xref: /kernel/linux/linux-6.6/fs/f2fs/data.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 *             http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/buffer_head.h>
11#include <linux/sched/mm.h>
12#include <linux/mpage.h>
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
15#include <linux/blkdev.h>
16#include <linux/bio.h>
17#include <linux/blk-crypto.h>
18#include <linux/swap.h>
19#include <linux/prefetch.h>
20#include <linux/uio.h>
21#include <linux/sched/signal.h>
22#include <linux/fiemap.h>
23#include <linux/iomap.h>
24
25#include "f2fs.h"
26#include "node.h"
27#include "segment.h"
28#include "iostat.h"
29#include <trace/events/f2fs.h>
30
31#define NUM_PREALLOC_POST_READ_CTXS	128
32
33static struct kmem_cache *bio_post_read_ctx_cache;
34static struct kmem_cache *bio_entry_slab;
35static mempool_t *bio_post_read_ctx_pool;
36static struct bio_set f2fs_bioset;
37
38#define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
39
40int __init f2fs_init_bioset(void)
41{
42	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43					0, BIOSET_NEED_BVECS);
44}
45
46void f2fs_destroy_bioset(void)
47{
48	bioset_exit(&f2fs_bioset);
49}
50
51bool f2fs_is_cp_guaranteed(struct page *page)
52{
53	struct address_space *mapping = page->mapping;
54	struct inode *inode;
55	struct f2fs_sb_info *sbi;
56
57	if (!mapping)
58		return false;
59
60	inode = mapping->host;
61	sbi = F2FS_I_SB(inode);
62
63	if (inode->i_ino == F2FS_META_INO(sbi) ||
64			inode->i_ino == F2FS_NODE_INO(sbi) ||
65			S_ISDIR(inode->i_mode))
66		return true;
67
68	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
69			page_private_gcing(page))
70		return true;
71	return false;
72}
73
74static enum count_type __read_io_type(struct page *page)
75{
76	struct address_space *mapping = page_file_mapping(page);
77
78	if (mapping) {
79		struct inode *inode = mapping->host;
80		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
81
82		if (inode->i_ino == F2FS_META_INO(sbi))
83			return F2FS_RD_META;
84
85		if (inode->i_ino == F2FS_NODE_INO(sbi))
86			return F2FS_RD_NODE;
87	}
88	return F2FS_RD_DATA;
89}
90
91/* postprocessing steps for read bios */
92enum bio_post_read_step {
93#ifdef CONFIG_FS_ENCRYPTION
94	STEP_DECRYPT	= BIT(0),
95#else
96	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
97#endif
98#ifdef CONFIG_F2FS_FS_COMPRESSION
99	STEP_DECOMPRESS	= BIT(1),
100#else
101	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
102#endif
103#ifdef CONFIG_FS_VERITY
104	STEP_VERITY	= BIT(2),
105#else
106	STEP_VERITY	= 0,	/* compile out the verity-related code */
107#endif
108};
109
110struct bio_post_read_ctx {
111	struct bio *bio;
112	struct f2fs_sb_info *sbi;
113	struct work_struct work;
114	unsigned int enabled_steps;
115	/*
116	 * decompression_attempted keeps track of whether
117	 * f2fs_end_read_compressed_page() has been called on the pages in the
118	 * bio that belong to a compressed cluster yet.
119	 */
120	bool decompression_attempted;
121	block_t fs_blkaddr;
122};
123
124/*
125 * Update and unlock a bio's pages, and free the bio.
126 *
127 * This marks pages up-to-date only if there was no error in the bio (I/O error,
128 * decryption error, or verity error), as indicated by bio->bi_status.
129 *
130 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
131 * aren't marked up-to-date here, as decompression is done on a per-compression-
132 * cluster basis rather than a per-bio basis.  Instead, we only must do two
133 * things for each compressed page here: call f2fs_end_read_compressed_page()
134 * with failed=true if an error occurred before it would have normally gotten
135 * called (i.e., I/O error or decryption error, but *not* verity error), and
136 * release the bio's reference to the decompress_io_ctx of the page's cluster.
137 */
138static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
139{
140	struct bio_vec *bv;
141	struct bvec_iter_all iter_all;
142	struct bio_post_read_ctx *ctx = bio->bi_private;
143
144	bio_for_each_segment_all(bv, bio, iter_all) {
145		struct page *page = bv->bv_page;
146
147		if (f2fs_is_compressed_page(page)) {
148			if (ctx && !ctx->decompression_attempted)
149				f2fs_end_read_compressed_page(page, true, 0,
150							in_task);
151			f2fs_put_page_dic(page, in_task);
152			continue;
153		}
154
155		if (bio->bi_status)
156			ClearPageUptodate(page);
157		else
158			SetPageUptodate(page);
159		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
160		unlock_page(page);
161	}
162
163	if (ctx)
164		mempool_free(ctx, bio_post_read_ctx_pool);
165	bio_put(bio);
166}
167
168static void f2fs_verify_bio(struct work_struct *work)
169{
170	struct bio_post_read_ctx *ctx =
171		container_of(work, struct bio_post_read_ctx, work);
172	struct bio *bio = ctx->bio;
173	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
174
175	/*
176	 * fsverity_verify_bio() may call readahead() again, and while verity
177	 * will be disabled for this, decryption and/or decompression may still
178	 * be needed, resulting in another bio_post_read_ctx being allocated.
179	 * So to prevent deadlocks we need to release the current ctx to the
180	 * mempool first.  This assumes that verity is the last post-read step.
181	 */
182	mempool_free(ctx, bio_post_read_ctx_pool);
183	bio->bi_private = NULL;
184
185	/*
186	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
187	 * as those were handled separately by f2fs_end_read_compressed_page().
188	 */
189	if (may_have_compressed_pages) {
190		struct bio_vec *bv;
191		struct bvec_iter_all iter_all;
192
193		bio_for_each_segment_all(bv, bio, iter_all) {
194			struct page *page = bv->bv_page;
195
196			if (!f2fs_is_compressed_page(page) &&
197			    !fsverity_verify_page(page)) {
198				bio->bi_status = BLK_STS_IOERR;
199				break;
200			}
201		}
202	} else {
203		fsverity_verify_bio(bio);
204	}
205
206	f2fs_finish_read_bio(bio, true);
207}
208
209/*
210 * If the bio's data needs to be verified with fs-verity, then enqueue the
211 * verity work for the bio.  Otherwise finish the bio now.
212 *
213 * Note that to avoid deadlocks, the verity work can't be done on the
214 * decryption/decompression workqueue.  This is because verifying the data pages
215 * can involve reading verity metadata pages from the file, and these verity
216 * metadata pages may be encrypted and/or compressed.
217 */
218static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
219{
220	struct bio_post_read_ctx *ctx = bio->bi_private;
221
222	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
223		INIT_WORK(&ctx->work, f2fs_verify_bio);
224		fsverity_enqueue_verify_work(&ctx->work);
225	} else {
226		f2fs_finish_read_bio(bio, in_task);
227	}
228}
229
230/*
231 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
232 * remaining page was read by @ctx->bio.
233 *
234 * Note that a bio may span clusters (even a mix of compressed and uncompressed
235 * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
236 * that the bio includes at least one compressed page.  The actual decompression
237 * is done on a per-cluster basis, not a per-bio basis.
238 */
239static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
240		bool in_task)
241{
242	struct bio_vec *bv;
243	struct bvec_iter_all iter_all;
244	bool all_compressed = true;
245	block_t blkaddr = ctx->fs_blkaddr;
246
247	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
248		struct page *page = bv->bv_page;
249
250		if (f2fs_is_compressed_page(page))
251			f2fs_end_read_compressed_page(page, false, blkaddr,
252						      in_task);
253		else
254			all_compressed = false;
255
256		blkaddr++;
257	}
258
259	ctx->decompression_attempted = true;
260
261	/*
262	 * Optimization: if all the bio's pages are compressed, then scheduling
263	 * the per-bio verity work is unnecessary, as verity will be fully
264	 * handled at the compression cluster level.
265	 */
266	if (all_compressed)
267		ctx->enabled_steps &= ~STEP_VERITY;
268}
269
270static void f2fs_post_read_work(struct work_struct *work)
271{
272	struct bio_post_read_ctx *ctx =
273		container_of(work, struct bio_post_read_ctx, work);
274	struct bio *bio = ctx->bio;
275
276	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
277		f2fs_finish_read_bio(bio, true);
278		return;
279	}
280
281	if (ctx->enabled_steps & STEP_DECOMPRESS)
282		f2fs_handle_step_decompress(ctx, true);
283
284	f2fs_verify_and_finish_bio(bio, true);
285}
286
287static void f2fs_read_end_io(struct bio *bio)
288{
289	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
290	struct bio_post_read_ctx *ctx;
291	bool intask = in_task();
292
293	iostat_update_and_unbind_ctx(bio);
294	ctx = bio->bi_private;
295
296	if (time_to_inject(sbi, FAULT_READ_IO))
297		bio->bi_status = BLK_STS_IOERR;
298
299	if (bio->bi_status) {
300		f2fs_finish_read_bio(bio, intask);
301		return;
302	}
303
304	if (ctx) {
305		unsigned int enabled_steps = ctx->enabled_steps &
306					(STEP_DECRYPT | STEP_DECOMPRESS);
307
308		/*
309		 * If we have only decompression step between decompression and
310		 * decrypt, we don't need post processing for this.
311		 */
312		if (enabled_steps == STEP_DECOMPRESS &&
313				!f2fs_low_mem_mode(sbi)) {
314			f2fs_handle_step_decompress(ctx, intask);
315		} else if (enabled_steps) {
316			INIT_WORK(&ctx->work, f2fs_post_read_work);
317			queue_work(ctx->sbi->post_read_wq, &ctx->work);
318			return;
319		}
320	}
321
322	f2fs_verify_and_finish_bio(bio, intask);
323}
324
325static void f2fs_write_end_io(struct bio *bio)
326{
327	struct f2fs_sb_info *sbi;
328	struct bio_vec *bvec;
329	struct bvec_iter_all iter_all;
330
331	iostat_update_and_unbind_ctx(bio);
332	sbi = bio->bi_private;
333
334	if (time_to_inject(sbi, FAULT_WRITE_IO))
335		bio->bi_status = BLK_STS_IOERR;
336
337	bio_for_each_segment_all(bvec, bio, iter_all) {
338		struct page *page = bvec->bv_page;
339		enum count_type type = WB_DATA_TYPE(page, false);
340
341		if (page_private_dummy(page)) {
342			clear_page_private_dummy(page);
343			unlock_page(page);
344			mempool_free(page, sbi->write_io_dummy);
345
346			if (unlikely(bio->bi_status))
347				f2fs_stop_checkpoint(sbi, true,
348						STOP_CP_REASON_WRITE_FAIL);
349			continue;
350		}
351
352		fscrypt_finalize_bounce_page(&page);
353
354#ifdef CONFIG_F2FS_FS_COMPRESSION
355		if (f2fs_is_compressed_page(page)) {
356			f2fs_compress_write_end_io(bio, page);
357			continue;
358		}
359#endif
360
361		if (unlikely(bio->bi_status)) {
362			mapping_set_error(page->mapping, -EIO);
363			if (type == F2FS_WB_CP_DATA)
364				f2fs_stop_checkpoint(sbi, true,
365						STOP_CP_REASON_WRITE_FAIL);
366		}
367
368		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
369					page->index != nid_of_node(page));
370
371		dec_page_count(sbi, type);
372		if (f2fs_in_warm_node_list(sbi, page))
373			f2fs_del_fsync_node_entry(sbi, page);
374		clear_page_private_gcing(page);
375		end_page_writeback(page);
376	}
377	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
378				wq_has_sleeper(&sbi->cp_wait))
379		wake_up(&sbi->cp_wait);
380
381	bio_put(bio);
382}
383
384#ifdef CONFIG_BLK_DEV_ZONED
385static void f2fs_zone_write_end_io(struct bio *bio)
386{
387	struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
388
389	bio->bi_private = io->bi_private;
390	complete(&io->zone_wait);
391	f2fs_write_end_io(bio);
392}
393#endif
394
395struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
396		block_t blk_addr, sector_t *sector)
397{
398	struct block_device *bdev = sbi->sb->s_bdev;
399	int i;
400
401	if (f2fs_is_multi_device(sbi)) {
402		for (i = 0; i < sbi->s_ndevs; i++) {
403			if (FDEV(i).start_blk <= blk_addr &&
404			    FDEV(i).end_blk >= blk_addr) {
405				blk_addr -= FDEV(i).start_blk;
406				bdev = FDEV(i).bdev;
407				break;
408			}
409		}
410	}
411
412	if (sector)
413		*sector = SECTOR_FROM_BLOCK(blk_addr);
414	return bdev;
415}
416
417int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
418{
419	int i;
420
421	if (!f2fs_is_multi_device(sbi))
422		return 0;
423
424	for (i = 0; i < sbi->s_ndevs; i++)
425		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
426			return i;
427	return 0;
428}
429
430static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
431{
432	unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
433	unsigned int fua_flag, meta_flag, io_flag;
434	blk_opf_t op_flags = 0;
435
436	if (fio->op != REQ_OP_WRITE)
437		return 0;
438	if (fio->type == DATA)
439		io_flag = fio->sbi->data_io_flag;
440	else if (fio->type == NODE)
441		io_flag = fio->sbi->node_io_flag;
442	else
443		return 0;
444
445	fua_flag = io_flag & temp_mask;
446	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
447
448	/*
449	 * data/node io flag bits per temp:
450	 *      REQ_META     |      REQ_FUA      |
451	 *    5 |    4 |   3 |    2 |    1 |   0 |
452	 * Cold | Warm | Hot | Cold | Warm | Hot |
453	 */
454	if (BIT(fio->temp) & meta_flag)
455		op_flags |= REQ_META;
456	if (BIT(fio->temp) & fua_flag)
457		op_flags |= REQ_FUA;
458	return op_flags;
459}
460
461static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
462{
463	struct f2fs_sb_info *sbi = fio->sbi;
464	struct block_device *bdev;
465	sector_t sector;
466	struct bio *bio;
467
468	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
469	bio = bio_alloc_bioset(bdev, npages,
470				fio->op | fio->op_flags | f2fs_io_flags(fio),
471				GFP_NOIO, &f2fs_bioset);
472	bio->bi_iter.bi_sector = sector;
473	if (is_read_io(fio->op)) {
474		bio->bi_end_io = f2fs_read_end_io;
475		bio->bi_private = NULL;
476	} else {
477		bio->bi_end_io = f2fs_write_end_io;
478		bio->bi_private = sbi;
479	}
480	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
481
482	if (fio->io_wbc)
483		wbc_init_bio(fio->io_wbc, bio);
484
485	return bio;
486}
487
488static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
489				  pgoff_t first_idx,
490				  const struct f2fs_io_info *fio,
491				  gfp_t gfp_mask)
492{
493	/*
494	 * The f2fs garbage collector sets ->encrypted_page when it wants to
495	 * read/write raw data without encryption.
496	 */
497	if (!fio || !fio->encrypted_page)
498		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
499}
500
501static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
502				     pgoff_t next_idx,
503				     const struct f2fs_io_info *fio)
504{
505	/*
506	 * The f2fs garbage collector sets ->encrypted_page when it wants to
507	 * read/write raw data without encryption.
508	 */
509	if (fio && fio->encrypted_page)
510		return !bio_has_crypt_ctx(bio);
511
512	return fscrypt_mergeable_bio(bio, inode, next_idx);
513}
514
515void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
516				 enum page_type type)
517{
518	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
519	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
520
521	iostat_update_submit_ctx(bio, type);
522	submit_bio(bio);
523}
524
525static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio)
526{
527	unsigned int start =
528		(bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi);
529
530	if (start == 0)
531		return;
532
533	/* fill dummy pages */
534	for (; start < F2FS_IO_SIZE(sbi); start++) {
535		struct page *page =
536			mempool_alloc(sbi->write_io_dummy,
537				      GFP_NOIO | __GFP_NOFAIL);
538		f2fs_bug_on(sbi, !page);
539
540		lock_page(page);
541
542		zero_user_segment(page, 0, PAGE_SIZE);
543		set_page_private_dummy(page);
544
545		if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
546			f2fs_bug_on(sbi, 1);
547	}
548}
549
550static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
551				  enum page_type type)
552{
553	WARN_ON_ONCE(is_read_io(bio_op(bio)));
554
555	if (type == DATA || type == NODE) {
556		if (f2fs_lfs_mode(sbi) && current->plug)
557			blk_finish_plug(current->plug);
558
559		if (F2FS_IO_ALIGNED(sbi)) {
560			f2fs_align_write_bio(sbi, bio);
561			/*
562			 * In the NODE case, we lose next block address chain.
563			 * So, we need to do checkpoint in f2fs_sync_file.
564			 */
565			if (type == NODE)
566				set_sbi_flag(sbi, SBI_NEED_CP);
567		}
568	}
569
570	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
571	iostat_update_submit_ctx(bio, type);
572	submit_bio(bio);
573}
574
575static void __submit_merged_bio(struct f2fs_bio_info *io)
576{
577	struct f2fs_io_info *fio = &io->fio;
578
579	if (!io->bio)
580		return;
581
582	if (is_read_io(fio->op)) {
583		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
584		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
585	} else {
586		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
587		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
588	}
589	io->bio = NULL;
590}
591
592static bool __has_merged_page(struct bio *bio, struct inode *inode,
593						struct page *page, nid_t ino)
594{
595	struct bio_vec *bvec;
596	struct bvec_iter_all iter_all;
597
598	if (!bio)
599		return false;
600
601	if (!inode && !page && !ino)
602		return true;
603
604	bio_for_each_segment_all(bvec, bio, iter_all) {
605		struct page *target = bvec->bv_page;
606
607		if (fscrypt_is_bounce_page(target)) {
608			target = fscrypt_pagecache_page(target);
609			if (IS_ERR(target))
610				continue;
611		}
612		if (f2fs_is_compressed_page(target)) {
613			target = f2fs_compress_control_page(target);
614			if (IS_ERR(target))
615				continue;
616		}
617
618		if (inode && inode == target->mapping->host)
619			return true;
620		if (page && page == target)
621			return true;
622		if (ino && ino == ino_of_node(target))
623			return true;
624	}
625
626	return false;
627}
628
629int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
630{
631	int i;
632
633	for (i = 0; i < NR_PAGE_TYPE; i++) {
634		int n = (i == META) ? 1 : NR_TEMP_TYPE;
635		int j;
636
637		sbi->write_io[i] = f2fs_kmalloc(sbi,
638				array_size(n, sizeof(struct f2fs_bio_info)),
639				GFP_KERNEL);
640		if (!sbi->write_io[i])
641			return -ENOMEM;
642
643		for (j = HOT; j < n; j++) {
644			init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
645			sbi->write_io[i][j].sbi = sbi;
646			sbi->write_io[i][j].bio = NULL;
647			spin_lock_init(&sbi->write_io[i][j].io_lock);
648			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
649			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
650			init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
651#ifdef CONFIG_BLK_DEV_ZONED
652			init_completion(&sbi->write_io[i][j].zone_wait);
653			sbi->write_io[i][j].zone_pending_bio = NULL;
654			sbi->write_io[i][j].bi_private = NULL;
655#endif
656		}
657	}
658
659	return 0;
660}
661
662static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
663				enum page_type type, enum temp_type temp)
664{
665	enum page_type btype = PAGE_TYPE_OF_BIO(type);
666	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
667
668	f2fs_down_write(&io->io_rwsem);
669
670	if (!io->bio)
671		goto unlock_out;
672
673	/* change META to META_FLUSH in the checkpoint procedure */
674	if (type >= META_FLUSH) {
675		io->fio.type = META_FLUSH;
676		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
677		if (!test_opt(sbi, NOBARRIER))
678			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
679	}
680	__submit_merged_bio(io);
681unlock_out:
682	f2fs_up_write(&io->io_rwsem);
683}
684
685static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
686				struct inode *inode, struct page *page,
687				nid_t ino, enum page_type type, bool force)
688{
689	enum temp_type temp;
690	bool ret = true;
691
692	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
693		if (!force)	{
694			enum page_type btype = PAGE_TYPE_OF_BIO(type);
695			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
696
697			f2fs_down_read(&io->io_rwsem);
698			ret = __has_merged_page(io->bio, inode, page, ino);
699			f2fs_up_read(&io->io_rwsem);
700		}
701		if (ret)
702			__f2fs_submit_merged_write(sbi, type, temp);
703
704		/* TODO: use HOT temp only for meta pages now. */
705		if (type >= META)
706			break;
707	}
708}
709
710void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
711{
712	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
713}
714
715void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
716				struct inode *inode, struct page *page,
717				nid_t ino, enum page_type type)
718{
719	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
720}
721
722void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
723{
724	f2fs_submit_merged_write(sbi, DATA);
725	f2fs_submit_merged_write(sbi, NODE);
726	f2fs_submit_merged_write(sbi, META);
727}
728
729/*
730 * Fill the locked page with data located in the block address.
731 * A caller needs to unlock the page on failure.
732 */
733int f2fs_submit_page_bio(struct f2fs_io_info *fio)
734{
735	struct bio *bio;
736	struct page *page = fio->encrypted_page ?
737			fio->encrypted_page : fio->page;
738
739	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
740			fio->is_por ? META_POR : (__is_meta_io(fio) ?
741			META_GENERIC : DATA_GENERIC_ENHANCE))) {
742		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
743		return -EFSCORRUPTED;
744	}
745
746	trace_f2fs_submit_page_bio(page, fio);
747
748	/* Allocate a new bio */
749	bio = __bio_alloc(fio, 1);
750
751	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
752			       fio->page->index, fio, GFP_NOIO);
753
754	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
755		bio_put(bio);
756		return -EFAULT;
757	}
758
759	if (fio->io_wbc && !is_read_io(fio->op))
760		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
761
762	inc_page_count(fio->sbi, is_read_io(fio->op) ?
763			__read_io_type(page) : WB_DATA_TYPE(fio->page, false));
764
765	if (is_read_io(bio_op(bio)))
766		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
767	else
768		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
769	return 0;
770}
771
772static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
773				block_t last_blkaddr, block_t cur_blkaddr)
774{
775	if (unlikely(sbi->max_io_bytes &&
776			bio->bi_iter.bi_size >= sbi->max_io_bytes))
777		return false;
778	if (last_blkaddr + 1 != cur_blkaddr)
779		return false;
780	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
781}
782
783static bool io_type_is_mergeable(struct f2fs_bio_info *io,
784						struct f2fs_io_info *fio)
785{
786	if (io->fio.op != fio->op)
787		return false;
788	return io->fio.op_flags == fio->op_flags;
789}
790
791static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
792					struct f2fs_bio_info *io,
793					struct f2fs_io_info *fio,
794					block_t last_blkaddr,
795					block_t cur_blkaddr)
796{
797	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
798		unsigned int filled_blocks =
799				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
800		unsigned int io_size = F2FS_IO_SIZE(sbi);
801		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
802
803		/* IOs in bio is aligned and left space of vectors is not enough */
804		if (!(filled_blocks % io_size) && left_vecs < io_size)
805			return false;
806	}
807	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
808		return false;
809	return io_type_is_mergeable(io, fio);
810}
811
812static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
813				struct page *page, enum temp_type temp)
814{
815	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
816	struct bio_entry *be;
817
818	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
819	be->bio = bio;
820	bio_get(bio);
821
822	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
823		f2fs_bug_on(sbi, 1);
824
825	f2fs_down_write(&io->bio_list_lock);
826	list_add_tail(&be->list, &io->bio_list);
827	f2fs_up_write(&io->bio_list_lock);
828}
829
830static void del_bio_entry(struct bio_entry *be)
831{
832	list_del(&be->list);
833	kmem_cache_free(bio_entry_slab, be);
834}
835
836static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
837							struct page *page)
838{
839	struct f2fs_sb_info *sbi = fio->sbi;
840	enum temp_type temp;
841	bool found = false;
842	int ret = -EAGAIN;
843
844	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
845		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
846		struct list_head *head = &io->bio_list;
847		struct bio_entry *be;
848
849		f2fs_down_write(&io->bio_list_lock);
850		list_for_each_entry(be, head, list) {
851			if (be->bio != *bio)
852				continue;
853
854			found = true;
855
856			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
857							    *fio->last_block,
858							    fio->new_blkaddr));
859			if (f2fs_crypt_mergeable_bio(*bio,
860					fio->page->mapping->host,
861					fio->page->index, fio) &&
862			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
863					PAGE_SIZE) {
864				ret = 0;
865				break;
866			}
867
868			/* page can't be merged into bio; submit the bio */
869			del_bio_entry(be);
870			f2fs_submit_write_bio(sbi, *bio, DATA);
871			break;
872		}
873		f2fs_up_write(&io->bio_list_lock);
874	}
875
876	if (ret) {
877		bio_put(*bio);
878		*bio = NULL;
879	}
880
881	return ret;
882}
883
884void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
885					struct bio **bio, struct page *page)
886{
887	enum temp_type temp;
888	bool found = false;
889	struct bio *target = bio ? *bio : NULL;
890
891	f2fs_bug_on(sbi, !target && !page);
892
893	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
894		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
895		struct list_head *head = &io->bio_list;
896		struct bio_entry *be;
897
898		if (list_empty(head))
899			continue;
900
901		f2fs_down_read(&io->bio_list_lock);
902		list_for_each_entry(be, head, list) {
903			if (target)
904				found = (target == be->bio);
905			else
906				found = __has_merged_page(be->bio, NULL,
907								page, 0);
908			if (found)
909				break;
910		}
911		f2fs_up_read(&io->bio_list_lock);
912
913		if (!found)
914			continue;
915
916		found = false;
917
918		f2fs_down_write(&io->bio_list_lock);
919		list_for_each_entry(be, head, list) {
920			if (target)
921				found = (target == be->bio);
922			else
923				found = __has_merged_page(be->bio, NULL,
924								page, 0);
925			if (found) {
926				target = be->bio;
927				del_bio_entry(be);
928				break;
929			}
930		}
931		f2fs_up_write(&io->bio_list_lock);
932	}
933
934	if (found)
935		f2fs_submit_write_bio(sbi, target, DATA);
936	if (bio && *bio) {
937		bio_put(*bio);
938		*bio = NULL;
939	}
940}
941
942int f2fs_merge_page_bio(struct f2fs_io_info *fio)
943{
944	struct bio *bio = *fio->bio;
945	struct page *page = fio->encrypted_page ?
946			fio->encrypted_page : fio->page;
947
948	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
949			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
950		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
951		return -EFSCORRUPTED;
952	}
953
954	trace_f2fs_submit_page_bio(page, fio);
955
956	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
957						fio->new_blkaddr))
958		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
959alloc_new:
960	if (!bio) {
961		bio = __bio_alloc(fio, BIO_MAX_VECS);
962		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
963				       fio->page->index, fio, GFP_NOIO);
964
965		add_bio_entry(fio->sbi, bio, page, fio->temp);
966	} else {
967		if (add_ipu_page(fio, &bio, page))
968			goto alloc_new;
969	}
970
971	if (fio->io_wbc)
972		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
973
974	inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
975
976	*fio->last_block = fio->new_blkaddr;
977	*fio->bio = bio;
978
979	return 0;
980}
981
982#ifdef CONFIG_BLK_DEV_ZONED
983static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
984{
985	int devi = 0;
986
987	if (f2fs_is_multi_device(sbi)) {
988		devi = f2fs_target_device_index(sbi, blkaddr);
989		if (blkaddr < FDEV(devi).start_blk ||
990		    blkaddr > FDEV(devi).end_blk) {
991			f2fs_err(sbi, "Invalid block %x", blkaddr);
992			return false;
993		}
994		blkaddr -= FDEV(devi).start_blk;
995	}
996	return bdev_zoned_model(FDEV(devi).bdev) == BLK_ZONED_HM &&
997		f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
998		(blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
999}
1000#endif
1001
1002void f2fs_submit_page_write(struct f2fs_io_info *fio)
1003{
1004	struct f2fs_sb_info *sbi = fio->sbi;
1005	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
1006	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
1007	struct page *bio_page;
1008	enum count_type type;
1009
1010	f2fs_bug_on(sbi, is_read_io(fio->op));
1011
1012	f2fs_down_write(&io->io_rwsem);
1013next:
1014#ifdef CONFIG_BLK_DEV_ZONED
1015	if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
1016		wait_for_completion_io(&io->zone_wait);
1017		bio_put(io->zone_pending_bio);
1018		io->zone_pending_bio = NULL;
1019		io->bi_private = NULL;
1020	}
1021#endif
1022
1023	if (fio->in_list) {
1024		spin_lock(&io->io_lock);
1025		if (list_empty(&io->io_list)) {
1026			spin_unlock(&io->io_lock);
1027			goto out;
1028		}
1029		fio = list_first_entry(&io->io_list,
1030						struct f2fs_io_info, list);
1031		list_del(&fio->list);
1032		spin_unlock(&io->io_lock);
1033	}
1034
1035	verify_fio_blkaddr(fio);
1036
1037	if (fio->encrypted_page)
1038		bio_page = fio->encrypted_page;
1039	else if (fio->compressed_page)
1040		bio_page = fio->compressed_page;
1041	else
1042		bio_page = fio->page;
1043
1044	/* set submitted = true as a return value */
1045	fio->submitted = 1;
1046
1047	type = WB_DATA_TYPE(bio_page, fio->compressed_page);
1048	inc_page_count(sbi, type);
1049
1050	if (io->bio &&
1051	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1052			      fio->new_blkaddr) ||
1053	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1054				       bio_page->index, fio)))
1055		__submit_merged_bio(io);
1056alloc_new:
1057	if (io->bio == NULL) {
1058		if (F2FS_IO_ALIGNED(sbi) &&
1059				(fio->type == DATA || fio->type == NODE) &&
1060				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
1061			dec_page_count(sbi, WB_DATA_TYPE(bio_page,
1062						fio->compressed_page));
1063			fio->retry = 1;
1064			goto skip;
1065		}
1066		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1067		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1068				       bio_page->index, fio, GFP_NOIO);
1069		io->fio = *fio;
1070	}
1071
1072	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1073		__submit_merged_bio(io);
1074		goto alloc_new;
1075	}
1076
1077	if (fio->io_wbc)
1078		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1079
1080	io->last_block_in_bio = fio->new_blkaddr;
1081
1082	trace_f2fs_submit_page_write(fio->page, fio);
1083#ifdef CONFIG_BLK_DEV_ZONED
1084	if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1085			is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1086		bio_get(io->bio);
1087		reinit_completion(&io->zone_wait);
1088		io->bi_private = io->bio->bi_private;
1089		io->bio->bi_private = io;
1090		io->bio->bi_end_io = f2fs_zone_write_end_io;
1091		io->zone_pending_bio = io->bio;
1092		__submit_merged_bio(io);
1093	}
1094#endif
1095skip:
1096	if (fio->in_list)
1097		goto next;
1098out:
1099	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1100				!f2fs_is_checkpoint_ready(sbi))
1101		__submit_merged_bio(io);
1102	f2fs_up_write(&io->io_rwsem);
1103}
1104
1105static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1106				      unsigned nr_pages, blk_opf_t op_flag,
1107				      pgoff_t first_idx, bool for_write)
1108{
1109	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1110	struct bio *bio;
1111	struct bio_post_read_ctx *ctx = NULL;
1112	unsigned int post_read_steps = 0;
1113	sector_t sector;
1114	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1115
1116	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1117			       REQ_OP_READ | op_flag,
1118			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1119	if (!bio)
1120		return ERR_PTR(-ENOMEM);
1121	bio->bi_iter.bi_sector = sector;
1122	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1123	bio->bi_end_io = f2fs_read_end_io;
1124
1125	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1126		post_read_steps |= STEP_DECRYPT;
1127
1128	if (f2fs_need_verity(inode, first_idx))
1129		post_read_steps |= STEP_VERITY;
1130
1131	/*
1132	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1133	 * contain both compressed and uncompressed clusters.  We'll allocate a
1134	 * bio_post_read_ctx if the file is compressed, but the caller is
1135	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1136	 */
1137
1138	if (post_read_steps || f2fs_compressed_file(inode)) {
1139		/* Due to the mempool, this never fails. */
1140		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1141		ctx->bio = bio;
1142		ctx->sbi = sbi;
1143		ctx->enabled_steps = post_read_steps;
1144		ctx->fs_blkaddr = blkaddr;
1145		ctx->decompression_attempted = false;
1146		bio->bi_private = ctx;
1147	}
1148	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1149
1150	return bio;
1151}
1152
1153/* This can handle encryption stuffs */
1154static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1155				 block_t blkaddr, blk_opf_t op_flags,
1156				 bool for_write)
1157{
1158	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1159	struct bio *bio;
1160
1161	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1162					page->index, for_write);
1163	if (IS_ERR(bio))
1164		return PTR_ERR(bio);
1165
1166	/* wait for GCed page writeback via META_MAPPING */
1167	f2fs_wait_on_block_writeback(inode, blkaddr);
1168
1169	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1170		iostat_update_and_unbind_ctx(bio);
1171		if (bio->bi_private)
1172			mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1173		bio_put(bio);
1174		return -EFAULT;
1175	}
1176	inc_page_count(sbi, F2FS_RD_DATA);
1177	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1178	f2fs_submit_read_bio(sbi, bio, DATA);
1179	return 0;
1180}
1181
1182static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1183{
1184	__le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1185
1186	dn->data_blkaddr = blkaddr;
1187	addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1188}
1189
1190/*
1191 * Lock ordering for the change of data block address:
1192 * ->data_page
1193 *  ->node_page
1194 *    update block addresses in the node page
1195 */
1196void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1197{
1198	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1199	__set_data_blkaddr(dn, blkaddr);
1200	if (set_page_dirty(dn->node_page))
1201		dn->node_changed = true;
1202}
1203
1204void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1205{
1206	f2fs_set_data_blkaddr(dn, blkaddr);
1207	f2fs_update_read_extent_cache(dn);
1208}
1209
1210/* dn->ofs_in_node will be returned with up-to-date last block pointer */
1211int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1212{
1213	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1214	int err;
1215
1216	if (!count)
1217		return 0;
1218
1219	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1220		return -EPERM;
1221	err = inc_valid_block_count(sbi, dn->inode, &count, true);
1222	if (unlikely(err))
1223		return err;
1224
1225	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1226						dn->ofs_in_node, count);
1227
1228	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1229
1230	for (; count > 0; dn->ofs_in_node++) {
1231		block_t blkaddr = f2fs_data_blkaddr(dn);
1232
1233		if (blkaddr == NULL_ADDR) {
1234			__set_data_blkaddr(dn, NEW_ADDR);
1235			count--;
1236		}
1237	}
1238
1239	if (set_page_dirty(dn->node_page))
1240		dn->node_changed = true;
1241	return 0;
1242}
1243
1244/* Should keep dn->ofs_in_node unchanged */
1245int f2fs_reserve_new_block(struct dnode_of_data *dn)
1246{
1247	unsigned int ofs_in_node = dn->ofs_in_node;
1248	int ret;
1249
1250	ret = f2fs_reserve_new_blocks(dn, 1);
1251	dn->ofs_in_node = ofs_in_node;
1252	return ret;
1253}
1254
1255int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1256{
1257	bool need_put = dn->inode_page ? false : true;
1258	int err;
1259
1260	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1261	if (err)
1262		return err;
1263
1264	if (dn->data_blkaddr == NULL_ADDR)
1265		err = f2fs_reserve_new_block(dn);
1266	if (err || need_put)
1267		f2fs_put_dnode(dn);
1268	return err;
1269}
1270
1271struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1272				     blk_opf_t op_flags, bool for_write,
1273				     pgoff_t *next_pgofs)
1274{
1275	struct address_space *mapping = inode->i_mapping;
1276	struct dnode_of_data dn;
1277	struct page *page;
1278	int err;
1279
1280	page = f2fs_grab_cache_page(mapping, index, for_write);
1281	if (!page)
1282		return ERR_PTR(-ENOMEM);
1283
1284	if (f2fs_lookup_read_extent_cache_block(inode, index,
1285						&dn.data_blkaddr)) {
1286		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1287						DATA_GENERIC_ENHANCE_READ)) {
1288			err = -EFSCORRUPTED;
1289			f2fs_handle_error(F2FS_I_SB(inode),
1290						ERROR_INVALID_BLKADDR);
1291			goto put_err;
1292		}
1293		goto got_it;
1294	}
1295
1296	set_new_dnode(&dn, inode, NULL, NULL, 0);
1297	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1298	if (err) {
1299		if (err == -ENOENT && next_pgofs)
1300			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1301		goto put_err;
1302	}
1303	f2fs_put_dnode(&dn);
1304
1305	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1306		err = -ENOENT;
1307		if (next_pgofs)
1308			*next_pgofs = index + 1;
1309		goto put_err;
1310	}
1311	if (dn.data_blkaddr != NEW_ADDR &&
1312			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1313						dn.data_blkaddr,
1314						DATA_GENERIC_ENHANCE)) {
1315		err = -EFSCORRUPTED;
1316		f2fs_handle_error(F2FS_I_SB(inode),
1317					ERROR_INVALID_BLKADDR);
1318		goto put_err;
1319	}
1320got_it:
1321	if (PageUptodate(page)) {
1322		unlock_page(page);
1323		return page;
1324	}
1325
1326	/*
1327	 * A new dentry page is allocated but not able to be written, since its
1328	 * new inode page couldn't be allocated due to -ENOSPC.
1329	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1330	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1331	 * f2fs_init_inode_metadata.
1332	 */
1333	if (dn.data_blkaddr == NEW_ADDR) {
1334		zero_user_segment(page, 0, PAGE_SIZE);
1335		if (!PageUptodate(page))
1336			SetPageUptodate(page);
1337		unlock_page(page);
1338		return page;
1339	}
1340
1341	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1342						op_flags, for_write);
1343	if (err)
1344		goto put_err;
1345	return page;
1346
1347put_err:
1348	f2fs_put_page(page, 1);
1349	return ERR_PTR(err);
1350}
1351
1352struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1353					pgoff_t *next_pgofs)
1354{
1355	struct address_space *mapping = inode->i_mapping;
1356	struct page *page;
1357
1358	page = find_get_page(mapping, index);
1359	if (page && PageUptodate(page))
1360		return page;
1361	f2fs_put_page(page, 0);
1362
1363	page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1364	if (IS_ERR(page))
1365		return page;
1366
1367	if (PageUptodate(page))
1368		return page;
1369
1370	wait_on_page_locked(page);
1371	if (unlikely(!PageUptodate(page))) {
1372		f2fs_put_page(page, 0);
1373		return ERR_PTR(-EIO);
1374	}
1375	return page;
1376}
1377
1378/*
1379 * If it tries to access a hole, return an error.
1380 * Because, the callers, functions in dir.c and GC, should be able to know
1381 * whether this page exists or not.
1382 */
1383struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1384							bool for_write)
1385{
1386	struct address_space *mapping = inode->i_mapping;
1387	struct page *page;
1388
1389	page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1390	if (IS_ERR(page))
1391		return page;
1392
1393	/* wait for read completion */
1394	lock_page(page);
1395	if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1396		f2fs_put_page(page, 1);
1397		return ERR_PTR(-EIO);
1398	}
1399	return page;
1400}
1401
1402/*
1403 * Caller ensures that this data page is never allocated.
1404 * A new zero-filled data page is allocated in the page cache.
1405 *
1406 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1407 * f2fs_unlock_op().
1408 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1409 * ipage should be released by this function.
1410 */
1411struct page *f2fs_get_new_data_page(struct inode *inode,
1412		struct page *ipage, pgoff_t index, bool new_i_size)
1413{
1414	struct address_space *mapping = inode->i_mapping;
1415	struct page *page;
1416	struct dnode_of_data dn;
1417	int err;
1418
1419	page = f2fs_grab_cache_page(mapping, index, true);
1420	if (!page) {
1421		/*
1422		 * before exiting, we should make sure ipage will be released
1423		 * if any error occur.
1424		 */
1425		f2fs_put_page(ipage, 1);
1426		return ERR_PTR(-ENOMEM);
1427	}
1428
1429	set_new_dnode(&dn, inode, ipage, NULL, 0);
1430	err = f2fs_reserve_block(&dn, index);
1431	if (err) {
1432		f2fs_put_page(page, 1);
1433		return ERR_PTR(err);
1434	}
1435	if (!ipage)
1436		f2fs_put_dnode(&dn);
1437
1438	if (PageUptodate(page))
1439		goto got_it;
1440
1441	if (dn.data_blkaddr == NEW_ADDR) {
1442		zero_user_segment(page, 0, PAGE_SIZE);
1443		if (!PageUptodate(page))
1444			SetPageUptodate(page);
1445	} else {
1446		f2fs_put_page(page, 1);
1447
1448		/* if ipage exists, blkaddr should be NEW_ADDR */
1449		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1450		page = f2fs_get_lock_data_page(inode, index, true);
1451		if (IS_ERR(page))
1452			return page;
1453	}
1454got_it:
1455	if (new_i_size && i_size_read(inode) <
1456				((loff_t)(index + 1) << PAGE_SHIFT))
1457		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1458	return page;
1459}
1460
1461static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1462{
1463	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1464	struct f2fs_summary sum;
1465	struct node_info ni;
1466	block_t old_blkaddr;
1467	blkcnt_t count = 1;
1468	int err;
1469
1470	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1471		return -EPERM;
1472
1473	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1474	if (err)
1475		return err;
1476
1477	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1478	if (dn->data_blkaddr == NULL_ADDR) {
1479		err = inc_valid_block_count(sbi, dn->inode, &count, true);
1480		if (unlikely(err))
1481			return err;
1482	}
1483
1484	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1485	old_blkaddr = dn->data_blkaddr;
1486	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1487				&sum, seg_type, NULL);
1488	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1489		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
1490
1491	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1492	return 0;
1493}
1494
1495static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1496{
1497	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1498		f2fs_down_read(&sbi->node_change);
1499	else
1500		f2fs_lock_op(sbi);
1501}
1502
1503static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1504{
1505	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1506		f2fs_up_read(&sbi->node_change);
1507	else
1508		f2fs_unlock_op(sbi);
1509}
1510
1511int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1512{
1513	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1514	int err = 0;
1515
1516	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1517	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1518						&dn->data_blkaddr))
1519		err = f2fs_reserve_block(dn, index);
1520	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1521
1522	return err;
1523}
1524
1525static int f2fs_map_no_dnode(struct inode *inode,
1526		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1527		pgoff_t pgoff)
1528{
1529	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1530
1531	/*
1532	 * There is one exceptional case that read_node_page() may return
1533	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1534	 * -EIO in that case.
1535	 */
1536	if (map->m_may_create &&
1537	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1538		return -EIO;
1539
1540	if (map->m_next_pgofs)
1541		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1542	if (map->m_next_extent)
1543		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1544	return 0;
1545}
1546
1547static bool f2fs_map_blocks_cached(struct inode *inode,
1548		struct f2fs_map_blocks *map, int flag)
1549{
1550	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1551	unsigned int maxblocks = map->m_len;
1552	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1553	struct extent_info ei = {};
1554
1555	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1556		return false;
1557
1558	map->m_pblk = ei.blk + pgoff - ei.fofs;
1559	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1560	map->m_flags = F2FS_MAP_MAPPED;
1561	if (map->m_next_extent)
1562		*map->m_next_extent = pgoff + map->m_len;
1563
1564	/* for hardware encryption, but to avoid potential issue in future */
1565	if (flag == F2FS_GET_BLOCK_DIO)
1566		f2fs_wait_on_block_writeback_range(inode,
1567					map->m_pblk, map->m_len);
1568
1569	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1570		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1571		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1572
1573		map->m_bdev = dev->bdev;
1574		map->m_pblk -= dev->start_blk;
1575		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1576	} else {
1577		map->m_bdev = inode->i_sb->s_bdev;
1578	}
1579	return true;
1580}
1581
1582/*
1583 * f2fs_map_blocks() tries to find or build mapping relationship which
1584 * maps continuous logical blocks to physical blocks, and return such
1585 * info via f2fs_map_blocks structure.
1586 */
1587int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1588{
1589	unsigned int maxblocks = map->m_len;
1590	struct dnode_of_data dn;
1591	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1592	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1593	pgoff_t pgofs, end_offset, end;
1594	int err = 0, ofs = 1;
1595	unsigned int ofs_in_node, last_ofs_in_node;
1596	blkcnt_t prealloc;
1597	block_t blkaddr;
1598	unsigned int start_pgofs;
1599	int bidx = 0;
1600	bool is_hole;
1601
1602	if (!maxblocks)
1603		return 0;
1604
1605	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1606		goto out;
1607
1608	map->m_bdev = inode->i_sb->s_bdev;
1609	map->m_multidev_dio =
1610		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1611
1612	map->m_len = 0;
1613	map->m_flags = 0;
1614
1615	/* it only supports block size == page size */
1616	pgofs =	(pgoff_t)map->m_lblk;
1617	end = pgofs + maxblocks;
1618
1619next_dnode:
1620	if (map->m_may_create)
1621		f2fs_map_lock(sbi, flag);
1622
1623	/* When reading holes, we need its node page */
1624	set_new_dnode(&dn, inode, NULL, NULL, 0);
1625	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1626	if (err) {
1627		if (flag == F2FS_GET_BLOCK_BMAP)
1628			map->m_pblk = 0;
1629		if (err == -ENOENT)
1630			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1631		goto unlock_out;
1632	}
1633
1634	start_pgofs = pgofs;
1635	prealloc = 0;
1636	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1637	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1638
1639next_block:
1640	blkaddr = f2fs_data_blkaddr(&dn);
1641	is_hole = !__is_valid_data_blkaddr(blkaddr);
1642	if (!is_hole &&
1643	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1644		err = -EFSCORRUPTED;
1645		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1646		goto sync_out;
1647	}
1648
1649	/* use out-place-update for direct IO under LFS mode */
1650	if (map->m_may_create &&
1651	    (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1652		if (unlikely(f2fs_cp_error(sbi))) {
1653			err = -EIO;
1654			goto sync_out;
1655		}
1656
1657		switch (flag) {
1658		case F2FS_GET_BLOCK_PRE_AIO:
1659			if (blkaddr == NULL_ADDR) {
1660				prealloc++;
1661				last_ofs_in_node = dn.ofs_in_node;
1662			}
1663			break;
1664		case F2FS_GET_BLOCK_PRE_DIO:
1665		case F2FS_GET_BLOCK_DIO:
1666			err = __allocate_data_block(&dn, map->m_seg_type);
1667			if (err)
1668				goto sync_out;
1669			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1670				file_need_truncate(inode);
1671			set_inode_flag(inode, FI_APPEND_WRITE);
1672			break;
1673		default:
1674			WARN_ON_ONCE(1);
1675			err = -EIO;
1676			goto sync_out;
1677		}
1678
1679		blkaddr = dn.data_blkaddr;
1680		if (is_hole)
1681			map->m_flags |= F2FS_MAP_NEW;
1682	} else if (is_hole) {
1683		if (f2fs_compressed_file(inode) &&
1684		    f2fs_sanity_check_cluster(&dn) &&
1685		    (flag != F2FS_GET_BLOCK_FIEMAP ||
1686		     IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1687			err = -EFSCORRUPTED;
1688			f2fs_handle_error(sbi,
1689					ERROR_CORRUPTED_CLUSTER);
1690			goto sync_out;
1691		}
1692
1693		switch (flag) {
1694		case F2FS_GET_BLOCK_PRECACHE:
1695			goto sync_out;
1696		case F2FS_GET_BLOCK_BMAP:
1697			map->m_pblk = 0;
1698			goto sync_out;
1699		case F2FS_GET_BLOCK_FIEMAP:
1700			if (blkaddr == NULL_ADDR) {
1701				if (map->m_next_pgofs)
1702					*map->m_next_pgofs = pgofs + 1;
1703				goto sync_out;
1704			}
1705			break;
1706		default:
1707			/* for defragment case */
1708			if (map->m_next_pgofs)
1709				*map->m_next_pgofs = pgofs + 1;
1710			goto sync_out;
1711		}
1712	}
1713
1714	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1715		goto skip;
1716
1717	if (map->m_multidev_dio)
1718		bidx = f2fs_target_device_index(sbi, blkaddr);
1719
1720	if (map->m_len == 0) {
1721		/* reserved delalloc block should be mapped for fiemap. */
1722		if (blkaddr == NEW_ADDR)
1723			map->m_flags |= F2FS_MAP_DELALLOC;
1724		map->m_flags |= F2FS_MAP_MAPPED;
1725
1726		map->m_pblk = blkaddr;
1727		map->m_len = 1;
1728
1729		if (map->m_multidev_dio)
1730			map->m_bdev = FDEV(bidx).bdev;
1731	} else if ((map->m_pblk != NEW_ADDR &&
1732			blkaddr == (map->m_pblk + ofs)) ||
1733			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1734			flag == F2FS_GET_BLOCK_PRE_DIO) {
1735		if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1736			goto sync_out;
1737		ofs++;
1738		map->m_len++;
1739	} else {
1740		goto sync_out;
1741	}
1742
1743skip:
1744	dn.ofs_in_node++;
1745	pgofs++;
1746
1747	/* preallocate blocks in batch for one dnode page */
1748	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1749			(pgofs == end || dn.ofs_in_node == end_offset)) {
1750
1751		dn.ofs_in_node = ofs_in_node;
1752		err = f2fs_reserve_new_blocks(&dn, prealloc);
1753		if (err)
1754			goto sync_out;
1755
1756		map->m_len += dn.ofs_in_node - ofs_in_node;
1757		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1758			err = -ENOSPC;
1759			goto sync_out;
1760		}
1761		dn.ofs_in_node = end_offset;
1762	}
1763
1764	if (pgofs >= end)
1765		goto sync_out;
1766	else if (dn.ofs_in_node < end_offset)
1767		goto next_block;
1768
1769	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1770		if (map->m_flags & F2FS_MAP_MAPPED) {
1771			unsigned int ofs = start_pgofs - map->m_lblk;
1772
1773			f2fs_update_read_extent_cache_range(&dn,
1774				start_pgofs, map->m_pblk + ofs,
1775				map->m_len - ofs);
1776		}
1777	}
1778
1779	f2fs_put_dnode(&dn);
1780
1781	if (map->m_may_create) {
1782		f2fs_map_unlock(sbi, flag);
1783		f2fs_balance_fs(sbi, dn.node_changed);
1784	}
1785	goto next_dnode;
1786
1787sync_out:
1788
1789	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1790		/*
1791		 * for hardware encryption, but to avoid potential issue
1792		 * in future
1793		 */
1794		f2fs_wait_on_block_writeback_range(inode,
1795						map->m_pblk, map->m_len);
1796
1797		if (map->m_multidev_dio) {
1798			block_t blk_addr = map->m_pblk;
1799
1800			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1801
1802			map->m_bdev = FDEV(bidx).bdev;
1803			map->m_pblk -= FDEV(bidx).start_blk;
1804
1805			if (map->m_may_create)
1806				f2fs_update_device_state(sbi, inode->i_ino,
1807							blk_addr, map->m_len);
1808
1809			f2fs_bug_on(sbi, blk_addr + map->m_len >
1810						FDEV(bidx).end_blk + 1);
1811		}
1812	}
1813
1814	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1815		if (map->m_flags & F2FS_MAP_MAPPED) {
1816			unsigned int ofs = start_pgofs - map->m_lblk;
1817
1818			f2fs_update_read_extent_cache_range(&dn,
1819				start_pgofs, map->m_pblk + ofs,
1820				map->m_len - ofs);
1821		}
1822		if (map->m_next_extent)
1823			*map->m_next_extent = pgofs + 1;
1824	}
1825	f2fs_put_dnode(&dn);
1826unlock_out:
1827	if (map->m_may_create) {
1828		f2fs_map_unlock(sbi, flag);
1829		f2fs_balance_fs(sbi, dn.node_changed);
1830	}
1831out:
1832	trace_f2fs_map_blocks(inode, map, flag, err);
1833	return err;
1834}
1835
1836bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1837{
1838	struct f2fs_map_blocks map;
1839	block_t last_lblk;
1840	int err;
1841
1842	if (pos + len > i_size_read(inode))
1843		return false;
1844
1845	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1846	map.m_next_pgofs = NULL;
1847	map.m_next_extent = NULL;
1848	map.m_seg_type = NO_CHECK_TYPE;
1849	map.m_may_create = false;
1850	last_lblk = F2FS_BLK_ALIGN(pos + len);
1851
1852	while (map.m_lblk < last_lblk) {
1853		map.m_len = last_lblk - map.m_lblk;
1854		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1855		if (err || map.m_len == 0)
1856			return false;
1857		map.m_lblk += map.m_len;
1858	}
1859	return true;
1860}
1861
1862static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1863{
1864	return (bytes >> inode->i_blkbits);
1865}
1866
1867static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1868{
1869	return (blks << inode->i_blkbits);
1870}
1871
1872static int f2fs_xattr_fiemap(struct inode *inode,
1873				struct fiemap_extent_info *fieinfo)
1874{
1875	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1876	struct page *page;
1877	struct node_info ni;
1878	__u64 phys = 0, len;
1879	__u32 flags;
1880	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1881	int err = 0;
1882
1883	if (f2fs_has_inline_xattr(inode)) {
1884		int offset;
1885
1886		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1887						inode->i_ino, false);
1888		if (!page)
1889			return -ENOMEM;
1890
1891		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1892		if (err) {
1893			f2fs_put_page(page, 1);
1894			return err;
1895		}
1896
1897		phys = blks_to_bytes(inode, ni.blk_addr);
1898		offset = offsetof(struct f2fs_inode, i_addr) +
1899					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1900					get_inline_xattr_addrs(inode));
1901
1902		phys += offset;
1903		len = inline_xattr_size(inode);
1904
1905		f2fs_put_page(page, 1);
1906
1907		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1908
1909		if (!xnid)
1910			flags |= FIEMAP_EXTENT_LAST;
1911
1912		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1913		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1914		if (err)
1915			return err;
1916	}
1917
1918	if (xnid) {
1919		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1920		if (!page)
1921			return -ENOMEM;
1922
1923		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1924		if (err) {
1925			f2fs_put_page(page, 1);
1926			return err;
1927		}
1928
1929		phys = blks_to_bytes(inode, ni.blk_addr);
1930		len = inode->i_sb->s_blocksize;
1931
1932		f2fs_put_page(page, 1);
1933
1934		flags = FIEMAP_EXTENT_LAST;
1935	}
1936
1937	if (phys) {
1938		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1939		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1940	}
1941
1942	return (err < 0 ? err : 0);
1943}
1944
1945static loff_t max_inode_blocks(struct inode *inode)
1946{
1947	loff_t result = ADDRS_PER_INODE(inode);
1948	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1949
1950	/* two direct node blocks */
1951	result += (leaf_count * 2);
1952
1953	/* two indirect node blocks */
1954	leaf_count *= NIDS_PER_BLOCK;
1955	result += (leaf_count * 2);
1956
1957	/* one double indirect node block */
1958	leaf_count *= NIDS_PER_BLOCK;
1959	result += leaf_count;
1960
1961	return result;
1962}
1963
1964int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1965		u64 start, u64 len)
1966{
1967	struct f2fs_map_blocks map;
1968	sector_t start_blk, last_blk;
1969	pgoff_t next_pgofs;
1970	u64 logical = 0, phys = 0, size = 0;
1971	u32 flags = 0;
1972	int ret = 0;
1973	bool compr_cluster = false, compr_appended;
1974	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1975	unsigned int count_in_cluster = 0;
1976	loff_t maxbytes;
1977
1978	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1979		ret = f2fs_precache_extents(inode);
1980		if (ret)
1981			return ret;
1982	}
1983
1984	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1985	if (ret)
1986		return ret;
1987
1988	inode_lock(inode);
1989
1990	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1991	if (start > maxbytes) {
1992		ret = -EFBIG;
1993		goto out;
1994	}
1995
1996	if (len > maxbytes || (maxbytes - len) < start)
1997		len = maxbytes - start;
1998
1999	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
2000		ret = f2fs_xattr_fiemap(inode, fieinfo);
2001		goto out;
2002	}
2003
2004	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
2005		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
2006		if (ret != -EAGAIN)
2007			goto out;
2008	}
2009
2010	if (bytes_to_blks(inode, len) == 0)
2011		len = blks_to_bytes(inode, 1);
2012
2013	start_blk = bytes_to_blks(inode, start);
2014	last_blk = bytes_to_blks(inode, start + len - 1);
2015
2016next:
2017	memset(&map, 0, sizeof(map));
2018	map.m_lblk = start_blk;
2019	map.m_len = bytes_to_blks(inode, len);
2020	map.m_next_pgofs = &next_pgofs;
2021	map.m_seg_type = NO_CHECK_TYPE;
2022
2023	if (compr_cluster) {
2024		map.m_lblk += 1;
2025		map.m_len = cluster_size - count_in_cluster;
2026	}
2027
2028	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
2029	if (ret)
2030		goto out;
2031
2032	/* HOLE */
2033	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
2034		start_blk = next_pgofs;
2035
2036		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
2037						max_inode_blocks(inode)))
2038			goto prep_next;
2039
2040		flags |= FIEMAP_EXTENT_LAST;
2041	}
2042
2043	compr_appended = false;
2044	/* In a case of compressed cluster, append this to the last extent */
2045	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
2046			!(map.m_flags & F2FS_MAP_FLAGS))) {
2047		compr_appended = true;
2048		goto skip_fill;
2049	}
2050
2051	if (size) {
2052		flags |= FIEMAP_EXTENT_MERGED;
2053		if (IS_ENCRYPTED(inode))
2054			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2055
2056		ret = fiemap_fill_next_extent(fieinfo, logical,
2057				phys, size, flags);
2058		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2059		if (ret)
2060			goto out;
2061		size = 0;
2062	}
2063
2064	if (start_blk > last_blk)
2065		goto out;
2066
2067skip_fill:
2068	if (map.m_pblk == COMPRESS_ADDR) {
2069		compr_cluster = true;
2070		count_in_cluster = 1;
2071	} else if (compr_appended) {
2072		unsigned int appended_blks = cluster_size -
2073						count_in_cluster + 1;
2074		size += blks_to_bytes(inode, appended_blks);
2075		start_blk += appended_blks;
2076		compr_cluster = false;
2077	} else {
2078		logical = blks_to_bytes(inode, start_blk);
2079		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2080			blks_to_bytes(inode, map.m_pblk) : 0;
2081		size = blks_to_bytes(inode, map.m_len);
2082		flags = 0;
2083
2084		if (compr_cluster) {
2085			flags = FIEMAP_EXTENT_ENCODED;
2086			count_in_cluster += map.m_len;
2087			if (count_in_cluster == cluster_size) {
2088				compr_cluster = false;
2089				size += blks_to_bytes(inode, 1);
2090			}
2091		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2092			flags = FIEMAP_EXTENT_UNWRITTEN;
2093		}
2094
2095		start_blk += bytes_to_blks(inode, size);
2096	}
2097
2098prep_next:
2099	cond_resched();
2100	if (fatal_signal_pending(current))
2101		ret = -EINTR;
2102	else
2103		goto next;
2104out:
2105	if (ret == 1)
2106		ret = 0;
2107
2108	inode_unlock(inode);
2109	return ret;
2110}
2111
2112static inline loff_t f2fs_readpage_limit(struct inode *inode)
2113{
2114	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2115		return inode->i_sb->s_maxbytes;
2116
2117	return i_size_read(inode);
2118}
2119
2120static int f2fs_read_single_page(struct inode *inode, struct page *page,
2121					unsigned nr_pages,
2122					struct f2fs_map_blocks *map,
2123					struct bio **bio_ret,
2124					sector_t *last_block_in_bio,
2125					bool is_readahead)
2126{
2127	struct bio *bio = *bio_ret;
2128	const unsigned blocksize = blks_to_bytes(inode, 1);
2129	sector_t block_in_file;
2130	sector_t last_block;
2131	sector_t last_block_in_file;
2132	sector_t block_nr;
2133	int ret = 0;
2134
2135	block_in_file = (sector_t)page_index(page);
2136	last_block = block_in_file + nr_pages;
2137	last_block_in_file = bytes_to_blks(inode,
2138			f2fs_readpage_limit(inode) + blocksize - 1);
2139	if (last_block > last_block_in_file)
2140		last_block = last_block_in_file;
2141
2142	/* just zeroing out page which is beyond EOF */
2143	if (block_in_file >= last_block)
2144		goto zero_out;
2145	/*
2146	 * Map blocks using the previous result first.
2147	 */
2148	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2149			block_in_file > map->m_lblk &&
2150			block_in_file < (map->m_lblk + map->m_len))
2151		goto got_it;
2152
2153	/*
2154	 * Then do more f2fs_map_blocks() calls until we are
2155	 * done with this page.
2156	 */
2157	map->m_lblk = block_in_file;
2158	map->m_len = last_block - block_in_file;
2159
2160	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2161	if (ret)
2162		goto out;
2163got_it:
2164	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2165		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2166		SetPageMappedToDisk(page);
2167
2168		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2169						DATA_GENERIC_ENHANCE_READ)) {
2170			ret = -EFSCORRUPTED;
2171			f2fs_handle_error(F2FS_I_SB(inode),
2172						ERROR_INVALID_BLKADDR);
2173			goto out;
2174		}
2175	} else {
2176zero_out:
2177		zero_user_segment(page, 0, PAGE_SIZE);
2178		if (f2fs_need_verity(inode, page->index) &&
2179		    !fsverity_verify_page(page)) {
2180			ret = -EIO;
2181			goto out;
2182		}
2183		if (!PageUptodate(page))
2184			SetPageUptodate(page);
2185		unlock_page(page);
2186		goto out;
2187	}
2188
2189	/*
2190	 * This page will go to BIO.  Do we need to send this
2191	 * BIO off first?
2192	 */
2193	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2194				       *last_block_in_bio, block_nr) ||
2195		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2196submit_and_realloc:
2197		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2198		bio = NULL;
2199	}
2200	if (bio == NULL) {
2201		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2202				is_readahead ? REQ_RAHEAD : 0, page->index,
2203				false);
2204		if (IS_ERR(bio)) {
2205			ret = PTR_ERR(bio);
2206			bio = NULL;
2207			goto out;
2208		}
2209	}
2210
2211	/*
2212	 * If the page is under writeback, we need to wait for
2213	 * its completion to see the correct decrypted data.
2214	 */
2215	f2fs_wait_on_block_writeback(inode, block_nr);
2216
2217	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2218		goto submit_and_realloc;
2219
2220	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2221	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2222							F2FS_BLKSIZE);
2223	*last_block_in_bio = block_nr;
2224out:
2225	*bio_ret = bio;
2226	return ret;
2227}
2228
2229#ifdef CONFIG_F2FS_FS_COMPRESSION
2230int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2231				unsigned nr_pages, sector_t *last_block_in_bio,
2232				bool is_readahead, bool for_write)
2233{
2234	struct dnode_of_data dn;
2235	struct inode *inode = cc->inode;
2236	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2237	struct bio *bio = *bio_ret;
2238	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2239	sector_t last_block_in_file;
2240	const unsigned blocksize = blks_to_bytes(inode, 1);
2241	struct decompress_io_ctx *dic = NULL;
2242	struct extent_info ei = {};
2243	bool from_dnode = true;
2244	int i;
2245	int ret = 0;
2246
2247	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2248
2249	last_block_in_file = bytes_to_blks(inode,
2250			f2fs_readpage_limit(inode) + blocksize - 1);
2251
2252	/* get rid of pages beyond EOF */
2253	for (i = 0; i < cc->cluster_size; i++) {
2254		struct page *page = cc->rpages[i];
2255
2256		if (!page)
2257			continue;
2258		if ((sector_t)page->index >= last_block_in_file) {
2259			zero_user_segment(page, 0, PAGE_SIZE);
2260			if (!PageUptodate(page))
2261				SetPageUptodate(page);
2262		} else if (!PageUptodate(page)) {
2263			continue;
2264		}
2265		unlock_page(page);
2266		if (for_write)
2267			put_page(page);
2268		cc->rpages[i] = NULL;
2269		cc->nr_rpages--;
2270	}
2271
2272	/* we are done since all pages are beyond EOF */
2273	if (f2fs_cluster_is_empty(cc))
2274		goto out;
2275
2276	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2277		from_dnode = false;
2278
2279	if (!from_dnode)
2280		goto skip_reading_dnode;
2281
2282	set_new_dnode(&dn, inode, NULL, NULL, 0);
2283	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2284	if (ret)
2285		goto out;
2286
2287	if (unlikely(f2fs_cp_error(sbi))) {
2288		ret = -EIO;
2289		goto out_put_dnode;
2290	}
2291	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2292
2293skip_reading_dnode:
2294	for (i = 1; i < cc->cluster_size; i++) {
2295		block_t blkaddr;
2296
2297		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2298					dn.ofs_in_node + i) :
2299					ei.blk + i - 1;
2300
2301		if (!__is_valid_data_blkaddr(blkaddr))
2302			break;
2303
2304		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2305			ret = -EFAULT;
2306			goto out_put_dnode;
2307		}
2308		cc->nr_cpages++;
2309
2310		if (!from_dnode && i >= ei.c_len)
2311			break;
2312	}
2313
2314	/* nothing to decompress */
2315	if (cc->nr_cpages == 0) {
2316		ret = 0;
2317		goto out_put_dnode;
2318	}
2319
2320	dic = f2fs_alloc_dic(cc);
2321	if (IS_ERR(dic)) {
2322		ret = PTR_ERR(dic);
2323		goto out_put_dnode;
2324	}
2325
2326	for (i = 0; i < cc->nr_cpages; i++) {
2327		struct page *page = dic->cpages[i];
2328		block_t blkaddr;
2329		struct bio_post_read_ctx *ctx;
2330
2331		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2332					dn.ofs_in_node + i + 1) :
2333					ei.blk + i;
2334
2335		f2fs_wait_on_block_writeback(inode, blkaddr);
2336
2337		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2338			if (atomic_dec_and_test(&dic->remaining_pages)) {
2339				f2fs_decompress_cluster(dic, true);
2340				break;
2341			}
2342			continue;
2343		}
2344
2345		if (bio && (!page_is_mergeable(sbi, bio,
2346					*last_block_in_bio, blkaddr) ||
2347		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2348submit_and_realloc:
2349			f2fs_submit_read_bio(sbi, bio, DATA);
2350			bio = NULL;
2351		}
2352
2353		if (!bio) {
2354			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2355					is_readahead ? REQ_RAHEAD : 0,
2356					page->index, for_write);
2357			if (IS_ERR(bio)) {
2358				ret = PTR_ERR(bio);
2359				f2fs_decompress_end_io(dic, ret, true);
2360				f2fs_put_dnode(&dn);
2361				*bio_ret = NULL;
2362				return ret;
2363			}
2364		}
2365
2366		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2367			goto submit_and_realloc;
2368
2369		ctx = get_post_read_ctx(bio);
2370		ctx->enabled_steps |= STEP_DECOMPRESS;
2371		refcount_inc(&dic->refcnt);
2372
2373		inc_page_count(sbi, F2FS_RD_DATA);
2374		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2375		*last_block_in_bio = blkaddr;
2376	}
2377
2378	if (from_dnode)
2379		f2fs_put_dnode(&dn);
2380
2381	*bio_ret = bio;
2382	return 0;
2383
2384out_put_dnode:
2385	if (from_dnode)
2386		f2fs_put_dnode(&dn);
2387out:
2388	for (i = 0; i < cc->cluster_size; i++) {
2389		if (cc->rpages[i]) {
2390			ClearPageUptodate(cc->rpages[i]);
2391			unlock_page(cc->rpages[i]);
2392		}
2393	}
2394	*bio_ret = bio;
2395	return ret;
2396}
2397#endif
2398
2399/*
2400 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2401 * Major change was from block_size == page_size in f2fs by default.
2402 */
2403static int f2fs_mpage_readpages(struct inode *inode,
2404		struct readahead_control *rac, struct page *page)
2405{
2406	struct bio *bio = NULL;
2407	sector_t last_block_in_bio = 0;
2408	struct f2fs_map_blocks map;
2409#ifdef CONFIG_F2FS_FS_COMPRESSION
2410	struct compress_ctx cc = {
2411		.inode = inode,
2412		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2413		.cluster_size = F2FS_I(inode)->i_cluster_size,
2414		.cluster_idx = NULL_CLUSTER,
2415		.rpages = NULL,
2416		.cpages = NULL,
2417		.nr_rpages = 0,
2418		.nr_cpages = 0,
2419	};
2420	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2421#endif
2422	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2423	unsigned max_nr_pages = nr_pages;
2424	int ret = 0;
2425
2426	map.m_pblk = 0;
2427	map.m_lblk = 0;
2428	map.m_len = 0;
2429	map.m_flags = 0;
2430	map.m_next_pgofs = NULL;
2431	map.m_next_extent = NULL;
2432	map.m_seg_type = NO_CHECK_TYPE;
2433	map.m_may_create = false;
2434
2435	for (; nr_pages; nr_pages--) {
2436		if (rac) {
2437			page = readahead_page(rac);
2438			prefetchw(&page->flags);
2439		}
2440
2441#ifdef CONFIG_F2FS_FS_COMPRESSION
2442		if (f2fs_compressed_file(inode)) {
2443			/* there are remained compressed pages, submit them */
2444			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2445				ret = f2fs_read_multi_pages(&cc, &bio,
2446							max_nr_pages,
2447							&last_block_in_bio,
2448							rac != NULL, false);
2449				f2fs_destroy_compress_ctx(&cc, false);
2450				if (ret)
2451					goto set_error_page;
2452			}
2453			if (cc.cluster_idx == NULL_CLUSTER) {
2454				if (nc_cluster_idx ==
2455					page->index >> cc.log_cluster_size) {
2456					goto read_single_page;
2457				}
2458
2459				ret = f2fs_is_compressed_cluster(inode, page->index);
2460				if (ret < 0)
2461					goto set_error_page;
2462				else if (!ret) {
2463					nc_cluster_idx =
2464						page->index >> cc.log_cluster_size;
2465					goto read_single_page;
2466				}
2467
2468				nc_cluster_idx = NULL_CLUSTER;
2469			}
2470			ret = f2fs_init_compress_ctx(&cc);
2471			if (ret)
2472				goto set_error_page;
2473
2474			f2fs_compress_ctx_add_page(&cc, page);
2475
2476			goto next_page;
2477		}
2478read_single_page:
2479#endif
2480
2481		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2482					&bio, &last_block_in_bio, rac);
2483		if (ret) {
2484#ifdef CONFIG_F2FS_FS_COMPRESSION
2485set_error_page:
2486#endif
2487			zero_user_segment(page, 0, PAGE_SIZE);
2488			unlock_page(page);
2489		}
2490#ifdef CONFIG_F2FS_FS_COMPRESSION
2491next_page:
2492#endif
2493		if (rac)
2494			put_page(page);
2495
2496#ifdef CONFIG_F2FS_FS_COMPRESSION
2497		if (f2fs_compressed_file(inode)) {
2498			/* last page */
2499			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2500				ret = f2fs_read_multi_pages(&cc, &bio,
2501							max_nr_pages,
2502							&last_block_in_bio,
2503							rac != NULL, false);
2504				f2fs_destroy_compress_ctx(&cc, false);
2505			}
2506		}
2507#endif
2508	}
2509	if (bio)
2510		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2511	return ret;
2512}
2513
2514static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2515{
2516	struct page *page = &folio->page;
2517	struct inode *inode = page_file_mapping(page)->host;
2518	int ret = -EAGAIN;
2519
2520	trace_f2fs_readpage(page, DATA);
2521
2522	if (!f2fs_is_compress_backend_ready(inode)) {
2523		unlock_page(page);
2524		return -EOPNOTSUPP;
2525	}
2526
2527	/* If the file has inline data, try to read it directly */
2528	if (f2fs_has_inline_data(inode))
2529		ret = f2fs_read_inline_data(inode, page);
2530	if (ret == -EAGAIN)
2531		ret = f2fs_mpage_readpages(inode, NULL, page);
2532	return ret;
2533}
2534
2535static void f2fs_readahead(struct readahead_control *rac)
2536{
2537	struct inode *inode = rac->mapping->host;
2538
2539	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2540
2541	if (!f2fs_is_compress_backend_ready(inode))
2542		return;
2543
2544	/* If the file has inline data, skip readahead */
2545	if (f2fs_has_inline_data(inode))
2546		return;
2547
2548	f2fs_mpage_readpages(inode, rac, NULL);
2549}
2550
2551int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2552{
2553	struct inode *inode = fio->page->mapping->host;
2554	struct page *mpage, *page;
2555	gfp_t gfp_flags = GFP_NOFS;
2556
2557	if (!f2fs_encrypted_file(inode))
2558		return 0;
2559
2560	page = fio->compressed_page ? fio->compressed_page : fio->page;
2561
2562	if (fscrypt_inode_uses_inline_crypto(inode))
2563		return 0;
2564
2565retry_encrypt:
2566	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2567					PAGE_SIZE, 0, gfp_flags);
2568	if (IS_ERR(fio->encrypted_page)) {
2569		/* flush pending IOs and wait for a while in the ENOMEM case */
2570		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2571			f2fs_flush_merged_writes(fio->sbi);
2572			memalloc_retry_wait(GFP_NOFS);
2573			gfp_flags |= __GFP_NOFAIL;
2574			goto retry_encrypt;
2575		}
2576		return PTR_ERR(fio->encrypted_page);
2577	}
2578
2579	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2580	if (mpage) {
2581		if (PageUptodate(mpage))
2582			memcpy(page_address(mpage),
2583				page_address(fio->encrypted_page), PAGE_SIZE);
2584		f2fs_put_page(mpage, 1);
2585	}
2586	return 0;
2587}
2588
2589static inline bool check_inplace_update_policy(struct inode *inode,
2590				struct f2fs_io_info *fio)
2591{
2592	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2593
2594	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2595	    is_inode_flag_set(inode, FI_OPU_WRITE))
2596		return false;
2597	if (IS_F2FS_IPU_FORCE(sbi))
2598		return true;
2599	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2600		return true;
2601	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2602		return true;
2603	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2604	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2605		return true;
2606
2607	/*
2608	 * IPU for rewrite async pages
2609	 */
2610	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2611	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2612		return true;
2613
2614	/* this is only set during fdatasync */
2615	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2616		return true;
2617
2618	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2619			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2620		return true;
2621
2622	return false;
2623}
2624
2625bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2626{
2627	/* swap file is migrating in aligned write mode */
2628	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2629		return false;
2630
2631	if (f2fs_is_pinned_file(inode))
2632		return true;
2633
2634	/* if this is cold file, we should overwrite to avoid fragmentation */
2635	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2636		return true;
2637
2638	return check_inplace_update_policy(inode, fio);
2639}
2640
2641bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2642{
2643	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2644
2645	/* The below cases were checked when setting it. */
2646	if (f2fs_is_pinned_file(inode))
2647		return false;
2648	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2649		return true;
2650	if (f2fs_lfs_mode(sbi))
2651		return true;
2652	if (S_ISDIR(inode->i_mode))
2653		return true;
2654	if (IS_NOQUOTA(inode))
2655		return true;
2656	if (f2fs_is_atomic_file(inode))
2657		return true;
2658
2659	/* swap file is migrating in aligned write mode */
2660	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2661		return true;
2662
2663	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2664		return true;
2665
2666	if (fio) {
2667		if (page_private_gcing(fio->page))
2668			return true;
2669		if (page_private_dummy(fio->page))
2670			return true;
2671		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2672			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2673			return true;
2674	}
2675	return false;
2676}
2677
2678static inline bool need_inplace_update(struct f2fs_io_info *fio)
2679{
2680	struct inode *inode = fio->page->mapping->host;
2681
2682	if (f2fs_should_update_outplace(inode, fio))
2683		return false;
2684
2685	return f2fs_should_update_inplace(inode, fio);
2686}
2687
2688int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2689{
2690	struct page *page = fio->page;
2691	struct inode *inode = page->mapping->host;
2692	struct dnode_of_data dn;
2693	struct node_info ni;
2694	bool ipu_force = false;
2695	int err = 0;
2696
2697	/* Use COW inode to make dnode_of_data for atomic write */
2698	if (f2fs_is_atomic_file(inode))
2699		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2700	else
2701		set_new_dnode(&dn, inode, NULL, NULL, 0);
2702
2703	if (need_inplace_update(fio) &&
2704	    f2fs_lookup_read_extent_cache_block(inode, page->index,
2705						&fio->old_blkaddr)) {
2706		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2707						DATA_GENERIC_ENHANCE)) {
2708			f2fs_handle_error(fio->sbi,
2709						ERROR_INVALID_BLKADDR);
2710			return -EFSCORRUPTED;
2711		}
2712
2713		ipu_force = true;
2714		fio->need_lock = LOCK_DONE;
2715		goto got_it;
2716	}
2717
2718	/* Deadlock due to between page->lock and f2fs_lock_op */
2719	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2720		return -EAGAIN;
2721
2722	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2723	if (err)
2724		goto out;
2725
2726	fio->old_blkaddr = dn.data_blkaddr;
2727
2728	/* This page is already truncated */
2729	if (fio->old_blkaddr == NULL_ADDR) {
2730		ClearPageUptodate(page);
2731		clear_page_private_gcing(page);
2732		goto out_writepage;
2733	}
2734got_it:
2735	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2736		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2737						DATA_GENERIC_ENHANCE)) {
2738		err = -EFSCORRUPTED;
2739		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2740		goto out_writepage;
2741	}
2742
2743	/* wait for GCed page writeback via META_MAPPING */
2744	if (fio->post_read)
2745		f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2746
2747	/*
2748	 * If current allocation needs SSR,
2749	 * it had better in-place writes for updated data.
2750	 */
2751	if (ipu_force ||
2752		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2753					need_inplace_update(fio))) {
2754		err = f2fs_encrypt_one_page(fio);
2755		if (err)
2756			goto out_writepage;
2757
2758		set_page_writeback(page);
2759		f2fs_put_dnode(&dn);
2760		if (fio->need_lock == LOCK_REQ)
2761			f2fs_unlock_op(fio->sbi);
2762		err = f2fs_inplace_write_data(fio);
2763		if (err) {
2764			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2765				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2766			if (PageWriteback(page))
2767				end_page_writeback(page);
2768		} else {
2769			set_inode_flag(inode, FI_UPDATE_WRITE);
2770		}
2771		trace_f2fs_do_write_data_page(fio->page, IPU);
2772		return err;
2773	}
2774
2775	if (fio->need_lock == LOCK_RETRY) {
2776		if (!f2fs_trylock_op(fio->sbi)) {
2777			err = -EAGAIN;
2778			goto out_writepage;
2779		}
2780		fio->need_lock = LOCK_REQ;
2781	}
2782
2783	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2784	if (err)
2785		goto out_writepage;
2786
2787	fio->version = ni.version;
2788
2789	err = f2fs_encrypt_one_page(fio);
2790	if (err)
2791		goto out_writepage;
2792
2793	set_page_writeback(page);
2794
2795	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2796		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2797
2798	/* LFS mode write path */
2799	f2fs_outplace_write_data(&dn, fio);
2800	trace_f2fs_do_write_data_page(page, OPU);
2801	set_inode_flag(inode, FI_APPEND_WRITE);
2802out_writepage:
2803	f2fs_put_dnode(&dn);
2804out:
2805	if (fio->need_lock == LOCK_REQ)
2806		f2fs_unlock_op(fio->sbi);
2807	return err;
2808}
2809
2810int f2fs_write_single_data_page(struct page *page, int *submitted,
2811				struct bio **bio,
2812				sector_t *last_block,
2813				struct writeback_control *wbc,
2814				enum iostat_type io_type,
2815				int compr_blocks,
2816				bool allow_balance)
2817{
2818	struct inode *inode = page->mapping->host;
2819	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2820	loff_t i_size = i_size_read(inode);
2821	const pgoff_t end_index = ((unsigned long long)i_size)
2822							>> PAGE_SHIFT;
2823	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2824	unsigned offset = 0;
2825	bool need_balance_fs = false;
2826	bool quota_inode = IS_NOQUOTA(inode);
2827	int err = 0;
2828	struct f2fs_io_info fio = {
2829		.sbi = sbi,
2830		.ino = inode->i_ino,
2831		.type = DATA,
2832		.op = REQ_OP_WRITE,
2833		.op_flags = wbc_to_write_flags(wbc),
2834		.old_blkaddr = NULL_ADDR,
2835		.page = page,
2836		.encrypted_page = NULL,
2837		.submitted = 0,
2838		.compr_blocks = compr_blocks,
2839		.need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2840		.post_read = f2fs_post_read_required(inode) ? 1 : 0,
2841		.io_type = io_type,
2842		.io_wbc = wbc,
2843		.bio = bio,
2844		.last_block = last_block,
2845	};
2846
2847	trace_f2fs_writepage(page, DATA);
2848
2849	/* we should bypass data pages to proceed the kworker jobs */
2850	if (unlikely(f2fs_cp_error(sbi))) {
2851		mapping_set_error(page->mapping, -EIO);
2852		/*
2853		 * don't drop any dirty dentry pages for keeping lastest
2854		 * directory structure.
2855		 */
2856		if (S_ISDIR(inode->i_mode) &&
2857				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2858			goto redirty_out;
2859
2860		/* keep data pages in remount-ro mode */
2861		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2862			goto redirty_out;
2863		goto out;
2864	}
2865
2866	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2867		goto redirty_out;
2868
2869	if (page->index < end_index ||
2870			f2fs_verity_in_progress(inode) ||
2871			compr_blocks)
2872		goto write;
2873
2874	/*
2875	 * If the offset is out-of-range of file size,
2876	 * this page does not have to be written to disk.
2877	 */
2878	offset = i_size & (PAGE_SIZE - 1);
2879	if ((page->index >= end_index + 1) || !offset)
2880		goto out;
2881
2882	zero_user_segment(page, offset, PAGE_SIZE);
2883write:
2884	/* Dentry/quota blocks are controlled by checkpoint */
2885	if (S_ISDIR(inode->i_mode) || quota_inode) {
2886		/*
2887		 * We need to wait for node_write to avoid block allocation during
2888		 * checkpoint. This can only happen to quota writes which can cause
2889		 * the below discard race condition.
2890		 */
2891		if (quota_inode)
2892			f2fs_down_read(&sbi->node_write);
2893
2894		fio.need_lock = LOCK_DONE;
2895		err = f2fs_do_write_data_page(&fio);
2896
2897		if (quota_inode)
2898			f2fs_up_read(&sbi->node_write);
2899
2900		goto done;
2901	}
2902
2903	if (!wbc->for_reclaim)
2904		need_balance_fs = true;
2905	else if (has_not_enough_free_secs(sbi, 0, 0))
2906		goto redirty_out;
2907	else
2908		set_inode_flag(inode, FI_HOT_DATA);
2909
2910	err = -EAGAIN;
2911	if (f2fs_has_inline_data(inode)) {
2912		err = f2fs_write_inline_data(inode, page);
2913		if (!err)
2914			goto out;
2915	}
2916
2917	if (err == -EAGAIN) {
2918		err = f2fs_do_write_data_page(&fio);
2919		if (err == -EAGAIN) {
2920			f2fs_bug_on(sbi, compr_blocks);
2921			fio.need_lock = LOCK_REQ;
2922			err = f2fs_do_write_data_page(&fio);
2923		}
2924	}
2925
2926	if (err) {
2927		file_set_keep_isize(inode);
2928	} else {
2929		spin_lock(&F2FS_I(inode)->i_size_lock);
2930		if (F2FS_I(inode)->last_disk_size < psize)
2931			F2FS_I(inode)->last_disk_size = psize;
2932		spin_unlock(&F2FS_I(inode)->i_size_lock);
2933	}
2934
2935done:
2936	if (err && err != -ENOENT)
2937		goto redirty_out;
2938
2939out:
2940	inode_dec_dirty_pages(inode);
2941	if (err) {
2942		ClearPageUptodate(page);
2943		clear_page_private_gcing(page);
2944	}
2945
2946	if (wbc->for_reclaim) {
2947		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2948		clear_inode_flag(inode, FI_HOT_DATA);
2949		f2fs_remove_dirty_inode(inode);
2950		submitted = NULL;
2951	}
2952	unlock_page(page);
2953	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2954			!F2FS_I(inode)->wb_task && allow_balance)
2955		f2fs_balance_fs(sbi, need_balance_fs);
2956
2957	if (unlikely(f2fs_cp_error(sbi))) {
2958		f2fs_submit_merged_write(sbi, DATA);
2959		if (bio && *bio)
2960			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2961		submitted = NULL;
2962	}
2963
2964	if (submitted)
2965		*submitted = fio.submitted;
2966
2967	return 0;
2968
2969redirty_out:
2970	redirty_page_for_writepage(wbc, page);
2971	/*
2972	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2973	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2974	 * file_write_and_wait_range() will see EIO error, which is critical
2975	 * to return value of fsync() followed by atomic_write failure to user.
2976	 */
2977	if (!err || wbc->for_reclaim)
2978		return AOP_WRITEPAGE_ACTIVATE;
2979	unlock_page(page);
2980	return err;
2981}
2982
2983static int f2fs_write_data_page(struct page *page,
2984					struct writeback_control *wbc)
2985{
2986#ifdef CONFIG_F2FS_FS_COMPRESSION
2987	struct inode *inode = page->mapping->host;
2988
2989	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2990		goto out;
2991
2992	if (f2fs_compressed_file(inode)) {
2993		if (f2fs_is_compressed_cluster(inode, page->index)) {
2994			redirty_page_for_writepage(wbc, page);
2995			return AOP_WRITEPAGE_ACTIVATE;
2996		}
2997	}
2998out:
2999#endif
3000
3001	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
3002						wbc, FS_DATA_IO, 0, true);
3003}
3004
3005/*
3006 * This function was copied from write_cache_pages from mm/page-writeback.c.
3007 * The major change is making write step of cold data page separately from
3008 * warm/hot data page.
3009 */
3010static int f2fs_write_cache_pages(struct address_space *mapping,
3011					struct writeback_control *wbc,
3012					enum iostat_type io_type)
3013{
3014	int ret = 0;
3015	int done = 0, retry = 0;
3016	struct page *pages_local[F2FS_ONSTACK_PAGES];
3017	struct page **pages = pages_local;
3018	struct folio_batch fbatch;
3019	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
3020	struct bio *bio = NULL;
3021	sector_t last_block;
3022#ifdef CONFIG_F2FS_FS_COMPRESSION
3023	struct inode *inode = mapping->host;
3024	struct compress_ctx cc = {
3025		.inode = inode,
3026		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
3027		.cluster_size = F2FS_I(inode)->i_cluster_size,
3028		.cluster_idx = NULL_CLUSTER,
3029		.rpages = NULL,
3030		.nr_rpages = 0,
3031		.cpages = NULL,
3032		.valid_nr_cpages = 0,
3033		.rbuf = NULL,
3034		.cbuf = NULL,
3035		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
3036		.private = NULL,
3037	};
3038#endif
3039	int nr_folios, p, idx;
3040	int nr_pages;
3041	unsigned int max_pages = F2FS_ONSTACK_PAGES;
3042	pgoff_t index;
3043	pgoff_t end;		/* Inclusive */
3044	pgoff_t done_index;
3045	int range_whole = 0;
3046	xa_mark_t tag;
3047	int nwritten = 0;
3048	int submitted = 0;
3049	int i;
3050
3051#ifdef CONFIG_F2FS_FS_COMPRESSION
3052	if (f2fs_compressed_file(inode) &&
3053		1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
3054		pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
3055				cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
3056		max_pages = 1 << cc.log_cluster_size;
3057	}
3058#endif
3059
3060	folio_batch_init(&fbatch);
3061
3062	if (get_dirty_pages(mapping->host) <=
3063				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3064		set_inode_flag(mapping->host, FI_HOT_DATA);
3065	else
3066		clear_inode_flag(mapping->host, FI_HOT_DATA);
3067
3068	if (wbc->range_cyclic) {
3069		index = mapping->writeback_index; /* prev offset */
3070		end = -1;
3071	} else {
3072		index = wbc->range_start >> PAGE_SHIFT;
3073		end = wbc->range_end >> PAGE_SHIFT;
3074		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3075			range_whole = 1;
3076	}
3077	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3078		tag = PAGECACHE_TAG_TOWRITE;
3079	else
3080		tag = PAGECACHE_TAG_DIRTY;
3081retry:
3082	retry = 0;
3083	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3084		tag_pages_for_writeback(mapping, index, end);
3085	done_index = index;
3086	while (!done && !retry && (index <= end)) {
3087		nr_pages = 0;
3088again:
3089		nr_folios = filemap_get_folios_tag(mapping, &index, end,
3090				tag, &fbatch);
3091		if (nr_folios == 0) {
3092			if (nr_pages)
3093				goto write;
3094			break;
3095		}
3096
3097		for (i = 0; i < nr_folios; i++) {
3098			struct folio *folio = fbatch.folios[i];
3099
3100			idx = 0;
3101			p = folio_nr_pages(folio);
3102add_more:
3103			pages[nr_pages] = folio_page(folio, idx);
3104			folio_get(folio);
3105			if (++nr_pages == max_pages) {
3106				index = folio->index + idx + 1;
3107				folio_batch_release(&fbatch);
3108				goto write;
3109			}
3110			if (++idx < p)
3111				goto add_more;
3112		}
3113		folio_batch_release(&fbatch);
3114		goto again;
3115write:
3116		for (i = 0; i < nr_pages; i++) {
3117			struct page *page = pages[i];
3118			struct folio *folio = page_folio(page);
3119			bool need_readd;
3120readd:
3121			need_readd = false;
3122#ifdef CONFIG_F2FS_FS_COMPRESSION
3123			if (f2fs_compressed_file(inode)) {
3124				void *fsdata = NULL;
3125				struct page *pagep;
3126				int ret2;
3127
3128				ret = f2fs_init_compress_ctx(&cc);
3129				if (ret) {
3130					done = 1;
3131					break;
3132				}
3133
3134				if (!f2fs_cluster_can_merge_page(&cc,
3135								folio->index)) {
3136					ret = f2fs_write_multi_pages(&cc,
3137						&submitted, wbc, io_type);
3138					if (!ret)
3139						need_readd = true;
3140					goto result;
3141				}
3142
3143				if (unlikely(f2fs_cp_error(sbi)))
3144					goto lock_folio;
3145
3146				if (!f2fs_cluster_is_empty(&cc))
3147					goto lock_folio;
3148
3149				if (f2fs_all_cluster_page_ready(&cc,
3150					pages, i, nr_pages, true))
3151					goto lock_folio;
3152
3153				ret2 = f2fs_prepare_compress_overwrite(
3154							inode, &pagep,
3155							folio->index, &fsdata);
3156				if (ret2 < 0) {
3157					ret = ret2;
3158					done = 1;
3159					break;
3160				} else if (ret2 &&
3161					(!f2fs_compress_write_end(inode,
3162						fsdata, folio->index, 1) ||
3163					 !f2fs_all_cluster_page_ready(&cc,
3164						pages, i, nr_pages,
3165						false))) {
3166					retry = 1;
3167					break;
3168				}
3169			}
3170#endif
3171			/* give a priority to WB_SYNC threads */
3172			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3173					wbc->sync_mode == WB_SYNC_NONE) {
3174				done = 1;
3175				break;
3176			}
3177#ifdef CONFIG_F2FS_FS_COMPRESSION
3178lock_folio:
3179#endif
3180			done_index = folio->index;
3181retry_write:
3182			folio_lock(folio);
3183
3184			if (unlikely(folio->mapping != mapping)) {
3185continue_unlock:
3186				folio_unlock(folio);
3187				continue;
3188			}
3189
3190			if (!folio_test_dirty(folio)) {
3191				/* someone wrote it for us */
3192				goto continue_unlock;
3193			}
3194
3195			if (folio_test_writeback(folio)) {
3196				if (wbc->sync_mode == WB_SYNC_NONE)
3197					goto continue_unlock;
3198				f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3199			}
3200
3201			if (!folio_clear_dirty_for_io(folio))
3202				goto continue_unlock;
3203
3204#ifdef CONFIG_F2FS_FS_COMPRESSION
3205			if (f2fs_compressed_file(inode)) {
3206				folio_get(folio);
3207				f2fs_compress_ctx_add_page(&cc, &folio->page);
3208				continue;
3209			}
3210#endif
3211			ret = f2fs_write_single_data_page(&folio->page,
3212					&submitted, &bio, &last_block,
3213					wbc, io_type, 0, true);
3214			if (ret == AOP_WRITEPAGE_ACTIVATE)
3215				folio_unlock(folio);
3216#ifdef CONFIG_F2FS_FS_COMPRESSION
3217result:
3218#endif
3219			nwritten += submitted;
3220			wbc->nr_to_write -= submitted;
3221
3222			if (unlikely(ret)) {
3223				/*
3224				 * keep nr_to_write, since vfs uses this to
3225				 * get # of written pages.
3226				 */
3227				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3228					ret = 0;
3229					goto next;
3230				} else if (ret == -EAGAIN) {
3231					ret = 0;
3232					if (wbc->sync_mode == WB_SYNC_ALL) {
3233						f2fs_io_schedule_timeout(
3234							DEFAULT_IO_TIMEOUT);
3235						goto retry_write;
3236					}
3237					goto next;
3238				}
3239				done_index = folio_next_index(folio);
3240				done = 1;
3241				break;
3242			}
3243
3244			if (wbc->nr_to_write <= 0 &&
3245					wbc->sync_mode == WB_SYNC_NONE) {
3246				done = 1;
3247				break;
3248			}
3249next:
3250			if (need_readd)
3251				goto readd;
3252		}
3253		release_pages(pages, nr_pages);
3254		cond_resched();
3255	}
3256#ifdef CONFIG_F2FS_FS_COMPRESSION
3257	/* flush remained pages in compress cluster */
3258	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3259		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3260		nwritten += submitted;
3261		wbc->nr_to_write -= submitted;
3262		if (ret) {
3263			done = 1;
3264			retry = 0;
3265		}
3266	}
3267	if (f2fs_compressed_file(inode))
3268		f2fs_destroy_compress_ctx(&cc, false);
3269#endif
3270	if (retry) {
3271		index = 0;
3272		end = -1;
3273		goto retry;
3274	}
3275	if (wbc->range_cyclic && !done)
3276		done_index = 0;
3277	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3278		mapping->writeback_index = done_index;
3279
3280	if (nwritten)
3281		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3282								NULL, 0, DATA);
3283	/* submit cached bio of IPU write */
3284	if (bio)
3285		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3286
3287#ifdef CONFIG_F2FS_FS_COMPRESSION
3288	if (pages != pages_local)
3289		kfree(pages);
3290#endif
3291
3292	return ret;
3293}
3294
3295static inline bool __should_serialize_io(struct inode *inode,
3296					struct writeback_control *wbc)
3297{
3298	/* to avoid deadlock in path of data flush */
3299	if (F2FS_I(inode)->wb_task)
3300		return false;
3301
3302	if (!S_ISREG(inode->i_mode))
3303		return false;
3304	if (IS_NOQUOTA(inode))
3305		return false;
3306
3307	if (f2fs_need_compress_data(inode))
3308		return true;
3309	if (wbc->sync_mode != WB_SYNC_ALL)
3310		return true;
3311	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3312		return true;
3313	return false;
3314}
3315
3316static int __f2fs_write_data_pages(struct address_space *mapping,
3317						struct writeback_control *wbc,
3318						enum iostat_type io_type)
3319{
3320	struct inode *inode = mapping->host;
3321	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3322	struct blk_plug plug;
3323	int ret;
3324	bool locked = false;
3325
3326	/* deal with chardevs and other special file */
3327	if (!mapping->a_ops->writepage)
3328		return 0;
3329
3330	/* skip writing if there is no dirty page in this inode */
3331	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3332		return 0;
3333
3334	/* during POR, we don't need to trigger writepage at all. */
3335	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3336		goto skip_write;
3337
3338	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3339			wbc->sync_mode == WB_SYNC_NONE &&
3340			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3341			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3342		goto skip_write;
3343
3344	/* skip writing in file defragment preparing stage */
3345	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3346		goto skip_write;
3347
3348	trace_f2fs_writepages(mapping->host, wbc, DATA);
3349
3350	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3351	if (wbc->sync_mode == WB_SYNC_ALL)
3352		atomic_inc(&sbi->wb_sync_req[DATA]);
3353	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3354		/* to avoid potential deadlock */
3355		if (current->plug)
3356			blk_finish_plug(current->plug);
3357		goto skip_write;
3358	}
3359
3360	if (__should_serialize_io(inode, wbc)) {
3361		mutex_lock(&sbi->writepages);
3362		locked = true;
3363	}
3364
3365	blk_start_plug(&plug);
3366	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3367	blk_finish_plug(&plug);
3368
3369	if (locked)
3370		mutex_unlock(&sbi->writepages);
3371
3372	if (wbc->sync_mode == WB_SYNC_ALL)
3373		atomic_dec(&sbi->wb_sync_req[DATA]);
3374	/*
3375	 * if some pages were truncated, we cannot guarantee its mapping->host
3376	 * to detect pending bios.
3377	 */
3378
3379	f2fs_remove_dirty_inode(inode);
3380	return ret;
3381
3382skip_write:
3383	wbc->pages_skipped += get_dirty_pages(inode);
3384	trace_f2fs_writepages(mapping->host, wbc, DATA);
3385	return 0;
3386}
3387
3388static int f2fs_write_data_pages(struct address_space *mapping,
3389			    struct writeback_control *wbc)
3390{
3391	struct inode *inode = mapping->host;
3392
3393	return __f2fs_write_data_pages(mapping, wbc,
3394			F2FS_I(inode)->cp_task == current ?
3395			FS_CP_DATA_IO : FS_DATA_IO);
3396}
3397
3398void f2fs_write_failed(struct inode *inode, loff_t to)
3399{
3400	loff_t i_size = i_size_read(inode);
3401
3402	if (IS_NOQUOTA(inode))
3403		return;
3404
3405	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3406	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3407		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3408		filemap_invalidate_lock(inode->i_mapping);
3409
3410		truncate_pagecache(inode, i_size);
3411		f2fs_truncate_blocks(inode, i_size, true);
3412
3413		filemap_invalidate_unlock(inode->i_mapping);
3414		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3415	}
3416}
3417
3418static int prepare_write_begin(struct f2fs_sb_info *sbi,
3419			struct page *page, loff_t pos, unsigned len,
3420			block_t *blk_addr, bool *node_changed)
3421{
3422	struct inode *inode = page->mapping->host;
3423	pgoff_t index = page->index;
3424	struct dnode_of_data dn;
3425	struct page *ipage;
3426	bool locked = false;
3427	int flag = F2FS_GET_BLOCK_PRE_AIO;
3428	int err = 0;
3429
3430	/*
3431	 * If a whole page is being written and we already preallocated all the
3432	 * blocks, then there is no need to get a block address now.
3433	 */
3434	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3435		return 0;
3436
3437	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3438	if (f2fs_has_inline_data(inode)) {
3439		if (pos + len > MAX_INLINE_DATA(inode))
3440			flag = F2FS_GET_BLOCK_DEFAULT;
3441		f2fs_map_lock(sbi, flag);
3442		locked = true;
3443	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3444		f2fs_map_lock(sbi, flag);
3445		locked = true;
3446	}
3447
3448restart:
3449	/* check inline_data */
3450	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3451	if (IS_ERR(ipage)) {
3452		err = PTR_ERR(ipage);
3453		goto unlock_out;
3454	}
3455
3456	set_new_dnode(&dn, inode, ipage, ipage, 0);
3457
3458	if (f2fs_has_inline_data(inode)) {
3459		if (pos + len <= MAX_INLINE_DATA(inode)) {
3460			f2fs_do_read_inline_data(page, ipage);
3461			set_inode_flag(inode, FI_DATA_EXIST);
3462			if (inode->i_nlink)
3463				set_page_private_inline(ipage);
3464			goto out;
3465		}
3466		err = f2fs_convert_inline_page(&dn, page);
3467		if (err || dn.data_blkaddr != NULL_ADDR)
3468			goto out;
3469	}
3470
3471	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3472						 &dn.data_blkaddr)) {
3473		if (locked) {
3474			err = f2fs_reserve_block(&dn, index);
3475			goto out;
3476		}
3477
3478		/* hole case */
3479		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3480		if (!err && dn.data_blkaddr != NULL_ADDR)
3481			goto out;
3482		f2fs_put_dnode(&dn);
3483		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3484		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3485		locked = true;
3486		goto restart;
3487	}
3488out:
3489	if (!err) {
3490		/* convert_inline_page can make node_changed */
3491		*blk_addr = dn.data_blkaddr;
3492		*node_changed = dn.node_changed;
3493	}
3494	f2fs_put_dnode(&dn);
3495unlock_out:
3496	if (locked)
3497		f2fs_map_unlock(sbi, flag);
3498	return err;
3499}
3500
3501static int __find_data_block(struct inode *inode, pgoff_t index,
3502				block_t *blk_addr)
3503{
3504	struct dnode_of_data dn;
3505	struct page *ipage;
3506	int err = 0;
3507
3508	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3509	if (IS_ERR(ipage))
3510		return PTR_ERR(ipage);
3511
3512	set_new_dnode(&dn, inode, ipage, ipage, 0);
3513
3514	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3515						 &dn.data_blkaddr)) {
3516		/* hole case */
3517		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3518		if (err) {
3519			dn.data_blkaddr = NULL_ADDR;
3520			err = 0;
3521		}
3522	}
3523	*blk_addr = dn.data_blkaddr;
3524	f2fs_put_dnode(&dn);
3525	return err;
3526}
3527
3528static int __reserve_data_block(struct inode *inode, pgoff_t index,
3529				block_t *blk_addr, bool *node_changed)
3530{
3531	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3532	struct dnode_of_data dn;
3533	struct page *ipage;
3534	int err = 0;
3535
3536	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3537
3538	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3539	if (IS_ERR(ipage)) {
3540		err = PTR_ERR(ipage);
3541		goto unlock_out;
3542	}
3543	set_new_dnode(&dn, inode, ipage, ipage, 0);
3544
3545	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3546						&dn.data_blkaddr))
3547		err = f2fs_reserve_block(&dn, index);
3548
3549	*blk_addr = dn.data_blkaddr;
3550	*node_changed = dn.node_changed;
3551	f2fs_put_dnode(&dn);
3552
3553unlock_out:
3554	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3555	return err;
3556}
3557
3558static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3559			struct page *page, loff_t pos, unsigned int len,
3560			block_t *blk_addr, bool *node_changed, bool *use_cow)
3561{
3562	struct inode *inode = page->mapping->host;
3563	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3564	pgoff_t index = page->index;
3565	int err = 0;
3566	block_t ori_blk_addr = NULL_ADDR;
3567
3568	/* If pos is beyond the end of file, reserve a new block in COW inode */
3569	if ((pos & PAGE_MASK) >= i_size_read(inode))
3570		goto reserve_block;
3571
3572	/* Look for the block in COW inode first */
3573	err = __find_data_block(cow_inode, index, blk_addr);
3574	if (err) {
3575		return err;
3576	} else if (*blk_addr != NULL_ADDR) {
3577		*use_cow = true;
3578		return 0;
3579	}
3580
3581	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3582		goto reserve_block;
3583
3584	/* Look for the block in the original inode */
3585	err = __find_data_block(inode, index, &ori_blk_addr);
3586	if (err)
3587		return err;
3588
3589reserve_block:
3590	/* Finally, we should reserve a new block in COW inode for the update */
3591	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3592	if (err)
3593		return err;
3594	inc_atomic_write_cnt(inode);
3595
3596	if (ori_blk_addr != NULL_ADDR)
3597		*blk_addr = ori_blk_addr;
3598	return 0;
3599}
3600
3601static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3602		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3603{
3604	struct inode *inode = mapping->host;
3605	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3606	struct page *page = NULL;
3607	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3608	bool need_balance = false;
3609	bool use_cow = false;
3610	block_t blkaddr = NULL_ADDR;
3611	int err = 0;
3612
3613	trace_f2fs_write_begin(inode, pos, len);
3614
3615	if (!f2fs_is_checkpoint_ready(sbi)) {
3616		err = -ENOSPC;
3617		goto fail;
3618	}
3619
3620	/*
3621	 * We should check this at this moment to avoid deadlock on inode page
3622	 * and #0 page. The locking rule for inline_data conversion should be:
3623	 * lock_page(page #0) -> lock_page(inode_page)
3624	 */
3625	if (index != 0) {
3626		err = f2fs_convert_inline_inode(inode);
3627		if (err)
3628			goto fail;
3629	}
3630
3631#ifdef CONFIG_F2FS_FS_COMPRESSION
3632	if (f2fs_compressed_file(inode)) {
3633		int ret;
3634
3635		*fsdata = NULL;
3636
3637		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3638			goto repeat;
3639
3640		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3641							index, fsdata);
3642		if (ret < 0) {
3643			err = ret;
3644			goto fail;
3645		} else if (ret) {
3646			return 0;
3647		}
3648	}
3649#endif
3650
3651repeat:
3652	/*
3653	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3654	 * wait_for_stable_page. Will wait that below with our IO control.
3655	 */
3656	page = f2fs_pagecache_get_page(mapping, index,
3657				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3658	if (!page) {
3659		err = -ENOMEM;
3660		goto fail;
3661	}
3662
3663	/* TODO: cluster can be compressed due to race with .writepage */
3664
3665	*pagep = page;
3666
3667	if (f2fs_is_atomic_file(inode))
3668		err = prepare_atomic_write_begin(sbi, page, pos, len,
3669					&blkaddr, &need_balance, &use_cow);
3670	else
3671		err = prepare_write_begin(sbi, page, pos, len,
3672					&blkaddr, &need_balance);
3673	if (err)
3674		goto fail;
3675
3676	if (need_balance && !IS_NOQUOTA(inode) &&
3677			has_not_enough_free_secs(sbi, 0, 0)) {
3678		unlock_page(page);
3679		f2fs_balance_fs(sbi, true);
3680		lock_page(page);
3681		if (page->mapping != mapping) {
3682			/* The page got truncated from under us */
3683			f2fs_put_page(page, 1);
3684			goto repeat;
3685		}
3686	}
3687
3688	f2fs_wait_on_page_writeback(page, DATA, false, true);
3689
3690	if (len == PAGE_SIZE || PageUptodate(page))
3691		return 0;
3692
3693	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3694	    !f2fs_verity_in_progress(inode)) {
3695		zero_user_segment(page, len, PAGE_SIZE);
3696		return 0;
3697	}
3698
3699	if (blkaddr == NEW_ADDR) {
3700		zero_user_segment(page, 0, PAGE_SIZE);
3701		SetPageUptodate(page);
3702	} else {
3703		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3704				DATA_GENERIC_ENHANCE_READ)) {
3705			err = -EFSCORRUPTED;
3706			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3707			goto fail;
3708		}
3709		err = f2fs_submit_page_read(use_cow ?
3710				F2FS_I(inode)->cow_inode : inode, page,
3711				blkaddr, 0, true);
3712		if (err)
3713			goto fail;
3714
3715		lock_page(page);
3716		if (unlikely(page->mapping != mapping)) {
3717			f2fs_put_page(page, 1);
3718			goto repeat;
3719		}
3720		if (unlikely(!PageUptodate(page))) {
3721			err = -EIO;
3722			goto fail;
3723		}
3724	}
3725	return 0;
3726
3727fail:
3728	f2fs_put_page(page, 1);
3729	f2fs_write_failed(inode, pos + len);
3730	return err;
3731}
3732
3733static int f2fs_write_end(struct file *file,
3734			struct address_space *mapping,
3735			loff_t pos, unsigned len, unsigned copied,
3736			struct page *page, void *fsdata)
3737{
3738	struct inode *inode = page->mapping->host;
3739
3740	trace_f2fs_write_end(inode, pos, len, copied);
3741
3742	/*
3743	 * This should be come from len == PAGE_SIZE, and we expect copied
3744	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3745	 * let generic_perform_write() try to copy data again through copied=0.
3746	 */
3747	if (!PageUptodate(page)) {
3748		if (unlikely(copied != len))
3749			copied = 0;
3750		else
3751			SetPageUptodate(page);
3752	}
3753
3754#ifdef CONFIG_F2FS_FS_COMPRESSION
3755	/* overwrite compressed file */
3756	if (f2fs_compressed_file(inode) && fsdata) {
3757		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3758		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3759
3760		if (pos + copied > i_size_read(inode) &&
3761				!f2fs_verity_in_progress(inode))
3762			f2fs_i_size_write(inode, pos + copied);
3763		return copied;
3764	}
3765#endif
3766
3767	if (!copied)
3768		goto unlock_out;
3769
3770	set_page_dirty(page);
3771
3772	if (pos + copied > i_size_read(inode) &&
3773	    !f2fs_verity_in_progress(inode)) {
3774		f2fs_i_size_write(inode, pos + copied);
3775		if (f2fs_is_atomic_file(inode))
3776			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3777					pos + copied);
3778	}
3779unlock_out:
3780	f2fs_put_page(page, 1);
3781	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3782	return copied;
3783}
3784
3785void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3786{
3787	struct inode *inode = folio->mapping->host;
3788	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3789
3790	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3791				(offset || length != folio_size(folio)))
3792		return;
3793
3794	if (folio_test_dirty(folio)) {
3795		if (inode->i_ino == F2FS_META_INO(sbi)) {
3796			dec_page_count(sbi, F2FS_DIRTY_META);
3797		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3798			dec_page_count(sbi, F2FS_DIRTY_NODES);
3799		} else {
3800			inode_dec_dirty_pages(inode);
3801			f2fs_remove_dirty_inode(inode);
3802		}
3803	}
3804	clear_page_private_all(&folio->page);
3805}
3806
3807bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3808{
3809	/* If this is dirty folio, keep private data */
3810	if (folio_test_dirty(folio))
3811		return false;
3812
3813	clear_page_private_all(&folio->page);
3814	return true;
3815}
3816
3817static bool f2fs_dirty_data_folio(struct address_space *mapping,
3818		struct folio *folio)
3819{
3820	struct inode *inode = mapping->host;
3821
3822	trace_f2fs_set_page_dirty(&folio->page, DATA);
3823
3824	if (!folio_test_uptodate(folio))
3825		folio_mark_uptodate(folio);
3826	BUG_ON(folio_test_swapcache(folio));
3827
3828	if (filemap_dirty_folio(mapping, folio)) {
3829		f2fs_update_dirty_folio(inode, folio);
3830		return true;
3831	}
3832	return false;
3833}
3834
3835
3836static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3837{
3838#ifdef CONFIG_F2FS_FS_COMPRESSION
3839	struct dnode_of_data dn;
3840	sector_t start_idx, blknr = 0;
3841	int ret;
3842
3843	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3844
3845	set_new_dnode(&dn, inode, NULL, NULL, 0);
3846	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3847	if (ret)
3848		return 0;
3849
3850	if (dn.data_blkaddr != COMPRESS_ADDR) {
3851		dn.ofs_in_node += block - start_idx;
3852		blknr = f2fs_data_blkaddr(&dn);
3853		if (!__is_valid_data_blkaddr(blknr))
3854			blknr = 0;
3855	}
3856
3857	f2fs_put_dnode(&dn);
3858	return blknr;
3859#else
3860	return 0;
3861#endif
3862}
3863
3864
3865static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3866{
3867	struct inode *inode = mapping->host;
3868	sector_t blknr = 0;
3869
3870	if (f2fs_has_inline_data(inode))
3871		goto out;
3872
3873	/* make sure allocating whole blocks */
3874	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3875		filemap_write_and_wait(mapping);
3876
3877	/* Block number less than F2FS MAX BLOCKS */
3878	if (unlikely(block >= max_file_blocks(inode)))
3879		goto out;
3880
3881	if (f2fs_compressed_file(inode)) {
3882		blknr = f2fs_bmap_compress(inode, block);
3883	} else {
3884		struct f2fs_map_blocks map;
3885
3886		memset(&map, 0, sizeof(map));
3887		map.m_lblk = block;
3888		map.m_len = 1;
3889		map.m_next_pgofs = NULL;
3890		map.m_seg_type = NO_CHECK_TYPE;
3891
3892		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3893			blknr = map.m_pblk;
3894	}
3895out:
3896	trace_f2fs_bmap(inode, block, blknr);
3897	return blknr;
3898}
3899
3900#ifdef CONFIG_SWAP
3901static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3902							unsigned int blkcnt)
3903{
3904	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3905	unsigned int blkofs;
3906	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3907	unsigned int secidx = start_blk / blk_per_sec;
3908	unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3909	int ret = 0;
3910
3911	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3912	filemap_invalidate_lock(inode->i_mapping);
3913
3914	set_inode_flag(inode, FI_ALIGNED_WRITE);
3915	set_inode_flag(inode, FI_OPU_WRITE);
3916
3917	for (; secidx < end_sec; secidx++) {
3918		f2fs_down_write(&sbi->pin_sem);
3919
3920		f2fs_lock_op(sbi);
3921		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3922		f2fs_unlock_op(sbi);
3923
3924		set_inode_flag(inode, FI_SKIP_WRITES);
3925
3926		for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3927			struct page *page;
3928			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3929
3930			page = f2fs_get_lock_data_page(inode, blkidx, true);
3931			if (IS_ERR(page)) {
3932				f2fs_up_write(&sbi->pin_sem);
3933				ret = PTR_ERR(page);
3934				goto done;
3935			}
3936
3937			set_page_dirty(page);
3938			f2fs_put_page(page, 1);
3939		}
3940
3941		clear_inode_flag(inode, FI_SKIP_WRITES);
3942
3943		ret = filemap_fdatawrite(inode->i_mapping);
3944
3945		f2fs_up_write(&sbi->pin_sem);
3946
3947		if (ret)
3948			break;
3949	}
3950
3951done:
3952	clear_inode_flag(inode, FI_SKIP_WRITES);
3953	clear_inode_flag(inode, FI_OPU_WRITE);
3954	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3955
3956	filemap_invalidate_unlock(inode->i_mapping);
3957	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3958
3959	return ret;
3960}
3961
3962static int check_swap_activate(struct swap_info_struct *sis,
3963				struct file *swap_file, sector_t *span)
3964{
3965	struct address_space *mapping = swap_file->f_mapping;
3966	struct inode *inode = mapping->host;
3967	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3968	sector_t cur_lblock;
3969	sector_t last_lblock;
3970	sector_t pblock;
3971	sector_t lowest_pblock = -1;
3972	sector_t highest_pblock = 0;
3973	int nr_extents = 0;
3974	unsigned long nr_pblocks;
3975	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3976	unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3977	unsigned int not_aligned = 0;
3978	int ret = 0;
3979
3980	/*
3981	 * Map all the blocks into the extent list.  This code doesn't try
3982	 * to be very smart.
3983	 */
3984	cur_lblock = 0;
3985	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3986
3987	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3988		struct f2fs_map_blocks map;
3989retry:
3990		cond_resched();
3991
3992		memset(&map, 0, sizeof(map));
3993		map.m_lblk = cur_lblock;
3994		map.m_len = last_lblock - cur_lblock;
3995		map.m_next_pgofs = NULL;
3996		map.m_next_extent = NULL;
3997		map.m_seg_type = NO_CHECK_TYPE;
3998		map.m_may_create = false;
3999
4000		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
4001		if (ret)
4002			goto out;
4003
4004		/* hole */
4005		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
4006			f2fs_err(sbi, "Swapfile has holes");
4007			ret = -EINVAL;
4008			goto out;
4009		}
4010
4011		pblock = map.m_pblk;
4012		nr_pblocks = map.m_len;
4013
4014		if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
4015				nr_pblocks & sec_blks_mask) {
4016			not_aligned++;
4017
4018			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4019			if (cur_lblock + nr_pblocks > sis->max)
4020				nr_pblocks -= blks_per_sec;
4021
4022			if (!nr_pblocks) {
4023				/* this extent is last one */
4024				nr_pblocks = map.m_len;
4025				f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
4026				goto next;
4027			}
4028
4029			ret = f2fs_migrate_blocks(inode, cur_lblock,
4030							nr_pblocks);
4031			if (ret)
4032				goto out;
4033			goto retry;
4034		}
4035next:
4036		if (cur_lblock + nr_pblocks >= sis->max)
4037			nr_pblocks = sis->max - cur_lblock;
4038
4039		if (cur_lblock) {	/* exclude the header page */
4040			if (pblock < lowest_pblock)
4041				lowest_pblock = pblock;
4042			if (pblock + nr_pblocks - 1 > highest_pblock)
4043				highest_pblock = pblock + nr_pblocks - 1;
4044		}
4045
4046		/*
4047		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4048		 */
4049		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4050		if (ret < 0)
4051			goto out;
4052		nr_extents += ret;
4053		cur_lblock += nr_pblocks;
4054	}
4055	ret = nr_extents;
4056	*span = 1 + highest_pblock - lowest_pblock;
4057	if (cur_lblock == 0)
4058		cur_lblock = 1;	/* force Empty message */
4059	sis->max = cur_lblock;
4060	sis->pages = cur_lblock - 1;
4061	sis->highest_bit = cur_lblock - 1;
4062out:
4063	if (not_aligned)
4064		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
4065			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4066	return ret;
4067}
4068
4069static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4070				sector_t *span)
4071{
4072	struct inode *inode = file_inode(file);
4073	int ret;
4074
4075	if (!S_ISREG(inode->i_mode))
4076		return -EINVAL;
4077
4078	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4079		return -EROFS;
4080
4081	if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4082		f2fs_err(F2FS_I_SB(inode),
4083			"Swapfile not supported in LFS mode");
4084		return -EINVAL;
4085	}
4086
4087	ret = f2fs_convert_inline_inode(inode);
4088	if (ret)
4089		return ret;
4090
4091	if (!f2fs_disable_compressed_file(inode))
4092		return -EINVAL;
4093
4094	f2fs_precache_extents(inode);
4095
4096	ret = check_swap_activate(sis, file, span);
4097	if (ret < 0)
4098		return ret;
4099
4100	stat_inc_swapfile_inode(inode);
4101	set_inode_flag(inode, FI_PIN_FILE);
4102	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4103	return ret;
4104}
4105
4106static void f2fs_swap_deactivate(struct file *file)
4107{
4108	struct inode *inode = file_inode(file);
4109
4110	stat_dec_swapfile_inode(inode);
4111	clear_inode_flag(inode, FI_PIN_FILE);
4112}
4113#else
4114static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4115				sector_t *span)
4116{
4117	return -EOPNOTSUPP;
4118}
4119
4120static void f2fs_swap_deactivate(struct file *file)
4121{
4122}
4123#endif
4124
4125const struct address_space_operations f2fs_dblock_aops = {
4126	.read_folio	= f2fs_read_data_folio,
4127	.readahead	= f2fs_readahead,
4128	.writepage	= f2fs_write_data_page,
4129	.writepages	= f2fs_write_data_pages,
4130	.write_begin	= f2fs_write_begin,
4131	.write_end	= f2fs_write_end,
4132	.dirty_folio	= f2fs_dirty_data_folio,
4133	.migrate_folio	= filemap_migrate_folio,
4134	.invalidate_folio = f2fs_invalidate_folio,
4135	.release_folio	= f2fs_release_folio,
4136	.bmap		= f2fs_bmap,
4137	.swap_activate  = f2fs_swap_activate,
4138	.swap_deactivate = f2fs_swap_deactivate,
4139};
4140
4141void f2fs_clear_page_cache_dirty_tag(struct page *page)
4142{
4143	struct address_space *mapping = page_mapping(page);
4144	unsigned long flags;
4145
4146	xa_lock_irqsave(&mapping->i_pages, flags);
4147	__xa_clear_mark(&mapping->i_pages, page_index(page),
4148						PAGECACHE_TAG_DIRTY);
4149	xa_unlock_irqrestore(&mapping->i_pages, flags);
4150}
4151
4152int __init f2fs_init_post_read_processing(void)
4153{
4154	bio_post_read_ctx_cache =
4155		kmem_cache_create("f2fs_bio_post_read_ctx",
4156				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4157	if (!bio_post_read_ctx_cache)
4158		goto fail;
4159	bio_post_read_ctx_pool =
4160		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4161					 bio_post_read_ctx_cache);
4162	if (!bio_post_read_ctx_pool)
4163		goto fail_free_cache;
4164	return 0;
4165
4166fail_free_cache:
4167	kmem_cache_destroy(bio_post_read_ctx_cache);
4168fail:
4169	return -ENOMEM;
4170}
4171
4172void f2fs_destroy_post_read_processing(void)
4173{
4174	mempool_destroy(bio_post_read_ctx_pool);
4175	kmem_cache_destroy(bio_post_read_ctx_cache);
4176}
4177
4178int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4179{
4180	if (!f2fs_sb_has_encrypt(sbi) &&
4181		!f2fs_sb_has_verity(sbi) &&
4182		!f2fs_sb_has_compression(sbi))
4183		return 0;
4184
4185	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4186						 WQ_UNBOUND | WQ_HIGHPRI,
4187						 num_online_cpus());
4188	return sbi->post_read_wq ? 0 : -ENOMEM;
4189}
4190
4191void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4192{
4193	if (sbi->post_read_wq)
4194		destroy_workqueue(sbi->post_read_wq);
4195}
4196
4197int __init f2fs_init_bio_entry_cache(void)
4198{
4199	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4200			sizeof(struct bio_entry));
4201	return bio_entry_slab ? 0 : -ENOMEM;
4202}
4203
4204void f2fs_destroy_bio_entry_cache(void)
4205{
4206	kmem_cache_destroy(bio_entry_slab);
4207}
4208
4209static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4210			    unsigned int flags, struct iomap *iomap,
4211			    struct iomap *srcmap)
4212{
4213	struct f2fs_map_blocks map = {};
4214	pgoff_t next_pgofs = 0;
4215	int err;
4216
4217	map.m_lblk = bytes_to_blks(inode, offset);
4218	map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4219	map.m_next_pgofs = &next_pgofs;
4220	map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4221	if (flags & IOMAP_WRITE)
4222		map.m_may_create = true;
4223
4224	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4225	if (err)
4226		return err;
4227
4228	iomap->offset = blks_to_bytes(inode, map.m_lblk);
4229
4230	/*
4231	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4232	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4233	 * limiting the length of the mapping returned.
4234	 */
4235	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4236
4237	/*
4238	 * We should never see delalloc or compressed extents here based on
4239	 * prior flushing and checks.
4240	 */
4241	if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4242		return -EINVAL;
4243	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4244		return -EINVAL;
4245
4246	if (map.m_pblk != NULL_ADDR) {
4247		iomap->length = blks_to_bytes(inode, map.m_len);
4248		iomap->type = IOMAP_MAPPED;
4249		iomap->flags |= IOMAP_F_MERGED;
4250		iomap->bdev = map.m_bdev;
4251		iomap->addr = blks_to_bytes(inode, map.m_pblk);
4252	} else {
4253		if (flags & IOMAP_WRITE)
4254			return -ENOTBLK;
4255		iomap->length = blks_to_bytes(inode, next_pgofs) -
4256				iomap->offset;
4257		iomap->type = IOMAP_HOLE;
4258		iomap->addr = IOMAP_NULL_ADDR;
4259	}
4260
4261	if (map.m_flags & F2FS_MAP_NEW)
4262		iomap->flags |= IOMAP_F_NEW;
4263	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4264	    offset + length > i_size_read(inode))
4265		iomap->flags |= IOMAP_F_DIRTY;
4266
4267	return 0;
4268}
4269
4270const struct iomap_ops f2fs_iomap_ops = {
4271	.iomap_begin	= f2fs_iomap_begin,
4272};
4273