xref: /kernel/linux/linux-6.6/fs/f2fs/segment.h (revision 62306a36)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fs/f2fs/segment.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 *             http://www.samsung.com/
7 */
8#include <linux/blkdev.h>
9#include <linux/backing-dev.h>
10
11/* constant macro */
12#define NULL_SEGNO			((unsigned int)(~0))
13#define NULL_SECNO			((unsigned int)(~0))
14
15#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
16#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
17
18#define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19#define F2FS_MIN_META_SEGMENTS	8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21/* L: Logical segment # in volume, R: Relative segment # in main area */
22#define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
23#define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
24
25#define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
26#define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27#define SE_PAGETYPE(se)	((IS_NODESEG((se)->type) ? NODE : DATA))
28
29static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
30						unsigned short seg_type)
31{
32	f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
33}
34
35#define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
36#define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
37#define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
38
39#define IS_CURSEG(sbi, seg)						\
40	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
41	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
42	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
43	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
44	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
45	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||	\
46	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||	\
47	 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
48
49#define IS_CURSEC(sbi, secno)						\
50	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
51	  (sbi)->segs_per_sec) ||	\
52	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
53	  (sbi)->segs_per_sec) ||	\
54	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
55	  (sbi)->segs_per_sec) ||	\
56	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
57	  (sbi)->segs_per_sec) ||	\
58	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
59	  (sbi)->segs_per_sec) ||	\
60	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
61	  (sbi)->segs_per_sec) ||	\
62	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /	\
63	  (sbi)->segs_per_sec) ||	\
64	 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /	\
65	  (sbi)->segs_per_sec))
66
67#define MAIN_BLKADDR(sbi)						\
68	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
69		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
70#define SEG0_BLKADDR(sbi)						\
71	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
72		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
73
74#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
75#define MAIN_SECS(sbi)	((sbi)->total_sections)
76
77#define TOTAL_SEGS(sbi)							\
78	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
79		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
80#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
81
82#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
83#define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
84					(sbi)->log_blocks_per_seg))
85
86#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
87	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
88
89#define NEXT_FREE_BLKADDR(sbi, curseg)					\
90	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
91
92#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
93#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
94	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
95#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
96	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
97
98#define GET_SEGNO(sbi, blk_addr)					\
99	((!__is_valid_data_blkaddr(blk_addr)) ?			\
100	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
101		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102#define BLKS_PER_SEC(sbi)					\
103	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
104#define CAP_BLKS_PER_SEC(sbi)					\
105	((sbi)->segs_per_sec * (sbi)->blocks_per_seg -		\
106	 (sbi)->unusable_blocks_per_sec)
107#define CAP_SEGS_PER_SEC(sbi)					\
108	((sbi)->segs_per_sec - ((sbi)->unusable_blocks_per_sec >>\
109	(sbi)->log_blocks_per_seg))
110#define GET_SEC_FROM_SEG(sbi, segno)				\
111	(((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
112#define GET_SEG_FROM_SEC(sbi, secno)				\
113	((secno) * (sbi)->segs_per_sec)
114#define GET_ZONE_FROM_SEC(sbi, secno)				\
115	(((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
116#define GET_ZONE_FROM_SEG(sbi, segno)				\
117	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
118
119#define GET_SUM_BLOCK(sbi, segno)				\
120	((sbi)->sm_info->ssa_blkaddr + (segno))
121
122#define GET_SUM_TYPE(footer) ((footer)->entry_type)
123#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
124
125#define SIT_ENTRY_OFFSET(sit_i, segno)					\
126	((segno) % (sit_i)->sents_per_block)
127#define SIT_BLOCK_OFFSET(segno)					\
128	((segno) / SIT_ENTRY_PER_BLOCK)
129#define	START_SEGNO(segno)		\
130	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
131#define SIT_BLK_CNT(sbi)			\
132	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
133#define f2fs_bitmap_size(nr)			\
134	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
135
136#define SECTOR_FROM_BLOCK(blk_addr)					\
137	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
138#define SECTOR_TO_BLOCK(sectors)					\
139	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
140
141/*
142 * indicate a block allocation direction: RIGHT and LEFT.
143 * RIGHT means allocating new sections towards the end of volume.
144 * LEFT means the opposite direction.
145 */
146enum {
147	ALLOC_RIGHT = 0,
148	ALLOC_LEFT
149};
150
151/*
152 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
153 * LFS writes data sequentially with cleaning operations.
154 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
155 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
156 * fragmented segment which has similar aging degree.
157 */
158enum {
159	LFS = 0,
160	SSR,
161	AT_SSR,
162};
163
164/*
165 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
166 * GC_CB is based on cost-benefit algorithm.
167 * GC_GREEDY is based on greedy algorithm.
168 * GC_AT is based on age-threshold algorithm.
169 */
170enum {
171	GC_CB = 0,
172	GC_GREEDY,
173	GC_AT,
174	ALLOC_NEXT,
175	FLUSH_DEVICE,
176	MAX_GC_POLICY,
177};
178
179/*
180 * BG_GC means the background cleaning job.
181 * FG_GC means the on-demand cleaning job.
182 */
183enum {
184	BG_GC = 0,
185	FG_GC,
186};
187
188/* for a function parameter to select a victim segment */
189struct victim_sel_policy {
190	int alloc_mode;			/* LFS or SSR */
191	int gc_mode;			/* GC_CB or GC_GREEDY */
192	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
193	unsigned int max_search;	/*
194					 * maximum # of segments/sections
195					 * to search
196					 */
197	unsigned int offset;		/* last scanned bitmap offset */
198	unsigned int ofs_unit;		/* bitmap search unit */
199	unsigned int min_cost;		/* minimum cost */
200	unsigned long long oldest_age;	/* oldest age of segments having the same min cost */
201	unsigned int min_segno;		/* segment # having min. cost */
202	unsigned long long age;		/* mtime of GCed section*/
203	unsigned long long age_threshold;/* age threshold */
204};
205
206struct seg_entry {
207	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
208	unsigned int valid_blocks:10;	/* # of valid blocks */
209	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
210	unsigned int padding:6;		/* padding */
211	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
212#ifdef CONFIG_F2FS_CHECK_FS
213	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
214#endif
215	/*
216	 * # of valid blocks and the validity bitmap stored in the last
217	 * checkpoint pack. This information is used by the SSR mode.
218	 */
219	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
220	unsigned char *discard_map;
221	unsigned long long mtime;	/* modification time of the segment */
222};
223
224struct sec_entry {
225	unsigned int valid_blocks;	/* # of valid blocks in a section */
226};
227
228#define MAX_SKIP_GC_COUNT			16
229
230struct revoke_entry {
231	struct list_head list;
232	block_t old_addr;		/* for revoking when fail to commit */
233	pgoff_t index;
234};
235
236struct sit_info {
237	block_t sit_base_addr;		/* start block address of SIT area */
238	block_t sit_blocks;		/* # of blocks used by SIT area */
239	block_t written_valid_blocks;	/* # of valid blocks in main area */
240	char *bitmap;			/* all bitmaps pointer */
241	char *sit_bitmap;		/* SIT bitmap pointer */
242#ifdef CONFIG_F2FS_CHECK_FS
243	char *sit_bitmap_mir;		/* SIT bitmap mirror */
244
245	/* bitmap of segments to be ignored by GC in case of errors */
246	unsigned long *invalid_segmap;
247#endif
248	unsigned int bitmap_size;	/* SIT bitmap size */
249
250	unsigned long *tmp_map;			/* bitmap for temporal use */
251	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
252	unsigned int dirty_sentries;		/* # of dirty sentries */
253	unsigned int sents_per_block;		/* # of SIT entries per block */
254	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
255	struct seg_entry *sentries;		/* SIT segment-level cache */
256	struct sec_entry *sec_entries;		/* SIT section-level cache */
257
258	/* for cost-benefit algorithm in cleaning procedure */
259	unsigned long long elapsed_time;	/* elapsed time after mount */
260	unsigned long long mounted_time;	/* mount time */
261	unsigned long long min_mtime;		/* min. modification time */
262	unsigned long long max_mtime;		/* max. modification time */
263	unsigned long long dirty_min_mtime;	/* rerange candidates in GC_AT */
264	unsigned long long dirty_max_mtime;	/* rerange candidates in GC_AT */
265
266	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
267};
268
269struct free_segmap_info {
270	unsigned int start_segno;	/* start segment number logically */
271	unsigned int free_segments;	/* # of free segments */
272	unsigned int free_sections;	/* # of free sections */
273	spinlock_t segmap_lock;		/* free segmap lock */
274	unsigned long *free_segmap;	/* free segment bitmap */
275	unsigned long *free_secmap;	/* free section bitmap */
276};
277
278/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
279enum dirty_type {
280	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
281	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
282	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
283	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
284	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
285	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
286	DIRTY,			/* to count # of dirty segments */
287	PRE,			/* to count # of entirely obsolete segments */
288	NR_DIRTY_TYPE
289};
290
291struct dirty_seglist_info {
292	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
293	unsigned long *dirty_secmap;
294	struct mutex seglist_lock;		/* lock for segment bitmaps */
295	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
296	unsigned long *victim_secmap;		/* background GC victims */
297	unsigned long *pinned_secmap;		/* pinned victims from foreground GC */
298	unsigned int pinned_secmap_cnt;		/* count of victims which has pinned data */
299	bool enable_pin_section;		/* enable pinning section */
300};
301
302/* for active log information */
303struct curseg_info {
304	struct mutex curseg_mutex;		/* lock for consistency */
305	struct f2fs_summary_block *sum_blk;	/* cached summary block */
306	struct rw_semaphore journal_rwsem;	/* protect journal area */
307	struct f2fs_journal *journal;		/* cached journal info */
308	unsigned char alloc_type;		/* current allocation type */
309	unsigned short seg_type;		/* segment type like CURSEG_XXX_TYPE */
310	unsigned int segno;			/* current segment number */
311	unsigned short next_blkoff;		/* next block offset to write */
312	unsigned int zone;			/* current zone number */
313	unsigned int next_segno;		/* preallocated segment */
314	int fragment_remained_chunk;		/* remained block size in a chunk for block fragmentation mode */
315	bool inited;				/* indicate inmem log is inited */
316};
317
318struct sit_entry_set {
319	struct list_head set_list;	/* link with all sit sets */
320	unsigned int start_segno;	/* start segno of sits in set */
321	unsigned int entry_cnt;		/* the # of sit entries in set */
322};
323
324/*
325 * inline functions
326 */
327static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
328{
329	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
330}
331
332static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
333						unsigned int segno)
334{
335	struct sit_info *sit_i = SIT_I(sbi);
336	return &sit_i->sentries[segno];
337}
338
339static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
340						unsigned int segno)
341{
342	struct sit_info *sit_i = SIT_I(sbi);
343	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
344}
345
346static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
347				unsigned int segno, bool use_section)
348{
349	/*
350	 * In order to get # of valid blocks in a section instantly from many
351	 * segments, f2fs manages two counting structures separately.
352	 */
353	if (use_section && __is_large_section(sbi))
354		return get_sec_entry(sbi, segno)->valid_blocks;
355	else
356		return get_seg_entry(sbi, segno)->valid_blocks;
357}
358
359static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
360				unsigned int segno, bool use_section)
361{
362	if (use_section && __is_large_section(sbi)) {
363		unsigned int start_segno = START_SEGNO(segno);
364		unsigned int blocks = 0;
365		int i;
366
367		for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
368			struct seg_entry *se = get_seg_entry(sbi, start_segno);
369
370			blocks += se->ckpt_valid_blocks;
371		}
372		return blocks;
373	}
374	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
375}
376
377static inline void seg_info_from_raw_sit(struct seg_entry *se,
378					struct f2fs_sit_entry *rs)
379{
380	se->valid_blocks = GET_SIT_VBLOCKS(rs);
381	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
382	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
383	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
384#ifdef CONFIG_F2FS_CHECK_FS
385	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
386#endif
387	se->type = GET_SIT_TYPE(rs);
388	se->mtime = le64_to_cpu(rs->mtime);
389}
390
391static inline void __seg_info_to_raw_sit(struct seg_entry *se,
392					struct f2fs_sit_entry *rs)
393{
394	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
395					se->valid_blocks;
396	rs->vblocks = cpu_to_le16(raw_vblocks);
397	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
398	rs->mtime = cpu_to_le64(se->mtime);
399}
400
401static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
402				struct page *page, unsigned int start)
403{
404	struct f2fs_sit_block *raw_sit;
405	struct seg_entry *se;
406	struct f2fs_sit_entry *rs;
407	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
408					(unsigned long)MAIN_SEGS(sbi));
409	int i;
410
411	raw_sit = (struct f2fs_sit_block *)page_address(page);
412	memset(raw_sit, 0, PAGE_SIZE);
413	for (i = 0; i < end - start; i++) {
414		rs = &raw_sit->entries[i];
415		se = get_seg_entry(sbi, start + i);
416		__seg_info_to_raw_sit(se, rs);
417	}
418}
419
420static inline void seg_info_to_raw_sit(struct seg_entry *se,
421					struct f2fs_sit_entry *rs)
422{
423	__seg_info_to_raw_sit(se, rs);
424
425	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
426	se->ckpt_valid_blocks = se->valid_blocks;
427}
428
429static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
430		unsigned int max, unsigned int segno)
431{
432	unsigned int ret;
433	spin_lock(&free_i->segmap_lock);
434	ret = find_next_bit(free_i->free_segmap, max, segno);
435	spin_unlock(&free_i->segmap_lock);
436	return ret;
437}
438
439static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
440{
441	struct free_segmap_info *free_i = FREE_I(sbi);
442	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
443	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
444	unsigned int next;
445	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
446
447	spin_lock(&free_i->segmap_lock);
448	clear_bit(segno, free_i->free_segmap);
449	free_i->free_segments++;
450
451	next = find_next_bit(free_i->free_segmap,
452			start_segno + sbi->segs_per_sec, start_segno);
453	if (next >= start_segno + usable_segs) {
454		clear_bit(secno, free_i->free_secmap);
455		free_i->free_sections++;
456	}
457	spin_unlock(&free_i->segmap_lock);
458}
459
460static inline void __set_inuse(struct f2fs_sb_info *sbi,
461		unsigned int segno)
462{
463	struct free_segmap_info *free_i = FREE_I(sbi);
464	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
465
466	set_bit(segno, free_i->free_segmap);
467	free_i->free_segments--;
468	if (!test_and_set_bit(secno, free_i->free_secmap))
469		free_i->free_sections--;
470}
471
472static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
473		unsigned int segno, bool inmem)
474{
475	struct free_segmap_info *free_i = FREE_I(sbi);
476	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
477	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
478	unsigned int next;
479	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
480
481	spin_lock(&free_i->segmap_lock);
482	if (test_and_clear_bit(segno, free_i->free_segmap)) {
483		free_i->free_segments++;
484
485		if (!inmem && IS_CURSEC(sbi, secno))
486			goto skip_free;
487		next = find_next_bit(free_i->free_segmap,
488				start_segno + sbi->segs_per_sec, start_segno);
489		if (next >= start_segno + usable_segs) {
490			if (test_and_clear_bit(secno, free_i->free_secmap))
491				free_i->free_sections++;
492		}
493	}
494skip_free:
495	spin_unlock(&free_i->segmap_lock);
496}
497
498static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
499		unsigned int segno)
500{
501	struct free_segmap_info *free_i = FREE_I(sbi);
502	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
503
504	spin_lock(&free_i->segmap_lock);
505	if (!test_and_set_bit(segno, free_i->free_segmap)) {
506		free_i->free_segments--;
507		if (!test_and_set_bit(secno, free_i->free_secmap))
508			free_i->free_sections--;
509	}
510	spin_unlock(&free_i->segmap_lock);
511}
512
513static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
514		void *dst_addr)
515{
516	struct sit_info *sit_i = SIT_I(sbi);
517
518#ifdef CONFIG_F2FS_CHECK_FS
519	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
520						sit_i->bitmap_size))
521		f2fs_bug_on(sbi, 1);
522#endif
523	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
524}
525
526static inline block_t written_block_count(struct f2fs_sb_info *sbi)
527{
528	return SIT_I(sbi)->written_valid_blocks;
529}
530
531static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
532{
533	return FREE_I(sbi)->free_segments;
534}
535
536static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
537{
538	return SM_I(sbi)->reserved_segments +
539			SM_I(sbi)->additional_reserved_segments;
540}
541
542static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
543{
544	return FREE_I(sbi)->free_sections;
545}
546
547static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
548{
549	return DIRTY_I(sbi)->nr_dirty[PRE];
550}
551
552static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
553{
554	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
555		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
556		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
557		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
558		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
559		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
560}
561
562static inline int overprovision_segments(struct f2fs_sb_info *sbi)
563{
564	return SM_I(sbi)->ovp_segments;
565}
566
567static inline int reserved_sections(struct f2fs_sb_info *sbi)
568{
569	return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
570}
571
572static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
573			unsigned int node_blocks, unsigned int dent_blocks)
574{
575
576	unsigned segno, left_blocks;
577	int i;
578
579	/* check current node sections in the worst case. */
580	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
581		segno = CURSEG_I(sbi, i)->segno;
582		left_blocks = CAP_BLKS_PER_SEC(sbi) -
583				get_ckpt_valid_blocks(sbi, segno, true);
584		if (node_blocks > left_blocks)
585			return false;
586	}
587
588	/* check current data section for dentry blocks. */
589	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
590	left_blocks = CAP_BLKS_PER_SEC(sbi) -
591			get_ckpt_valid_blocks(sbi, segno, true);
592	if (dent_blocks > left_blocks)
593		return false;
594	return true;
595}
596
597/*
598 * calculate needed sections for dirty node/dentry
599 * and call has_curseg_enough_space
600 */
601static inline void __get_secs_required(struct f2fs_sb_info *sbi,
602		unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p)
603{
604	unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
605					get_pages(sbi, F2FS_DIRTY_DENTS) +
606					get_pages(sbi, F2FS_DIRTY_IMETA);
607	unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
608	unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
609	unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
610	unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
611	unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
612
613	if (lower_p)
614		*lower_p = node_secs + dent_secs;
615	if (upper_p)
616		*upper_p = node_secs + dent_secs +
617			(node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
618	if (curseg_p)
619		*curseg_p = has_curseg_enough_space(sbi,
620				node_blocks, dent_blocks);
621}
622
623static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
624					int freed, int needed)
625{
626	unsigned int free_secs, lower_secs, upper_secs;
627	bool curseg_space;
628
629	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
630		return false;
631
632	__get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space);
633
634	free_secs = free_sections(sbi) + freed;
635	lower_secs += needed + reserved_sections(sbi);
636	upper_secs += needed + reserved_sections(sbi);
637
638	if (free_secs > upper_secs)
639		return false;
640	if (free_secs <= lower_secs)
641		return true;
642	return !curseg_space;
643}
644
645static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi,
646					int freed, int needed)
647{
648	return !has_not_enough_free_secs(sbi, freed, needed);
649}
650
651static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
652{
653	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
654		return true;
655	if (likely(has_enough_free_secs(sbi, 0, 0)))
656		return true;
657	return false;
658}
659
660static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
661{
662	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
663}
664
665static inline int utilization(struct f2fs_sb_info *sbi)
666{
667	return div_u64((u64)valid_user_blocks(sbi) * 100,
668					sbi->user_block_count);
669}
670
671/*
672 * Sometimes f2fs may be better to drop out-of-place update policy.
673 * And, users can control the policy through sysfs entries.
674 * There are five policies with triggering conditions as follows.
675 * F2FS_IPU_FORCE - all the time,
676 * F2FS_IPU_SSR - if SSR mode is activated,
677 * F2FS_IPU_UTIL - if FS utilization is over threashold,
678 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
679 *                     threashold,
680 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
681 *                     storages. IPU will be triggered only if the # of dirty
682 *                     pages over min_fsync_blocks. (=default option)
683 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
684 * F2FS_IPU_NOCACHE - disable IPU bio cache.
685 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
686 *                            FI_OPU_WRITE flag.
687 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
688 */
689#define DEF_MIN_IPU_UTIL	70
690#define DEF_MIN_FSYNC_BLOCKS	8
691#define DEF_MIN_HOT_BLOCKS	16
692
693#define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
694
695#define F2FS_IPU_DISABLE	0
696
697/* Modification on enum should be synchronized with ipu_mode_names array */
698enum {
699	F2FS_IPU_FORCE,
700	F2FS_IPU_SSR,
701	F2FS_IPU_UTIL,
702	F2FS_IPU_SSR_UTIL,
703	F2FS_IPU_FSYNC,
704	F2FS_IPU_ASYNC,
705	F2FS_IPU_NOCACHE,
706	F2FS_IPU_HONOR_OPU_WRITE,
707	F2FS_IPU_MAX,
708};
709
710static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
711{
712	return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
713}
714
715#define F2FS_IPU_POLICY(name)					\
716static inline bool IS_##name(struct f2fs_sb_info *sbi)		\
717{								\
718	return SM_I(sbi)->ipu_policy & BIT(name);		\
719}
720
721F2FS_IPU_POLICY(F2FS_IPU_FORCE);
722F2FS_IPU_POLICY(F2FS_IPU_SSR);
723F2FS_IPU_POLICY(F2FS_IPU_UTIL);
724F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
725F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
726F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
727F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
728F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
729
730static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
731		int type)
732{
733	struct curseg_info *curseg = CURSEG_I(sbi, type);
734	return curseg->segno;
735}
736
737static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
738		int type)
739{
740	struct curseg_info *curseg = CURSEG_I(sbi, type);
741	return curseg->alloc_type;
742}
743
744static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
745		unsigned int segno)
746{
747	return segno <= (MAIN_SEGS(sbi) - 1);
748}
749
750static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
751{
752	struct f2fs_sb_info *sbi = fio->sbi;
753
754	if (__is_valid_data_blkaddr(fio->old_blkaddr))
755		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
756					META_GENERIC : DATA_GENERIC);
757	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
758					META_GENERIC : DATA_GENERIC_ENHANCE);
759}
760
761/*
762 * Summary block is always treated as an invalid block
763 */
764static inline int check_block_count(struct f2fs_sb_info *sbi,
765		int segno, struct f2fs_sit_entry *raw_sit)
766{
767	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
768	int valid_blocks = 0;
769	int cur_pos = 0, next_pos;
770	unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
771
772	/* check bitmap with valid block count */
773	do {
774		if (is_valid) {
775			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
776					usable_blks_per_seg,
777					cur_pos);
778			valid_blocks += next_pos - cur_pos;
779		} else
780			next_pos = find_next_bit_le(&raw_sit->valid_map,
781					usable_blks_per_seg,
782					cur_pos);
783		cur_pos = next_pos;
784		is_valid = !is_valid;
785	} while (cur_pos < usable_blks_per_seg);
786
787	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
788		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
789			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
790		set_sbi_flag(sbi, SBI_NEED_FSCK);
791		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
792		return -EFSCORRUPTED;
793	}
794
795	if (usable_blks_per_seg < sbi->blocks_per_seg)
796		f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
797				sbi->blocks_per_seg,
798				usable_blks_per_seg) != sbi->blocks_per_seg);
799
800	/* check segment usage, and check boundary of a given segment number */
801	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
802					|| !valid_main_segno(sbi, segno))) {
803		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
804			 GET_SIT_VBLOCKS(raw_sit), segno);
805		set_sbi_flag(sbi, SBI_NEED_FSCK);
806		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
807		return -EFSCORRUPTED;
808	}
809	return 0;
810}
811
812static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
813						unsigned int start)
814{
815	struct sit_info *sit_i = SIT_I(sbi);
816	unsigned int offset = SIT_BLOCK_OFFSET(start);
817	block_t blk_addr = sit_i->sit_base_addr + offset;
818
819	f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
820
821#ifdef CONFIG_F2FS_CHECK_FS
822	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
823			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
824		f2fs_bug_on(sbi, 1);
825#endif
826
827	/* calculate sit block address */
828	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
829		blk_addr += sit_i->sit_blocks;
830
831	return blk_addr;
832}
833
834static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
835						pgoff_t block_addr)
836{
837	struct sit_info *sit_i = SIT_I(sbi);
838	block_addr -= sit_i->sit_base_addr;
839	if (block_addr < sit_i->sit_blocks)
840		block_addr += sit_i->sit_blocks;
841	else
842		block_addr -= sit_i->sit_blocks;
843
844	return block_addr + sit_i->sit_base_addr;
845}
846
847static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
848{
849	unsigned int block_off = SIT_BLOCK_OFFSET(start);
850
851	f2fs_change_bit(block_off, sit_i->sit_bitmap);
852#ifdef CONFIG_F2FS_CHECK_FS
853	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
854#endif
855}
856
857static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
858						bool base_time)
859{
860	struct sit_info *sit_i = SIT_I(sbi);
861	time64_t diff, now = ktime_get_boottime_seconds();
862
863	if (now >= sit_i->mounted_time)
864		return sit_i->elapsed_time + now - sit_i->mounted_time;
865
866	/* system time is set to the past */
867	if (!base_time) {
868		diff = sit_i->mounted_time - now;
869		if (sit_i->elapsed_time >= diff)
870			return sit_i->elapsed_time - diff;
871		return 0;
872	}
873	return sit_i->elapsed_time;
874}
875
876static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
877			unsigned int ofs_in_node, unsigned char version)
878{
879	sum->nid = cpu_to_le32(nid);
880	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
881	sum->version = version;
882}
883
884static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
885{
886	return __start_cp_addr(sbi) +
887		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
888}
889
890static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
891{
892	return __start_cp_addr(sbi) +
893		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
894				- (base + 1) + type;
895}
896
897static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
898{
899	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
900		return true;
901	return false;
902}
903
904/*
905 * It is very important to gather dirty pages and write at once, so that we can
906 * submit a big bio without interfering other data writes.
907 * By default, 512 pages for directory data,
908 * 512 pages (2MB) * 8 for nodes, and
909 * 256 pages * 8 for meta are set.
910 */
911static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
912{
913	if (sbi->sb->s_bdi->wb.dirty_exceeded)
914		return 0;
915
916	if (type == DATA)
917		return sbi->blocks_per_seg;
918	else if (type == NODE)
919		return 8 * sbi->blocks_per_seg;
920	else if (type == META)
921		return 8 * BIO_MAX_VECS;
922	else
923		return 0;
924}
925
926/*
927 * When writing pages, it'd better align nr_to_write for segment size.
928 */
929static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
930					struct writeback_control *wbc)
931{
932	long nr_to_write, desired;
933
934	if (wbc->sync_mode != WB_SYNC_NONE)
935		return 0;
936
937	nr_to_write = wbc->nr_to_write;
938	desired = BIO_MAX_VECS;
939	if (type == NODE)
940		desired <<= 1;
941
942	wbc->nr_to_write = desired;
943	return desired - nr_to_write;
944}
945
946static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
947{
948	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
949	bool wakeup = false;
950	int i;
951
952	if (force)
953		goto wake_up;
954
955	mutex_lock(&dcc->cmd_lock);
956	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
957		if (i + 1 < dcc->discard_granularity)
958			break;
959		if (!list_empty(&dcc->pend_list[i])) {
960			wakeup = true;
961			break;
962		}
963	}
964	mutex_unlock(&dcc->cmd_lock);
965	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
966		return;
967wake_up:
968	dcc->discard_wake = true;
969	wake_up_interruptible_all(&dcc->discard_wait_queue);
970}
971