xref: /kernel/linux/linux-6.6/fs/f2fs/compress.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * f2fs compress support
4 *
5 * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6 */
7
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/moduleparam.h>
11#include <linux/writeback.h>
12#include <linux/backing-dev.h>
13#include <linux/lzo.h>
14#include <linux/lz4.h>
15#include <linux/zstd.h>
16#include <linux/pagevec.h>
17
18#include "f2fs.h"
19#include "node.h"
20#include "segment.h"
21#include <trace/events/f2fs.h>
22
23static struct kmem_cache *cic_entry_slab;
24static struct kmem_cache *dic_entry_slab;
25
26static void *page_array_alloc(struct inode *inode, int nr)
27{
28	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29	unsigned int size = sizeof(struct page *) * nr;
30
31	if (likely(size <= sbi->page_array_slab_size))
32		return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33					GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34	return f2fs_kzalloc(sbi, size, GFP_NOFS);
35}
36
37static void page_array_free(struct inode *inode, void *pages, int nr)
38{
39	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40	unsigned int size = sizeof(struct page *) * nr;
41
42	if (!pages)
43		return;
44
45	if (likely(size <= sbi->page_array_slab_size))
46		kmem_cache_free(sbi->page_array_slab, pages);
47	else
48		kfree(pages);
49}
50
51struct f2fs_compress_ops {
52	int (*init_compress_ctx)(struct compress_ctx *cc);
53	void (*destroy_compress_ctx)(struct compress_ctx *cc);
54	int (*compress_pages)(struct compress_ctx *cc);
55	int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56	void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57	int (*decompress_pages)(struct decompress_io_ctx *dic);
58	bool (*is_level_valid)(int level);
59};
60
61static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
62{
63	return index & (cc->cluster_size - 1);
64}
65
66static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
67{
68	return index >> cc->log_cluster_size;
69}
70
71static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
72{
73	return cc->cluster_idx << cc->log_cluster_size;
74}
75
76bool f2fs_is_compressed_page(struct page *page)
77{
78	if (!PagePrivate(page))
79		return false;
80	if (!page_private(page))
81		return false;
82	if (page_private_nonpointer(page))
83		return false;
84
85	f2fs_bug_on(F2FS_M_SB(page->mapping),
86		*((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
87	return true;
88}
89
90static void f2fs_set_compressed_page(struct page *page,
91		struct inode *inode, pgoff_t index, void *data)
92{
93	attach_page_private(page, (void *)data);
94
95	/* i_crypto_info and iv index */
96	page->index = index;
97	page->mapping = inode->i_mapping;
98}
99
100static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
101{
102	int i;
103
104	for (i = 0; i < len; i++) {
105		if (!cc->rpages[i])
106			continue;
107		if (unlock)
108			unlock_page(cc->rpages[i]);
109		else
110			put_page(cc->rpages[i]);
111	}
112}
113
114static void f2fs_put_rpages(struct compress_ctx *cc)
115{
116	f2fs_drop_rpages(cc, cc->cluster_size, false);
117}
118
119static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
120{
121	f2fs_drop_rpages(cc, len, true);
122}
123
124static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
125		struct writeback_control *wbc, bool redirty, int unlock)
126{
127	unsigned int i;
128
129	for (i = 0; i < cc->cluster_size; i++) {
130		if (!cc->rpages[i])
131			continue;
132		if (redirty)
133			redirty_page_for_writepage(wbc, cc->rpages[i]);
134		f2fs_put_page(cc->rpages[i], unlock);
135	}
136}
137
138struct page *f2fs_compress_control_page(struct page *page)
139{
140	return ((struct compress_io_ctx *)page_private(page))->rpages[0];
141}
142
143int f2fs_init_compress_ctx(struct compress_ctx *cc)
144{
145	if (cc->rpages)
146		return 0;
147
148	cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
149	return cc->rpages ? 0 : -ENOMEM;
150}
151
152void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
153{
154	page_array_free(cc->inode, cc->rpages, cc->cluster_size);
155	cc->rpages = NULL;
156	cc->nr_rpages = 0;
157	cc->nr_cpages = 0;
158	cc->valid_nr_cpages = 0;
159	if (!reuse)
160		cc->cluster_idx = NULL_CLUSTER;
161}
162
163void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
164{
165	unsigned int cluster_ofs;
166
167	if (!f2fs_cluster_can_merge_page(cc, page->index))
168		f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
169
170	cluster_ofs = offset_in_cluster(cc, page->index);
171	cc->rpages[cluster_ofs] = page;
172	cc->nr_rpages++;
173	cc->cluster_idx = cluster_idx(cc, page->index);
174}
175
176#ifdef CONFIG_F2FS_FS_LZO
177static int lzo_init_compress_ctx(struct compress_ctx *cc)
178{
179	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
180				LZO1X_MEM_COMPRESS, GFP_NOFS);
181	if (!cc->private)
182		return -ENOMEM;
183
184	cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
185	return 0;
186}
187
188static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
189{
190	kvfree(cc->private);
191	cc->private = NULL;
192}
193
194static int lzo_compress_pages(struct compress_ctx *cc)
195{
196	int ret;
197
198	ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
199					&cc->clen, cc->private);
200	if (ret != LZO_E_OK) {
201		printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
202				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
203		return -EIO;
204	}
205	return 0;
206}
207
208static int lzo_decompress_pages(struct decompress_io_ctx *dic)
209{
210	int ret;
211
212	ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
213						dic->rbuf, &dic->rlen);
214	if (ret != LZO_E_OK) {
215		printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
216				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
217		return -EIO;
218	}
219
220	if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
221		printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
222					"expected:%lu\n", KERN_ERR,
223					F2FS_I_SB(dic->inode)->sb->s_id,
224					dic->rlen,
225					PAGE_SIZE << dic->log_cluster_size);
226		return -EIO;
227	}
228	return 0;
229}
230
231static const struct f2fs_compress_ops f2fs_lzo_ops = {
232	.init_compress_ctx	= lzo_init_compress_ctx,
233	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
234	.compress_pages		= lzo_compress_pages,
235	.decompress_pages	= lzo_decompress_pages,
236};
237#endif
238
239#ifdef CONFIG_F2FS_FS_LZ4
240static int lz4_init_compress_ctx(struct compress_ctx *cc)
241{
242	unsigned int size = LZ4_MEM_COMPRESS;
243
244#ifdef CONFIG_F2FS_FS_LZ4HC
245	if (F2FS_I(cc->inode)->i_compress_level)
246		size = LZ4HC_MEM_COMPRESS;
247#endif
248
249	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
250	if (!cc->private)
251		return -ENOMEM;
252
253	/*
254	 * we do not change cc->clen to LZ4_compressBound(inputsize) to
255	 * adapt worst compress case, because lz4 compressor can handle
256	 * output budget properly.
257	 */
258	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
259	return 0;
260}
261
262static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
263{
264	kvfree(cc->private);
265	cc->private = NULL;
266}
267
268static int lz4_compress_pages(struct compress_ctx *cc)
269{
270	int len = -EINVAL;
271	unsigned char level = F2FS_I(cc->inode)->i_compress_level;
272
273	if (!level)
274		len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
275						cc->clen, cc->private);
276#ifdef CONFIG_F2FS_FS_LZ4HC
277	else
278		len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
279					cc->clen, level, cc->private);
280#endif
281	if (len < 0)
282		return len;
283	if (!len)
284		return -EAGAIN;
285
286	cc->clen = len;
287	return 0;
288}
289
290static int lz4_decompress_pages(struct decompress_io_ctx *dic)
291{
292	int ret;
293
294	ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
295						dic->clen, dic->rlen);
296	if (ret < 0) {
297		printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
298				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
299		return -EIO;
300	}
301
302	if (ret != PAGE_SIZE << dic->log_cluster_size) {
303		printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
304					"expected:%lu\n", KERN_ERR,
305					F2FS_I_SB(dic->inode)->sb->s_id, ret,
306					PAGE_SIZE << dic->log_cluster_size);
307		return -EIO;
308	}
309	return 0;
310}
311
312static bool lz4_is_level_valid(int lvl)
313{
314#ifdef CONFIG_F2FS_FS_LZ4HC
315	return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL);
316#else
317	return lvl == 0;
318#endif
319}
320
321static const struct f2fs_compress_ops f2fs_lz4_ops = {
322	.init_compress_ctx	= lz4_init_compress_ctx,
323	.destroy_compress_ctx	= lz4_destroy_compress_ctx,
324	.compress_pages		= lz4_compress_pages,
325	.decompress_pages	= lz4_decompress_pages,
326	.is_level_valid		= lz4_is_level_valid,
327};
328#endif
329
330#ifdef CONFIG_F2FS_FS_ZSTD
331static int zstd_init_compress_ctx(struct compress_ctx *cc)
332{
333	zstd_parameters params;
334	zstd_cstream *stream;
335	void *workspace;
336	unsigned int workspace_size;
337	unsigned char level = F2FS_I(cc->inode)->i_compress_level;
338
339	/* Need to remain this for backward compatibility */
340	if (!level)
341		level = F2FS_ZSTD_DEFAULT_CLEVEL;
342
343	params = zstd_get_params(level, cc->rlen);
344	workspace_size = zstd_cstream_workspace_bound(&params.cParams);
345
346	workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
347					workspace_size, GFP_NOFS);
348	if (!workspace)
349		return -ENOMEM;
350
351	stream = zstd_init_cstream(&params, 0, workspace, workspace_size);
352	if (!stream) {
353		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
354				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
355				__func__);
356		kvfree(workspace);
357		return -EIO;
358	}
359
360	cc->private = workspace;
361	cc->private2 = stream;
362
363	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
364	return 0;
365}
366
367static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
368{
369	kvfree(cc->private);
370	cc->private = NULL;
371	cc->private2 = NULL;
372}
373
374static int zstd_compress_pages(struct compress_ctx *cc)
375{
376	zstd_cstream *stream = cc->private2;
377	zstd_in_buffer inbuf;
378	zstd_out_buffer outbuf;
379	int src_size = cc->rlen;
380	int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
381	int ret;
382
383	inbuf.pos = 0;
384	inbuf.src = cc->rbuf;
385	inbuf.size = src_size;
386
387	outbuf.pos = 0;
388	outbuf.dst = cc->cbuf->cdata;
389	outbuf.size = dst_size;
390
391	ret = zstd_compress_stream(stream, &outbuf, &inbuf);
392	if (zstd_is_error(ret)) {
393		printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
394				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
395				__func__, zstd_get_error_code(ret));
396		return -EIO;
397	}
398
399	ret = zstd_end_stream(stream, &outbuf);
400	if (zstd_is_error(ret)) {
401		printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
402				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
403				__func__, zstd_get_error_code(ret));
404		return -EIO;
405	}
406
407	/*
408	 * there is compressed data remained in intermediate buffer due to
409	 * no more space in cbuf.cdata
410	 */
411	if (ret)
412		return -EAGAIN;
413
414	cc->clen = outbuf.pos;
415	return 0;
416}
417
418static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
419{
420	zstd_dstream *stream;
421	void *workspace;
422	unsigned int workspace_size;
423	unsigned int max_window_size =
424			MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
425
426	workspace_size = zstd_dstream_workspace_bound(max_window_size);
427
428	workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
429					workspace_size, GFP_NOFS);
430	if (!workspace)
431		return -ENOMEM;
432
433	stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
434	if (!stream) {
435		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
436				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
437				__func__);
438		kvfree(workspace);
439		return -EIO;
440	}
441
442	dic->private = workspace;
443	dic->private2 = stream;
444
445	return 0;
446}
447
448static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
449{
450	kvfree(dic->private);
451	dic->private = NULL;
452	dic->private2 = NULL;
453}
454
455static int zstd_decompress_pages(struct decompress_io_ctx *dic)
456{
457	zstd_dstream *stream = dic->private2;
458	zstd_in_buffer inbuf;
459	zstd_out_buffer outbuf;
460	int ret;
461
462	inbuf.pos = 0;
463	inbuf.src = dic->cbuf->cdata;
464	inbuf.size = dic->clen;
465
466	outbuf.pos = 0;
467	outbuf.dst = dic->rbuf;
468	outbuf.size = dic->rlen;
469
470	ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
471	if (zstd_is_error(ret)) {
472		printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
473				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
474				__func__, zstd_get_error_code(ret));
475		return -EIO;
476	}
477
478	if (dic->rlen != outbuf.pos) {
479		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
480				"expected:%lu\n", KERN_ERR,
481				F2FS_I_SB(dic->inode)->sb->s_id,
482				__func__, dic->rlen,
483				PAGE_SIZE << dic->log_cluster_size);
484		return -EIO;
485	}
486
487	return 0;
488}
489
490static bool zstd_is_level_valid(int lvl)
491{
492	return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel();
493}
494
495static const struct f2fs_compress_ops f2fs_zstd_ops = {
496	.init_compress_ctx	= zstd_init_compress_ctx,
497	.destroy_compress_ctx	= zstd_destroy_compress_ctx,
498	.compress_pages		= zstd_compress_pages,
499	.init_decompress_ctx	= zstd_init_decompress_ctx,
500	.destroy_decompress_ctx	= zstd_destroy_decompress_ctx,
501	.decompress_pages	= zstd_decompress_pages,
502	.is_level_valid		= zstd_is_level_valid,
503};
504#endif
505
506#ifdef CONFIG_F2FS_FS_LZO
507#ifdef CONFIG_F2FS_FS_LZORLE
508static int lzorle_compress_pages(struct compress_ctx *cc)
509{
510	int ret;
511
512	ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
513					&cc->clen, cc->private);
514	if (ret != LZO_E_OK) {
515		printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
516				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
517		return -EIO;
518	}
519	return 0;
520}
521
522static const struct f2fs_compress_ops f2fs_lzorle_ops = {
523	.init_compress_ctx	= lzo_init_compress_ctx,
524	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
525	.compress_pages		= lzorle_compress_pages,
526	.decompress_pages	= lzo_decompress_pages,
527};
528#endif
529#endif
530
531static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
532#ifdef CONFIG_F2FS_FS_LZO
533	&f2fs_lzo_ops,
534#else
535	NULL,
536#endif
537#ifdef CONFIG_F2FS_FS_LZ4
538	&f2fs_lz4_ops,
539#else
540	NULL,
541#endif
542#ifdef CONFIG_F2FS_FS_ZSTD
543	&f2fs_zstd_ops,
544#else
545	NULL,
546#endif
547#if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
548	&f2fs_lzorle_ops,
549#else
550	NULL,
551#endif
552};
553
554bool f2fs_is_compress_backend_ready(struct inode *inode)
555{
556	if (!f2fs_compressed_file(inode))
557		return true;
558	return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
559}
560
561bool f2fs_is_compress_level_valid(int alg, int lvl)
562{
563	const struct f2fs_compress_ops *cops = f2fs_cops[alg];
564
565	if (cops->is_level_valid)
566		return cops->is_level_valid(lvl);
567
568	return lvl == 0;
569}
570
571static mempool_t *compress_page_pool;
572static int num_compress_pages = 512;
573module_param(num_compress_pages, uint, 0444);
574MODULE_PARM_DESC(num_compress_pages,
575		"Number of intermediate compress pages to preallocate");
576
577int __init f2fs_init_compress_mempool(void)
578{
579	compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
580	return compress_page_pool ? 0 : -ENOMEM;
581}
582
583void f2fs_destroy_compress_mempool(void)
584{
585	mempool_destroy(compress_page_pool);
586}
587
588static struct page *f2fs_compress_alloc_page(void)
589{
590	struct page *page;
591
592	page = mempool_alloc(compress_page_pool, GFP_NOFS);
593	lock_page(page);
594
595	return page;
596}
597
598static void f2fs_compress_free_page(struct page *page)
599{
600	if (!page)
601		return;
602	detach_page_private(page);
603	page->mapping = NULL;
604	unlock_page(page);
605	mempool_free(page, compress_page_pool);
606}
607
608#define MAX_VMAP_RETRIES	3
609
610static void *f2fs_vmap(struct page **pages, unsigned int count)
611{
612	int i;
613	void *buf = NULL;
614
615	for (i = 0; i < MAX_VMAP_RETRIES; i++) {
616		buf = vm_map_ram(pages, count, -1);
617		if (buf)
618			break;
619		vm_unmap_aliases();
620	}
621	return buf;
622}
623
624static int f2fs_compress_pages(struct compress_ctx *cc)
625{
626	struct f2fs_inode_info *fi = F2FS_I(cc->inode);
627	const struct f2fs_compress_ops *cops =
628				f2fs_cops[fi->i_compress_algorithm];
629	unsigned int max_len, new_nr_cpages;
630	u32 chksum = 0;
631	int i, ret;
632
633	trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
634				cc->cluster_size, fi->i_compress_algorithm);
635
636	if (cops->init_compress_ctx) {
637		ret = cops->init_compress_ctx(cc);
638		if (ret)
639			goto out;
640	}
641
642	max_len = COMPRESS_HEADER_SIZE + cc->clen;
643	cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
644	cc->valid_nr_cpages = cc->nr_cpages;
645
646	cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
647	if (!cc->cpages) {
648		ret = -ENOMEM;
649		goto destroy_compress_ctx;
650	}
651
652	for (i = 0; i < cc->nr_cpages; i++)
653		cc->cpages[i] = f2fs_compress_alloc_page();
654
655	cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
656	if (!cc->rbuf) {
657		ret = -ENOMEM;
658		goto out_free_cpages;
659	}
660
661	cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
662	if (!cc->cbuf) {
663		ret = -ENOMEM;
664		goto out_vunmap_rbuf;
665	}
666
667	ret = cops->compress_pages(cc);
668	if (ret)
669		goto out_vunmap_cbuf;
670
671	max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
672
673	if (cc->clen > max_len) {
674		ret = -EAGAIN;
675		goto out_vunmap_cbuf;
676	}
677
678	cc->cbuf->clen = cpu_to_le32(cc->clen);
679
680	if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))
681		chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
682					cc->cbuf->cdata, cc->clen);
683	cc->cbuf->chksum = cpu_to_le32(chksum);
684
685	for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
686		cc->cbuf->reserved[i] = cpu_to_le32(0);
687
688	new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
689
690	/* zero out any unused part of the last page */
691	memset(&cc->cbuf->cdata[cc->clen], 0,
692			(new_nr_cpages * PAGE_SIZE) -
693			(cc->clen + COMPRESS_HEADER_SIZE));
694
695	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
696	vm_unmap_ram(cc->rbuf, cc->cluster_size);
697
698	for (i = new_nr_cpages; i < cc->nr_cpages; i++) {
699		f2fs_compress_free_page(cc->cpages[i]);
700		cc->cpages[i] = NULL;
701	}
702
703	if (cops->destroy_compress_ctx)
704		cops->destroy_compress_ctx(cc);
705
706	cc->valid_nr_cpages = new_nr_cpages;
707
708	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
709							cc->clen, ret);
710	return 0;
711
712out_vunmap_cbuf:
713	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
714out_vunmap_rbuf:
715	vm_unmap_ram(cc->rbuf, cc->cluster_size);
716out_free_cpages:
717	for (i = 0; i < cc->nr_cpages; i++) {
718		if (cc->cpages[i])
719			f2fs_compress_free_page(cc->cpages[i]);
720	}
721	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
722	cc->cpages = NULL;
723destroy_compress_ctx:
724	if (cops->destroy_compress_ctx)
725		cops->destroy_compress_ctx(cc);
726out:
727	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
728							cc->clen, ret);
729	return ret;
730}
731
732static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
733		bool pre_alloc);
734static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
735		bool bypass_destroy_callback, bool pre_alloc);
736
737void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
738{
739	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
740	struct f2fs_inode_info *fi = F2FS_I(dic->inode);
741	const struct f2fs_compress_ops *cops =
742			f2fs_cops[fi->i_compress_algorithm];
743	bool bypass_callback = false;
744	int ret;
745
746	trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
747				dic->cluster_size, fi->i_compress_algorithm);
748
749	if (dic->failed) {
750		ret = -EIO;
751		goto out_end_io;
752	}
753
754	ret = f2fs_prepare_decomp_mem(dic, false);
755	if (ret) {
756		bypass_callback = true;
757		goto out_release;
758	}
759
760	dic->clen = le32_to_cpu(dic->cbuf->clen);
761	dic->rlen = PAGE_SIZE << dic->log_cluster_size;
762
763	if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
764		ret = -EFSCORRUPTED;
765
766		/* Avoid f2fs_commit_super in irq context */
767		if (!in_task)
768			f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION);
769		else
770			f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
771		goto out_release;
772	}
773
774	ret = cops->decompress_pages(dic);
775
776	if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) {
777		u32 provided = le32_to_cpu(dic->cbuf->chksum);
778		u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
779
780		if (provided != calculated) {
781			if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
782				set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
783				printk_ratelimited(
784					"%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
785					KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
786					provided, calculated);
787			}
788			set_sbi_flag(sbi, SBI_NEED_FSCK);
789		}
790	}
791
792out_release:
793	f2fs_release_decomp_mem(dic, bypass_callback, false);
794
795out_end_io:
796	trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
797							dic->clen, ret);
798	f2fs_decompress_end_io(dic, ret, in_task);
799}
800
801/*
802 * This is called when a page of a compressed cluster has been read from disk
803 * (or failed to be read from disk).  It checks whether this page was the last
804 * page being waited on in the cluster, and if so, it decompresses the cluster
805 * (or in the case of a failure, cleans up without actually decompressing).
806 */
807void f2fs_end_read_compressed_page(struct page *page, bool failed,
808		block_t blkaddr, bool in_task)
809{
810	struct decompress_io_ctx *dic =
811			(struct decompress_io_ctx *)page_private(page);
812	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
813
814	dec_page_count(sbi, F2FS_RD_DATA);
815
816	if (failed)
817		WRITE_ONCE(dic->failed, true);
818	else if (blkaddr && in_task)
819		f2fs_cache_compressed_page(sbi, page,
820					dic->inode->i_ino, blkaddr);
821
822	if (atomic_dec_and_test(&dic->remaining_pages))
823		f2fs_decompress_cluster(dic, in_task);
824}
825
826static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
827{
828	if (cc->cluster_idx == NULL_CLUSTER)
829		return true;
830	return cc->cluster_idx == cluster_idx(cc, index);
831}
832
833bool f2fs_cluster_is_empty(struct compress_ctx *cc)
834{
835	return cc->nr_rpages == 0;
836}
837
838static bool f2fs_cluster_is_full(struct compress_ctx *cc)
839{
840	return cc->cluster_size == cc->nr_rpages;
841}
842
843bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
844{
845	if (f2fs_cluster_is_empty(cc))
846		return true;
847	return is_page_in_cluster(cc, index);
848}
849
850bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
851				int index, int nr_pages, bool uptodate)
852{
853	unsigned long pgidx = pages[index]->index;
854	int i = uptodate ? 0 : 1;
855
856	/*
857	 * when uptodate set to true, try to check all pages in cluster is
858	 * uptodate or not.
859	 */
860	if (uptodate && (pgidx % cc->cluster_size))
861		return false;
862
863	if (nr_pages - index < cc->cluster_size)
864		return false;
865
866	for (; i < cc->cluster_size; i++) {
867		if (pages[index + i]->index != pgidx + i)
868			return false;
869		if (uptodate && !PageUptodate(pages[index + i]))
870			return false;
871	}
872
873	return true;
874}
875
876static bool cluster_has_invalid_data(struct compress_ctx *cc)
877{
878	loff_t i_size = i_size_read(cc->inode);
879	unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
880	int i;
881
882	for (i = 0; i < cc->cluster_size; i++) {
883		struct page *page = cc->rpages[i];
884
885		f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
886
887		/* beyond EOF */
888		if (page->index >= nr_pages)
889			return true;
890	}
891	return false;
892}
893
894bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
895{
896	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
897	unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
898	bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
899	int cluster_end = 0;
900	int i;
901	char *reason = "";
902
903	if (!compressed)
904		return false;
905
906	/* [..., COMPR_ADDR, ...] */
907	if (dn->ofs_in_node % cluster_size) {
908		reason = "[*|C|*|*]";
909		goto out;
910	}
911
912	for (i = 1; i < cluster_size; i++) {
913		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
914							dn->ofs_in_node + i);
915
916		/* [COMPR_ADDR, ..., COMPR_ADDR] */
917		if (blkaddr == COMPRESS_ADDR) {
918			reason = "[C|*|C|*]";
919			goto out;
920		}
921		if (!__is_valid_data_blkaddr(blkaddr)) {
922			if (!cluster_end)
923				cluster_end = i;
924			continue;
925		}
926		/* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
927		if (cluster_end) {
928			reason = "[C|N|N|V]";
929			goto out;
930		}
931	}
932	return false;
933out:
934	f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
935			dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
936	set_sbi_flag(sbi, SBI_NEED_FSCK);
937	return true;
938}
939
940static int __f2fs_cluster_blocks(struct inode *inode,
941				unsigned int cluster_idx, bool compr)
942{
943	struct dnode_of_data dn;
944	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
945	unsigned int start_idx = cluster_idx <<
946				F2FS_I(inode)->i_log_cluster_size;
947	int ret;
948
949	set_new_dnode(&dn, inode, NULL, NULL, 0);
950	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
951	if (ret) {
952		if (ret == -ENOENT)
953			ret = 0;
954		goto fail;
955	}
956
957	if (f2fs_sanity_check_cluster(&dn)) {
958		ret = -EFSCORRUPTED;
959		f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER);
960		goto fail;
961	}
962
963	if (dn.data_blkaddr == COMPRESS_ADDR) {
964		int i;
965
966		ret = 1;
967		for (i = 1; i < cluster_size; i++) {
968			block_t blkaddr;
969
970			blkaddr = data_blkaddr(dn.inode,
971					dn.node_page, dn.ofs_in_node + i);
972			if (compr) {
973				if (__is_valid_data_blkaddr(blkaddr))
974					ret++;
975			} else {
976				if (blkaddr != NULL_ADDR)
977					ret++;
978			}
979		}
980
981		f2fs_bug_on(F2FS_I_SB(inode),
982			!compr && ret != cluster_size &&
983			!is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
984	}
985fail:
986	f2fs_put_dnode(&dn);
987	return ret;
988}
989
990/* return # of compressed blocks in compressed cluster */
991static int f2fs_compressed_blocks(struct compress_ctx *cc)
992{
993	return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
994}
995
996/* return # of valid blocks in compressed cluster */
997int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
998{
999	return __f2fs_cluster_blocks(inode,
1000		index >> F2FS_I(inode)->i_log_cluster_size,
1001		false);
1002}
1003
1004static bool cluster_may_compress(struct compress_ctx *cc)
1005{
1006	if (!f2fs_need_compress_data(cc->inode))
1007		return false;
1008	if (f2fs_is_atomic_file(cc->inode))
1009		return false;
1010	if (!f2fs_cluster_is_full(cc))
1011		return false;
1012	if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1013		return false;
1014	return !cluster_has_invalid_data(cc);
1015}
1016
1017static void set_cluster_writeback(struct compress_ctx *cc)
1018{
1019	int i;
1020
1021	for (i = 0; i < cc->cluster_size; i++) {
1022		if (cc->rpages[i])
1023			set_page_writeback(cc->rpages[i]);
1024	}
1025}
1026
1027static void set_cluster_dirty(struct compress_ctx *cc)
1028{
1029	int i;
1030
1031	for (i = 0; i < cc->cluster_size; i++)
1032		if (cc->rpages[i]) {
1033			set_page_dirty(cc->rpages[i]);
1034			set_page_private_gcing(cc->rpages[i]);
1035		}
1036}
1037
1038static int prepare_compress_overwrite(struct compress_ctx *cc,
1039		struct page **pagep, pgoff_t index, void **fsdata)
1040{
1041	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1042	struct address_space *mapping = cc->inode->i_mapping;
1043	struct page *page;
1044	sector_t last_block_in_bio;
1045	fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1046	pgoff_t start_idx = start_idx_of_cluster(cc);
1047	int i, ret;
1048
1049retry:
1050	ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1051	if (ret <= 0)
1052		return ret;
1053
1054	ret = f2fs_init_compress_ctx(cc);
1055	if (ret)
1056		return ret;
1057
1058	/* keep page reference to avoid page reclaim */
1059	for (i = 0; i < cc->cluster_size; i++) {
1060		page = f2fs_pagecache_get_page(mapping, start_idx + i,
1061							fgp_flag, GFP_NOFS);
1062		if (!page) {
1063			ret = -ENOMEM;
1064			goto unlock_pages;
1065		}
1066
1067		if (PageUptodate(page))
1068			f2fs_put_page(page, 1);
1069		else
1070			f2fs_compress_ctx_add_page(cc, page);
1071	}
1072
1073	if (!f2fs_cluster_is_empty(cc)) {
1074		struct bio *bio = NULL;
1075
1076		ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1077					&last_block_in_bio, false, true);
1078		f2fs_put_rpages(cc);
1079		f2fs_destroy_compress_ctx(cc, true);
1080		if (ret)
1081			goto out;
1082		if (bio)
1083			f2fs_submit_read_bio(sbi, bio, DATA);
1084
1085		ret = f2fs_init_compress_ctx(cc);
1086		if (ret)
1087			goto out;
1088	}
1089
1090	for (i = 0; i < cc->cluster_size; i++) {
1091		f2fs_bug_on(sbi, cc->rpages[i]);
1092
1093		page = find_lock_page(mapping, start_idx + i);
1094		if (!page) {
1095			/* page can be truncated */
1096			goto release_and_retry;
1097		}
1098
1099		f2fs_wait_on_page_writeback(page, DATA, true, true);
1100		f2fs_compress_ctx_add_page(cc, page);
1101
1102		if (!PageUptodate(page)) {
1103release_and_retry:
1104			f2fs_put_rpages(cc);
1105			f2fs_unlock_rpages(cc, i + 1);
1106			f2fs_destroy_compress_ctx(cc, true);
1107			goto retry;
1108		}
1109	}
1110
1111	if (likely(!ret)) {
1112		*fsdata = cc->rpages;
1113		*pagep = cc->rpages[offset_in_cluster(cc, index)];
1114		return cc->cluster_size;
1115	}
1116
1117unlock_pages:
1118	f2fs_put_rpages(cc);
1119	f2fs_unlock_rpages(cc, i);
1120	f2fs_destroy_compress_ctx(cc, true);
1121out:
1122	return ret;
1123}
1124
1125int f2fs_prepare_compress_overwrite(struct inode *inode,
1126		struct page **pagep, pgoff_t index, void **fsdata)
1127{
1128	struct compress_ctx cc = {
1129		.inode = inode,
1130		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1131		.cluster_size = F2FS_I(inode)->i_cluster_size,
1132		.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1133		.rpages = NULL,
1134		.nr_rpages = 0,
1135	};
1136
1137	return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1138}
1139
1140bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1141					pgoff_t index, unsigned copied)
1142
1143{
1144	struct compress_ctx cc = {
1145		.inode = inode,
1146		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1147		.cluster_size = F2FS_I(inode)->i_cluster_size,
1148		.rpages = fsdata,
1149	};
1150	bool first_index = (index == cc.rpages[0]->index);
1151
1152	if (copied)
1153		set_cluster_dirty(&cc);
1154
1155	f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1156	f2fs_destroy_compress_ctx(&cc, false);
1157
1158	return first_index;
1159}
1160
1161int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1162{
1163	void *fsdata = NULL;
1164	struct page *pagep;
1165	int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1166	pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1167							log_cluster_size;
1168	int err;
1169
1170	err = f2fs_is_compressed_cluster(inode, start_idx);
1171	if (err < 0)
1172		return err;
1173
1174	/* truncate normal cluster */
1175	if (!err)
1176		return f2fs_do_truncate_blocks(inode, from, lock);
1177
1178	/* truncate compressed cluster */
1179	err = f2fs_prepare_compress_overwrite(inode, &pagep,
1180						start_idx, &fsdata);
1181
1182	/* should not be a normal cluster */
1183	f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1184
1185	if (err <= 0)
1186		return err;
1187
1188	if (err > 0) {
1189		struct page **rpages = fsdata;
1190		int cluster_size = F2FS_I(inode)->i_cluster_size;
1191		int i;
1192
1193		for (i = cluster_size - 1; i >= 0; i--) {
1194			loff_t start = rpages[i]->index << PAGE_SHIFT;
1195
1196			if (from <= start) {
1197				zero_user_segment(rpages[i], 0, PAGE_SIZE);
1198			} else {
1199				zero_user_segment(rpages[i], from - start,
1200								PAGE_SIZE);
1201				break;
1202			}
1203		}
1204
1205		f2fs_compress_write_end(inode, fsdata, start_idx, true);
1206	}
1207	return 0;
1208}
1209
1210static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1211					int *submitted,
1212					struct writeback_control *wbc,
1213					enum iostat_type io_type)
1214{
1215	struct inode *inode = cc->inode;
1216	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1217	struct f2fs_inode_info *fi = F2FS_I(inode);
1218	struct f2fs_io_info fio = {
1219		.sbi = sbi,
1220		.ino = cc->inode->i_ino,
1221		.type = DATA,
1222		.op = REQ_OP_WRITE,
1223		.op_flags = wbc_to_write_flags(wbc),
1224		.old_blkaddr = NEW_ADDR,
1225		.page = NULL,
1226		.encrypted_page = NULL,
1227		.compressed_page = NULL,
1228		.submitted = 0,
1229		.io_type = io_type,
1230		.io_wbc = wbc,
1231		.encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ?
1232									1 : 0,
1233	};
1234	struct dnode_of_data dn;
1235	struct node_info ni;
1236	struct compress_io_ctx *cic;
1237	pgoff_t start_idx = start_idx_of_cluster(cc);
1238	unsigned int last_index = cc->cluster_size - 1;
1239	loff_t psize;
1240	int i, err;
1241	bool quota_inode = IS_NOQUOTA(inode);
1242
1243	/* we should bypass data pages to proceed the kworker jobs */
1244	if (unlikely(f2fs_cp_error(sbi))) {
1245		mapping_set_error(cc->rpages[0]->mapping, -EIO);
1246		goto out_free;
1247	}
1248
1249	if (quota_inode) {
1250		/*
1251		 * We need to wait for node_write to avoid block allocation during
1252		 * checkpoint. This can only happen to quota writes which can cause
1253		 * the below discard race condition.
1254		 */
1255		f2fs_down_read(&sbi->node_write);
1256	} else if (!f2fs_trylock_op(sbi)) {
1257		goto out_free;
1258	}
1259
1260	set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1261
1262	err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1263	if (err)
1264		goto out_unlock_op;
1265
1266	for (i = 0; i < cc->cluster_size; i++) {
1267		if (data_blkaddr(dn.inode, dn.node_page,
1268					dn.ofs_in_node + i) == NULL_ADDR)
1269			goto out_put_dnode;
1270	}
1271
1272	psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1273
1274	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1275	if (err)
1276		goto out_put_dnode;
1277
1278	fio.version = ni.version;
1279
1280	cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1281	if (!cic)
1282		goto out_put_dnode;
1283
1284	cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1285	cic->inode = inode;
1286	atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1287	cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1288	if (!cic->rpages)
1289		goto out_put_cic;
1290
1291	cic->nr_rpages = cc->cluster_size;
1292
1293	for (i = 0; i < cc->valid_nr_cpages; i++) {
1294		f2fs_set_compressed_page(cc->cpages[i], inode,
1295					cc->rpages[i + 1]->index, cic);
1296		fio.compressed_page = cc->cpages[i];
1297
1298		fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1299						dn.ofs_in_node + i + 1);
1300
1301		/* wait for GCed page writeback via META_MAPPING */
1302		f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1303
1304		if (fio.encrypted) {
1305			fio.page = cc->rpages[i + 1];
1306			err = f2fs_encrypt_one_page(&fio);
1307			if (err)
1308				goto out_destroy_crypt;
1309			cc->cpages[i] = fio.encrypted_page;
1310		}
1311	}
1312
1313	set_cluster_writeback(cc);
1314
1315	for (i = 0; i < cc->cluster_size; i++)
1316		cic->rpages[i] = cc->rpages[i];
1317
1318	for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1319		block_t blkaddr;
1320
1321		blkaddr = f2fs_data_blkaddr(&dn);
1322		fio.page = cc->rpages[i];
1323		fio.old_blkaddr = blkaddr;
1324
1325		/* cluster header */
1326		if (i == 0) {
1327			if (blkaddr == COMPRESS_ADDR)
1328				fio.compr_blocks++;
1329			if (__is_valid_data_blkaddr(blkaddr))
1330				f2fs_invalidate_blocks(sbi, blkaddr);
1331			f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1332			goto unlock_continue;
1333		}
1334
1335		if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1336			fio.compr_blocks++;
1337
1338		if (i > cc->valid_nr_cpages) {
1339			if (__is_valid_data_blkaddr(blkaddr)) {
1340				f2fs_invalidate_blocks(sbi, blkaddr);
1341				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1342			}
1343			goto unlock_continue;
1344		}
1345
1346		f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1347
1348		if (fio.encrypted)
1349			fio.encrypted_page = cc->cpages[i - 1];
1350		else
1351			fio.compressed_page = cc->cpages[i - 1];
1352
1353		cc->cpages[i - 1] = NULL;
1354		f2fs_outplace_write_data(&dn, &fio);
1355		(*submitted)++;
1356unlock_continue:
1357		inode_dec_dirty_pages(cc->inode);
1358		unlock_page(fio.page);
1359	}
1360
1361	if (fio.compr_blocks)
1362		f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1363	f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1364	add_compr_block_stat(inode, cc->valid_nr_cpages);
1365
1366	set_inode_flag(cc->inode, FI_APPEND_WRITE);
1367
1368	f2fs_put_dnode(&dn);
1369	if (quota_inode)
1370		f2fs_up_read(&sbi->node_write);
1371	else
1372		f2fs_unlock_op(sbi);
1373
1374	spin_lock(&fi->i_size_lock);
1375	if (fi->last_disk_size < psize)
1376		fi->last_disk_size = psize;
1377	spin_unlock(&fi->i_size_lock);
1378
1379	f2fs_put_rpages(cc);
1380	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1381	cc->cpages = NULL;
1382	f2fs_destroy_compress_ctx(cc, false);
1383	return 0;
1384
1385out_destroy_crypt:
1386	page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1387
1388	for (--i; i >= 0; i--)
1389		fscrypt_finalize_bounce_page(&cc->cpages[i]);
1390out_put_cic:
1391	kmem_cache_free(cic_entry_slab, cic);
1392out_put_dnode:
1393	f2fs_put_dnode(&dn);
1394out_unlock_op:
1395	if (quota_inode)
1396		f2fs_up_read(&sbi->node_write);
1397	else
1398		f2fs_unlock_op(sbi);
1399out_free:
1400	for (i = 0; i < cc->valid_nr_cpages; i++) {
1401		f2fs_compress_free_page(cc->cpages[i]);
1402		cc->cpages[i] = NULL;
1403	}
1404	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1405	cc->cpages = NULL;
1406	return -EAGAIN;
1407}
1408
1409void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1410{
1411	struct f2fs_sb_info *sbi = bio->bi_private;
1412	struct compress_io_ctx *cic =
1413			(struct compress_io_ctx *)page_private(page);
1414	enum count_type type = WB_DATA_TYPE(page,
1415				f2fs_is_compressed_page(page));
1416	int i;
1417
1418	if (unlikely(bio->bi_status))
1419		mapping_set_error(cic->inode->i_mapping, -EIO);
1420
1421	f2fs_compress_free_page(page);
1422
1423	dec_page_count(sbi, type);
1424
1425	if (atomic_dec_return(&cic->pending_pages))
1426		return;
1427
1428	for (i = 0; i < cic->nr_rpages; i++) {
1429		WARN_ON(!cic->rpages[i]);
1430		clear_page_private_gcing(cic->rpages[i]);
1431		end_page_writeback(cic->rpages[i]);
1432	}
1433
1434	page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1435	kmem_cache_free(cic_entry_slab, cic);
1436}
1437
1438static int f2fs_write_raw_pages(struct compress_ctx *cc,
1439					int *submitted_p,
1440					struct writeback_control *wbc,
1441					enum iostat_type io_type)
1442{
1443	struct address_space *mapping = cc->inode->i_mapping;
1444	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1445	int submitted, compr_blocks, i;
1446	int ret = 0;
1447
1448	compr_blocks = f2fs_compressed_blocks(cc);
1449
1450	for (i = 0; i < cc->cluster_size; i++) {
1451		if (!cc->rpages[i])
1452			continue;
1453
1454		redirty_page_for_writepage(wbc, cc->rpages[i]);
1455		unlock_page(cc->rpages[i]);
1456	}
1457
1458	if (compr_blocks < 0)
1459		return compr_blocks;
1460
1461	/* overwrite compressed cluster w/ normal cluster */
1462	if (compr_blocks > 0)
1463		f2fs_lock_op(sbi);
1464
1465	for (i = 0; i < cc->cluster_size; i++) {
1466		if (!cc->rpages[i])
1467			continue;
1468retry_write:
1469		lock_page(cc->rpages[i]);
1470
1471		if (cc->rpages[i]->mapping != mapping) {
1472continue_unlock:
1473			unlock_page(cc->rpages[i]);
1474			continue;
1475		}
1476
1477		if (!PageDirty(cc->rpages[i]))
1478			goto continue_unlock;
1479
1480		if (PageWriteback(cc->rpages[i])) {
1481			if (wbc->sync_mode == WB_SYNC_NONE)
1482				goto continue_unlock;
1483			f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
1484		}
1485
1486		if (!clear_page_dirty_for_io(cc->rpages[i]))
1487			goto continue_unlock;
1488
1489		ret = f2fs_write_single_data_page(cc->rpages[i], &submitted,
1490						NULL, NULL, wbc, io_type,
1491						compr_blocks, false);
1492		if (ret) {
1493			if (ret == AOP_WRITEPAGE_ACTIVATE) {
1494				unlock_page(cc->rpages[i]);
1495				ret = 0;
1496			} else if (ret == -EAGAIN) {
1497				ret = 0;
1498				/*
1499				 * for quota file, just redirty left pages to
1500				 * avoid deadlock caused by cluster update race
1501				 * from foreground operation.
1502				 */
1503				if (IS_NOQUOTA(cc->inode))
1504					goto out;
1505				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1506				goto retry_write;
1507			}
1508			goto out;
1509		}
1510
1511		*submitted_p += submitted;
1512	}
1513
1514out:
1515	if (compr_blocks > 0)
1516		f2fs_unlock_op(sbi);
1517
1518	f2fs_balance_fs(sbi, true);
1519	return ret;
1520}
1521
1522int f2fs_write_multi_pages(struct compress_ctx *cc,
1523					int *submitted,
1524					struct writeback_control *wbc,
1525					enum iostat_type io_type)
1526{
1527	int err;
1528
1529	*submitted = 0;
1530	if (cluster_may_compress(cc)) {
1531		err = f2fs_compress_pages(cc);
1532		if (err == -EAGAIN) {
1533			add_compr_block_stat(cc->inode, cc->cluster_size);
1534			goto write;
1535		} else if (err) {
1536			f2fs_put_rpages_wbc(cc, wbc, true, 1);
1537			goto destroy_out;
1538		}
1539
1540		err = f2fs_write_compressed_pages(cc, submitted,
1541							wbc, io_type);
1542		if (!err)
1543			return 0;
1544		f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1545	}
1546write:
1547	f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1548
1549	err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1550	f2fs_put_rpages_wbc(cc, wbc, false, 0);
1551destroy_out:
1552	f2fs_destroy_compress_ctx(cc, false);
1553	return err;
1554}
1555
1556static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1557		bool pre_alloc)
1558{
1559	return pre_alloc ^ f2fs_low_mem_mode(sbi);
1560}
1561
1562static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1563		bool pre_alloc)
1564{
1565	const struct f2fs_compress_ops *cops =
1566		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1567	int i;
1568
1569	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1570		return 0;
1571
1572	dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1573	if (!dic->tpages)
1574		return -ENOMEM;
1575
1576	for (i = 0; i < dic->cluster_size; i++) {
1577		if (dic->rpages[i]) {
1578			dic->tpages[i] = dic->rpages[i];
1579			continue;
1580		}
1581
1582		dic->tpages[i] = f2fs_compress_alloc_page();
1583	}
1584
1585	dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1586	if (!dic->rbuf)
1587		return -ENOMEM;
1588
1589	dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1590	if (!dic->cbuf)
1591		return -ENOMEM;
1592
1593	if (cops->init_decompress_ctx)
1594		return cops->init_decompress_ctx(dic);
1595
1596	return 0;
1597}
1598
1599static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1600		bool bypass_destroy_callback, bool pre_alloc)
1601{
1602	const struct f2fs_compress_ops *cops =
1603		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1604
1605	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1606		return;
1607
1608	if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1609		cops->destroy_decompress_ctx(dic);
1610
1611	if (dic->cbuf)
1612		vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1613
1614	if (dic->rbuf)
1615		vm_unmap_ram(dic->rbuf, dic->cluster_size);
1616}
1617
1618static void f2fs_free_dic(struct decompress_io_ctx *dic,
1619		bool bypass_destroy_callback);
1620
1621struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1622{
1623	struct decompress_io_ctx *dic;
1624	pgoff_t start_idx = start_idx_of_cluster(cc);
1625	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1626	int i, ret;
1627
1628	dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1629	if (!dic)
1630		return ERR_PTR(-ENOMEM);
1631
1632	dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1633	if (!dic->rpages) {
1634		kmem_cache_free(dic_entry_slab, dic);
1635		return ERR_PTR(-ENOMEM);
1636	}
1637
1638	dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1639	dic->inode = cc->inode;
1640	atomic_set(&dic->remaining_pages, cc->nr_cpages);
1641	dic->cluster_idx = cc->cluster_idx;
1642	dic->cluster_size = cc->cluster_size;
1643	dic->log_cluster_size = cc->log_cluster_size;
1644	dic->nr_cpages = cc->nr_cpages;
1645	refcount_set(&dic->refcnt, 1);
1646	dic->failed = false;
1647	dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1648
1649	for (i = 0; i < dic->cluster_size; i++)
1650		dic->rpages[i] = cc->rpages[i];
1651	dic->nr_rpages = cc->cluster_size;
1652
1653	dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1654	if (!dic->cpages) {
1655		ret = -ENOMEM;
1656		goto out_free;
1657	}
1658
1659	for (i = 0; i < dic->nr_cpages; i++) {
1660		struct page *page;
1661
1662		page = f2fs_compress_alloc_page();
1663		f2fs_set_compressed_page(page, cc->inode,
1664					start_idx + i + 1, dic);
1665		dic->cpages[i] = page;
1666	}
1667
1668	ret = f2fs_prepare_decomp_mem(dic, true);
1669	if (ret)
1670		goto out_free;
1671
1672	return dic;
1673
1674out_free:
1675	f2fs_free_dic(dic, true);
1676	return ERR_PTR(ret);
1677}
1678
1679static void f2fs_free_dic(struct decompress_io_ctx *dic,
1680		bool bypass_destroy_callback)
1681{
1682	int i;
1683
1684	f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1685
1686	if (dic->tpages) {
1687		for (i = 0; i < dic->cluster_size; i++) {
1688			if (dic->rpages[i])
1689				continue;
1690			if (!dic->tpages[i])
1691				continue;
1692			f2fs_compress_free_page(dic->tpages[i]);
1693		}
1694		page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1695	}
1696
1697	if (dic->cpages) {
1698		for (i = 0; i < dic->nr_cpages; i++) {
1699			if (!dic->cpages[i])
1700				continue;
1701			f2fs_compress_free_page(dic->cpages[i]);
1702		}
1703		page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1704	}
1705
1706	page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1707	kmem_cache_free(dic_entry_slab, dic);
1708}
1709
1710static void f2fs_late_free_dic(struct work_struct *work)
1711{
1712	struct decompress_io_ctx *dic =
1713		container_of(work, struct decompress_io_ctx, free_work);
1714
1715	f2fs_free_dic(dic, false);
1716}
1717
1718static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1719{
1720	if (refcount_dec_and_test(&dic->refcnt)) {
1721		if (in_task) {
1722			f2fs_free_dic(dic, false);
1723		} else {
1724			INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1725			queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1726					&dic->free_work);
1727		}
1728	}
1729}
1730
1731static void f2fs_verify_cluster(struct work_struct *work)
1732{
1733	struct decompress_io_ctx *dic =
1734		container_of(work, struct decompress_io_ctx, verity_work);
1735	int i;
1736
1737	/* Verify, update, and unlock the decompressed pages. */
1738	for (i = 0; i < dic->cluster_size; i++) {
1739		struct page *rpage = dic->rpages[i];
1740
1741		if (!rpage)
1742			continue;
1743
1744		if (fsverity_verify_page(rpage))
1745			SetPageUptodate(rpage);
1746		else
1747			ClearPageUptodate(rpage);
1748		unlock_page(rpage);
1749	}
1750
1751	f2fs_put_dic(dic, true);
1752}
1753
1754/*
1755 * This is called when a compressed cluster has been decompressed
1756 * (or failed to be read and/or decompressed).
1757 */
1758void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1759				bool in_task)
1760{
1761	int i;
1762
1763	if (!failed && dic->need_verity) {
1764		/*
1765		 * Note that to avoid deadlocks, the verity work can't be done
1766		 * on the decompression workqueue.  This is because verifying
1767		 * the data pages can involve reading metadata pages from the
1768		 * file, and these metadata pages may be compressed.
1769		 */
1770		INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1771		fsverity_enqueue_verify_work(&dic->verity_work);
1772		return;
1773	}
1774
1775	/* Update and unlock the cluster's pagecache pages. */
1776	for (i = 0; i < dic->cluster_size; i++) {
1777		struct page *rpage = dic->rpages[i];
1778
1779		if (!rpage)
1780			continue;
1781
1782		if (failed)
1783			ClearPageUptodate(rpage);
1784		else
1785			SetPageUptodate(rpage);
1786		unlock_page(rpage);
1787	}
1788
1789	/*
1790	 * Release the reference to the decompress_io_ctx that was being held
1791	 * for I/O completion.
1792	 */
1793	f2fs_put_dic(dic, in_task);
1794}
1795
1796/*
1797 * Put a reference to a compressed page's decompress_io_ctx.
1798 *
1799 * This is called when the page is no longer needed and can be freed.
1800 */
1801void f2fs_put_page_dic(struct page *page, bool in_task)
1802{
1803	struct decompress_io_ctx *dic =
1804			(struct decompress_io_ctx *)page_private(page);
1805
1806	f2fs_put_dic(dic, in_task);
1807}
1808
1809/*
1810 * check whether cluster blocks are contiguous, and add extent cache entry
1811 * only if cluster blocks are logically and physically contiguous.
1812 */
1813unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
1814						unsigned int ofs_in_node)
1815{
1816	bool compressed = data_blkaddr(dn->inode, dn->node_page,
1817					ofs_in_node) == COMPRESS_ADDR;
1818	int i = compressed ? 1 : 0;
1819	block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1820							ofs_in_node + i);
1821
1822	for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1823		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1824							ofs_in_node + i);
1825
1826		if (!__is_valid_data_blkaddr(blkaddr))
1827			break;
1828		if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1829			return 0;
1830	}
1831
1832	return compressed ? i - 1 : i;
1833}
1834
1835const struct address_space_operations f2fs_compress_aops = {
1836	.release_folio = f2fs_release_folio,
1837	.invalidate_folio = f2fs_invalidate_folio,
1838	.migrate_folio	= filemap_migrate_folio,
1839};
1840
1841struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1842{
1843	return sbi->compress_inode->i_mapping;
1844}
1845
1846void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1847{
1848	if (!sbi->compress_inode)
1849		return;
1850	invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1851}
1852
1853void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1854						nid_t ino, block_t blkaddr)
1855{
1856	struct page *cpage;
1857	int ret;
1858
1859	if (!test_opt(sbi, COMPRESS_CACHE))
1860		return;
1861
1862	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1863		return;
1864
1865	if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1866		return;
1867
1868	cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1869	if (cpage) {
1870		f2fs_put_page(cpage, 0);
1871		return;
1872	}
1873
1874	cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1875	if (!cpage)
1876		return;
1877
1878	ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1879						blkaddr, GFP_NOFS);
1880	if (ret) {
1881		f2fs_put_page(cpage, 0);
1882		return;
1883	}
1884
1885	set_page_private_data(cpage, ino);
1886
1887	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1888		goto out;
1889
1890	memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1891	SetPageUptodate(cpage);
1892out:
1893	f2fs_put_page(cpage, 1);
1894}
1895
1896bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1897								block_t blkaddr)
1898{
1899	struct page *cpage;
1900	bool hitted = false;
1901
1902	if (!test_opt(sbi, COMPRESS_CACHE))
1903		return false;
1904
1905	cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1906				blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1907	if (cpage) {
1908		if (PageUptodate(cpage)) {
1909			atomic_inc(&sbi->compress_page_hit);
1910			memcpy(page_address(page),
1911				page_address(cpage), PAGE_SIZE);
1912			hitted = true;
1913		}
1914		f2fs_put_page(cpage, 1);
1915	}
1916
1917	return hitted;
1918}
1919
1920void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1921{
1922	struct address_space *mapping = COMPRESS_MAPPING(sbi);
1923	struct folio_batch fbatch;
1924	pgoff_t index = 0;
1925	pgoff_t end = MAX_BLKADDR(sbi);
1926
1927	if (!mapping->nrpages)
1928		return;
1929
1930	folio_batch_init(&fbatch);
1931
1932	do {
1933		unsigned int nr, i;
1934
1935		nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1936		if (!nr)
1937			break;
1938
1939		for (i = 0; i < nr; i++) {
1940			struct folio *folio = fbatch.folios[i];
1941
1942			folio_lock(folio);
1943			if (folio->mapping != mapping) {
1944				folio_unlock(folio);
1945				continue;
1946			}
1947
1948			if (ino != get_page_private_data(&folio->page)) {
1949				folio_unlock(folio);
1950				continue;
1951			}
1952
1953			generic_error_remove_page(mapping, &folio->page);
1954			folio_unlock(folio);
1955		}
1956		folio_batch_release(&fbatch);
1957		cond_resched();
1958	} while (index < end);
1959}
1960
1961int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1962{
1963	struct inode *inode;
1964
1965	if (!test_opt(sbi, COMPRESS_CACHE))
1966		return 0;
1967
1968	inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1969	if (IS_ERR(inode))
1970		return PTR_ERR(inode);
1971	sbi->compress_inode = inode;
1972
1973	sbi->compress_percent = COMPRESS_PERCENT;
1974	sbi->compress_watermark = COMPRESS_WATERMARK;
1975
1976	atomic_set(&sbi->compress_page_hit, 0);
1977
1978	return 0;
1979}
1980
1981void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1982{
1983	if (!sbi->compress_inode)
1984		return;
1985	iput(sbi->compress_inode);
1986	sbi->compress_inode = NULL;
1987}
1988
1989int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1990{
1991	dev_t dev = sbi->sb->s_bdev->bd_dev;
1992	char slab_name[35];
1993
1994	if (!f2fs_sb_has_compression(sbi))
1995		return 0;
1996
1997	sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1998
1999	sbi->page_array_slab_size = sizeof(struct page *) <<
2000					F2FS_OPTION(sbi).compress_log_size;
2001
2002	sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
2003					sbi->page_array_slab_size);
2004	return sbi->page_array_slab ? 0 : -ENOMEM;
2005}
2006
2007void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
2008{
2009	kmem_cache_destroy(sbi->page_array_slab);
2010}
2011
2012int __init f2fs_init_compress_cache(void)
2013{
2014	cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
2015					sizeof(struct compress_io_ctx));
2016	if (!cic_entry_slab)
2017		return -ENOMEM;
2018	dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2019					sizeof(struct decompress_io_ctx));
2020	if (!dic_entry_slab)
2021		goto free_cic;
2022	return 0;
2023free_cic:
2024	kmem_cache_destroy(cic_entry_slab);
2025	return -ENOMEM;
2026}
2027
2028void f2fs_destroy_compress_cache(void)
2029{
2030	kmem_cache_destroy(dic_entry_slab);
2031	kmem_cache_destroy(cic_entry_slab);
2032}
2033