc_ops = {
1248	.proc_open	= jbd2_seq_info_open,
1249	.proc_read	= seq_read,
1250	.proc_lseek	= seq_lseek,
1251	.proc_release	= jbd2_seq_info_release,
1252};
1253
1254static struct proc_dir_entry *proc_jbd2_stats;
1255
1256static void jbd2_stats_proc_init(journal_t *journal)
1257{
1258	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1259	if (journal->j_proc_entry) {
1260		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1261				 &jbd2_info_proc_ops, journal);
1262	}
1263}
1264
1265static void jbd2_stats_proc_exit(journal_t *journal)
1266{
1267	remove_proc_entry("info", journal->j_proc_entry);
1268	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1269}
1270
1271/* Minimum size of descriptor tag */
1272static int jbd2_min_tag_size(void)
1273{
1274	/*
1275	 * Tag with 32-bit block numbers does not use last four bytes of the
1276	 * structure
1277	 */
1278	return sizeof(journal_block_tag_t) - 4;
1279}
1280
1281/**
1282 * jbd2_journal_shrink_scan()
1283 * @shrink: shrinker to work on
1284 * @sc: reclaim request to process
1285 *
1286 * Scan the checkpointed buffer on the checkpoint list and release the
1287 * journal_head.
1288 */
1289static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1290					      struct shrink_control *sc)
1291{
1292	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1293	unsigned long nr_to_scan = sc->nr_to_scan;
1294	unsigned long nr_shrunk;
1295	unsigned long count;
1296
1297	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1298	trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1299
1300	nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1301
1302	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1303	trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1304
1305	return nr_shrunk;
1306}
1307
1308/**
1309 * jbd2_journal_shrink_count()
1310 * @shrink: shrinker to work on
1311 * @sc: reclaim request to process
1312 *
1313 * Count the number of checkpoint buffers on the checkpoint list.
1314 */
1315static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1316					       struct shrink_control *sc)
1317{
1318	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1319	unsigned long count;
1320
1321	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1322	trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1323
1324	return count;
1325}
1326
1327/*
1328 * If the journal init or create aborts, we need to mark the journal
1329 * superblock as being NULL to prevent the journal destroy from writing
1330 * back a bogus superblock.
1331 */
1332static void journal_fail_superblock(journal_t *journal)
1333{
1334	struct buffer_head *bh = journal->j_sb_buffer;
1335	brelse(bh);
1336	journal->j_sb_buffer = NULL;
1337}
1338
1339/*
1340 * Check the superblock for a given journal, performing initial
1341 * validation of the format.
1342 */
1343static int journal_check_superblock(journal_t *journal)
1344{
1345	journal_superblock_t *sb = journal->j_superblock;
1346	int num_fc_blks;
1347	int err = -EINVAL;
1348
1349	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1350	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1351		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1352		return err;
1353	}
1354
1355	if (be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V1 &&
1356	    be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V2) {
1357		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1358		return err;
1359	}
1360
1361	if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1362		printk(KERN_WARNING "JBD2: journal file too short\n");
1363		return err;
1364	}
1365
1366	if (be32_to_cpu(sb->s_first) == 0 ||
1367	    be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1368		printk(KERN_WARNING
1369			"JBD2: Invalid start block of journal: %u\n",
1370			be32_to_cpu(sb->s_first));
1371		return err;
1372	}
1373
1374	/*
1375	 * If this is a V2 superblock, then we have to check the
1376	 * features flags on it.
1377	 */
1378	if (!jbd2_format_support_feature(journal))
1379		return 0;
1380
1381	if ((sb->s_feature_ro_compat &
1382			~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1383	    (sb->s_feature_incompat &
1384			~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1385		printk(KERN_WARNING "JBD2: Unrecognised features on journal\n");
1386		return err;
1387	}
1388
1389	num_fc_blks = jbd2_has_feature_fast_commit(journal) ?
1390				jbd2_journal_get_num_fc_blks(sb) : 0;
1391	if (be32_to_cpu(sb->s_maxlen) < JBD2_MIN_JOURNAL_BLOCKS ||
1392	    be32_to_cpu(sb->s_maxlen) - JBD2_MIN_JOURNAL_BLOCKS < num_fc_blks) {
1393		printk(KERN_ERR "JBD2: journal file too short %u,%d\n",
1394		       be32_to_cpu(sb->s_maxlen), num_fc_blks);
1395		return err;
1396	}
1397
1398	if (jbd2_has_feature_csum2(journal) &&
1399	    jbd2_has_feature_csum3(journal)) {
1400		/* Can't have checksum v2 and v3 at the same time! */
1401		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1402		       "at the same time!\n");
1403		return err;
1404	}
1405
1406	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1407	    jbd2_has_feature_checksum(journal)) {
1408		/* Can't have checksum v1 and v2 on at the same time! */
1409		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1410		       "at the same time!\n");
1411		return err;
1412	}
1413
1414	/* Load the checksum driver */
1415	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1416		if (sb->s_checksum_type != JBD2_CRC32C_CHKSUM) {
1417			printk(KERN_ERR "JBD2: Unknown checksum type\n");
1418			return err;
1419		}
1420
1421		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1422		if (IS_ERR(journal->j_chksum_driver)) {
1423			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1424			err = PTR_ERR(journal->j_chksum_driver);
1425			journal->j_chksum_driver = NULL;
1426			return err;
1427		}
1428		/* Check superblock checksum */
1429		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1430			printk(KERN_ERR "JBD2: journal checksum error\n");
1431			err = -EFSBADCRC;
1432			return err;
1433		}
1434	}
1435
1436	return 0;
1437}
1438
1439static int journal_revoke_records_per_block(journal_t *journal)
1440{
1441	int record_size;
1442	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1443
1444	if (jbd2_has_feature_64bit(journal))
1445		record_size = 8;
1446	else
1447		record_size = 4;
1448
1449	if (jbd2_journal_has_csum_v2or3(journal))
1450		space -= sizeof(struct jbd2_journal_block_tail);
1451	return space / record_size;
1452}
1453
1454/*
1455 * Load the on-disk journal superblock and read the key fields into the
1456 * journal_t.
1457 */
1458static int journal_load_superblock(journal_t *journal)
1459{
1460	int err;
1461	struct buffer_head *bh;
1462	journal_superblock_t *sb;
1463
1464	bh = getblk_unmovable(journal->j_dev, journal->j_blk_offset,
1465			      journal->j_blocksize);
1466	if (bh)
1467		err = bh_read(bh, 0);
1468	if (!bh || err < 0) {
1469		pr_err("%s: Cannot read journal superblock\n", __func__);
1470		brelse(bh);
1471		return -EIO;
1472	}
1473
1474	journal->j_sb_buffer = bh;
1475	sb = (journal_superblock_t *)bh->b_data;
1476	journal->j_superblock = sb;
1477	err = journal_check_superblock(journal);
1478	if (err) {
1479		journal_fail_superblock(journal);
1480		return err;
1481	}
1482
1483	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1484	journal->j_tail = be32_to_cpu(sb->s_start);
1485	journal->j_first = be32_to_cpu(sb->s_first);
1486	journal->j_errno = be32_to_cpu(sb->s_errno);
1487	journal->j_last = be32_to_cpu(sb->s_maxlen);
1488
1489	if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1490		journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1491	/* Precompute checksum seed for all metadata */
1492	if (jbd2_journal_has_csum_v2or3(journal))
1493		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1494						   sizeof(sb->s_uuid));
1495	journal->j_revoke_records_per_block =
1496				journal_revoke_records_per_block(journal);
1497
1498	if (jbd2_has_feature_fast_commit(journal)) {
1499		journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1500		journal->j_last = journal->j_fc_last -
1501				  jbd2_journal_get_num_fc_blks(sb);
1502		journal->j_fc_first = journal->j_last + 1;
1503		journal->j_fc_off = 0;
1504	}
1505
1506	return 0;
1507}
1508
1509
1510/*
1511 * Management for journal control blocks: functions to create and
1512 * destroy journal_t structures, and to initialise and read existing
1513 * journal blocks from disk.  */
1514
1515/* First: create and setup a journal_t object in memory.  We initialise
1516 * very few fields yet: that has to wait until we have created the
1517 * journal structures from from scratch, or loaded them from disk. */
1518
1519static journal_t *journal_init_common(struct block_device *bdev,
1520			struct block_device *fs_dev,
1521			unsigned long long start, int len, int blocksize)
1522{
1523	static struct lock_class_key jbd2_trans_commit_key;
1524	journal_t *journal;
1525	int err;
1526	int n;
1527
1528	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1529	if (!journal)
1530		return ERR_PTR(-ENOMEM);
1531
1532	journal->j_blocksize = blocksize;
1533	journal->j_dev = bdev;
1534	journal->j_fs_dev = fs_dev;
1535	journal->j_blk_offset = start;
1536	journal->j_total_len = len;
1537
1538	err = journal_load_superblock(journal);
1539	if (err)
1540		goto err_cleanup;
1541
1542	init_waitqueue_head(&journal->j_wait_transaction_locked);
1543	init_waitqueue_head(&journal->j_wait_done_commit);
1544	init_waitqueue_head(&journal->j_wait_commit);
1545	init_waitqueue_head(&journal->j_wait_updates);
1546	init_waitqueue_head(&journal->j_wait_reserved);
1547	init_waitqueue_head(&journal->j_fc_wait);
1548	mutex_init(&journal->j_abort_mutex);
1549	mutex_init(&journal->j_barrier);
1550	mutex_init(&journal->j_checkpoint_mutex);
1551	spin_lock_init(&journal->j_revoke_lock);
1552	spin_lock_init(&journal->j_list_lock);
1553	spin_lock_init(&journal->j_history_lock);
1554	rwlock_init(&journal->j_state_lock);
1555
1556	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1557	journal->j_min_batch_time = 0;
1558	journal->j_max_batch_time = 15000; /* 15ms */
1559	atomic_set(&journal->j_reserved_credits, 0);
1560	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1561			 &jbd2_trans_commit_key, 0);
1562
1563	/* The journal is marked for error until we succeed with recovery! */
1564	journal->j_flags = JBD2_ABORT;
1565
1566	/* Set up a default-sized revoke table for the new mount. */
1567	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1568	if (err)
1569		goto err_cleanup;
1570
1571	/*
1572	 * journal descriptor can store up to n blocks, we need enough
1573	 * buffers to write out full descriptor block.
1574	 */
1575	err = -ENOMEM;
1576	n = journal->j_blocksize / jbd2_min_tag_size();
1577	journal->j_wbufsize = n;
1578	journal->j_fc_wbuf = NULL;
1579	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1580					GFP_KERNEL);
1581	if (!journal->j_wbuf)
1582		goto err_cleanup;
1583
1584	err = percpu_counter_init(&journal->j_checkpoint_jh_count, 0,
1585				  GFP_KERNEL);
1586	if (err)
1587		goto err_cleanup;
1588
1589	journal->j_shrink_transaction = NULL;
1590	journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan;
1591	journal->j_shrinker.count_objects = jbd2_journal_shrink_count;
1592	journal->j_shrinker.seeks = DEFAULT_SEEKS;
1593	journal->j_shrinker.batch = journal->j_max_transaction_buffers;
1594	err = register_shrinker(&journal->j_shrinker, "jbd2-journal:(%u:%u)",
1595				MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
1596	if (err)
1597		goto err_cleanup;
1598
1599	return journal;
1600
1601err_cleanup:
1602	percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1603	if (journal->j_chksum_driver)
1604		crypto_free_shash(journal->j_chksum_driver);
1605	kfree(journal->j_wbuf);
1606	jbd2_journal_destroy_revoke(journal);
1607	journal_fail_superblock(journal);
1608	kfree(journal);
1609	return ERR_PTR(err);
1610}
1611
1612/* jbd2_journal_init_dev and jbd2_journal_init_inode:
1613 *
1614 * Create a journal structure assigned some fixed set of disk blocks to
1615 * the journal.  We don't actually touch those disk blocks yet, but we
1616 * need to set up all of the mapping information to tell the journaling
1617 * system where the journal blocks are.
1618 *
1619 */
1620
1621/**
1622 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1623 *  @bdev: Block device on which to create the journal
1624 *  @fs_dev: Device which hold journalled filesystem for this journal.
1625 *  @start: Block nr Start of journal.
1626 *  @len:  Length of the journal in blocks.
1627 *  @blocksize: blocksize of journalling device
1628 *
1629 *  Returns: a newly created journal_t *
1630 *
1631 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1632 *  range of blocks on an arbitrary block device.
1633 *
1634 */
1635journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1636			struct block_device *fs_dev,
1637			unsigned long long start, int len, int blocksize)
1638{
1639	journal_t *journal;
1640
1641	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1642	if (IS_ERR(journal))
1643		return ERR_CAST(journal);
1644
1645	snprintf(journal->j_devname, sizeof(journal->j_devname),
1646		 "%pg", journal->j_dev);
1647	strreplace(journal->j_devname, '/', '!');
1648	jbd2_stats_proc_init(journal);
1649
1650	return journal;
1651}
1652
1653/**
1654 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1655 *  @inode: An inode to create the journal in
1656 *
1657 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1658 * the journal.  The inode must exist already, must support bmap() and
1659 * must have all data blocks preallocated.
1660 */
1661journal_t *jbd2_journal_init_inode(struct inode *inode)
1662{
1663	journal_t *journal;
1664	sector_t blocknr;
1665	int err = 0;
1666
1667	blocknr = 0;
1668	err = bmap(inode, &blocknr);
1669	if (err || !blocknr) {
1670		pr_err("%s: Cannot locate journal superblock\n", __func__);
1671		return err ? ERR_PTR(err) : ERR_PTR(-EINVAL);
1672	}
1673
1674	jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1675		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1676		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1677
1678	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1679			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1680			inode->i_sb->s_blocksize);
1681	if (IS_ERR(journal))
1682		return ERR_CAST(journal);
1683
1684	journal->j_inode = inode;
1685	snprintf(journal->j_devname, sizeof(journal->j_devname),
1686		 "%pg-%lu", journal->j_dev, journal->j_inode->i_ino);
1687	strreplace(journal->j_devname, '/', '!');
1688	jbd2_stats_proc_init(journal);
1689
1690	return journal;
1691}
1692
1693/*
1694 * Given a journal_t structure, initialise the various fields for
1695 * startup of a new journaling session.  We use this both when creating
1696 * a journal, and after recovering an old journal to reset it for
1697 * subsequent use.
1698 */
1699
1700static int journal_reset(journal_t *journal)
1701{
1702	journal_superblock_t *sb = journal->j_superblock;
1703	unsigned long long first, last;
1704
1705	first = be32_to_cpu(sb->s_first);
1706	last = be32_to_cpu(sb->s_maxlen);
1707	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1708		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1709		       first, last);
1710		journal_fail_superblock(journal);
1711		return -EINVAL;
1712	}
1713
1714	journal->j_first = first;
1715	journal->j_last = last;
1716
1717	if (journal->j_head != 0 && journal->j_flags & JBD2_CYCLE_RECORD) {
1718		/*
1719		 * Disable the cycled recording mode if the journal head block
1720		 * number is not correct.
1721		 */
1722		if (journal->j_head < first || journal->j_head >= last) {
1723			printk(KERN_WARNING "JBD2: Incorrect Journal head block %lu, "
1724			       "disable journal_cycle_record\n",
1725			       journal->j_head);
1726			journal->j_head = journal->j_first;
1727		}
1728	} else {
1729		journal->j_head = journal->j_first;
1730	}
1731	journal->j_tail = journal->j_head;
1732	journal->j_free = journal->j_last - journal->j_first;
1733
1734	journal->j_tail_sequence = journal->j_transaction_sequence;
1735	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1736	journal->j_commit_request = journal->j_commit_sequence;
1737
1738	journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1739
1740	/*
1741	 * Now that journal recovery is done, turn fast commits off here. This
1742	 * way, if fast commit was enabled before the crash but if now FS has
1743	 * disabled it, we don't enable fast commits.
1744	 */
1745	jbd2_clear_feature_fast_commit(journal);
1746
1747	/*
1748	 * As a special case, if the on-disk copy is already marked as needing
1749	 * no recovery (s_start == 0), then we can safely defer the superblock
1750	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1751	 * attempting a write to a potential-readonly device.
1752	 */
1753	if (sb->s_start == 0) {
1754		jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb "
1755			"(start %ld, seq %u, errno %d)\n",
1756			journal->j_tail, journal->j_tail_sequence,
1757			journal->j_errno);
1758		journal->j_flags |= JBD2_FLUSHED;
1759	} else {
1760		/* Lock here to make assertions happy... */
1761		mutex_lock_io(&journal->j_checkpoint_mutex);
1762		/*
1763		 * Update log tail information. We use REQ_FUA since new
1764		 * transaction will start reusing journal space and so we
1765		 * must make sure information about current log tail is on
1766		 * disk before that.
1767		 */
1768		jbd2_journal_update_sb_log_tail(journal,
1769						journal->j_tail_sequence,
1770						journal->j_tail, REQ_FUA);
1771		mutex_unlock(&journal->j_checkpoint_mutex);
1772	}
1773	return jbd2_journal_start_thread(journal);
1774}
1775
1776/*
1777 * This function expects that the caller will have locked the journal
1778 * buffer head, and will return with it unlocked
1779 */
1780static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags)
1781{
1782	struct buffer_head *bh = journal->j_sb_buffer;
1783	journal_superblock_t *sb = journal->j_superblock;
1784	int ret = 0;
1785
1786	/* Buffer got discarded which means block device got invalidated */
1787	if (!buffer_mapped(bh)) {
1788		unlock_buffer(bh);
1789		return -EIO;
1790	}
1791
1792	/*
1793	 * Always set high priority flags to exempt from block layer's
1794	 * QOS policies, e.g. writeback throttle.
1795	 */
1796	write_flags |= JBD2_JOURNAL_REQ_FLAGS;
1797	if (!(journal->j_flags & JBD2_BARRIER))
1798		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1799
1800	trace_jbd2_write_superblock(journal, write_flags);
1801
1802	if (buffer_write_io_error(bh)) {
1803		/*
1804		 * Oh, dear.  A previous attempt to write the journal
1805		 * superblock failed.  This could happen because the
1806		 * USB device was yanked out.  Or it could happen to
1807		 * be a transient write error and maybe the block will
1808		 * be remapped.  Nothing we can do but to retry the
1809		 * write and hope for the best.
1810		 */
1811		printk(KERN_ERR "JBD2: previous I/O error detected "
1812		       "for journal superblock update for %s.\n",
1813		       journal->j_devname);
1814		clear_buffer_write_io_error(bh);
1815		set_buffer_uptodate(bh);
1816	}
1817	if (jbd2_journal_has_csum_v2or3(journal))
1818		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1819	get_bh(bh);
1820	bh->b_end_io = end_buffer_write_sync;
1821	submit_bh(REQ_OP_WRITE | write_flags, bh);
1822	wait_on_buffer(bh);
1823	if (buffer_write_io_error(bh)) {
1824		clear_buffer_write_io_error(bh);
1825		set_buffer_uptodate(bh);
1826		ret = -EIO;
1827	}
1828	if (ret) {
1829		printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n",
1830				journal->j_devname);
1831		if (!is_journal_aborted(journal))
1832			jbd2_journal_abort(journal, ret);
1833	}
1834
1835	return ret;
1836}
1837
1838/**
1839 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1840 * @journal: The journal to update.
1841 * @tail_tid: TID of the new transaction at the tail of the log
1842 * @tail_block: The first block of the transaction at the tail of the log
1843 * @write_flags: Flags for the journal sb write operation
1844 *
1845 * Update a journal's superblock information about log tail and write it to
1846 * disk, waiting for the IO to complete.
1847 */
1848int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1849				    unsigned long tail_block,
1850				    blk_opf_t write_flags)
1851{
1852	journal_superblock_t *sb = journal->j_superblock;
1853	int ret;
1854
1855	if (is_journal_aborted(journal))
1856		return -EIO;
1857	if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) {
1858		jbd2_journal_abort(journal, -EIO);
1859		return -EIO;
1860	}
1861
1862	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1863	jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1864		  tail_block, tail_tid);
1865
1866	lock_buffer(journal->j_sb_buffer);
1867	sb->s_sequence = cpu_to_be32(tail_tid);
1868	sb->s_start    = cpu_to_be32(tail_block);
1869
1870	ret = jbd2_write_superblock(journal, write_flags);
1871	if (ret)
1872		goto out;
1873
1874	/* Log is no longer empty */
1875	write_lock(&journal->j_state_lock);
1876	WARN_ON(!sb->s_sequence);
1877	journal->j_flags &= ~JBD2_FLUSHED;
1878	write_unlock(&journal->j_state_lock);
1879
1880out:
1881	return ret;
1882}
1883
1884/**
1885 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1886 * @journal: The journal to update.
1887 * @write_flags: Flags for the journal sb write operation
1888 *
1889 * Update a journal's dynamic superblock fields to show that journal is empty.
1890 * Write updated superblock to disk waiting for IO to complete.
1891 */
1892static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags)
1893{
1894	journal_superblock_t *sb = journal->j_superblock;
1895	bool had_fast_commit = false;
1896
1897	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1898	lock_buffer(journal->j_sb_buffer);
1899	if (sb->s_start == 0) {		/* Is it already empty? */
1900		unlock_buffer(journal->j_sb_buffer);
1901		return;
1902	}
1903
1904	jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1905		  journal->j_tail_sequence);
1906
1907	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1908	sb->s_start    = cpu_to_be32(0);
1909	sb->s_head     = cpu_to_be32(journal->j_head);
1910	if (jbd2_has_feature_fast_commit(journal)) {
1911		/*
1912		 * When journal is clean, no need to commit fast commit flag and
1913		 * make file system incompatible with older kernels.
1914		 */
1915		jbd2_clear_feature_fast_commit(journal);
1916		had_fast_commit = true;
1917	}
1918
1919	jbd2_write_superblock(journal, write_flags);
1920
1921	if (had_fast_commit)
1922		jbd2_set_feature_fast_commit(journal);
1923
1924	/* Log is no longer empty */
1925	write_lock(&journal->j_state_lock);
1926	journal->j_flags |= JBD2_FLUSHED;
1927	write_unlock(&journal->j_state_lock);
1928}
1929
1930/**
1931 * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock)
1932 * @journal: The journal to erase.
1933 * @flags: A discard/zeroout request is sent for each physically contigous
1934 *	region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or
1935 *	JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation
1936 *	to perform.
1937 *
1938 * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes
1939 * will be explicitly written if no hardware offload is available, see
1940 * blkdev_issue_zeroout for more details.
1941 */
1942static int __jbd2_journal_erase(journal_t *journal, unsigned int flags)
1943{
1944	int err = 0;
1945	unsigned long block, log_offset; /* logical */
1946	unsigned long long phys_block, block_start, block_stop; /* physical */
1947	loff_t byte_start, byte_stop, byte_count;
1948
1949	/* flags must be set to either discard or zeroout */
1950	if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags ||
1951			((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1952			(flags & JBD2_JOURNAL_FLUSH_ZEROOUT)))
1953		return -EINVAL;
1954
1955	if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1956	    !bdev_max_discard_sectors(journal->j_dev))
1957		return -EOPNOTSUPP;
1958
1959	/*
1960	 * lookup block mapping and issue discard/zeroout for each
1961	 * contiguous region
1962	 */
1963	log_offset = be32_to_cpu(journal->j_superblock->s_first);
1964	block_start =  ~0ULL;
1965	for (block = log_offset; block < journal->j_total_len; block++) {
1966		err = jbd2_journal_bmap(journal, block, &phys_block);
1967		if (err) {
1968			pr_err("JBD2: bad block at offset %lu", block);
1969			return err;
1970		}
1971
1972		if (block_start == ~0ULL) {
1973			block_start = phys_block;
1974			block_stop = block_start - 1;
1975		}
1976
1977		/*
1978		 * last block not contiguous with current block,
1979		 * process last contiguous region and return to this block on
1980		 * next loop
1981		 */
1982		if (phys_block != block_stop + 1) {
1983			block--;
1984		} else {
1985			block_stop++;
1986			/*
1987			 * if this isn't the last block of journal,
1988			 * no need to process now because next block may also
1989			 * be part of this contiguous region
1990			 */
1991			if (block != journal->j_total_len - 1)
1992				continue;
1993		}
1994
1995		/*
1996		 * end of contiguous region or this is last block of journal,
1997		 * take care of the region
1998		 */
1999		byte_start = block_start * journal->j_blocksize;
2000		byte_stop = block_stop * journal->j_blocksize;
2001		byte_count = (block_stop - block_start + 1) *
2002				journal->j_blocksize;
2003
2004		truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping,
2005				byte_start, byte_stop);
2006
2007		if (flags & JBD2_JOURNAL_FLUSH_DISCARD) {
2008			err = blkdev_issue_discard(journal->j_dev,
2009					byte_start >> SECTOR_SHIFT,
2010					byte_count >> SECTOR_SHIFT,
2011					GFP_NOFS);
2012		} else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) {
2013			err = blkdev_issue_zeroout(journal->j_dev,
2014					byte_start >> SECTOR_SHIFT,
2015					byte_count >> SECTOR_SHIFT,
2016					GFP_NOFS, 0);
2017		}
2018
2019		if (unlikely(err != 0)) {
2020			pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu",
2021					err, block_start, block_stop);
2022			return err;
2023		}
2024
2025		/* reset start and stop after processing a region */
2026		block_start = ~0ULL;
2027	}
2028
2029	return blkdev_issue_flush(journal->j_dev);
2030}
2031
2032/**
2033 * jbd2_journal_update_sb_errno() - Update error in the journal.
2034 * @journal: The journal to update.
2035 *
2036 * Update a journal's errno.  Write updated superblock to disk waiting for IO
2037 * to complete.
2038 */
2039void jbd2_journal_update_sb_errno(journal_t *journal)
2040{
2041	journal_superblock_t *sb = journal->j_superblock;
2042	int errcode;
2043
2044	lock_buffer(journal->j_sb_buffer);
2045	errcode = journal->j_errno;
2046	if (errcode == -ESHUTDOWN)
2047		errcode = 0;
2048	jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
2049	sb->s_errno    = cpu_to_be32(errcode);
2050
2051	jbd2_write_superblock(journal, REQ_FUA);
2052}
2053EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
2054
2055/**
2056 * jbd2_journal_load() - Read journal from disk.
2057 * @journal: Journal to act on.
2058 *
2059 * Given a journal_t structure which tells us which disk blocks contain
2060 * a journal, read the journal from disk to initialise the in-memory
2061 * structures.
2062 */
2063int jbd2_journal_load(journal_t *journal)
2064{
2065	int err;
2066	journal_superblock_t *sb = journal->j_superblock;
2067
2068	/*
2069	 * Create a slab for this blocksize
2070	 */
2071	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
2072	if (err)
2073		return err;
2074
2075	/* Let the recovery code check whether it needs to recover any
2076	 * data from the journal. */
2077	err = jbd2_journal_recover(journal);
2078	if (err) {
2079		pr_warn("JBD2: journal recovery failed\n");
2080		return err;
2081	}
2082
2083	if (journal->j_failed_commit) {
2084		printk(KERN_ERR "JBD2: journal transaction %u on %s "
2085		       "is corrupt.\n", journal->j_failed_commit,
2086		       journal->j_devname);
2087		return -EFSCORRUPTED;
2088	}
2089	/*
2090	 * clear JBD2_ABORT flag initialized in journal_init_common
2091	 * here to update log tail information with the newest seq.
2092	 */
2093	journal->j_flags &= ~JBD2_ABORT;
2094
2095	/* OK, we've finished with the dynamic journal bits:
2096	 * reinitialise the dynamic contents of the superblock in memory
2097	 * and reset them on disk. */
2098	err = journal_reset(journal);
2099	if (err) {
2100		pr_warn("JBD2: journal reset failed\n");
2101		return err;
2102	}
2103
2104	journal->j_flags |= JBD2_LOADED;
2105	return 0;
2106}
2107
2108/**
2109 * jbd2_journal_destroy() - Release a journal_t structure.
2110 * @journal: Journal to act on.
2111 *
2112 * Release a journal_t structure once it is no longer in use by the
2113 * journaled object.
2114 * Return <0 if we couldn't clean up the journal.
2115 */
2116int jbd2_journal_destroy(journal_t *journal)
2117{
2118	int err = 0;
2119
2120	/* Wait for the commit thread to wake up and die. */
2121	journal_kill_thread(journal);
2122
2123	/* Force a final log commit */
2124	if (journal->j_running_transaction)
2125		jbd2_journal_commit_transaction(journal);
2126
2127	/* Force any old transactions to disk */
2128
2129	/* Totally anal locking here... */
2130	spin_lock(&journal->j_list_lock);
2131	while (journal->j_checkpoint_transactions != NULL) {
2132		spin_unlock(&journal->j_list_lock);
2133		mutex_lock_io(&journal->j_checkpoint_mutex);
2134		err = jbd2_log_do_checkpoint(journal);
2135		mutex_unlock(&journal->j_checkpoint_mutex);
2136		/*
2137		 * If checkpointing failed, just free the buffers to avoid
2138		 * looping forever
2139		 */
2140		if (err) {
2141			jbd2_journal_destroy_checkpoint(journal);
2142			spin_lock(&journal->j_list_lock);
2143			break;
2144		}
2145		spin_lock(&journal->j_list_lock);
2146	}
2147
2148	J_ASSERT(journal->j_running_transaction == NULL);
2149	J_ASSERT(journal->j_committing_transaction == NULL);
2150	J_ASSERT(journal->j_checkpoint_transactions == NULL);
2151	spin_unlock(&journal->j_list_lock);
2152
2153	/*
2154	 * OK, all checkpoint transactions have been checked, now check the
2155	 * write out io error flag and abort the journal if some buffer failed
2156	 * to write back to the original location, otherwise the filesystem
2157	 * may become inconsistent.
2158	 */
2159	if (!is_journal_aborted(journal) &&
2160	    test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags))
2161		jbd2_journal_abort(journal, -EIO);
2162
2163	if (journal->j_sb_buffer) {
2164		if (!is_journal_aborted(journal)) {
2165			mutex_lock_io(&journal->j_checkpoint_mutex);
2166
2167			write_lock(&journal->j_state_lock);
2168			journal->j_tail_sequence =
2169				++journal->j_transaction_sequence;
2170			write_unlock(&journal->j_state_lock);
2171
2172			jbd2_mark_journal_empty(journal, REQ_PREFLUSH | REQ_FUA);
2173			mutex_unlock(&journal->j_checkpoint_mutex);
2174		} else
2175			err = -EIO;
2176		brelse(journal->j_sb_buffer);
2177	}
2178
2179	if (journal->j_shrinker.flags & SHRINKER_REGISTERED) {
2180		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2181		unregister_shrinker(&journal->j_shrinker);
2182	}
2183	if (journal->j_proc_entry)
2184		jbd2_stats_proc_exit(journal);
2185	iput(journal->j_inode);
2186	if (journal->j_revoke)
2187		jbd2_journal_destroy_revoke(journal);
2188	if (journal->j_chksum_driver)
2189		crypto_free_shash(journal->j_chksum_driver);
2190	kfree(journal->j_fc_wbuf);
2191	kfree(journal->j_wbuf);
2192	kfree(journal);
2193
2194	return err;
2195}
2196
2197
2198/**
2199 * jbd2_journal_check_used_features() - Check if features specified are used.
2200 * @journal: Journal to check.
2201 * @compat: bitmask of compatible features
2202 * @ro: bitmask of features that force read-only mount
2203 * @incompat: bitmask of incompatible features
2204 *
2205 * Check whether the journal uses all of a given set of
2206 * features.  Return true (non-zero) if it does.
2207 **/
2208
2209int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2210				 unsigned long ro, unsigned long incompat)
2211{
2212	journal_superblock_t *sb;
2213
2214	if (!compat && !ro && !incompat)
2215		return 1;
2216	if (!jbd2_format_support_feature(journal))
2217		return 0;
2218
2219	sb = journal->j_superblock;
2220
2221	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2222	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2223	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2224		return 1;
2225
2226	return 0;
2227}
2228
2229/**
2230 * jbd2_journal_check_available_features() - Check feature set in journalling layer
2231 * @journal: Journal to check.
2232 * @compat: bitmask of compatible features
2233 * @ro: bitmask of features that force read-only mount
2234 * @incompat: bitmask of incompatible features
2235 *
2236 * Check whether the journaling code supports the use of
2237 * all of a given set of features on this journal.  Return true
2238 * (non-zero) if it can. */
2239
2240int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2241				      unsigned long ro, unsigned long incompat)
2242{
2243	if (!compat && !ro && !incompat)
2244		return 1;
2245
2246	if (!jbd2_format_support_feature(journal))
2247		return 0;
2248
2249	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2250	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2251	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2252		return 1;
2253
2254	return 0;
2255}
2256
2257static int
2258jbd2_journal_initialize_fast_commit(journal_t *journal)
2259{
2260	journal_superblock_t *sb = journal->j_superblock;
2261	unsigned long long num_fc_blks;
2262
2263	num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2264	if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2265		return -ENOSPC;
2266
2267	/* Are we called twice? */
2268	WARN_ON(journal->j_fc_wbuf != NULL);
2269	journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2270				sizeof(struct buffer_head *), GFP_KERNEL);
2271	if (!journal->j_fc_wbuf)
2272		return -ENOMEM;
2273
2274	journal->j_fc_wbufsize = num_fc_blks;
2275	journal->j_fc_last = journal->j_last;
2276	journal->j_last = journal->j_fc_last - num_fc_blks;
2277	journal->j_fc_first = journal->j_last + 1;
2278	journal->j_fc_off = 0;
2279	journal->j_free = journal->j_last - journal->j_first;
2280	journal->j_max_transaction_buffers =
2281		jbd2_journal_get_max_txn_bufs(journal);
2282
2283	return 0;
2284}
2285
2286/**
2287 * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2288 * @journal: Journal to act on.
2289 * @compat: bitmask of compatible features
2290 * @ro: bitmask of features that force read-only mount
2291 * @incompat: bitmask of incompatible features
2292 *
2293 * Mark a given journal feature as present on the
2294 * superblock.  Returns true if the requested features could be set.
2295 *
2296 */
2297
2298int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2299			  unsigned long ro, unsigned long incompat)
2300{
2301#define INCOMPAT_FEATURE_ON(f) \
2302		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2303#define COMPAT_FEATURE_ON(f) \
2304		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2305	journal_superblock_t *sb;
2306
2307	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2308		return 1;
2309
2310	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2311		return 0;
2312
2313	/* If enabling v2 checksums, turn on v3 instead */
2314	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2315		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2316		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2317	}
2318
2319	/* Asking for checksumming v3 and v1?  Only give them v3. */
2320	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2321	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2322		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2323
2324	jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2325		  compat, ro, incompat);
2326
2327	sb = journal->j_superblock;
2328
2329	if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2330		if (jbd2_journal_initialize_fast_commit(journal)) {
2331			pr_err("JBD2: Cannot enable fast commits.\n");
2332			return 0;
2333		}
2334	}
2335
2336	/* Load the checksum driver if necessary */
2337	if ((journal->j_chksum_driver == NULL) &&
2338	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2339		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2340		if (IS_ERR(journal->j_chksum_driver)) {
2341			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2342			journal->j_chksum_driver = NULL;
2343			return 0;
2344		}
2345		/* Precompute checksum seed for all metadata */
2346		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2347						   sizeof(sb->s_uuid));
2348	}
2349
2350	lock_buffer(journal->j_sb_buffer);
2351
2352	/* If enabling v3 checksums, update superblock */
2353	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2354		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2355		sb->s_feature_compat &=
2356			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2357	}
2358
2359	/* If enabling v1 checksums, downgrade superblock */
2360	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2361		sb->s_feature_incompat &=
2362			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2363				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
2364
2365	sb->s_feature_compat    |= cpu_to_be32(compat);
2366	sb->s_feature_ro_compat |= cpu_to_be32(ro);
2367	sb->s_feature_incompat  |= cpu_to_be32(incompat);
2368	unlock_buffer(journal->j_sb_buffer);
2369	journal->j_revoke_records_per_block =
2370				journal_revoke_records_per_block(journal);
2371
2372	return 1;
2373#undef COMPAT_FEATURE_ON
2374#undef INCOMPAT_FEATURE_ON
2375}
2376
2377/*
2378 * jbd2_journal_clear_features() - Clear a given journal feature in the
2379 * 				    superblock
2380 * @journal: Journal to act on.
2381 * @compat: bitmask of compatible features
2382 * @ro: bitmask of features that force read-only mount
2383 * @incompat: bitmask of incompatible features
2384 *
2385 * Clear a given journal feature as present on the
2386 * superblock.
2387 */
2388void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2389				unsigned long ro, unsigned long incompat)
2390{
2391	journal_superblock_t *sb;
2392
2393	jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2394		  compat, ro, incompat);
2395
2396	sb = journal->j_superblock;
2397
2398	sb->s_feature_compat    &= ~cpu_to_be32(compat);
2399	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2400	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2401	journal->j_revoke_records_per_block =
2402				journal_revoke_records_per_block(journal);
2403}
2404EXPORT_SYMBOL(jbd2_journal_clear_features);
2405
2406/**
2407 * jbd2_journal_flush() - Flush journal
2408 * @journal: Journal to act on.
2409 * @flags: optional operation on the journal blocks after the flush (see below)
2410 *
2411 * Flush all data for a given journal to disk and empty the journal.
2412 * Filesystems can use this when remounting readonly to ensure that
2413 * recovery does not need to happen on remount. Optionally, a discard or zeroout
2414 * can be issued on the journal blocks after flushing.
2415 *
2416 * flags:
2417 *	JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks
2418 *	JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks
2419 */
2420int jbd2_journal_flush(journal_t *journal, unsigned int flags)
2421{
2422	int err = 0;
2423	transaction_t *transaction = NULL;
2424
2425	write_lock(&journal->j_state_lock);
2426
2427	/* Force everything buffered to the log... */
2428	if (journal->j_running_transaction) {
2429		transaction = journal->j_running_transaction;
2430		__jbd2_log_start_commit(journal, transaction->t_tid);
2431	} else if (journal->j_committing_transaction)
2432		transaction = journal->j_committing_transaction;
2433
2434	/* Wait for the log commit to complete... */
2435	if (transaction) {
2436		tid_t tid = transaction->t_tid;
2437
2438		write_unlock(&journal->j_state_lock);
2439		jbd2_log_wait_commit(journal, tid);
2440	} else {
2441		write_unlock(&journal->j_state_lock);
2442	}
2443
2444	/* ...and flush everything in the log out to disk. */
2445	spin_lock(&journal->j_list_lock);
2446	while (!err && journal->j_checkpoint_transactions != NULL) {
2447		spin_unlock(&journal->j_list_lock);
2448		mutex_lock_io(&journal->j_checkpoint_mutex);
2449		err = jbd2_log_do_checkpoint(journal);
2450		mutex_unlock(&journal->j_checkpoint_mutex);
2451		spin_lock(&journal->j_list_lock);
2452	}
2453	spin_unlock(&journal->j_list_lock);
2454
2455	if (is_journal_aborted(journal))
2456		return -EIO;
2457
2458	mutex_lock_io(&journal->j_checkpoint_mutex);
2459	if (!err) {
2460		err = jbd2_cleanup_journal_tail(journal);
2461		if (err < 0) {
2462			mutex_unlock(&journal->j_checkpoint_mutex);
2463			goto out;
2464		}
2465		err = 0;
2466	}
2467
2468	/* Finally, mark the journal as really needing no recovery.
2469	 * This sets s_start==0 in the underlying superblock, which is
2470	 * the magic code for a fully-recovered superblock.  Any future
2471	 * commits of data to the journal will restore the current
2472	 * s_start value. */
2473	jbd2_mark_journal_empty(journal, REQ_FUA);
2474
2475	if (flags)
2476		err = __jbd2_journal_erase(journal, flags);
2477
2478	mutex_unlock(&journal->j_checkpoint_mutex);
2479	write_lock(&journal->j_state_lock);
2480	J_ASSERT(!journal->j_running_transaction);
2481	J_ASSERT(!journal->j_committing_transaction);
2482	J_ASSERT(!journal->j_checkpoint_transactions);
2483	J_ASSERT(journal->j_head == journal->j_tail);
2484	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2485	write_unlock(&journal->j_state_lock);
2486out:
2487	return err;
2488}
2489
2490/**
2491 * jbd2_journal_wipe() - Wipe journal contents
2492 * @journal: Journal to act on.
2493 * @write: flag (see below)
2494 *
2495 * Wipe out all of the contents of a journal, safely.  This will produce
2496 * a warning if the journal contains any valid recovery information.
2497 * Must be called between journal_init_*() and jbd2_journal_load().
2498 *
2499 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2500 * we merely suppress recovery.
2501 */
2502
2503int jbd2_journal_wipe(journal_t *journal, int write)
2504{
2505	int err;
2506
2507	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2508
2509	if (!journal->j_tail)
2510		return 0;
2511
2512	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2513		write ? "Clearing" : "Ignoring");
2514
2515	err = jbd2_journal_skip_recovery(journal);
2516	if (write) {
2517		/* Lock to make assertions happy... */
2518		mutex_lock_io(&journal->j_checkpoint_mutex);
2519		jbd2_mark_journal_empty(journal, REQ_FUA);
2520		mutex_unlock(&journal->j_checkpoint_mutex);
2521	}
2522
2523	return err;
2524}
2525
2526/**
2527 * jbd2_journal_abort () - Shutdown the journal immediately.
2528 * @journal: the journal to shutdown.
2529 * @errno:   an error number to record in the journal indicating
2530 *           the reason for the shutdown.
2531 *
2532 * Perform a complete, immediate shutdown of the ENTIRE
2533 * journal (not of a single transaction).  This operation cannot be
2534 * undone without closing and reopening the journal.
2535 *
2536 * The jbd2_journal_abort function is intended to support higher level error
2537 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2538 * mode.
2539 *
2540 * Journal abort has very specific semantics.  Any existing dirty,
2541 * unjournaled buffers in the main filesystem will still be written to
2542 * disk by bdflush, but the journaling mechanism will be suspended
2543 * immediately and no further transaction commits will be honoured.
2544 *
2545 * Any dirty, journaled buffers will be written back to disk without
2546 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2547 * filesystem, but we _do_ attempt to leave as much data as possible
2548 * behind for fsck to use for cleanup.
2549 *
2550 * Any attempt to get a new transaction handle on a journal which is in
2551 * ABORT state will just result in an -EROFS error return.  A
2552 * jbd2_journal_stop on an existing handle will return -EIO if we have
2553 * entered abort state during the update.
2554 *
2555 * Recursive transactions are not disturbed by journal abort until the
2556 * final jbd2_journal_stop, which will receive the -EIO error.
2557 *
2558 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2559 * which will be recorded (if possible) in the journal superblock.  This
2560 * allows a client to record failure conditions in the middle of a
2561 * transaction without having to complete the transaction to record the
2562 * failure to disk.  ext3_error, for example, now uses this
2563 * functionality.
2564 *
2565 */
2566
2567void jbd2_journal_abort(journal_t *journal, int errno)
2568{
2569	transaction_t *transaction;
2570
2571	/*
2572	 * Lock the aborting procedure until everything is done, this avoid
2573	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2574	 * ensure panic after the error info is written into journal's
2575	 * superblock.
2576	 */
2577	mutex_lock(&journal->j_abort_mutex);
2578	/*
2579	 * ESHUTDOWN always takes precedence because a file system check
2580	 * caused by any other journal abort error is not required after
2581	 * a shutdown triggered.
2582	 */
2583	write_lock(&journal->j_state_lock);
2584	if (journal->j_flags & JBD2_ABORT) {
2585		int old_errno = journal->j_errno;
2586
2587		write_unlock(&journal->j_state_lock);
2588		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2589			journal->j_errno = errno;
2590			jbd2_journal_update_sb_errno(journal);
2591		}
2592		mutex_unlock(&journal->j_abort_mutex);
2593		return;
2594	}
2595
2596	/*
2597	 * Mark the abort as occurred and start current running transaction
2598	 * to release all journaled buffer.
2599	 */
2600	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2601
2602	journal->j_flags |= JBD2_ABORT;
2603	journal->j_errno = errno;
2604	transaction = journal->j_running_transaction;
2605	if (transaction)
2606		__jbd2_log_start_commit(journal, transaction->t_tid);
2607	write_unlock(&journal->j_state_lock);
2608
2609	/*
2610	 * Record errno to the journal super block, so that fsck and jbd2
2611	 * layer could realise that a filesystem check is needed.
2612	 */
2613	jbd2_journal_update_sb_errno(journal);
2614	mutex_unlock(&journal->j_abort_mutex);
2615}
2616
2617/**
2618 * jbd2_journal_errno() - returns the journal's error state.
2619 * @journal: journal to examine.
2620 *
2621 * This is the errno number set with jbd2_journal_abort(), the last
2622 * time the journal was mounted - if the journal was stopped
2623 * without calling abort this will be 0.
2624 *
2625 * If the journal has been aborted on this mount time -EROFS will
2626 * be returned.
2627 */
2628int jbd2_journal_errno(journal_t *journal)
2629{
2630	int err;
2631
2632	read_lock(&journal->j_state_lock);
2633	if (journal->j_flags & JBD2_ABORT)
2634		err = -EROFS;
2635	else
2636		err = journal->j_errno;
2637	read_unlock(&journal->j_state_lock);
2638	return err;
2639}
2640
2641/**
2642 * jbd2_journal_clear_err() - clears the journal's error state
2643 * @journal: journal to act on.
2644 *
2645 * An error must be cleared or acked to take a FS out of readonly
2646 * mode.
2647 */
2648int jbd2_journal_clear_err(journal_t *journal)
2649{
2650	int err = 0;
2651
2652	write_lock(&journal->j_state_lock);
2653	if (journal->j_flags & JBD2_ABORT)
2654		err = -EROFS;
2655	else
2656		journal->j_errno = 0;
2657	write_unlock(&journal->j_state_lock);
2658	return err;
2659}
2660
2661/**
2662 * jbd2_journal_ack_err() - Ack journal err.
2663 * @journal: journal to act on.
2664 *
2665 * An error must be cleared or acked to take a FS out of readonly
2666 * mode.
2667 */
2668void jbd2_journal_ack_err(journal_t *journal)
2669{
2670	write_lock(&journal->j_state_lock);
2671	if (journal->j_errno)
2672		journal->j_flags |= JBD2_ACK_ERR;
2673	write_unlock(&journal->j_state_lock);
2674}
2675
2676int jbd2_journal_blocks_per_page(struct inode *inode)
2677{
2678	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2679}
2680
2681/*
2682 * helper functions to deal with 32 or 64bit block numbers.
2683 */
2684size_t journal_tag_bytes(journal_t *journal)
2685{
2686	size_t sz;
2687
2688	if (jbd2_has_feature_csum3(journal))
2689		return sizeof(journal_block_tag3_t);
2690
2691	sz = sizeof(journal_block_tag_t);
2692
2693	if (jbd2_has_feature_csum2(journal))
2694		sz += sizeof(__u16);
2695
2696	if (jbd2_has_feature_64bit(journal))
2697		return sz;
2698	else
2699		return sz - sizeof(__u32);
2700}
2701
2702/*
2703 * JBD memory management
2704 *
2705 * These functions are used to allocate block-sized chunks of memory
2706 * used for making copies of buffer_head data.  Very often it will be
2707 * page-sized chunks of data, but sometimes it will be in
2708 * sub-page-size chunks.  (For example, 16k pages on Power systems
2709 * with a 4k block file system.)  For blocks smaller than a page, we
2710 * use a SLAB allocator.  There are slab caches for each block size,
2711 * which are allocated at mount time, if necessary, and we only free
2712 * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2713 * this reason we don't need to a mutex to protect access to
2714 * jbd2_slab[] allocating or releasing memory; only in
2715 * jbd2_journal_create_slab().
2716 */
2717#define JBD2_MAX_SLABS 8
2718static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2719
2720static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2721	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2722	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2723};
2724
2725
2726static void jbd2_journal_destroy_slabs(void)
2727{
2728	int i;
2729
2730	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2731		kmem_cache_destroy(jbd2_slab[i]);
2732		jbd2_slab[i] = NULL;
2733	}
2734}
2735
2736static int jbd2_journal_create_slab(size_t size)
2737{
2738	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2739	int i = order_base_2(size) - 10;
2740	size_t slab_size;
2741
2742	if (size == PAGE_SIZE)
2743		return 0;
2744
2745	if (i >= JBD2_MAX_SLABS)
2746		return -EINVAL;
2747
2748	if (unlikely(i < 0))
2749		i = 0;
2750	mutex_lock(&jbd2_slab_create_mutex);
2751	if (jbd2_slab[i]) {
2752		mutex_unlock(&jbd2_slab_create_mutex);
2753		return 0;	/* Already created */
2754	}
2755
2756	slab_size = 1 << (i+10);
2757	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2758					 slab_size, 0, NULL);
2759	mutex_unlock(&jbd2_slab_create_mutex);
2760	if (!jbd2_slab[i]) {
2761		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2762		return -ENOMEM;
2763	}
2764	return 0;
2765}
2766
2767static struct kmem_cache *get_slab(size_t size)
2768{
2769	int i = order_base_2(size) - 10;
2770
2771	BUG_ON(i >= JBD2_MAX_SLABS);
2772	if (unlikely(i < 0))
2773		i = 0;
2774	BUG_ON(jbd2_slab[i] == NULL);
2775	return jbd2_slab[i];
2776}
2777
2778void *jbd2_alloc(size_t size, gfp_t flags)
2779{
2780	void *ptr;
2781
2782	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2783
2784	if (size < PAGE_SIZE)
2785		ptr = kmem_cache_alloc(get_slab(size), flags);
2786	else
2787		ptr = (void *)__get_free_pages(flags, get_order(size));
2788
2789	/* Check alignment; SLUB has gotten this wrong in the past,
2790	 * and this can lead to user data corruption! */
2791	BUG_ON(((unsigned long) ptr) & (size-1));
2792
2793	return ptr;
2794}
2795
2796void jbd2_free(void *ptr, size_t size)
2797{
2798	if (size < PAGE_SIZE)
2799		kmem_cache_free(get_slab(size), ptr);
2800	else
2801		free_pages((unsigned long)ptr, get_order(size));
2802};
2803
2804/*
2805 * Journal_head storage management
2806 */
2807static struct kmem_cache *jbd2_journal_head_cache;
2808#ifdef CONFIG_JBD2_DEBUG
2809static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2810#endif
2811
2812static int __init jbd2_journal_init_journal_head_cache(void)
2813{
2814	J_ASSERT(!jbd2_journal_head_cache);
2815	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2816				sizeof(struct journal_head),
2817				0,		/* offset */
2818				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2819				NULL);		/* ctor */
2820	if (!jbd2_journal_head_cache) {
2821		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2822		return -ENOMEM;
2823	}
2824	return 0;
2825}
2826
2827static void jbd2_journal_destroy_journal_head_cache(void)
2828{
2829	kmem_cache_destroy(jbd2_journal_head_cache);
2830	jbd2_journal_head_cache = NULL;
2831}
2832
2833/*
2834 * journal_head splicing and dicing
2835 */
2836static struct journal_head *journal_alloc_journal_head(void)
2837{
2838	struct journal_head *ret;
2839
2840#ifdef CONFIG_JBD2_DEBUG
2841	atomic_inc(&nr_journal_heads);
2842#endif
2843	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2844	if (!ret) {
2845		jbd2_debug(1, "out of memory for journal_head\n");
2846		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2847		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2848				GFP_NOFS | __GFP_NOFAIL);
2849	}
2850	if (ret)
2851		spin_lock_init(&ret->b_state_lock);
2852	return ret;
2853}
2854
2855static void journal_free_journal_head(struct journal_head *jh)
2856{
2857#ifdef CONFIG_JBD2_DEBUG
2858	atomic_dec(&nr_journal_heads);
2859	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2860#endif
2861	kmem_cache_free(jbd2_journal_head_cache, jh);
2862}
2863
2864/*
2865 * A journal_head is attached to a buffer_head whenever JBD has an
2866 * interest in the buffer.
2867 *
2868 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2869 * is set.  This bit is tested in core kernel code where we need to take
2870 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2871 * there.
2872 *
2873 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2874 *
2875 * When a buffer has its BH_JBD bit set it is immune from being released by
2876 * core kernel code, mainly via ->b_count.
2877 *
2878 * A journal_head is detached from its buffer_head when the journal_head's
2879 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2880 * transaction (b_cp_transaction) hold their references to b_jcount.
2881 *
2882 * Various places in the kernel want to attach a journal_head to a buffer_head
2883 * _before_ attaching the journal_head to a transaction.  To protect the
2884 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2885 * journal_head's b_jcount refcount by one.  The caller must call
2886 * jbd2_journal_put_journal_head() to undo this.
2887 *
2888 * So the typical usage would be:
2889 *
2890 *	(Attach a journal_head if needed.  Increments b_jcount)
2891 *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2892 *	...
2893 *      (Get another reference for transaction)
2894 *	jbd2_journal_grab_journal_head(bh);
2895 *	jh->b_transaction = xxx;
2896 *	(Put original reference)
2897 *	jbd2_journal_put_journal_head(jh);
2898 */
2899
2900/*
2901 * Give a buffer_head a journal_head.
2902 *
2903 * May sleep.
2904 */
2905struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2906{
2907	struct journal_head *jh;
2908	struct journal_head *new_jh = NULL;
2909
2910repeat:
2911	if (!buffer_jbd(bh))
2912		new_jh = journal_alloc_journal_head();
2913
2914	jbd_lock_bh_journal_head(bh);
2915	if (buffer_jbd(bh)) {
2916		jh = bh2jh(bh);
2917	} else {
2918		J_ASSERT_BH(bh,
2919			(atomic_read(&bh->b_count) > 0) ||
2920			(bh->b_folio && bh->b_folio->mapping));
2921
2922		if (!new_jh) {
2923			jbd_unlock_bh_journal_head(bh);
2924			goto repeat;
2925		}
2926
2927		jh = new_jh;
2928		new_jh = NULL;		/* We consumed it */
2929		set_buffer_jbd(bh);
2930		bh->b_private = jh;
2931		jh->b_bh = bh;
2932		get_bh(bh);
2933		BUFFER_TRACE(bh, "added journal_head");
2934	}
2935	jh->b_jcount++;
2936	jbd_unlock_bh_journal_head(bh);
2937	if (new_jh)
2938		journal_free_journal_head(new_jh);
2939	return bh->b_private;
2940}
2941
2942/*
2943 * Grab a ref against this buffer_head's journal_head.  If it ended up not
2944 * having a journal_head, return NULL
2945 */
2946struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2947{
2948	struct journal_head *jh = NULL;
2949
2950	jbd_lock_bh_journal_head(bh);
2951	if (buffer_jbd(bh)) {
2952		jh = bh2jh(bh);
2953		jh->b_jcount++;
2954	}
2955	jbd_unlock_bh_journal_head(bh);
2956	return jh;
2957}
2958EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2959
2960static void __journal_remove_journal_head(struct buffer_head *bh)
2961{
2962	struct journal_head *jh = bh2jh(bh);
2963
2964	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2965	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2966	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2967	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2968	J_ASSERT_BH(bh, buffer_jbd(bh));
2969	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2970	BUFFER_TRACE(bh, "remove journal_head");
2971
2972	/* Unlink before dropping the lock */
2973	bh->b_private = NULL;
2974	jh->b_bh = NULL;	/* debug, really */
2975	clear_buffer_jbd(bh);
2976}
2977
2978static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2979{
2980	if (jh->b_frozen_data) {
2981		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2982		jbd2_free(jh->b_frozen_data, b_size);
2983	}
2984	if (jh->b_committed_data) {
2985		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2986		jbd2_free(jh->b_committed_data, b_size);
2987	}
2988	journal_free_journal_head(jh);
2989}
2990
2991/*
2992 * Drop a reference on the passed journal_head.  If it fell to zero then
2993 * release the journal_head from the buffer_head.
2994 */
2995void jbd2_journal_put_journal_head(struct journal_head *jh)
2996{
2997	struct buffer_head *bh = jh2bh(jh);
2998
2999	jbd_lock_bh_journal_head(bh);
3000	J_ASSERT_JH(jh, jh->b_jcount > 0);
3001	--jh->b_jcount;
3002	if (!jh->b_jcount) {
3003		__journal_remove_journal_head(bh);
3004		jbd_unlock_bh_journal_head(bh);
3005		journal_release_journal_head(jh, bh->b_size);
3006		__brelse(bh);
3007	} else {
3008		jbd_unlock_bh_journal_head(bh);
3009	}
3010}
3011EXPORT_SYMBOL(jbd2_journal_put_journal_head);
3012
3013/*
3014 * Initialize jbd inode head
3015 */
3016void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
3017{
3018	jinode->i_transaction = NULL;
3019	jinode->i_next_transaction = NULL;
3020	jinode->i_vfs_inode = inode;
3021	jinode->i_flags = 0;
3022	jinode->i_dirty_start = 0;
3023	jinode->i_dirty_end = 0;
3024	INIT_LIST_HEAD(&jinode->i_list);
3025}
3026
3027/*
3028 * Function to be called before we start removing inode from memory (i.e.,
3029 * clear_inode() is a fine place to be called from). It removes inode from
3030 * transaction's lists.
3031 */
3032void jbd2_journal_release_jbd_inode(journal_t *journal,
3033				    struct jbd2_inode *jinode)
3034{
3035	if (!journal)
3036		return;
3037restart:
3038	spin_lock(&journal->j_list_lock);
3039	/* Is commit writing out inode - we have to wait */
3040	if (jinode->i_flags & JI_COMMIT_RUNNING) {
3041		wait_queue_head_t *wq;
3042		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
3043		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
3044		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
3045		spin_unlock(&journal->j_list_lock);
3046		schedule();
3047		finish_wait(wq, &wait.wq_entry);
3048		goto restart;
3049	}
3050
3051	if (jinode->i_transaction) {
3052		list_del(&jinode->i_list);
3053		jinode->i_transaction = NULL;
3054	}
3055	spin_unlock(&journal->j_list_lock);
3056}
3057
3058
3059#ifdef CONFIG_PROC_FS
3060
3061#define JBD2_STATS_PROC_NAME "fs/jbd2"
3062
3063static void __init jbd2_create_jbd_stats_proc_entry(void)
3064{
3065	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
3066}
3067
3068static void __exit jbd2_remove_jbd_stats_proc_entry(void)
3069{
3070	if (proc_jbd2_stats)
3071		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
3072}
3073
3074#else
3075
3076#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3077#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3078
3079#endif
3080
3081struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3082
3083static int __init jbd2_journal_init_inode_cache(void)
3084{
3085	J_ASSERT(!jbd2_inode_cache);
3086	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3087	if (!jbd2_inode_cache) {
3088		pr_emerg("JBD2: failed to create inode cache\n");
3089		return -ENOMEM;
3090	}
3091	return 0;
3092}
3093
3094static int __init jbd2_journal_init_handle_cache(void)
3095{
3096	J_ASSERT(!jbd2_handle_cache);
3097	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3098	if (!jbd2_handle_cache) {
3099		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3100		return -ENOMEM;
3101	}
3102	return 0;
3103}
3104
3105static void jbd2_journal_destroy_inode_cache(void)
3106{
3107	kmem_cache_destroy(jbd2_inode_cache);
3108	jbd2_inode_cache = NULL;
3109}
3110
3111static void jbd2_journal_destroy_handle_cache(void)
3112{
3113	kmem_cache_destroy(jbd2_handle_cache);
3114	jbd2_handle_cache = NULL;
3115}
3116
3117/*
3118 * Module startup and shutdown
3119 */
3120
3121static int __init journal_init_caches(void)
3122{
3123	int ret;
3124
3125	ret = jbd2_journal_init_revoke_record_cache();
3126	if (ret == 0)
3127		ret = jbd2_journal_init_revoke_table_cache();
3128	if (ret == 0)
3129		ret = jbd2_journal_init_journal_head_cache();
3130	if (ret == 0)
3131		ret = jbd2_journal_init_handle_cache();
3132	if (ret == 0)
3133		ret = jbd2_journal_init_inode_cache();
3134	if (ret == 0)
3135		ret = jbd2_journal_init_transaction_cache();
3136	return ret;
3137}
3138
3139static void jbd2_journal_destroy_caches(void)
3140{
3141	jbd2_journal_destroy_revoke_record_cache();
3142	jbd2_journal_destroy_revoke_table_cache();
3143	jbd2_journal_destroy_journal_head_cache();
3144	jbd2_journal_destroy_handle_cache();
3145	jbd2_journal_destroy_inode_cache();
3146	jbd2_journal_destroy_transaction_cache();
3147	jbd2_journal_destroy_slabs();
3148}
3149
3150static int __init journal_init(void)
3151{
3152	int ret;
3153
3154	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3155
3156	ret = journal_init_caches();
3157	if (ret == 0) {
3158		jbd2_create_jbd_stats_proc_entry();
3159	} else {
3160		jbd2_journal_destroy_caches();
3161	}
3162	return ret;
3163}
3164
3165static void __exit journal_exit(void)
3166{
3167#ifdef CONFIG_JBD2_DEBUG
3168	int n = atomic_read(&nr_journal_heads);
3169	if (n)
3170		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3171#endif
3172	jbd2_remove_jbd_stats_proc_entry();
3173	jbd2_journal_destroy_caches();
3174}
3175
3176MODULE_LICENSE("GPL");
3177module_init(journal_init);
3178module_exit(journal_exit);
3179
3180