xref: /kernel/linux/linux-6.6/fs/iomap/buffered-io.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (C) 2016-2019 Christoph Hellwig.
5 */
6#include <linux/module.h>
7#include <linux/compiler.h>
8#include <linux/fs.h>
9#include <linux/iomap.h>
10#include <linux/pagemap.h>
11#include <linux/uio.h>
12#include <linux/buffer_head.h>
13#include <linux/dax.h>
14#include <linux/writeback.h>
15#include <linux/list_sort.h>
16#include <linux/swap.h>
17#include <linux/bio.h>
18#include <linux/sched/signal.h>
19#include <linux/migrate.h>
20#include "trace.h"
21
22#include "../internal.h"
23
24#define IOEND_BATCH_SIZE	4096
25
26typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length);
27/*
28 * Structure allocated for each folio to track per-block uptodate, dirty state
29 * and I/O completions.
30 */
31struct iomap_folio_state {
32	atomic_t		read_bytes_pending;
33	atomic_t		write_bytes_pending;
34	spinlock_t		state_lock;
35
36	/*
37	 * Each block has two bits in this bitmap:
38	 * Bits [0..blocks_per_folio) has the uptodate status.
39	 * Bits [b_p_f...(2*b_p_f))   has the dirty status.
40	 */
41	unsigned long		state[];
42};
43
44static struct bio_set iomap_ioend_bioset;
45
46static inline bool ifs_is_fully_uptodate(struct folio *folio,
47		struct iomap_folio_state *ifs)
48{
49	struct inode *inode = folio->mapping->host;
50
51	return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio));
52}
53
54static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs,
55		unsigned int block)
56{
57	return test_bit(block, ifs->state);
58}
59
60static void ifs_set_range_uptodate(struct folio *folio,
61		struct iomap_folio_state *ifs, size_t off, size_t len)
62{
63	struct inode *inode = folio->mapping->host;
64	unsigned int first_blk = off >> inode->i_blkbits;
65	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
66	unsigned int nr_blks = last_blk - first_blk + 1;
67	unsigned long flags;
68
69	spin_lock_irqsave(&ifs->state_lock, flags);
70	bitmap_set(ifs->state, first_blk, nr_blks);
71	if (ifs_is_fully_uptodate(folio, ifs))
72		folio_mark_uptodate(folio);
73	spin_unlock_irqrestore(&ifs->state_lock, flags);
74}
75
76static void iomap_set_range_uptodate(struct folio *folio, size_t off,
77		size_t len)
78{
79	struct iomap_folio_state *ifs = folio->private;
80
81	if (ifs)
82		ifs_set_range_uptodate(folio, ifs, off, len);
83	else
84		folio_mark_uptodate(folio);
85}
86
87static inline bool ifs_block_is_dirty(struct folio *folio,
88		struct iomap_folio_state *ifs, int block)
89{
90	struct inode *inode = folio->mapping->host;
91	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
92
93	return test_bit(block + blks_per_folio, ifs->state);
94}
95
96static void ifs_clear_range_dirty(struct folio *folio,
97		struct iomap_folio_state *ifs, size_t off, size_t len)
98{
99	struct inode *inode = folio->mapping->host;
100	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
101	unsigned int first_blk = (off >> inode->i_blkbits);
102	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
103	unsigned int nr_blks = last_blk - first_blk + 1;
104	unsigned long flags;
105
106	spin_lock_irqsave(&ifs->state_lock, flags);
107	bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks);
108	spin_unlock_irqrestore(&ifs->state_lock, flags);
109}
110
111static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len)
112{
113	struct iomap_folio_state *ifs = folio->private;
114
115	if (ifs)
116		ifs_clear_range_dirty(folio, ifs, off, len);
117}
118
119static void ifs_set_range_dirty(struct folio *folio,
120		struct iomap_folio_state *ifs, size_t off, size_t len)
121{
122	struct inode *inode = folio->mapping->host;
123	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
124	unsigned int first_blk = (off >> inode->i_blkbits);
125	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
126	unsigned int nr_blks = last_blk - first_blk + 1;
127	unsigned long flags;
128
129	spin_lock_irqsave(&ifs->state_lock, flags);
130	bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks);
131	spin_unlock_irqrestore(&ifs->state_lock, flags);
132}
133
134static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len)
135{
136	struct iomap_folio_state *ifs = folio->private;
137
138	if (ifs)
139		ifs_set_range_dirty(folio, ifs, off, len);
140}
141
142static struct iomap_folio_state *ifs_alloc(struct inode *inode,
143		struct folio *folio, unsigned int flags)
144{
145	struct iomap_folio_state *ifs = folio->private;
146	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
147	gfp_t gfp;
148
149	if (ifs || nr_blocks <= 1)
150		return ifs;
151
152	if (flags & IOMAP_NOWAIT)
153		gfp = GFP_NOWAIT;
154	else
155		gfp = GFP_NOFS | __GFP_NOFAIL;
156
157	/*
158	 * ifs->state tracks two sets of state flags when the
159	 * filesystem block size is smaller than the folio size.
160	 * The first state tracks per-block uptodate and the
161	 * second tracks per-block dirty state.
162	 */
163	ifs = kzalloc(struct_size(ifs, state,
164		      BITS_TO_LONGS(2 * nr_blocks)), gfp);
165	if (!ifs)
166		return ifs;
167
168	spin_lock_init(&ifs->state_lock);
169	if (folio_test_uptodate(folio))
170		bitmap_set(ifs->state, 0, nr_blocks);
171	if (folio_test_dirty(folio))
172		bitmap_set(ifs->state, nr_blocks, nr_blocks);
173	folio_attach_private(folio, ifs);
174
175	return ifs;
176}
177
178static void ifs_free(struct folio *folio)
179{
180	struct iomap_folio_state *ifs = folio_detach_private(folio);
181
182	if (!ifs)
183		return;
184	WARN_ON_ONCE(atomic_read(&ifs->read_bytes_pending));
185	WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending));
186	WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) !=
187			folio_test_uptodate(folio));
188	kfree(ifs);
189}
190
191/*
192 * Calculate the range inside the folio that we actually need to read.
193 */
194static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
195		loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
196{
197	struct iomap_folio_state *ifs = folio->private;
198	loff_t orig_pos = *pos;
199	loff_t isize = i_size_read(inode);
200	unsigned block_bits = inode->i_blkbits;
201	unsigned block_size = (1 << block_bits);
202	size_t poff = offset_in_folio(folio, *pos);
203	size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
204	unsigned first = poff >> block_bits;
205	unsigned last = (poff + plen - 1) >> block_bits;
206
207	/*
208	 * If the block size is smaller than the page size, we need to check the
209	 * per-block uptodate status and adjust the offset and length if needed
210	 * to avoid reading in already uptodate ranges.
211	 */
212	if (ifs) {
213		unsigned int i;
214
215		/* move forward for each leading block marked uptodate */
216		for (i = first; i <= last; i++) {
217			if (!ifs_block_is_uptodate(ifs, i))
218				break;
219			*pos += block_size;
220			poff += block_size;
221			plen -= block_size;
222			first++;
223		}
224
225		/* truncate len if we find any trailing uptodate block(s) */
226		for ( ; i <= last; i++) {
227			if (ifs_block_is_uptodate(ifs, i)) {
228				plen -= (last - i + 1) * block_size;
229				last = i - 1;
230				break;
231			}
232		}
233	}
234
235	/*
236	 * If the extent spans the block that contains the i_size, we need to
237	 * handle both halves separately so that we properly zero data in the
238	 * page cache for blocks that are entirely outside of i_size.
239	 */
240	if (orig_pos <= isize && orig_pos + length > isize) {
241		unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
242
243		if (first <= end && last > end)
244			plen -= (last - end) * block_size;
245	}
246
247	*offp = poff;
248	*lenp = plen;
249}
250
251static void iomap_finish_folio_read(struct folio *folio, size_t offset,
252		size_t len, int error)
253{
254	struct iomap_folio_state *ifs = folio->private;
255
256	if (unlikely(error)) {
257		folio_clear_uptodate(folio);
258		folio_set_error(folio);
259	} else {
260		iomap_set_range_uptodate(folio, offset, len);
261	}
262
263	if (!ifs || atomic_sub_and_test(len, &ifs->read_bytes_pending))
264		folio_unlock(folio);
265}
266
267static void iomap_read_end_io(struct bio *bio)
268{
269	int error = blk_status_to_errno(bio->bi_status);
270	struct folio_iter fi;
271
272	bio_for_each_folio_all(fi, bio)
273		iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
274	bio_put(bio);
275}
276
277struct iomap_readpage_ctx {
278	struct folio		*cur_folio;
279	bool			cur_folio_in_bio;
280	struct bio		*bio;
281	struct readahead_control *rac;
282};
283
284/**
285 * iomap_read_inline_data - copy inline data into the page cache
286 * @iter: iteration structure
287 * @folio: folio to copy to
288 *
289 * Copy the inline data in @iter into @folio and zero out the rest of the folio.
290 * Only a single IOMAP_INLINE extent is allowed at the end of each file.
291 * Returns zero for success to complete the read, or the usual negative errno.
292 */
293static int iomap_read_inline_data(const struct iomap_iter *iter,
294		struct folio *folio)
295{
296	const struct iomap *iomap = iomap_iter_srcmap(iter);
297	size_t size = i_size_read(iter->inode) - iomap->offset;
298	size_t poff = offset_in_page(iomap->offset);
299	size_t offset = offset_in_folio(folio, iomap->offset);
300	void *addr;
301
302	if (folio_test_uptodate(folio))
303		return 0;
304
305	if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
306		return -EIO;
307	if (WARN_ON_ONCE(size > PAGE_SIZE -
308			 offset_in_page(iomap->inline_data)))
309		return -EIO;
310	if (WARN_ON_ONCE(size > iomap->length))
311		return -EIO;
312	if (offset > 0)
313		ifs_alloc(iter->inode, folio, iter->flags);
314
315	addr = kmap_local_folio(folio, offset);
316	memcpy(addr, iomap->inline_data, size);
317	memset(addr + size, 0, PAGE_SIZE - poff - size);
318	kunmap_local(addr);
319	iomap_set_range_uptodate(folio, offset, PAGE_SIZE - poff);
320	return 0;
321}
322
323static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
324		loff_t pos)
325{
326	const struct iomap *srcmap = iomap_iter_srcmap(iter);
327
328	return srcmap->type != IOMAP_MAPPED ||
329		(srcmap->flags & IOMAP_F_NEW) ||
330		pos >= i_size_read(iter->inode);
331}
332
333static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
334		struct iomap_readpage_ctx *ctx, loff_t offset)
335{
336	const struct iomap *iomap = &iter->iomap;
337	loff_t pos = iter->pos + offset;
338	loff_t length = iomap_length(iter) - offset;
339	struct folio *folio = ctx->cur_folio;
340	struct iomap_folio_state *ifs;
341	loff_t orig_pos = pos;
342	size_t poff, plen;
343	sector_t sector;
344
345	if (iomap->type == IOMAP_INLINE)
346		return iomap_read_inline_data(iter, folio);
347
348	/* zero post-eof blocks as the page may be mapped */
349	ifs = ifs_alloc(iter->inode, folio, iter->flags);
350	iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
351	if (plen == 0)
352		goto done;
353
354	if (iomap_block_needs_zeroing(iter, pos)) {
355		folio_zero_range(folio, poff, plen);
356		iomap_set_range_uptodate(folio, poff, plen);
357		goto done;
358	}
359
360	ctx->cur_folio_in_bio = true;
361	if (ifs)
362		atomic_add(plen, &ifs->read_bytes_pending);
363
364	sector = iomap_sector(iomap, pos);
365	if (!ctx->bio ||
366	    bio_end_sector(ctx->bio) != sector ||
367	    !bio_add_folio(ctx->bio, folio, plen, poff)) {
368		gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
369		gfp_t orig_gfp = gfp;
370		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
371
372		if (ctx->bio)
373			submit_bio(ctx->bio);
374
375		if (ctx->rac) /* same as readahead_gfp_mask */
376			gfp |= __GFP_NORETRY | __GFP_NOWARN;
377		ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
378				     REQ_OP_READ, gfp);
379		/*
380		 * If the bio_alloc fails, try it again for a single page to
381		 * avoid having to deal with partial page reads.  This emulates
382		 * what do_mpage_read_folio does.
383		 */
384		if (!ctx->bio) {
385			ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
386					     orig_gfp);
387		}
388		if (ctx->rac)
389			ctx->bio->bi_opf |= REQ_RAHEAD;
390		ctx->bio->bi_iter.bi_sector = sector;
391		ctx->bio->bi_end_io = iomap_read_end_io;
392		bio_add_folio_nofail(ctx->bio, folio, plen, poff);
393	}
394
395done:
396	/*
397	 * Move the caller beyond our range so that it keeps making progress.
398	 * For that, we have to include any leading non-uptodate ranges, but
399	 * we can skip trailing ones as they will be handled in the next
400	 * iteration.
401	 */
402	return pos - orig_pos + plen;
403}
404
405int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
406{
407	struct iomap_iter iter = {
408		.inode		= folio->mapping->host,
409		.pos		= folio_pos(folio),
410		.len		= folio_size(folio),
411	};
412	struct iomap_readpage_ctx ctx = {
413		.cur_folio	= folio,
414	};
415	int ret;
416
417	trace_iomap_readpage(iter.inode, 1);
418
419	while ((ret = iomap_iter(&iter, ops)) > 0)
420		iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
421
422	if (ret < 0)
423		folio_set_error(folio);
424
425	if (ctx.bio) {
426		submit_bio(ctx.bio);
427		WARN_ON_ONCE(!ctx.cur_folio_in_bio);
428	} else {
429		WARN_ON_ONCE(ctx.cur_folio_in_bio);
430		folio_unlock(folio);
431	}
432
433	/*
434	 * Just like mpage_readahead and block_read_full_folio, we always
435	 * return 0 and just set the folio error flag on errors.  This
436	 * should be cleaned up throughout the stack eventually.
437	 */
438	return 0;
439}
440EXPORT_SYMBOL_GPL(iomap_read_folio);
441
442static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
443		struct iomap_readpage_ctx *ctx)
444{
445	loff_t length = iomap_length(iter);
446	loff_t done, ret;
447
448	for (done = 0; done < length; done += ret) {
449		if (ctx->cur_folio &&
450		    offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
451			if (!ctx->cur_folio_in_bio)
452				folio_unlock(ctx->cur_folio);
453			ctx->cur_folio = NULL;
454		}
455		if (!ctx->cur_folio) {
456			ctx->cur_folio = readahead_folio(ctx->rac);
457			ctx->cur_folio_in_bio = false;
458		}
459		ret = iomap_readpage_iter(iter, ctx, done);
460		if (ret <= 0)
461			return ret;
462	}
463
464	return done;
465}
466
467/**
468 * iomap_readahead - Attempt to read pages from a file.
469 * @rac: Describes the pages to be read.
470 * @ops: The operations vector for the filesystem.
471 *
472 * This function is for filesystems to call to implement their readahead
473 * address_space operation.
474 *
475 * Context: The @ops callbacks may submit I/O (eg to read the addresses of
476 * blocks from disc), and may wait for it.  The caller may be trying to
477 * access a different page, and so sleeping excessively should be avoided.
478 * It may allocate memory, but should avoid costly allocations.  This
479 * function is called with memalloc_nofs set, so allocations will not cause
480 * the filesystem to be reentered.
481 */
482void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
483{
484	struct iomap_iter iter = {
485		.inode	= rac->mapping->host,
486		.pos	= readahead_pos(rac),
487		.len	= readahead_length(rac),
488	};
489	struct iomap_readpage_ctx ctx = {
490		.rac	= rac,
491	};
492
493	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
494
495	while (iomap_iter(&iter, ops) > 0)
496		iter.processed = iomap_readahead_iter(&iter, &ctx);
497
498	if (ctx.bio)
499		submit_bio(ctx.bio);
500	if (ctx.cur_folio) {
501		if (!ctx.cur_folio_in_bio)
502			folio_unlock(ctx.cur_folio);
503	}
504}
505EXPORT_SYMBOL_GPL(iomap_readahead);
506
507/*
508 * iomap_is_partially_uptodate checks whether blocks within a folio are
509 * uptodate or not.
510 *
511 * Returns true if all blocks which correspond to the specified part
512 * of the folio are uptodate.
513 */
514bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
515{
516	struct iomap_folio_state *ifs = folio->private;
517	struct inode *inode = folio->mapping->host;
518	unsigned first, last, i;
519
520	if (!ifs)
521		return false;
522
523	/* Caller's range may extend past the end of this folio */
524	count = min(folio_size(folio) - from, count);
525
526	/* First and last blocks in range within folio */
527	first = from >> inode->i_blkbits;
528	last = (from + count - 1) >> inode->i_blkbits;
529
530	for (i = first; i <= last; i++)
531		if (!ifs_block_is_uptodate(ifs, i))
532			return false;
533	return true;
534}
535EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
536
537/**
538 * iomap_get_folio - get a folio reference for writing
539 * @iter: iteration structure
540 * @pos: start offset of write
541 * @len: Suggested size of folio to create.
542 *
543 * Returns a locked reference to the folio at @pos, or an error pointer if the
544 * folio could not be obtained.
545 */
546struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len)
547{
548	fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS;
549
550	if (iter->flags & IOMAP_NOWAIT)
551		fgp |= FGP_NOWAIT;
552	fgp |= fgf_set_order(len);
553
554	return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
555			fgp, mapping_gfp_mask(iter->inode->i_mapping));
556}
557EXPORT_SYMBOL_GPL(iomap_get_folio);
558
559bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
560{
561	trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
562			folio_size(folio));
563
564	/*
565	 * If the folio is dirty, we refuse to release our metadata because
566	 * it may be partially dirty.  Once we track per-block dirty state,
567	 * we can release the metadata if every block is dirty.
568	 */
569	if (folio_test_dirty(folio))
570		return false;
571	ifs_free(folio);
572	return true;
573}
574EXPORT_SYMBOL_GPL(iomap_release_folio);
575
576void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
577{
578	trace_iomap_invalidate_folio(folio->mapping->host,
579					folio_pos(folio) + offset, len);
580
581	/*
582	 * If we're invalidating the entire folio, clear the dirty state
583	 * from it and release it to avoid unnecessary buildup of the LRU.
584	 */
585	if (offset == 0 && len == folio_size(folio)) {
586		WARN_ON_ONCE(folio_test_writeback(folio));
587		folio_cancel_dirty(folio);
588		ifs_free(folio);
589	}
590}
591EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
592
593bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio)
594{
595	struct inode *inode = mapping->host;
596	size_t len = folio_size(folio);
597
598	ifs_alloc(inode, folio, 0);
599	iomap_set_range_dirty(folio, 0, len);
600	return filemap_dirty_folio(mapping, folio);
601}
602EXPORT_SYMBOL_GPL(iomap_dirty_folio);
603
604static void
605iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
606{
607	loff_t i_size = i_size_read(inode);
608
609	/*
610	 * Only truncate newly allocated pages beyoned EOF, even if the
611	 * write started inside the existing inode size.
612	 */
613	if (pos + len > i_size)
614		truncate_pagecache_range(inode, max(pos, i_size),
615					 pos + len - 1);
616}
617
618static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
619		size_t poff, size_t plen, const struct iomap *iomap)
620{
621	struct bio_vec bvec;
622	struct bio bio;
623
624	bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
625	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
626	bio_add_folio_nofail(&bio, folio, plen, poff);
627	return submit_bio_wait(&bio);
628}
629
630static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
631		size_t len, struct folio *folio)
632{
633	const struct iomap *srcmap = iomap_iter_srcmap(iter);
634	struct iomap_folio_state *ifs;
635	loff_t block_size = i_blocksize(iter->inode);
636	loff_t block_start = round_down(pos, block_size);
637	loff_t block_end = round_up(pos + len, block_size);
638	unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
639	size_t from = offset_in_folio(folio, pos), to = from + len;
640	size_t poff, plen;
641
642	/*
643	 * If the write or zeroing completely overlaps the current folio, then
644	 * entire folio will be dirtied so there is no need for
645	 * per-block state tracking structures to be attached to this folio.
646	 * For the unshare case, we must read in the ondisk contents because we
647	 * are not changing pagecache contents.
648	 */
649	if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) &&
650	    pos + len >= folio_pos(folio) + folio_size(folio))
651		return 0;
652
653	ifs = ifs_alloc(iter->inode, folio, iter->flags);
654	if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1)
655		return -EAGAIN;
656
657	if (folio_test_uptodate(folio))
658		return 0;
659	folio_clear_error(folio);
660
661	do {
662		iomap_adjust_read_range(iter->inode, folio, &block_start,
663				block_end - block_start, &poff, &plen);
664		if (plen == 0)
665			break;
666
667		if (!(iter->flags & IOMAP_UNSHARE) &&
668		    (from <= poff || from >= poff + plen) &&
669		    (to <= poff || to >= poff + plen))
670			continue;
671
672		if (iomap_block_needs_zeroing(iter, block_start)) {
673			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
674				return -EIO;
675			folio_zero_segments(folio, poff, from, to, poff + plen);
676		} else {
677			int status;
678
679			if (iter->flags & IOMAP_NOWAIT)
680				return -EAGAIN;
681
682			status = iomap_read_folio_sync(block_start, folio,
683					poff, plen, srcmap);
684			if (status)
685				return status;
686		}
687		iomap_set_range_uptodate(folio, poff, plen);
688	} while ((block_start += plen) < block_end);
689
690	return 0;
691}
692
693static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos,
694		size_t len)
695{
696	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
697
698	if (folio_ops && folio_ops->get_folio)
699		return folio_ops->get_folio(iter, pos, len);
700	else
701		return iomap_get_folio(iter, pos, len);
702}
703
704static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret,
705		struct folio *folio)
706{
707	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
708
709	if (folio_ops && folio_ops->put_folio) {
710		folio_ops->put_folio(iter->inode, pos, ret, folio);
711	} else {
712		folio_unlock(folio);
713		folio_put(folio);
714	}
715}
716
717static int iomap_write_begin_inline(const struct iomap_iter *iter,
718		struct folio *folio)
719{
720	/* needs more work for the tailpacking case; disable for now */
721	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
722		return -EIO;
723	return iomap_read_inline_data(iter, folio);
724}
725
726static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
727		size_t len, struct folio **foliop)
728{
729	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
730	const struct iomap *srcmap = iomap_iter_srcmap(iter);
731	struct folio *folio;
732	int status = 0;
733
734	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
735	if (srcmap != &iter->iomap)
736		BUG_ON(pos + len > srcmap->offset + srcmap->length);
737
738	if (fatal_signal_pending(current))
739		return -EINTR;
740
741	if (!mapping_large_folio_support(iter->inode->i_mapping))
742		len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
743
744	folio = __iomap_get_folio(iter, pos, len);
745	if (IS_ERR(folio))
746		return PTR_ERR(folio);
747
748	/*
749	 * Now we have a locked folio, before we do anything with it we need to
750	 * check that the iomap we have cached is not stale. The inode extent
751	 * mapping can change due to concurrent IO in flight (e.g.
752	 * IOMAP_UNWRITTEN state can change and memory reclaim could have
753	 * reclaimed a previously partially written page at this index after IO
754	 * completion before this write reaches this file offset) and hence we
755	 * could do the wrong thing here (zero a page range incorrectly or fail
756	 * to zero) and corrupt data.
757	 */
758	if (folio_ops && folio_ops->iomap_valid) {
759		bool iomap_valid = folio_ops->iomap_valid(iter->inode,
760							 &iter->iomap);
761		if (!iomap_valid) {
762			iter->iomap.flags |= IOMAP_F_STALE;
763			status = 0;
764			goto out_unlock;
765		}
766	}
767
768	if (pos + len > folio_pos(folio) + folio_size(folio))
769		len = folio_pos(folio) + folio_size(folio) - pos;
770
771	if (srcmap->type == IOMAP_INLINE)
772		status = iomap_write_begin_inline(iter, folio);
773	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
774		status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
775	else
776		status = __iomap_write_begin(iter, pos, len, folio);
777
778	if (unlikely(status))
779		goto out_unlock;
780
781	*foliop = folio;
782	return 0;
783
784out_unlock:
785	__iomap_put_folio(iter, pos, 0, folio);
786	iomap_write_failed(iter->inode, pos, len);
787
788	return status;
789}
790
791static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
792		size_t copied, struct folio *folio)
793{
794	flush_dcache_folio(folio);
795
796	/*
797	 * The blocks that were entirely written will now be uptodate, so we
798	 * don't have to worry about a read_folio reading them and overwriting a
799	 * partial write.  However, if we've encountered a short write and only
800	 * partially written into a block, it will not be marked uptodate, so a
801	 * read_folio might come in and destroy our partial write.
802	 *
803	 * Do the simplest thing and just treat any short write to a
804	 * non-uptodate page as a zero-length write, and force the caller to
805	 * redo the whole thing.
806	 */
807	if (unlikely(copied < len && !folio_test_uptodate(folio)))
808		return 0;
809	iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len);
810	iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied);
811	filemap_dirty_folio(inode->i_mapping, folio);
812	return copied;
813}
814
815static size_t iomap_write_end_inline(const struct iomap_iter *iter,
816		struct folio *folio, loff_t pos, size_t copied)
817{
818	const struct iomap *iomap = &iter->iomap;
819	void *addr;
820
821	WARN_ON_ONCE(!folio_test_uptodate(folio));
822	BUG_ON(!iomap_inline_data_valid(iomap));
823
824	flush_dcache_folio(folio);
825	addr = kmap_local_folio(folio, pos);
826	memcpy(iomap_inline_data(iomap, pos), addr, copied);
827	kunmap_local(addr);
828
829	mark_inode_dirty(iter->inode);
830	return copied;
831}
832
833/* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
834static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
835		size_t copied, struct folio *folio)
836{
837	const struct iomap *srcmap = iomap_iter_srcmap(iter);
838	loff_t old_size = iter->inode->i_size;
839	size_t ret;
840
841	if (srcmap->type == IOMAP_INLINE) {
842		ret = iomap_write_end_inline(iter, folio, pos, copied);
843	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
844		ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
845				copied, &folio->page, NULL);
846	} else {
847		ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
848	}
849
850	/*
851	 * Update the in-memory inode size after copying the data into the page
852	 * cache.  It's up to the file system to write the updated size to disk,
853	 * preferably after I/O completion so that no stale data is exposed.
854	 */
855	if (pos + ret > old_size) {
856		i_size_write(iter->inode, pos + ret);
857		iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
858	}
859	__iomap_put_folio(iter, pos, ret, folio);
860
861	if (old_size < pos)
862		pagecache_isize_extended(iter->inode, old_size, pos);
863	if (ret < len)
864		iomap_write_failed(iter->inode, pos + ret, len - ret);
865	return ret;
866}
867
868static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
869{
870	loff_t length = iomap_length(iter);
871	size_t chunk = PAGE_SIZE << MAX_PAGECACHE_ORDER;
872	loff_t pos = iter->pos;
873	ssize_t written = 0;
874	long status = 0;
875	struct address_space *mapping = iter->inode->i_mapping;
876	unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
877
878	do {
879		struct folio *folio;
880		size_t offset;		/* Offset into folio */
881		size_t bytes;		/* Bytes to write to folio */
882		size_t copied;		/* Bytes copied from user */
883
884		bytes = iov_iter_count(i);
885retry:
886		offset = pos & (chunk - 1);
887		bytes = min(chunk - offset, bytes);
888		status = balance_dirty_pages_ratelimited_flags(mapping,
889							       bdp_flags);
890		if (unlikely(status))
891			break;
892
893		if (bytes > length)
894			bytes = length;
895
896		/*
897		 * Bring in the user page that we'll copy from _first_.
898		 * Otherwise there's a nasty deadlock on copying from the
899		 * same page as we're writing to, without it being marked
900		 * up-to-date.
901		 *
902		 * For async buffered writes the assumption is that the user
903		 * page has already been faulted in. This can be optimized by
904		 * faulting the user page.
905		 */
906		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
907			status = -EFAULT;
908			break;
909		}
910
911		status = iomap_write_begin(iter, pos, bytes, &folio);
912		if (unlikely(status))
913			break;
914		if (iter->iomap.flags & IOMAP_F_STALE)
915			break;
916
917		offset = offset_in_folio(folio, pos);
918		if (bytes > folio_size(folio) - offset)
919			bytes = folio_size(folio) - offset;
920
921		if (mapping_writably_mapped(mapping))
922			flush_dcache_folio(folio);
923
924		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
925		status = iomap_write_end(iter, pos, bytes, copied, folio);
926
927		if (unlikely(copied != status))
928			iov_iter_revert(i, copied - status);
929
930		cond_resched();
931		if (unlikely(status == 0)) {
932			/*
933			 * A short copy made iomap_write_end() reject the
934			 * thing entirely.  Might be memory poisoning
935			 * halfway through, might be a race with munmap,
936			 * might be severe memory pressure.
937			 */
938			if (chunk > PAGE_SIZE)
939				chunk /= 2;
940			if (copied) {
941				bytes = copied;
942				goto retry;
943			}
944		} else {
945			pos += status;
946			written += status;
947			length -= status;
948		}
949	} while (iov_iter_count(i) && length);
950
951	if (status == -EAGAIN) {
952		iov_iter_revert(i, written);
953		return -EAGAIN;
954	}
955	return written ? written : status;
956}
957
958ssize_t
959iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
960		const struct iomap_ops *ops)
961{
962	struct iomap_iter iter = {
963		.inode		= iocb->ki_filp->f_mapping->host,
964		.pos		= iocb->ki_pos,
965		.len		= iov_iter_count(i),
966		.flags		= IOMAP_WRITE,
967	};
968	ssize_t ret;
969
970	if (iocb->ki_flags & IOCB_NOWAIT)
971		iter.flags |= IOMAP_NOWAIT;
972
973	while ((ret = iomap_iter(&iter, ops)) > 0)
974		iter.processed = iomap_write_iter(&iter, i);
975
976	if (unlikely(iter.pos == iocb->ki_pos))
977		return ret;
978	ret = iter.pos - iocb->ki_pos;
979	iocb->ki_pos = iter.pos;
980	return ret;
981}
982EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
983
984static int iomap_write_delalloc_ifs_punch(struct inode *inode,
985		struct folio *folio, loff_t start_byte, loff_t end_byte,
986		iomap_punch_t punch)
987{
988	unsigned int first_blk, last_blk, i;
989	loff_t last_byte;
990	u8 blkbits = inode->i_blkbits;
991	struct iomap_folio_state *ifs;
992	int ret = 0;
993
994	/*
995	 * When we have per-block dirty tracking, there can be
996	 * blocks within a folio which are marked uptodate
997	 * but not dirty. In that case it is necessary to punch
998	 * out such blocks to avoid leaking any delalloc blocks.
999	 */
1000	ifs = folio->private;
1001	if (!ifs)
1002		return ret;
1003
1004	last_byte = min_t(loff_t, end_byte - 1,
1005			folio_pos(folio) + folio_size(folio) - 1);
1006	first_blk = offset_in_folio(folio, start_byte) >> blkbits;
1007	last_blk = offset_in_folio(folio, last_byte) >> blkbits;
1008	for (i = first_blk; i <= last_blk; i++) {
1009		if (!ifs_block_is_dirty(folio, ifs, i)) {
1010			ret = punch(inode, folio_pos(folio) + (i << blkbits),
1011				    1 << blkbits);
1012			if (ret)
1013				return ret;
1014		}
1015	}
1016
1017	return ret;
1018}
1019
1020
1021static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio,
1022		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1023		iomap_punch_t punch)
1024{
1025	int ret = 0;
1026
1027	if (!folio_test_dirty(folio))
1028		return ret;
1029
1030	/* if dirty, punch up to offset */
1031	if (start_byte > *punch_start_byte) {
1032		ret = punch(inode, *punch_start_byte,
1033				start_byte - *punch_start_byte);
1034		if (ret)
1035			return ret;
1036	}
1037
1038	/* Punch non-dirty blocks within folio */
1039	ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte,
1040			end_byte, punch);
1041	if (ret)
1042		return ret;
1043
1044	/*
1045	 * Make sure the next punch start is correctly bound to
1046	 * the end of this data range, not the end of the folio.
1047	 */
1048	*punch_start_byte = min_t(loff_t, end_byte,
1049				folio_pos(folio) + folio_size(folio));
1050
1051	return ret;
1052}
1053
1054/*
1055 * Scan the data range passed to us for dirty page cache folios. If we find a
1056 * dirty folio, punch out the preceding range and update the offset from which
1057 * the next punch will start from.
1058 *
1059 * We can punch out storage reservations under clean pages because they either
1060 * contain data that has been written back - in which case the delalloc punch
1061 * over that range is a no-op - or they have been read faults in which case they
1062 * contain zeroes and we can remove the delalloc backing range and any new
1063 * writes to those pages will do the normal hole filling operation...
1064 *
1065 * This makes the logic simple: we only need to keep the delalloc extents only
1066 * over the dirty ranges of the page cache.
1067 *
1068 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1069 * simplify range iterations.
1070 */
1071static int iomap_write_delalloc_scan(struct inode *inode,
1072		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1073		iomap_punch_t punch)
1074{
1075	while (start_byte < end_byte) {
1076		struct folio	*folio;
1077		int ret;
1078
1079		/* grab locked page */
1080		folio = filemap_lock_folio(inode->i_mapping,
1081				start_byte >> PAGE_SHIFT);
1082		if (IS_ERR(folio)) {
1083			start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
1084					PAGE_SIZE;
1085			continue;
1086		}
1087
1088		ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte,
1089						 start_byte, end_byte, punch);
1090		if (ret) {
1091			folio_unlock(folio);
1092			folio_put(folio);
1093			return ret;
1094		}
1095
1096		/* move offset to start of next folio in range */
1097		start_byte = folio_next_index(folio) << PAGE_SHIFT;
1098		folio_unlock(folio);
1099		folio_put(folio);
1100	}
1101	return 0;
1102}
1103
1104/*
1105 * Punch out all the delalloc blocks in the range given except for those that
1106 * have dirty data still pending in the page cache - those are going to be
1107 * written and so must still retain the delalloc backing for writeback.
1108 *
1109 * As we are scanning the page cache for data, we don't need to reimplement the
1110 * wheel - mapping_seek_hole_data() does exactly what we need to identify the
1111 * start and end of data ranges correctly even for sub-folio block sizes. This
1112 * byte range based iteration is especially convenient because it means we
1113 * don't have to care about variable size folios, nor where the start or end of
1114 * the data range lies within a folio, if they lie within the same folio or even
1115 * if there are multiple discontiguous data ranges within the folio.
1116 *
1117 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
1118 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
1119 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
1120 * date. A write page fault can then mark it dirty. If we then fail a write()
1121 * beyond EOF into that up to date cached range, we allocate a delalloc block
1122 * beyond EOF and then have to punch it out. Because the range is up to date,
1123 * mapping_seek_hole_data() will return it, and we will skip the punch because
1124 * the folio is dirty. THis is incorrect - we always need to punch out delalloc
1125 * beyond EOF in this case as writeback will never write back and covert that
1126 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
1127 * resulting in always punching out the range from the EOF to the end of the
1128 * range the iomap spans.
1129 *
1130 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
1131 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
1132 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
1133 * returns the end of the data range (data_end). Using closed intervals would
1134 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
1135 * the code to subtle off-by-one bugs....
1136 */
1137static int iomap_write_delalloc_release(struct inode *inode,
1138		loff_t start_byte, loff_t end_byte, iomap_punch_t punch)
1139{
1140	loff_t punch_start_byte = start_byte;
1141	loff_t scan_end_byte = min(i_size_read(inode), end_byte);
1142	int error = 0;
1143
1144	/*
1145	 * Lock the mapping to avoid races with page faults re-instantiating
1146	 * folios and dirtying them via ->page_mkwrite whilst we walk the
1147	 * cache and perform delalloc extent removal. Failing to do this can
1148	 * leave dirty pages with no space reservation in the cache.
1149	 */
1150	filemap_invalidate_lock(inode->i_mapping);
1151	while (start_byte < scan_end_byte) {
1152		loff_t		data_end;
1153
1154		start_byte = mapping_seek_hole_data(inode->i_mapping,
1155				start_byte, scan_end_byte, SEEK_DATA);
1156		/*
1157		 * If there is no more data to scan, all that is left is to
1158		 * punch out the remaining range.
1159		 */
1160		if (start_byte == -ENXIO || start_byte == scan_end_byte)
1161			break;
1162		if (start_byte < 0) {
1163			error = start_byte;
1164			goto out_unlock;
1165		}
1166		WARN_ON_ONCE(start_byte < punch_start_byte);
1167		WARN_ON_ONCE(start_byte > scan_end_byte);
1168
1169		/*
1170		 * We find the end of this contiguous cached data range by
1171		 * seeking from start_byte to the beginning of the next hole.
1172		 */
1173		data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
1174				scan_end_byte, SEEK_HOLE);
1175		if (data_end < 0) {
1176			error = data_end;
1177			goto out_unlock;
1178		}
1179		WARN_ON_ONCE(data_end <= start_byte);
1180		WARN_ON_ONCE(data_end > scan_end_byte);
1181
1182		error = iomap_write_delalloc_scan(inode, &punch_start_byte,
1183				start_byte, data_end, punch);
1184		if (error)
1185			goto out_unlock;
1186
1187		/* The next data search starts at the end of this one. */
1188		start_byte = data_end;
1189	}
1190
1191	if (punch_start_byte < end_byte)
1192		error = punch(inode, punch_start_byte,
1193				end_byte - punch_start_byte);
1194out_unlock:
1195	filemap_invalidate_unlock(inode->i_mapping);
1196	return error;
1197}
1198
1199/*
1200 * When a short write occurs, the filesystem may need to remove reserved space
1201 * that was allocated in ->iomap_begin from it's ->iomap_end method. For
1202 * filesystems that use delayed allocation, we need to punch out delalloc
1203 * extents from the range that are not dirty in the page cache. As the write can
1204 * race with page faults, there can be dirty pages over the delalloc extent
1205 * outside the range of a short write but still within the delalloc extent
1206 * allocated for this iomap.
1207 *
1208 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1209 * simplify range iterations.
1210 *
1211 * The punch() callback *must* only punch delalloc extents in the range passed
1212 * to it. It must skip over all other types of extents in the range and leave
1213 * them completely unchanged. It must do this punch atomically with respect to
1214 * other extent modifications.
1215 *
1216 * The punch() callback may be called with a folio locked to prevent writeback
1217 * extent allocation racing at the edge of the range we are currently punching.
1218 * The locked folio may or may not cover the range being punched, so it is not
1219 * safe for the punch() callback to lock folios itself.
1220 *
1221 * Lock order is:
1222 *
1223 * inode->i_rwsem (shared or exclusive)
1224 *   inode->i_mapping->invalidate_lock (exclusive)
1225 *     folio_lock()
1226 *       ->punch
1227 *         internal filesystem allocation lock
1228 */
1229int iomap_file_buffered_write_punch_delalloc(struct inode *inode,
1230		struct iomap *iomap, loff_t pos, loff_t length,
1231		ssize_t written, iomap_punch_t punch)
1232{
1233	loff_t			start_byte;
1234	loff_t			end_byte;
1235	unsigned int		blocksize = i_blocksize(inode);
1236
1237	if (iomap->type != IOMAP_DELALLOC)
1238		return 0;
1239
1240	/* If we didn't reserve the blocks, we're not allowed to punch them. */
1241	if (!(iomap->flags & IOMAP_F_NEW))
1242		return 0;
1243
1244	/*
1245	 * start_byte refers to the first unused block after a short write. If
1246	 * nothing was written, round offset down to point at the first block in
1247	 * the range.
1248	 */
1249	if (unlikely(!written))
1250		start_byte = round_down(pos, blocksize);
1251	else
1252		start_byte = round_up(pos + written, blocksize);
1253	end_byte = round_up(pos + length, blocksize);
1254
1255	/* Nothing to do if we've written the entire delalloc extent */
1256	if (start_byte >= end_byte)
1257		return 0;
1258
1259	return iomap_write_delalloc_release(inode, start_byte, end_byte,
1260					punch);
1261}
1262EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc);
1263
1264static loff_t iomap_unshare_iter(struct iomap_iter *iter)
1265{
1266	struct iomap *iomap = &iter->iomap;
1267	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1268	loff_t pos = iter->pos;
1269	loff_t length = iomap_length(iter);
1270	loff_t written = 0;
1271
1272	/* don't bother with blocks that are not shared to start with */
1273	if (!(iomap->flags & IOMAP_F_SHARED))
1274		return length;
1275	/* don't bother with holes or unwritten extents */
1276	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1277		return length;
1278
1279	do {
1280		struct folio *folio;
1281		int status;
1282		size_t offset;
1283		size_t bytes = min_t(u64, SIZE_MAX, length);
1284
1285		status = iomap_write_begin(iter, pos, bytes, &folio);
1286		if (unlikely(status))
1287			return status;
1288		if (iomap->flags & IOMAP_F_STALE)
1289			break;
1290
1291		offset = offset_in_folio(folio, pos);
1292		if (bytes > folio_size(folio) - offset)
1293			bytes = folio_size(folio) - offset;
1294
1295		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1296		if (WARN_ON_ONCE(bytes == 0))
1297			return -EIO;
1298
1299		cond_resched();
1300
1301		pos += bytes;
1302		written += bytes;
1303		length -= bytes;
1304
1305		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1306	} while (length > 0);
1307
1308	return written;
1309}
1310
1311int
1312iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1313		const struct iomap_ops *ops)
1314{
1315	struct iomap_iter iter = {
1316		.inode		= inode,
1317		.pos		= pos,
1318		.len		= len,
1319		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
1320	};
1321	int ret;
1322
1323	while ((ret = iomap_iter(&iter, ops)) > 0)
1324		iter.processed = iomap_unshare_iter(&iter);
1325	return ret;
1326}
1327EXPORT_SYMBOL_GPL(iomap_file_unshare);
1328
1329static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
1330{
1331	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1332	loff_t pos = iter->pos;
1333	loff_t length = iomap_length(iter);
1334	loff_t written = 0;
1335
1336	/* already zeroed?  we're done. */
1337	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1338		return length;
1339
1340	do {
1341		struct folio *folio;
1342		int status;
1343		size_t offset;
1344		size_t bytes = min_t(u64, SIZE_MAX, length);
1345
1346		status = iomap_write_begin(iter, pos, bytes, &folio);
1347		if (status)
1348			return status;
1349		if (iter->iomap.flags & IOMAP_F_STALE)
1350			break;
1351
1352		offset = offset_in_folio(folio, pos);
1353		if (bytes > folio_size(folio) - offset)
1354			bytes = folio_size(folio) - offset;
1355
1356		folio_zero_range(folio, offset, bytes);
1357		folio_mark_accessed(folio);
1358
1359		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1360		if (WARN_ON_ONCE(bytes == 0))
1361			return -EIO;
1362
1363		pos += bytes;
1364		length -= bytes;
1365		written += bytes;
1366	} while (length > 0);
1367
1368	if (did_zero)
1369		*did_zero = true;
1370	return written;
1371}
1372
1373int
1374iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1375		const struct iomap_ops *ops)
1376{
1377	struct iomap_iter iter = {
1378		.inode		= inode,
1379		.pos		= pos,
1380		.len		= len,
1381		.flags		= IOMAP_ZERO,
1382	};
1383	int ret;
1384
1385	while ((ret = iomap_iter(&iter, ops)) > 0)
1386		iter.processed = iomap_zero_iter(&iter, did_zero);
1387	return ret;
1388}
1389EXPORT_SYMBOL_GPL(iomap_zero_range);
1390
1391int
1392iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1393		const struct iomap_ops *ops)
1394{
1395	unsigned int blocksize = i_blocksize(inode);
1396	unsigned int off = pos & (blocksize - 1);
1397
1398	/* Block boundary? Nothing to do */
1399	if (!off)
1400		return 0;
1401	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1402}
1403EXPORT_SYMBOL_GPL(iomap_truncate_page);
1404
1405static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1406		struct folio *folio)
1407{
1408	loff_t length = iomap_length(iter);
1409	int ret;
1410
1411	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1412		ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1413					      &iter->iomap);
1414		if (ret)
1415			return ret;
1416		block_commit_write(&folio->page, 0, length);
1417	} else {
1418		WARN_ON_ONCE(!folio_test_uptodate(folio));
1419		folio_mark_dirty(folio);
1420	}
1421
1422	return length;
1423}
1424
1425vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1426{
1427	struct iomap_iter iter = {
1428		.inode		= file_inode(vmf->vma->vm_file),
1429		.flags		= IOMAP_WRITE | IOMAP_FAULT,
1430	};
1431	struct folio *folio = page_folio(vmf->page);
1432	ssize_t ret;
1433
1434	folio_lock(folio);
1435	ret = folio_mkwrite_check_truncate(folio, iter.inode);
1436	if (ret < 0)
1437		goto out_unlock;
1438	iter.pos = folio_pos(folio);
1439	iter.len = ret;
1440	while ((ret = iomap_iter(&iter, ops)) > 0)
1441		iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
1442
1443	if (ret < 0)
1444		goto out_unlock;
1445	folio_wait_stable(folio);
1446	return VM_FAULT_LOCKED;
1447out_unlock:
1448	folio_unlock(folio);
1449	return vmf_fs_error(ret);
1450}
1451EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1452
1453static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1454		size_t len, int error)
1455{
1456	struct iomap_folio_state *ifs = folio->private;
1457
1458	if (error) {
1459		folio_set_error(folio);
1460		mapping_set_error(inode->i_mapping, error);
1461	}
1462
1463	WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1464	WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0);
1465
1466	if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending))
1467		folio_end_writeback(folio);
1468}
1469
1470/*
1471 * We're now finished for good with this ioend structure.  Update the page
1472 * state, release holds on bios, and finally free up memory.  Do not use the
1473 * ioend after this.
1474 */
1475static u32
1476iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1477{
1478	struct inode *inode = ioend->io_inode;
1479	struct bio *bio = &ioend->io_inline_bio;
1480	struct bio *last = ioend->io_bio, *next;
1481	u64 start = bio->bi_iter.bi_sector;
1482	loff_t offset = ioend->io_offset;
1483	bool quiet = bio_flagged(bio, BIO_QUIET);
1484	u32 folio_count = 0;
1485
1486	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1487		struct folio_iter fi;
1488
1489		/*
1490		 * For the last bio, bi_private points to the ioend, so we
1491		 * need to explicitly end the iteration here.
1492		 */
1493		if (bio == last)
1494			next = NULL;
1495		else
1496			next = bio->bi_private;
1497
1498		/* walk all folios in bio, ending page IO on them */
1499		bio_for_each_folio_all(fi, bio) {
1500			iomap_finish_folio_write(inode, fi.folio, fi.length,
1501					error);
1502			folio_count++;
1503		}
1504		bio_put(bio);
1505	}
1506	/* The ioend has been freed by bio_put() */
1507
1508	if (unlikely(error && !quiet)) {
1509		printk_ratelimited(KERN_ERR
1510"%s: writeback error on inode %lu, offset %lld, sector %llu",
1511			inode->i_sb->s_id, inode->i_ino, offset, start);
1512	}
1513	return folio_count;
1514}
1515
1516/*
1517 * Ioend completion routine for merged bios. This can only be called from task
1518 * contexts as merged ioends can be of unbound length. Hence we have to break up
1519 * the writeback completions into manageable chunks to avoid long scheduler
1520 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
1521 * good batch processing throughput without creating adverse scheduler latency
1522 * conditions.
1523 */
1524void
1525iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1526{
1527	struct list_head tmp;
1528	u32 completions;
1529
1530	might_sleep();
1531
1532	list_replace_init(&ioend->io_list, &tmp);
1533	completions = iomap_finish_ioend(ioend, error);
1534
1535	while (!list_empty(&tmp)) {
1536		if (completions > IOEND_BATCH_SIZE * 8) {
1537			cond_resched();
1538			completions = 0;
1539		}
1540		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1541		list_del_init(&ioend->io_list);
1542		completions += iomap_finish_ioend(ioend, error);
1543	}
1544}
1545EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1546
1547/*
1548 * We can merge two adjacent ioends if they have the same set of work to do.
1549 */
1550static bool
1551iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1552{
1553	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1554		return false;
1555	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1556	    (next->io_flags & IOMAP_F_SHARED))
1557		return false;
1558	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1559	    (next->io_type == IOMAP_UNWRITTEN))
1560		return false;
1561	if (ioend->io_offset + ioend->io_size != next->io_offset)
1562		return false;
1563	/*
1564	 * Do not merge physically discontiguous ioends. The filesystem
1565	 * completion functions will have to iterate the physical
1566	 * discontiguities even if we merge the ioends at a logical level, so
1567	 * we don't gain anything by merging physical discontiguities here.
1568	 *
1569	 * We cannot use bio->bi_iter.bi_sector here as it is modified during
1570	 * submission so does not point to the start sector of the bio at
1571	 * completion.
1572	 */
1573	if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
1574		return false;
1575	return true;
1576}
1577
1578void
1579iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1580{
1581	struct iomap_ioend *next;
1582
1583	INIT_LIST_HEAD(&ioend->io_list);
1584
1585	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1586			io_list))) {
1587		if (!iomap_ioend_can_merge(ioend, next))
1588			break;
1589		list_move_tail(&next->io_list, &ioend->io_list);
1590		ioend->io_size += next->io_size;
1591	}
1592}
1593EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1594
1595static int
1596iomap_ioend_compare(void *priv, const struct list_head *a,
1597		const struct list_head *b)
1598{
1599	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1600	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1601
1602	if (ia->io_offset < ib->io_offset)
1603		return -1;
1604	if (ia->io_offset > ib->io_offset)
1605		return 1;
1606	return 0;
1607}
1608
1609void
1610iomap_sort_ioends(struct list_head *ioend_list)
1611{
1612	list_sort(NULL, ioend_list, iomap_ioend_compare);
1613}
1614EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1615
1616static void iomap_writepage_end_bio(struct bio *bio)
1617{
1618	struct iomap_ioend *ioend = bio->bi_private;
1619
1620	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1621}
1622
1623/*
1624 * Submit the final bio for an ioend.
1625 *
1626 * If @error is non-zero, it means that we have a situation where some part of
1627 * the submission process has failed after we've marked pages for writeback
1628 * and unlocked them.  In this situation, we need to fail the bio instead of
1629 * submitting it.  This typically only happens on a filesystem shutdown.
1630 */
1631static int
1632iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1633		int error)
1634{
1635	ioend->io_bio->bi_private = ioend;
1636	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1637
1638	if (wpc->ops->prepare_ioend)
1639		error = wpc->ops->prepare_ioend(ioend, error);
1640	if (error) {
1641		/*
1642		 * If we're failing the IO now, just mark the ioend with an
1643		 * error and finish it.  This will run IO completion immediately
1644		 * as there is only one reference to the ioend at this point in
1645		 * time.
1646		 */
1647		ioend->io_bio->bi_status = errno_to_blk_status(error);
1648		bio_endio(ioend->io_bio);
1649		return error;
1650	}
1651
1652	submit_bio(ioend->io_bio);
1653	return 0;
1654}
1655
1656static struct iomap_ioend *
1657iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1658		loff_t offset, sector_t sector, struct writeback_control *wbc)
1659{
1660	struct iomap_ioend *ioend;
1661	struct bio *bio;
1662
1663	bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
1664			       REQ_OP_WRITE | wbc_to_write_flags(wbc),
1665			       GFP_NOFS, &iomap_ioend_bioset);
1666	bio->bi_iter.bi_sector = sector;
1667	wbc_init_bio(wbc, bio);
1668
1669	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1670	INIT_LIST_HEAD(&ioend->io_list);
1671	ioend->io_type = wpc->iomap.type;
1672	ioend->io_flags = wpc->iomap.flags;
1673	ioend->io_inode = inode;
1674	ioend->io_size = 0;
1675	ioend->io_folios = 0;
1676	ioend->io_offset = offset;
1677	ioend->io_bio = bio;
1678	ioend->io_sector = sector;
1679	return ioend;
1680}
1681
1682/*
1683 * Allocate a new bio, and chain the old bio to the new one.
1684 *
1685 * Note that we have to perform the chaining in this unintuitive order
1686 * so that the bi_private linkage is set up in the right direction for the
1687 * traversal in iomap_finish_ioend().
1688 */
1689static struct bio *
1690iomap_chain_bio(struct bio *prev)
1691{
1692	struct bio *new;
1693
1694	new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS);
1695	bio_clone_blkg_association(new, prev);
1696	new->bi_iter.bi_sector = bio_end_sector(prev);
1697
1698	bio_chain(prev, new);
1699	bio_get(prev);		/* for iomap_finish_ioend */
1700	submit_bio(prev);
1701	return new;
1702}
1703
1704static bool
1705iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1706		sector_t sector)
1707{
1708	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1709	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1710		return false;
1711	if (wpc->iomap.type != wpc->ioend->io_type)
1712		return false;
1713	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1714		return false;
1715	if (sector != bio_end_sector(wpc->ioend->io_bio))
1716		return false;
1717	/*
1718	 * Limit ioend bio chain lengths to minimise IO completion latency. This
1719	 * also prevents long tight loops ending page writeback on all the
1720	 * folios in the ioend.
1721	 */
1722	if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE)
1723		return false;
1724	return true;
1725}
1726
1727/*
1728 * Test to see if we have an existing ioend structure that we could append to
1729 * first; otherwise finish off the current ioend and start another.
1730 */
1731static void
1732iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio,
1733		struct iomap_folio_state *ifs, struct iomap_writepage_ctx *wpc,
1734		struct writeback_control *wbc, struct list_head *iolist)
1735{
1736	sector_t sector = iomap_sector(&wpc->iomap, pos);
1737	unsigned len = i_blocksize(inode);
1738	size_t poff = offset_in_folio(folio, pos);
1739
1740	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) {
1741		if (wpc->ioend)
1742			list_add(&wpc->ioend->io_list, iolist);
1743		wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc);
1744	}
1745
1746	if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) {
1747		wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1748		bio_add_folio_nofail(wpc->ioend->io_bio, folio, len, poff);
1749	}
1750
1751	if (ifs)
1752		atomic_add(len, &ifs->write_bytes_pending);
1753	wpc->ioend->io_size += len;
1754	wbc_account_cgroup_owner(wbc, &folio->page, len);
1755}
1756
1757/*
1758 * We implement an immediate ioend submission policy here to avoid needing to
1759 * chain multiple ioends and hence nest mempool allocations which can violate
1760 * the forward progress guarantees we need to provide. The current ioend we're
1761 * adding blocks to is cached in the writepage context, and if the new block
1762 * doesn't append to the cached ioend, it will create a new ioend and cache that
1763 * instead.
1764 *
1765 * If a new ioend is created and cached, the old ioend is returned and queued
1766 * locally for submission once the entire page is processed or an error has been
1767 * detected.  While ioends are submitted immediately after they are completed,
1768 * batching optimisations are provided by higher level block plugging.
1769 *
1770 * At the end of a writeback pass, there will be a cached ioend remaining on the
1771 * writepage context that the caller will need to submit.
1772 */
1773static int
1774iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1775		struct writeback_control *wbc, struct inode *inode,
1776		struct folio *folio, u64 end_pos)
1777{
1778	struct iomap_folio_state *ifs = folio->private;
1779	struct iomap_ioend *ioend, *next;
1780	unsigned len = i_blocksize(inode);
1781	unsigned nblocks = i_blocks_per_folio(inode, folio);
1782	u64 pos = folio_pos(folio);
1783	int error = 0, count = 0, i;
1784	LIST_HEAD(submit_list);
1785
1786	WARN_ON_ONCE(end_pos <= pos);
1787
1788	if (!ifs && nblocks > 1) {
1789		ifs = ifs_alloc(inode, folio, 0);
1790		iomap_set_range_dirty(folio, 0, end_pos - pos);
1791	}
1792
1793	WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) != 0);
1794
1795	/*
1796	 * Walk through the folio to find areas to write back. If we
1797	 * run off the end of the current map or find the current map
1798	 * invalid, grab a new one.
1799	 */
1800	for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) {
1801		if (ifs && !ifs_block_is_dirty(folio, ifs, i))
1802			continue;
1803
1804		error = wpc->ops->map_blocks(wpc, inode, pos);
1805		if (error)
1806			break;
1807		trace_iomap_writepage_map(inode, &wpc->iomap);
1808		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1809			continue;
1810		if (wpc->iomap.type == IOMAP_HOLE)
1811			continue;
1812		iomap_add_to_ioend(inode, pos, folio, ifs, wpc, wbc,
1813				 &submit_list);
1814		count++;
1815	}
1816	if (count)
1817		wpc->ioend->io_folios++;
1818
1819	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1820	WARN_ON_ONCE(!folio_test_locked(folio));
1821	WARN_ON_ONCE(folio_test_writeback(folio));
1822	WARN_ON_ONCE(folio_test_dirty(folio));
1823
1824	/*
1825	 * We cannot cancel the ioend directly here on error.  We may have
1826	 * already set other pages under writeback and hence we have to run I/O
1827	 * completion to mark the error state of the pages under writeback
1828	 * appropriately.
1829	 */
1830	if (unlikely(error)) {
1831		/*
1832		 * Let the filesystem know what portion of the current page
1833		 * failed to map.
1834		 */
1835		if (wpc->ops->discard_folio)
1836			wpc->ops->discard_folio(folio, pos);
1837	}
1838
1839	/*
1840	 * We can have dirty bits set past end of file in page_mkwrite path
1841	 * while mapping the last partial folio. Hence it's better to clear
1842	 * all the dirty bits in the folio here.
1843	 */
1844	iomap_clear_range_dirty(folio, 0, folio_size(folio));
1845
1846	/*
1847	 * If the page hasn't been added to the ioend, it won't be affected by
1848	 * I/O completion and we must unlock it now.
1849	 */
1850	if (error && !count) {
1851		folio_unlock(folio);
1852		goto done;
1853	}
1854
1855	folio_start_writeback(folio);
1856	folio_unlock(folio);
1857
1858	/*
1859	 * Preserve the original error if there was one; catch
1860	 * submission errors here and propagate into subsequent ioend
1861	 * submissions.
1862	 */
1863	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1864		int error2;
1865
1866		list_del_init(&ioend->io_list);
1867		error2 = iomap_submit_ioend(wpc, ioend, error);
1868		if (error2 && !error)
1869			error = error2;
1870	}
1871
1872	/*
1873	 * We can end up here with no error and nothing to write only if we race
1874	 * with a partial page truncate on a sub-page block sized filesystem.
1875	 */
1876	if (!count)
1877		folio_end_writeback(folio);
1878done:
1879	mapping_set_error(inode->i_mapping, error);
1880	return error;
1881}
1882
1883/*
1884 * Write out a dirty page.
1885 *
1886 * For delalloc space on the page, we need to allocate space and flush it.
1887 * For unwritten space on the page, we need to start the conversion to
1888 * regular allocated space.
1889 */
1890static int iomap_do_writepage(struct folio *folio,
1891		struct writeback_control *wbc, void *data)
1892{
1893	struct iomap_writepage_ctx *wpc = data;
1894	struct inode *inode = folio->mapping->host;
1895	u64 end_pos, isize;
1896
1897	trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio));
1898
1899	/*
1900	 * Refuse to write the folio out if we're called from reclaim context.
1901	 *
1902	 * This avoids stack overflows when called from deeply used stacks in
1903	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1904	 * allow reclaim from kswapd as the stack usage there is relatively low.
1905	 *
1906	 * This should never happen except in the case of a VM regression so
1907	 * warn about it.
1908	 */
1909	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1910			PF_MEMALLOC))
1911		goto redirty;
1912
1913	/*
1914	 * Is this folio beyond the end of the file?
1915	 *
1916	 * The folio index is less than the end_index, adjust the end_pos
1917	 * to the highest offset that this folio should represent.
1918	 * -----------------------------------------------------
1919	 * |			file mapping	       | <EOF> |
1920	 * -----------------------------------------------------
1921	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1922	 * ^--------------------------------^----------|--------
1923	 * |     desired writeback range    |      see else    |
1924	 * ---------------------------------^------------------|
1925	 */
1926	isize = i_size_read(inode);
1927	end_pos = folio_pos(folio) + folio_size(folio);
1928	if (end_pos > isize) {
1929		/*
1930		 * Check whether the page to write out is beyond or straddles
1931		 * i_size or not.
1932		 * -------------------------------------------------------
1933		 * |		file mapping		        | <EOF>  |
1934		 * -------------------------------------------------------
1935		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1936		 * ^--------------------------------^-----------|---------
1937		 * |				    |      Straddles     |
1938		 * ---------------------------------^-----------|--------|
1939		 */
1940		size_t poff = offset_in_folio(folio, isize);
1941		pgoff_t end_index = isize >> PAGE_SHIFT;
1942
1943		/*
1944		 * Skip the page if it's fully outside i_size, e.g.
1945		 * due to a truncate operation that's in progress.  We've
1946		 * cleaned this page and truncate will finish things off for
1947		 * us.
1948		 *
1949		 * Note that the end_index is unsigned long.  If the given
1950		 * offset is greater than 16TB on a 32-bit system then if we
1951		 * checked if the page is fully outside i_size with
1952		 * "if (page->index >= end_index + 1)", "end_index + 1" would
1953		 * overflow and evaluate to 0.  Hence this page would be
1954		 * redirtied and written out repeatedly, which would result in
1955		 * an infinite loop; the user program performing this operation
1956		 * would hang.  Instead, we can detect this situation by
1957		 * checking if the page is totally beyond i_size or if its
1958		 * offset is just equal to the EOF.
1959		 */
1960		if (folio->index > end_index ||
1961		    (folio->index == end_index && poff == 0))
1962			goto unlock;
1963
1964		/*
1965		 * The page straddles i_size.  It must be zeroed out on each
1966		 * and every writepage invocation because it may be mmapped.
1967		 * "A file is mapped in multiples of the page size.  For a file
1968		 * that is not a multiple of the page size, the remaining
1969		 * memory is zeroed when mapped, and writes to that region are
1970		 * not written out to the file."
1971		 */
1972		folio_zero_segment(folio, poff, folio_size(folio));
1973		end_pos = isize;
1974	}
1975
1976	return iomap_writepage_map(wpc, wbc, inode, folio, end_pos);
1977
1978redirty:
1979	folio_redirty_for_writepage(wbc, folio);
1980unlock:
1981	folio_unlock(folio);
1982	return 0;
1983}
1984
1985int
1986iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1987		struct iomap_writepage_ctx *wpc,
1988		const struct iomap_writeback_ops *ops)
1989{
1990	int			ret;
1991
1992	wpc->ops = ops;
1993	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1994	if (!wpc->ioend)
1995		return ret;
1996	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1997}
1998EXPORT_SYMBOL_GPL(iomap_writepages);
1999
2000static int __init iomap_init(void)
2001{
2002	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
2003			   offsetof(struct iomap_ioend, io_inline_bio),
2004			   BIOSET_NEED_BVECS);
2005}
2006fs_initcall(iomap_init);
2007