xref: /kernel/linux/linux-6.6/fs/ext4/mballoc.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 */
6
7
8/*
9 * mballoc.c contains the multiblocks allocation routines
10 */
11
12#include "ext4_jbd2.h"
13#include "mballoc.h"
14#include <linux/log2.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/nospec.h>
18#include <linux/backing-dev.h>
19#include <linux/freezer.h>
20#include <trace/events/ext4.h>
21
22/*
23 * MUSTDO:
24 *   - test ext4_ext_search_left() and ext4_ext_search_right()
25 *   - search for metadata in few groups
26 *
27 * TODO v4:
28 *   - normalization should take into account whether file is still open
29 *   - discard preallocations if no free space left (policy?)
30 *   - don't normalize tails
31 *   - quota
32 *   - reservation for superuser
33 *
34 * TODO v3:
35 *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
36 *   - track min/max extents in each group for better group selection
37 *   - mb_mark_used() may allocate chunk right after splitting buddy
38 *   - tree of groups sorted by number of free blocks
39 *   - error handling
40 */
41
42/*
43 * The allocation request involve request for multiple number of blocks
44 * near to the goal(block) value specified.
45 *
46 * During initialization phase of the allocator we decide to use the
47 * group preallocation or inode preallocation depending on the size of
48 * the file. The size of the file could be the resulting file size we
49 * would have after allocation, or the current file size, which ever
50 * is larger. If the size is less than sbi->s_mb_stream_request we
51 * select to use the group preallocation. The default value of
52 * s_mb_stream_request is 16 blocks. This can also be tuned via
53 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
54 * terms of number of blocks.
55 *
56 * The main motivation for having small file use group preallocation is to
57 * ensure that we have small files closer together on the disk.
58 *
59 * First stage the allocator looks at the inode prealloc list,
60 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
61 * spaces for this particular inode. The inode prealloc space is
62 * represented as:
63 *
64 * pa_lstart -> the logical start block for this prealloc space
65 * pa_pstart -> the physical start block for this prealloc space
66 * pa_len    -> length for this prealloc space (in clusters)
67 * pa_free   ->  free space available in this prealloc space (in clusters)
68 *
69 * The inode preallocation space is used looking at the _logical_ start
70 * block. If only the logical file block falls within the range of prealloc
71 * space we will consume the particular prealloc space. This makes sure that
72 * we have contiguous physical blocks representing the file blocks
73 *
74 * The important thing to be noted in case of inode prealloc space is that
75 * we don't modify the values associated to inode prealloc space except
76 * pa_free.
77 *
78 * If we are not able to find blocks in the inode prealloc space and if we
79 * have the group allocation flag set then we look at the locality group
80 * prealloc space. These are per CPU prealloc list represented as
81 *
82 * ext4_sb_info.s_locality_groups[smp_processor_id()]
83 *
84 * The reason for having a per cpu locality group is to reduce the contention
85 * between CPUs. It is possible to get scheduled at this point.
86 *
87 * The locality group prealloc space is used looking at whether we have
88 * enough free space (pa_free) within the prealloc space.
89 *
90 * If we can't allocate blocks via inode prealloc or/and locality group
91 * prealloc then we look at the buddy cache. The buddy cache is represented
92 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
93 * mapped to the buddy and bitmap information regarding different
94 * groups. The buddy information is attached to buddy cache inode so that
95 * we can access them through the page cache. The information regarding
96 * each group is loaded via ext4_mb_load_buddy.  The information involve
97 * block bitmap and buddy information. The information are stored in the
98 * inode as:
99 *
100 *  {                        page                        }
101 *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
102 *
103 *
104 * one block each for bitmap and buddy information.  So for each group we
105 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
106 * blocksize) blocks.  So it can have information regarding groups_per_page
107 * which is blocks_per_page/2
108 *
109 * The buddy cache inode is not stored on disk. The inode is thrown
110 * away when the filesystem is unmounted.
111 *
112 * We look for count number of blocks in the buddy cache. If we were able
113 * to locate that many free blocks we return with additional information
114 * regarding rest of the contiguous physical block available
115 *
116 * Before allocating blocks via buddy cache we normalize the request
117 * blocks. This ensure we ask for more blocks that we needed. The extra
118 * blocks that we get after allocation is added to the respective prealloc
119 * list. In case of inode preallocation we follow a list of heuristics
120 * based on file size. This can be found in ext4_mb_normalize_request. If
121 * we are doing a group prealloc we try to normalize the request to
122 * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
123 * dependent on the cluster size; for non-bigalloc file systems, it is
124 * 512 blocks. This can be tuned via
125 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
126 * terms of number of blocks. If we have mounted the file system with -O
127 * stripe=<value> option the group prealloc request is normalized to the
128 * smallest multiple of the stripe value (sbi->s_stripe) which is
129 * greater than the default mb_group_prealloc.
130 *
131 * If "mb_optimize_scan" mount option is set, we maintain in memory group info
132 * structures in two data structures:
133 *
134 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
135 *
136 *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
137 *
138 *    This is an array of lists where the index in the array represents the
139 *    largest free order in the buddy bitmap of the participating group infos of
140 *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
141 *    number of buddy bitmap orders possible) number of lists. Group-infos are
142 *    placed in appropriate lists.
143 *
144 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
145 *
146 *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
147 *
148 *    This is an array of lists where in the i-th list there are groups with
149 *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
150 *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
151 *    Note that we don't bother with a special list for completely empty groups
152 *    so we only have MB_NUM_ORDERS(sb) lists.
153 *
154 * When "mb_optimize_scan" mount option is set, mballoc consults the above data
155 * structures to decide the order in which groups are to be traversed for
156 * fulfilling an allocation request.
157 *
158 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
159 * >= the order of the request. We directly look at the largest free order list
160 * in the data structure (1) above where largest_free_order = order of the
161 * request. If that list is empty, we look at remaining list in the increasing
162 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
163 * lookup in O(1) time.
164 *
165 * At CR_GOAL_LEN_FAST, we only consider groups where
166 * average fragment size > request size. So, we lookup a group which has average
167 * fragment size just above or equal to request size using our average fragment
168 * size group lists (data structure 2) in O(1) time.
169 *
170 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
171 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
172 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
173 * fragment size > goal length. So before falling to the slower
174 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
175 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
176 * enough average fragment size. This increases the chances of finding a
177 * suitable block group in O(1) time and results in faster allocation at the
178 * cost of reduced size of allocation.
179 *
180 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
181 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
182 * CR_GOAL_LEN_FAST phase.
183 *
184 * The regular allocator (using the buddy cache) supports a few tunables.
185 *
186 * /sys/fs/ext4/<partition>/mb_min_to_scan
187 * /sys/fs/ext4/<partition>/mb_max_to_scan
188 * /sys/fs/ext4/<partition>/mb_order2_req
189 * /sys/fs/ext4/<partition>/mb_linear_limit
190 *
191 * The regular allocator uses buddy scan only if the request len is power of
192 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
193 * value of s_mb_order2_reqs can be tuned via
194 * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
195 * stripe size (sbi->s_stripe), we try to search for contiguous block in
196 * stripe size. This should result in better allocation on RAID setups. If
197 * not, we search in the specific group using bitmap for best extents. The
198 * tunable min_to_scan and max_to_scan control the behaviour here.
199 * min_to_scan indicate how long the mballoc __must__ look for a best
200 * extent and max_to_scan indicates how long the mballoc __can__ look for a
201 * best extent in the found extents. Searching for the blocks starts with
202 * the group specified as the goal value in allocation context via
203 * ac_g_ex. Each group is first checked based on the criteria whether it
204 * can be used for allocation. ext4_mb_good_group explains how the groups are
205 * checked.
206 *
207 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
208 * get traversed linearly. That may result in subsequent allocations being not
209 * close to each other. And so, the underlying device may get filled up in a
210 * non-linear fashion. While that may not matter on non-rotational devices, for
211 * rotational devices that may result in higher seek times. "mb_linear_limit"
212 * tells mballoc how many groups mballoc should search linearly before
213 * performing consulting above data structures for more efficient lookups. For
214 * non rotational devices, this value defaults to 0 and for rotational devices
215 * this is set to MB_DEFAULT_LINEAR_LIMIT.
216 *
217 * Both the prealloc space are getting populated as above. So for the first
218 * request we will hit the buddy cache which will result in this prealloc
219 * space getting filled. The prealloc space is then later used for the
220 * subsequent request.
221 */
222
223/*
224 * mballoc operates on the following data:
225 *  - on-disk bitmap
226 *  - in-core buddy (actually includes buddy and bitmap)
227 *  - preallocation descriptors (PAs)
228 *
229 * there are two types of preallocations:
230 *  - inode
231 *    assiged to specific inode and can be used for this inode only.
232 *    it describes part of inode's space preallocated to specific
233 *    physical blocks. any block from that preallocated can be used
234 *    independent. the descriptor just tracks number of blocks left
235 *    unused. so, before taking some block from descriptor, one must
236 *    make sure corresponded logical block isn't allocated yet. this
237 *    also means that freeing any block within descriptor's range
238 *    must discard all preallocated blocks.
239 *  - locality group
240 *    assigned to specific locality group which does not translate to
241 *    permanent set of inodes: inode can join and leave group. space
242 *    from this type of preallocation can be used for any inode. thus
243 *    it's consumed from the beginning to the end.
244 *
245 * relation between them can be expressed as:
246 *    in-core buddy = on-disk bitmap + preallocation descriptors
247 *
248 * this mean blocks mballoc considers used are:
249 *  - allocated blocks (persistent)
250 *  - preallocated blocks (non-persistent)
251 *
252 * consistency in mballoc world means that at any time a block is either
253 * free or used in ALL structures. notice: "any time" should not be read
254 * literally -- time is discrete and delimited by locks.
255 *
256 *  to keep it simple, we don't use block numbers, instead we count number of
257 *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
258 *
259 * all operations can be expressed as:
260 *  - init buddy:			buddy = on-disk + PAs
261 *  - new PA:				buddy += N; PA = N
262 *  - use inode PA:			on-disk += N; PA -= N
263 *  - discard inode PA			buddy -= on-disk - PA; PA = 0
264 *  - use locality group PA		on-disk += N; PA -= N
265 *  - discard locality group PA		buddy -= PA; PA = 0
266 *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
267 *        is used in real operation because we can't know actual used
268 *        bits from PA, only from on-disk bitmap
269 *
270 * if we follow this strict logic, then all operations above should be atomic.
271 * given some of them can block, we'd have to use something like semaphores
272 * killing performance on high-end SMP hardware. let's try to relax it using
273 * the following knowledge:
274 *  1) if buddy is referenced, it's already initialized
275 *  2) while block is used in buddy and the buddy is referenced,
276 *     nobody can re-allocate that block
277 *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
278 *     bit set and PA claims same block, it's OK. IOW, one can set bit in
279 *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
280 *     block
281 *
282 * so, now we're building a concurrency table:
283 *  - init buddy vs.
284 *    - new PA
285 *      blocks for PA are allocated in the buddy, buddy must be referenced
286 *      until PA is linked to allocation group to avoid concurrent buddy init
287 *    - use inode PA
288 *      we need to make sure that either on-disk bitmap or PA has uptodate data
289 *      given (3) we care that PA-=N operation doesn't interfere with init
290 *    - discard inode PA
291 *      the simplest way would be to have buddy initialized by the discard
292 *    - use locality group PA
293 *      again PA-=N must be serialized with init
294 *    - discard locality group PA
295 *      the simplest way would be to have buddy initialized by the discard
296 *  - new PA vs.
297 *    - use inode PA
298 *      i_data_sem serializes them
299 *    - discard inode PA
300 *      discard process must wait until PA isn't used by another process
301 *    - use locality group PA
302 *      some mutex should serialize them
303 *    - discard locality group PA
304 *      discard process must wait until PA isn't used by another process
305 *  - use inode PA
306 *    - use inode PA
307 *      i_data_sem or another mutex should serializes them
308 *    - discard inode PA
309 *      discard process must wait until PA isn't used by another process
310 *    - use locality group PA
311 *      nothing wrong here -- they're different PAs covering different blocks
312 *    - discard locality group PA
313 *      discard process must wait until PA isn't used by another process
314 *
315 * now we're ready to make few consequences:
316 *  - PA is referenced and while it is no discard is possible
317 *  - PA is referenced until block isn't marked in on-disk bitmap
318 *  - PA changes only after on-disk bitmap
319 *  - discard must not compete with init. either init is done before
320 *    any discard or they're serialized somehow
321 *  - buddy init as sum of on-disk bitmap and PAs is done atomically
322 *
323 * a special case when we've used PA to emptiness. no need to modify buddy
324 * in this case, but we should care about concurrent init
325 *
326 */
327
328 /*
329 * Logic in few words:
330 *
331 *  - allocation:
332 *    load group
333 *    find blocks
334 *    mark bits in on-disk bitmap
335 *    release group
336 *
337 *  - use preallocation:
338 *    find proper PA (per-inode or group)
339 *    load group
340 *    mark bits in on-disk bitmap
341 *    release group
342 *    release PA
343 *
344 *  - free:
345 *    load group
346 *    mark bits in on-disk bitmap
347 *    release group
348 *
349 *  - discard preallocations in group:
350 *    mark PAs deleted
351 *    move them onto local list
352 *    load on-disk bitmap
353 *    load group
354 *    remove PA from object (inode or locality group)
355 *    mark free blocks in-core
356 *
357 *  - discard inode's preallocations:
358 */
359
360/*
361 * Locking rules
362 *
363 * Locks:
364 *  - bitlock on a group	(group)
365 *  - object (inode/locality)	(object)
366 *  - per-pa lock		(pa)
367 *  - cr_power2_aligned lists lock	(cr_power2_aligned)
368 *  - cr_goal_len_fast lists lock	(cr_goal_len_fast)
369 *
370 * Paths:
371 *  - new pa
372 *    object
373 *    group
374 *
375 *  - find and use pa:
376 *    pa
377 *
378 *  - release consumed pa:
379 *    pa
380 *    group
381 *    object
382 *
383 *  - generate in-core bitmap:
384 *    group
385 *        pa
386 *
387 *  - discard all for given object (inode, locality group):
388 *    object
389 *        pa
390 *    group
391 *
392 *  - discard all for given group:
393 *    group
394 *        pa
395 *    group
396 *        object
397 *
398 *  - allocation path (ext4_mb_regular_allocator)
399 *    group
400 *    cr_power2_aligned/cr_goal_len_fast
401 */
402static struct kmem_cache *ext4_pspace_cachep;
403static struct kmem_cache *ext4_ac_cachep;
404static struct kmem_cache *ext4_free_data_cachep;
405
406/* We create slab caches for groupinfo data structures based on the
407 * superblock block size.  There will be one per mounted filesystem for
408 * each unique s_blocksize_bits */
409#define NR_GRPINFO_CACHES 8
410static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
411
412static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
413	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
414	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
415	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
416};
417
418static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
419					ext4_group_t group);
420static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
421
422static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
423			       ext4_group_t group, enum criteria cr);
424
425static int ext4_try_to_trim_range(struct super_block *sb,
426		struct ext4_buddy *e4b, ext4_grpblk_t start,
427		ext4_grpblk_t max, ext4_grpblk_t minblocks);
428
429/*
430 * The algorithm using this percpu seq counter goes below:
431 * 1. We sample the percpu discard_pa_seq counter before trying for block
432 *    allocation in ext4_mb_new_blocks().
433 * 2. We increment this percpu discard_pa_seq counter when we either allocate
434 *    or free these blocks i.e. while marking those blocks as used/free in
435 *    mb_mark_used()/mb_free_blocks().
436 * 3. We also increment this percpu seq counter when we successfully identify
437 *    that the bb_prealloc_list is not empty and hence proceed for discarding
438 *    of those PAs inside ext4_mb_discard_group_preallocations().
439 *
440 * Now to make sure that the regular fast path of block allocation is not
441 * affected, as a small optimization we only sample the percpu seq counter
442 * on that cpu. Only when the block allocation fails and when freed blocks
443 * found were 0, that is when we sample percpu seq counter for all cpus using
444 * below function ext4_get_discard_pa_seq_sum(). This happens after making
445 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
446 */
447static DEFINE_PER_CPU(u64, discard_pa_seq);
448static inline u64 ext4_get_discard_pa_seq_sum(void)
449{
450	int __cpu;
451	u64 __seq = 0;
452
453	for_each_possible_cpu(__cpu)
454		__seq += per_cpu(discard_pa_seq, __cpu);
455	return __seq;
456}
457
458static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
459{
460#if BITS_PER_LONG == 64
461	*bit += ((unsigned long) addr & 7UL) << 3;
462	addr = (void *) ((unsigned long) addr & ~7UL);
463#elif BITS_PER_LONG == 32
464	*bit += ((unsigned long) addr & 3UL) << 3;
465	addr = (void *) ((unsigned long) addr & ~3UL);
466#else
467#error "how many bits you are?!"
468#endif
469	return addr;
470}
471
472static inline int mb_test_bit(int bit, void *addr)
473{
474	/*
475	 * ext4_test_bit on architecture like powerpc
476	 * needs unsigned long aligned address
477	 */
478	addr = mb_correct_addr_and_bit(&bit, addr);
479	return ext4_test_bit(bit, addr);
480}
481
482static inline void mb_set_bit(int bit, void *addr)
483{
484	addr = mb_correct_addr_and_bit(&bit, addr);
485	ext4_set_bit(bit, addr);
486}
487
488static inline void mb_clear_bit(int bit, void *addr)
489{
490	addr = mb_correct_addr_and_bit(&bit, addr);
491	ext4_clear_bit(bit, addr);
492}
493
494static inline int mb_test_and_clear_bit(int bit, void *addr)
495{
496	addr = mb_correct_addr_and_bit(&bit, addr);
497	return ext4_test_and_clear_bit(bit, addr);
498}
499
500static inline int mb_find_next_zero_bit(void *addr, int max, int start)
501{
502	int fix = 0, ret, tmpmax;
503	addr = mb_correct_addr_and_bit(&fix, addr);
504	tmpmax = max + fix;
505	start += fix;
506
507	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
508	if (ret > max)
509		return max;
510	return ret;
511}
512
513static inline int mb_find_next_bit(void *addr, int max, int start)
514{
515	int fix = 0, ret, tmpmax;
516	addr = mb_correct_addr_and_bit(&fix, addr);
517	tmpmax = max + fix;
518	start += fix;
519
520	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
521	if (ret > max)
522		return max;
523	return ret;
524}
525
526static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
527{
528	char *bb;
529
530	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
531	BUG_ON(max == NULL);
532
533	if (order > e4b->bd_blkbits + 1) {
534		*max = 0;
535		return NULL;
536	}
537
538	/* at order 0 we see each particular block */
539	if (order == 0) {
540		*max = 1 << (e4b->bd_blkbits + 3);
541		return e4b->bd_bitmap;
542	}
543
544	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
545	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
546
547	return bb;
548}
549
550#ifdef DOUBLE_CHECK
551static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
552			   int first, int count)
553{
554	int i;
555	struct super_block *sb = e4b->bd_sb;
556
557	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
558		return;
559	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
560	for (i = 0; i < count; i++) {
561		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
562			ext4_fsblk_t blocknr;
563
564			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
565			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
566			ext4_grp_locked_error(sb, e4b->bd_group,
567					      inode ? inode->i_ino : 0,
568					      blocknr,
569					      "freeing block already freed "
570					      "(bit %u)",
571					      first + i);
572			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
573					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
574		}
575		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
576	}
577}
578
579static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
580{
581	int i;
582
583	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
584		return;
585	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
586	for (i = 0; i < count; i++) {
587		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
588		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
589	}
590}
591
592static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
593{
594	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
595		return;
596	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
597		unsigned char *b1, *b2;
598		int i;
599		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
600		b2 = (unsigned char *) bitmap;
601		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
602			if (b1[i] != b2[i]) {
603				ext4_msg(e4b->bd_sb, KERN_ERR,
604					 "corruption in group %u "
605					 "at byte %u(%u): %x in copy != %x "
606					 "on disk/prealloc",
607					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
608				BUG();
609			}
610		}
611	}
612}
613
614static void mb_group_bb_bitmap_alloc(struct super_block *sb,
615			struct ext4_group_info *grp, ext4_group_t group)
616{
617	struct buffer_head *bh;
618
619	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
620	if (!grp->bb_bitmap)
621		return;
622
623	bh = ext4_read_block_bitmap(sb, group);
624	if (IS_ERR_OR_NULL(bh)) {
625		kfree(grp->bb_bitmap);
626		grp->bb_bitmap = NULL;
627		return;
628	}
629
630	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
631	put_bh(bh);
632}
633
634static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
635{
636	kfree(grp->bb_bitmap);
637}
638
639#else
640static inline void mb_free_blocks_double(struct inode *inode,
641				struct ext4_buddy *e4b, int first, int count)
642{
643	return;
644}
645static inline void mb_mark_used_double(struct ext4_buddy *e4b,
646						int first, int count)
647{
648	return;
649}
650static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
651{
652	return;
653}
654
655static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
656			struct ext4_group_info *grp, ext4_group_t group)
657{
658	return;
659}
660
661static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
662{
663	return;
664}
665#endif
666
667#ifdef AGGRESSIVE_CHECK
668
669#define MB_CHECK_ASSERT(assert)						\
670do {									\
671	if (!(assert)) {						\
672		printk(KERN_EMERG					\
673			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
674			function, file, line, # assert);		\
675		BUG();							\
676	}								\
677} while (0)
678
679static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
680				const char *function, int line)
681{
682	struct super_block *sb = e4b->bd_sb;
683	int order = e4b->bd_blkbits + 1;
684	int max;
685	int max2;
686	int i;
687	int j;
688	int k;
689	int count;
690	struct ext4_group_info *grp;
691	int fragments = 0;
692	int fstart;
693	struct list_head *cur;
694	void *buddy;
695	void *buddy2;
696
697	if (e4b->bd_info->bb_check_counter++ % 10)
698		return 0;
699
700	while (order > 1) {
701		buddy = mb_find_buddy(e4b, order, &max);
702		MB_CHECK_ASSERT(buddy);
703		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
704		MB_CHECK_ASSERT(buddy2);
705		MB_CHECK_ASSERT(buddy != buddy2);
706		MB_CHECK_ASSERT(max * 2 == max2);
707
708		count = 0;
709		for (i = 0; i < max; i++) {
710
711			if (mb_test_bit(i, buddy)) {
712				/* only single bit in buddy2 may be 0 */
713				if (!mb_test_bit(i << 1, buddy2)) {
714					MB_CHECK_ASSERT(
715						mb_test_bit((i<<1)+1, buddy2));
716				}
717				continue;
718			}
719
720			/* both bits in buddy2 must be 1 */
721			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
722			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
723
724			for (j = 0; j < (1 << order); j++) {
725				k = (i * (1 << order)) + j;
726				MB_CHECK_ASSERT(
727					!mb_test_bit(k, e4b->bd_bitmap));
728			}
729			count++;
730		}
731		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
732		order--;
733	}
734
735	fstart = -1;
736	buddy = mb_find_buddy(e4b, 0, &max);
737	for (i = 0; i < max; i++) {
738		if (!mb_test_bit(i, buddy)) {
739			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
740			if (fstart == -1) {
741				fragments++;
742				fstart = i;
743			}
744			continue;
745		}
746		fstart = -1;
747		/* check used bits only */
748		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
749			buddy2 = mb_find_buddy(e4b, j, &max2);
750			k = i >> j;
751			MB_CHECK_ASSERT(k < max2);
752			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
753		}
754	}
755	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
756	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
757
758	grp = ext4_get_group_info(sb, e4b->bd_group);
759	if (!grp)
760		return NULL;
761	list_for_each(cur, &grp->bb_prealloc_list) {
762		ext4_group_t groupnr;
763		struct ext4_prealloc_space *pa;
764		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
765		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
766		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
767		for (i = 0; i < pa->pa_len; i++)
768			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
769	}
770	return 0;
771}
772#undef MB_CHECK_ASSERT
773#define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
774					__FILE__, __func__, __LINE__)
775#else
776#define mb_check_buddy(e4b)
777#endif
778
779/*
780 * Divide blocks started from @first with length @len into
781 * smaller chunks with power of 2 blocks.
782 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
783 * then increase bb_counters[] for corresponded chunk size.
784 */
785static void ext4_mb_mark_free_simple(struct super_block *sb,
786				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
787					struct ext4_group_info *grp)
788{
789	struct ext4_sb_info *sbi = EXT4_SB(sb);
790	ext4_grpblk_t min;
791	ext4_grpblk_t max;
792	ext4_grpblk_t chunk;
793	unsigned int border;
794
795	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
796
797	border = 2 << sb->s_blocksize_bits;
798
799	while (len > 0) {
800		/* find how many blocks can be covered since this position */
801		max = ffs(first | border) - 1;
802
803		/* find how many blocks of power 2 we need to mark */
804		min = fls(len) - 1;
805
806		if (max < min)
807			min = max;
808		chunk = 1 << min;
809
810		/* mark multiblock chunks only */
811		grp->bb_counters[min]++;
812		if (min > 0)
813			mb_clear_bit(first >> min,
814				     buddy + sbi->s_mb_offsets[min]);
815
816		len -= chunk;
817		first += chunk;
818	}
819}
820
821static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
822{
823	int order;
824
825	/*
826	 * We don't bother with a special lists groups with only 1 block free
827	 * extents and for completely empty groups.
828	 */
829	order = fls(len) - 2;
830	if (order < 0)
831		return 0;
832	if (order == MB_NUM_ORDERS(sb))
833		order--;
834	return order;
835}
836
837/* Move group to appropriate avg_fragment_size list */
838static void
839mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
840{
841	struct ext4_sb_info *sbi = EXT4_SB(sb);
842	int new_order;
843
844	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0)
845		return;
846
847	new_order = mb_avg_fragment_size_order(sb,
848					grp->bb_free / grp->bb_fragments);
849	if (new_order == grp->bb_avg_fragment_size_order)
850		return;
851
852	if (grp->bb_avg_fragment_size_order != -1) {
853		write_lock(&sbi->s_mb_avg_fragment_size_locks[
854					grp->bb_avg_fragment_size_order]);
855		list_del(&grp->bb_avg_fragment_size_node);
856		write_unlock(&sbi->s_mb_avg_fragment_size_locks[
857					grp->bb_avg_fragment_size_order]);
858	}
859	grp->bb_avg_fragment_size_order = new_order;
860	write_lock(&sbi->s_mb_avg_fragment_size_locks[
861					grp->bb_avg_fragment_size_order]);
862	list_add_tail(&grp->bb_avg_fragment_size_node,
863		&sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
864	write_unlock(&sbi->s_mb_avg_fragment_size_locks[
865					grp->bb_avg_fragment_size_order]);
866}
867
868/*
869 * Choose next group by traversing largest_free_order lists. Updates *new_cr if
870 * cr level needs an update.
871 */
872static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
873			enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
874{
875	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
876	struct ext4_group_info *iter;
877	int i;
878
879	if (ac->ac_status == AC_STATUS_FOUND)
880		return;
881
882	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
883		atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
884
885	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
886		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
887			continue;
888		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
889		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
890			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
891			continue;
892		}
893		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
894				    bb_largest_free_order_node) {
895			if (sbi->s_mb_stats)
896				atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
897			if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
898				*group = iter->bb_group;
899				ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
900				read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
901				return;
902			}
903		}
904		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
905	}
906
907	/* Increment cr and search again if no group is found */
908	*new_cr = CR_GOAL_LEN_FAST;
909}
910
911/*
912 * Find a suitable group of given order from the average fragments list.
913 */
914static struct ext4_group_info *
915ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
916{
917	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
918	struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
919	rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
920	struct ext4_group_info *grp = NULL, *iter;
921	enum criteria cr = ac->ac_criteria;
922
923	if (list_empty(frag_list))
924		return NULL;
925	read_lock(frag_list_lock);
926	if (list_empty(frag_list)) {
927		read_unlock(frag_list_lock);
928		return NULL;
929	}
930	list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
931		if (sbi->s_mb_stats)
932			atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
933		if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
934			grp = iter;
935			break;
936		}
937	}
938	read_unlock(frag_list_lock);
939	return grp;
940}
941
942/*
943 * Choose next group by traversing average fragment size list of suitable
944 * order. Updates *new_cr if cr level needs an update.
945 */
946static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
947		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
948{
949	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
950	struct ext4_group_info *grp = NULL;
951	int i;
952
953	if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
954		if (sbi->s_mb_stats)
955			atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
956	}
957
958	for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
959	     i < MB_NUM_ORDERS(ac->ac_sb); i++) {
960		grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
961		if (grp) {
962			*group = grp->bb_group;
963			ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
964			return;
965		}
966	}
967
968	/*
969	 * CR_BEST_AVAIL_LEN works based on the concept that we have
970	 * a larger normalized goal len request which can be trimmed to
971	 * a smaller goal len such that it can still satisfy original
972	 * request len. However, allocation request for non-regular
973	 * files never gets normalized.
974	 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
975	 */
976	if (ac->ac_flags & EXT4_MB_HINT_DATA)
977		*new_cr = CR_BEST_AVAIL_LEN;
978	else
979		*new_cr = CR_GOAL_LEN_SLOW;
980}
981
982/*
983 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
984 * order we have and proactively trim the goal request length to that order to
985 * find a suitable group faster.
986 *
987 * This optimizes allocation speed at the cost of slightly reduced
988 * preallocations. However, we make sure that we don't trim the request too
989 * much and fall to CR_GOAL_LEN_SLOW in that case.
990 */
991static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
992		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
993{
994	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
995	struct ext4_group_info *grp = NULL;
996	int i, order, min_order;
997	unsigned long num_stripe_clusters = 0;
998
999	if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1000		if (sbi->s_mb_stats)
1001			atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1002	}
1003
1004	/*
1005	 * mb_avg_fragment_size_order() returns order in a way that makes
1006	 * retrieving back the length using (1 << order) inaccurate. Hence, use
1007	 * fls() instead since we need to know the actual length while modifying
1008	 * goal length.
1009	 */
1010	order = fls(ac->ac_g_ex.fe_len) - 1;
1011	min_order = order - sbi->s_mb_best_avail_max_trim_order;
1012	if (min_order < 0)
1013		min_order = 0;
1014
1015	if (sbi->s_stripe > 0) {
1016		/*
1017		 * We are assuming that stripe size is always a multiple of
1018		 * cluster ratio otherwise __ext4_fill_super exists early.
1019		 */
1020		num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1021		if (1 << min_order < num_stripe_clusters)
1022			/*
1023			 * We consider 1 order less because later we round
1024			 * up the goal len to num_stripe_clusters
1025			 */
1026			min_order = fls(num_stripe_clusters) - 1;
1027	}
1028
1029	if (1 << min_order < ac->ac_o_ex.fe_len)
1030		min_order = fls(ac->ac_o_ex.fe_len);
1031
1032	for (i = order; i >= min_order; i--) {
1033		int frag_order;
1034		/*
1035		 * Scale down goal len to make sure we find something
1036		 * in the free fragments list. Basically, reduce
1037		 * preallocations.
1038		 */
1039		ac->ac_g_ex.fe_len = 1 << i;
1040
1041		if (num_stripe_clusters > 0) {
1042			/*
1043			 * Try to round up the adjusted goal length to
1044			 * stripe size (in cluster units) multiple for
1045			 * efficiency.
1046			 */
1047			ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1048						     num_stripe_clusters);
1049		}
1050
1051		frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1052							ac->ac_g_ex.fe_len);
1053
1054		grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1055		if (grp) {
1056			*group = grp->bb_group;
1057			ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1058			return;
1059		}
1060	}
1061
1062	/* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1063	ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1064	*new_cr = CR_GOAL_LEN_SLOW;
1065}
1066
1067static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1068{
1069	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1070		return 0;
1071	if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1072		return 0;
1073	if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1074		return 0;
1075	return 1;
1076}
1077
1078/*
1079 * Return next linear group for allocation. If linear traversal should not be
1080 * performed, this function just returns the same group
1081 */
1082static ext4_group_t
1083next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group,
1084		  ext4_group_t ngroups)
1085{
1086	if (!should_optimize_scan(ac))
1087		goto inc_and_return;
1088
1089	if (ac->ac_groups_linear_remaining) {
1090		ac->ac_groups_linear_remaining--;
1091		goto inc_and_return;
1092	}
1093
1094	return group;
1095inc_and_return:
1096	/*
1097	 * Artificially restricted ngroups for non-extent
1098	 * files makes group > ngroups possible on first loop.
1099	 */
1100	return group + 1 >= ngroups ? 0 : group + 1;
1101}
1102
1103/*
1104 * ext4_mb_choose_next_group: choose next group for allocation.
1105 *
1106 * @ac        Allocation Context
1107 * @new_cr    This is an output parameter. If the there is no good group
1108 *            available at current CR level, this field is updated to indicate
1109 *            the new cr level that should be used.
1110 * @group     This is an input / output parameter. As an input it indicates the
1111 *            next group that the allocator intends to use for allocation. As
1112 *            output, this field indicates the next group that should be used as
1113 *            determined by the optimization functions.
1114 * @ngroups   Total number of groups
1115 */
1116static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1117		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1118{
1119	*new_cr = ac->ac_criteria;
1120
1121	if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1122		*group = next_linear_group(ac, *group, ngroups);
1123		return;
1124	}
1125
1126	if (*new_cr == CR_POWER2_ALIGNED) {
1127		ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups);
1128	} else if (*new_cr == CR_GOAL_LEN_FAST) {
1129		ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups);
1130	} else if (*new_cr == CR_BEST_AVAIL_LEN) {
1131		ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups);
1132	} else {
1133		/*
1134		 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1135		 * bb_free. But until that happens, we should never come here.
1136		 */
1137		WARN_ON(1);
1138	}
1139}
1140
1141/*
1142 * Cache the order of the largest free extent we have available in this block
1143 * group.
1144 */
1145static void
1146mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1147{
1148	struct ext4_sb_info *sbi = EXT4_SB(sb);
1149	int i;
1150
1151	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1152		if (grp->bb_counters[i] > 0)
1153			break;
1154	/* No need to move between order lists? */
1155	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1156	    i == grp->bb_largest_free_order) {
1157		grp->bb_largest_free_order = i;
1158		return;
1159	}
1160
1161	if (grp->bb_largest_free_order >= 0) {
1162		write_lock(&sbi->s_mb_largest_free_orders_locks[
1163					      grp->bb_largest_free_order]);
1164		list_del_init(&grp->bb_largest_free_order_node);
1165		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1166					      grp->bb_largest_free_order]);
1167	}
1168	grp->bb_largest_free_order = i;
1169	if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1170		write_lock(&sbi->s_mb_largest_free_orders_locks[
1171					      grp->bb_largest_free_order]);
1172		list_add_tail(&grp->bb_largest_free_order_node,
1173		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1174		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1175					      grp->bb_largest_free_order]);
1176	}
1177}
1178
1179static noinline_for_stack
1180void ext4_mb_generate_buddy(struct super_block *sb,
1181			    void *buddy, void *bitmap, ext4_group_t group,
1182			    struct ext4_group_info *grp)
1183{
1184	struct ext4_sb_info *sbi = EXT4_SB(sb);
1185	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1186	ext4_grpblk_t i = 0;
1187	ext4_grpblk_t first;
1188	ext4_grpblk_t len;
1189	unsigned free = 0;
1190	unsigned fragments = 0;
1191	unsigned long long period = get_cycles();
1192
1193	/* initialize buddy from bitmap which is aggregation
1194	 * of on-disk bitmap and preallocations */
1195	i = mb_find_next_zero_bit(bitmap, max, 0);
1196	grp->bb_first_free = i;
1197	while (i < max) {
1198		fragments++;
1199		first = i;
1200		i = mb_find_next_bit(bitmap, max, i);
1201		len = i - first;
1202		free += len;
1203		if (len > 1)
1204			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1205		else
1206			grp->bb_counters[0]++;
1207		if (i < max)
1208			i = mb_find_next_zero_bit(bitmap, max, i);
1209	}
1210	grp->bb_fragments = fragments;
1211
1212	if (free != grp->bb_free) {
1213		ext4_grp_locked_error(sb, group, 0, 0,
1214				      "block bitmap and bg descriptor "
1215				      "inconsistent: %u vs %u free clusters",
1216				      free, grp->bb_free);
1217		/*
1218		 * If we intend to continue, we consider group descriptor
1219		 * corrupt and update bb_free using bitmap value
1220		 */
1221		grp->bb_free = free;
1222		ext4_mark_group_bitmap_corrupted(sb, group,
1223					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1224	}
1225	mb_set_largest_free_order(sb, grp);
1226	mb_update_avg_fragment_size(sb, grp);
1227
1228	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1229
1230	period = get_cycles() - period;
1231	atomic_inc(&sbi->s_mb_buddies_generated);
1232	atomic64_add(period, &sbi->s_mb_generation_time);
1233}
1234
1235static void mb_regenerate_buddy(struct ext4_buddy *e4b)
1236{
1237	int count;
1238	int order = 1;
1239	void *buddy;
1240
1241	while ((buddy = mb_find_buddy(e4b, order++, &count)))
1242		mb_set_bits(buddy, 0, count);
1243
1244	e4b->bd_info->bb_fragments = 0;
1245	memset(e4b->bd_info->bb_counters, 0,
1246		sizeof(*e4b->bd_info->bb_counters) *
1247		(e4b->bd_sb->s_blocksize_bits + 2));
1248
1249	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
1250		e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
1251}
1252
1253/* The buddy information is attached the buddy cache inode
1254 * for convenience. The information regarding each group
1255 * is loaded via ext4_mb_load_buddy. The information involve
1256 * block bitmap and buddy information. The information are
1257 * stored in the inode as
1258 *
1259 * {                        page                        }
1260 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1261 *
1262 *
1263 * one block each for bitmap and buddy information.
1264 * So for each group we take up 2 blocks. A page can
1265 * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1266 * So it can have information regarding groups_per_page which
1267 * is blocks_per_page/2
1268 *
1269 * Locking note:  This routine takes the block group lock of all groups
1270 * for this page; do not hold this lock when calling this routine!
1271 */
1272
1273static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1274{
1275	ext4_group_t ngroups;
1276	unsigned int blocksize;
1277	int blocks_per_page;
1278	int groups_per_page;
1279	int err = 0;
1280	int i;
1281	ext4_group_t first_group, group;
1282	int first_block;
1283	struct super_block *sb;
1284	struct buffer_head *bhs;
1285	struct buffer_head **bh = NULL;
1286	struct inode *inode;
1287	char *data;
1288	char *bitmap;
1289	struct ext4_group_info *grinfo;
1290
1291	inode = page->mapping->host;
1292	sb = inode->i_sb;
1293	ngroups = ext4_get_groups_count(sb);
1294	blocksize = i_blocksize(inode);
1295	blocks_per_page = PAGE_SIZE / blocksize;
1296
1297	mb_debug(sb, "init page %lu\n", page->index);
1298
1299	groups_per_page = blocks_per_page >> 1;
1300	if (groups_per_page == 0)
1301		groups_per_page = 1;
1302
1303	/* allocate buffer_heads to read bitmaps */
1304	if (groups_per_page > 1) {
1305		i = sizeof(struct buffer_head *) * groups_per_page;
1306		bh = kzalloc(i, gfp);
1307		if (bh == NULL)
1308			return -ENOMEM;
1309	} else
1310		bh = &bhs;
1311
1312	first_group = page->index * blocks_per_page / 2;
1313
1314	/* read all groups the page covers into the cache */
1315	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1316		if (group >= ngroups)
1317			break;
1318
1319		grinfo = ext4_get_group_info(sb, group);
1320		if (!grinfo)
1321			continue;
1322		/*
1323		 * If page is uptodate then we came here after online resize
1324		 * which added some new uninitialized group info structs, so
1325		 * we must skip all initialized uptodate buddies on the page,
1326		 * which may be currently in use by an allocating task.
1327		 */
1328		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1329			bh[i] = NULL;
1330			continue;
1331		}
1332		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1333		if (IS_ERR(bh[i])) {
1334			err = PTR_ERR(bh[i]);
1335			bh[i] = NULL;
1336			goto out;
1337		}
1338		mb_debug(sb, "read bitmap for group %u\n", group);
1339	}
1340
1341	/* wait for I/O completion */
1342	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1343		int err2;
1344
1345		if (!bh[i])
1346			continue;
1347		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1348		if (!err)
1349			err = err2;
1350	}
1351
1352	first_block = page->index * blocks_per_page;
1353	for (i = 0; i < blocks_per_page; i++) {
1354		group = (first_block + i) >> 1;
1355		if (group >= ngroups)
1356			break;
1357
1358		if (!bh[group - first_group])
1359			/* skip initialized uptodate buddy */
1360			continue;
1361
1362		if (!buffer_verified(bh[group - first_group]))
1363			/* Skip faulty bitmaps */
1364			continue;
1365		err = 0;
1366
1367		/*
1368		 * data carry information regarding this
1369		 * particular group in the format specified
1370		 * above
1371		 *
1372		 */
1373		data = page_address(page) + (i * blocksize);
1374		bitmap = bh[group - first_group]->b_data;
1375
1376		/*
1377		 * We place the buddy block and bitmap block
1378		 * close together
1379		 */
1380		grinfo = ext4_get_group_info(sb, group);
1381		if (!grinfo) {
1382			err = -EFSCORRUPTED;
1383		        goto out;
1384		}
1385		if ((first_block + i) & 1) {
1386			/* this is block of buddy */
1387			BUG_ON(incore == NULL);
1388			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1389				group, page->index, i * blocksize);
1390			trace_ext4_mb_buddy_bitmap_load(sb, group);
1391			grinfo->bb_fragments = 0;
1392			memset(grinfo->bb_counters, 0,
1393			       sizeof(*grinfo->bb_counters) *
1394			       (MB_NUM_ORDERS(sb)));
1395			/*
1396			 * incore got set to the group block bitmap below
1397			 */
1398			ext4_lock_group(sb, group);
1399			/* init the buddy */
1400			memset(data, 0xff, blocksize);
1401			ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1402			ext4_unlock_group(sb, group);
1403			incore = NULL;
1404		} else {
1405			/* this is block of bitmap */
1406			BUG_ON(incore != NULL);
1407			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1408				group, page->index, i * blocksize);
1409			trace_ext4_mb_bitmap_load(sb, group);
1410
1411			/* see comments in ext4_mb_put_pa() */
1412			ext4_lock_group(sb, group);
1413			memcpy(data, bitmap, blocksize);
1414
1415			/* mark all preallocated blks used in in-core bitmap */
1416			ext4_mb_generate_from_pa(sb, data, group);
1417			WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1418			ext4_unlock_group(sb, group);
1419
1420			/* set incore so that the buddy information can be
1421			 * generated using this
1422			 */
1423			incore = data;
1424		}
1425	}
1426	SetPageUptodate(page);
1427
1428out:
1429	if (bh) {
1430		for (i = 0; i < groups_per_page; i++)
1431			brelse(bh[i]);
1432		if (bh != &bhs)
1433			kfree(bh);
1434	}
1435	return err;
1436}
1437
1438/*
1439 * Lock the buddy and bitmap pages. This make sure other parallel init_group
1440 * on the same buddy page doesn't happen whild holding the buddy page lock.
1441 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1442 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1443 */
1444static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1445		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1446{
1447	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1448	int block, pnum, poff;
1449	int blocks_per_page;
1450	struct page *page;
1451
1452	e4b->bd_buddy_page = NULL;
1453	e4b->bd_bitmap_page = NULL;
1454
1455	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1456	/*
1457	 * the buddy cache inode stores the block bitmap
1458	 * and buddy information in consecutive blocks.
1459	 * So for each group we need two blocks.
1460	 */
1461	block = group * 2;
1462	pnum = block / blocks_per_page;
1463	poff = block % blocks_per_page;
1464	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1465	if (!page)
1466		return -ENOMEM;
1467	BUG_ON(page->mapping != inode->i_mapping);
1468	e4b->bd_bitmap_page = page;
1469	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1470
1471	if (blocks_per_page >= 2) {
1472		/* buddy and bitmap are on the same page */
1473		return 0;
1474	}
1475
1476	block++;
1477	pnum = block / blocks_per_page;
1478	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1479	if (!page)
1480		return -ENOMEM;
1481	BUG_ON(page->mapping != inode->i_mapping);
1482	e4b->bd_buddy_page = page;
1483	return 0;
1484}
1485
1486static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1487{
1488	if (e4b->bd_bitmap_page) {
1489		unlock_page(e4b->bd_bitmap_page);
1490		put_page(e4b->bd_bitmap_page);
1491	}
1492	if (e4b->bd_buddy_page) {
1493		unlock_page(e4b->bd_buddy_page);
1494		put_page(e4b->bd_buddy_page);
1495	}
1496}
1497
1498/*
1499 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1500 * block group lock of all groups for this page; do not hold the BG lock when
1501 * calling this routine!
1502 */
1503static noinline_for_stack
1504int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1505{
1506
1507	struct ext4_group_info *this_grp;
1508	struct ext4_buddy e4b;
1509	struct page *page;
1510	int ret = 0;
1511
1512	might_sleep();
1513	mb_debug(sb, "init group %u\n", group);
1514	this_grp = ext4_get_group_info(sb, group);
1515	if (!this_grp)
1516		return -EFSCORRUPTED;
1517
1518	/*
1519	 * This ensures that we don't reinit the buddy cache
1520	 * page which map to the group from which we are already
1521	 * allocating. If we are looking at the buddy cache we would
1522	 * have taken a reference using ext4_mb_load_buddy and that
1523	 * would have pinned buddy page to page cache.
1524	 * The call to ext4_mb_get_buddy_page_lock will mark the
1525	 * page accessed.
1526	 */
1527	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1528	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1529		/*
1530		 * somebody initialized the group
1531		 * return without doing anything
1532		 */
1533		goto err;
1534	}
1535
1536	page = e4b.bd_bitmap_page;
1537	ret = ext4_mb_init_cache(page, NULL, gfp);
1538	if (ret)
1539		goto err;
1540	if (!PageUptodate(page)) {
1541		ret = -EIO;
1542		goto err;
1543	}
1544
1545	if (e4b.bd_buddy_page == NULL) {
1546		/*
1547		 * If both the bitmap and buddy are in
1548		 * the same page we don't need to force
1549		 * init the buddy
1550		 */
1551		ret = 0;
1552		goto err;
1553	}
1554	/* init buddy cache */
1555	page = e4b.bd_buddy_page;
1556	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1557	if (ret)
1558		goto err;
1559	if (!PageUptodate(page)) {
1560		ret = -EIO;
1561		goto err;
1562	}
1563err:
1564	ext4_mb_put_buddy_page_lock(&e4b);
1565	return ret;
1566}
1567
1568/*
1569 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1570 * block group lock of all groups for this page; do not hold the BG lock when
1571 * calling this routine!
1572 */
1573static noinline_for_stack int
1574ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1575		       struct ext4_buddy *e4b, gfp_t gfp)
1576{
1577	int blocks_per_page;
1578	int block;
1579	int pnum;
1580	int poff;
1581	struct page *page;
1582	int ret;
1583	struct ext4_group_info *grp;
1584	struct ext4_sb_info *sbi = EXT4_SB(sb);
1585	struct inode *inode = sbi->s_buddy_cache;
1586
1587	might_sleep();
1588	mb_debug(sb, "load group %u\n", group);
1589
1590	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1591	grp = ext4_get_group_info(sb, group);
1592	if (!grp)
1593		return -EFSCORRUPTED;
1594
1595	e4b->bd_blkbits = sb->s_blocksize_bits;
1596	e4b->bd_info = grp;
1597	e4b->bd_sb = sb;
1598	e4b->bd_group = group;
1599	e4b->bd_buddy_page = NULL;
1600	e4b->bd_bitmap_page = NULL;
1601
1602	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1603		/*
1604		 * we need full data about the group
1605		 * to make a good selection
1606		 */
1607		ret = ext4_mb_init_group(sb, group, gfp);
1608		if (ret)
1609			return ret;
1610	}
1611
1612	/*
1613	 * the buddy cache inode stores the block bitmap
1614	 * and buddy information in consecutive blocks.
1615	 * So for each group we need two blocks.
1616	 */
1617	block = group * 2;
1618	pnum = block / blocks_per_page;
1619	poff = block % blocks_per_page;
1620
1621	/* we could use find_or_create_page(), but it locks page
1622	 * what we'd like to avoid in fast path ... */
1623	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1624	if (page == NULL || !PageUptodate(page)) {
1625		if (page)
1626			/*
1627			 * drop the page reference and try
1628			 * to get the page with lock. If we
1629			 * are not uptodate that implies
1630			 * somebody just created the page but
1631			 * is yet to initialize the same. So
1632			 * wait for it to initialize.
1633			 */
1634			put_page(page);
1635		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1636		if (page) {
1637			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1638	"ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1639				/* should never happen */
1640				unlock_page(page);
1641				ret = -EINVAL;
1642				goto err;
1643			}
1644			if (!PageUptodate(page)) {
1645				ret = ext4_mb_init_cache(page, NULL, gfp);
1646				if (ret) {
1647					unlock_page(page);
1648					goto err;
1649				}
1650				mb_cmp_bitmaps(e4b, page_address(page) +
1651					       (poff * sb->s_blocksize));
1652			}
1653			unlock_page(page);
1654		}
1655	}
1656	if (page == NULL) {
1657		ret = -ENOMEM;
1658		goto err;
1659	}
1660	if (!PageUptodate(page)) {
1661		ret = -EIO;
1662		goto err;
1663	}
1664
1665	/* Pages marked accessed already */
1666	e4b->bd_bitmap_page = page;
1667	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1668
1669	block++;
1670	pnum = block / blocks_per_page;
1671	poff = block % blocks_per_page;
1672
1673	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1674	if (page == NULL || !PageUptodate(page)) {
1675		if (page)
1676			put_page(page);
1677		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1678		if (page) {
1679			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1680	"ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1681				/* should never happen */
1682				unlock_page(page);
1683				ret = -EINVAL;
1684				goto err;
1685			}
1686			if (!PageUptodate(page)) {
1687				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1688							 gfp);
1689				if (ret) {
1690					unlock_page(page);
1691					goto err;
1692				}
1693			}
1694			unlock_page(page);
1695		}
1696	}
1697	if (page == NULL) {
1698		ret = -ENOMEM;
1699		goto err;
1700	}
1701	if (!PageUptodate(page)) {
1702		ret = -EIO;
1703		goto err;
1704	}
1705
1706	/* Pages marked accessed already */
1707	e4b->bd_buddy_page = page;
1708	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1709
1710	return 0;
1711
1712err:
1713	if (page)
1714		put_page(page);
1715	if (e4b->bd_bitmap_page)
1716		put_page(e4b->bd_bitmap_page);
1717
1718	e4b->bd_buddy = NULL;
1719	e4b->bd_bitmap = NULL;
1720	return ret;
1721}
1722
1723static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1724			      struct ext4_buddy *e4b)
1725{
1726	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1727}
1728
1729static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1730{
1731	if (e4b->bd_bitmap_page)
1732		put_page(e4b->bd_bitmap_page);
1733	if (e4b->bd_buddy_page)
1734		put_page(e4b->bd_buddy_page);
1735}
1736
1737
1738static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1739{
1740	int order = 1, max;
1741	void *bb;
1742
1743	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1744	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1745
1746	while (order <= e4b->bd_blkbits + 1) {
1747		bb = mb_find_buddy(e4b, order, &max);
1748		if (!mb_test_bit(block >> order, bb)) {
1749			/* this block is part of buddy of order 'order' */
1750			return order;
1751		}
1752		order++;
1753	}
1754	return 0;
1755}
1756
1757static void mb_clear_bits(void *bm, int cur, int len)
1758{
1759	__u32 *addr;
1760
1761	len = cur + len;
1762	while (cur < len) {
1763		if ((cur & 31) == 0 && (len - cur) >= 32) {
1764			/* fast path: clear whole word at once */
1765			addr = bm + (cur >> 3);
1766			*addr = 0;
1767			cur += 32;
1768			continue;
1769		}
1770		mb_clear_bit(cur, bm);
1771		cur++;
1772	}
1773}
1774
1775/* clear bits in given range
1776 * will return first found zero bit if any, -1 otherwise
1777 */
1778static int mb_test_and_clear_bits(void *bm, int cur, int len)
1779{
1780	__u32 *addr;
1781	int zero_bit = -1;
1782
1783	len = cur + len;
1784	while (cur < len) {
1785		if ((cur & 31) == 0 && (len - cur) >= 32) {
1786			/* fast path: clear whole word at once */
1787			addr = bm + (cur >> 3);
1788			if (*addr != (__u32)(-1) && zero_bit == -1)
1789				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1790			*addr = 0;
1791			cur += 32;
1792			continue;
1793		}
1794		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1795			zero_bit = cur;
1796		cur++;
1797	}
1798
1799	return zero_bit;
1800}
1801
1802void mb_set_bits(void *bm, int cur, int len)
1803{
1804	__u32 *addr;
1805
1806	len = cur + len;
1807	while (cur < len) {
1808		if ((cur & 31) == 0 && (len - cur) >= 32) {
1809			/* fast path: set whole word at once */
1810			addr = bm + (cur >> 3);
1811			*addr = 0xffffffff;
1812			cur += 32;
1813			continue;
1814		}
1815		mb_set_bit(cur, bm);
1816		cur++;
1817	}
1818}
1819
1820static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1821{
1822	if (mb_test_bit(*bit + side, bitmap)) {
1823		mb_clear_bit(*bit, bitmap);
1824		(*bit) -= side;
1825		return 1;
1826	}
1827	else {
1828		(*bit) += side;
1829		mb_set_bit(*bit, bitmap);
1830		return -1;
1831	}
1832}
1833
1834static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1835{
1836	int max;
1837	int order = 1;
1838	void *buddy = mb_find_buddy(e4b, order, &max);
1839
1840	while (buddy) {
1841		void *buddy2;
1842
1843		/* Bits in range [first; last] are known to be set since
1844		 * corresponding blocks were allocated. Bits in range
1845		 * (first; last) will stay set because they form buddies on
1846		 * upper layer. We just deal with borders if they don't
1847		 * align with upper layer and then go up.
1848		 * Releasing entire group is all about clearing
1849		 * single bit of highest order buddy.
1850		 */
1851
1852		/* Example:
1853		 * ---------------------------------
1854		 * |   1   |   1   |   1   |   1   |
1855		 * ---------------------------------
1856		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1857		 * ---------------------------------
1858		 *   0   1   2   3   4   5   6   7
1859		 *      \_____________________/
1860		 *
1861		 * Neither [1] nor [6] is aligned to above layer.
1862		 * Left neighbour [0] is free, so mark it busy,
1863		 * decrease bb_counters and extend range to
1864		 * [0; 6]
1865		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1866		 * mark [6] free, increase bb_counters and shrink range to
1867		 * [0; 5].
1868		 * Then shift range to [0; 2], go up and do the same.
1869		 */
1870
1871
1872		if (first & 1)
1873			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1874		if (!(last & 1))
1875			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1876		if (first > last)
1877			break;
1878		order++;
1879
1880		buddy2 = mb_find_buddy(e4b, order, &max);
1881		if (!buddy2) {
1882			mb_clear_bits(buddy, first, last - first + 1);
1883			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1884			break;
1885		}
1886		first >>= 1;
1887		last >>= 1;
1888		buddy = buddy2;
1889	}
1890}
1891
1892static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1893			   int first, int count)
1894{
1895	int left_is_free = 0;
1896	int right_is_free = 0;
1897	int block;
1898	int last = first + count - 1;
1899	struct super_block *sb = e4b->bd_sb;
1900
1901	if (WARN_ON(count == 0))
1902		return;
1903	BUG_ON(last >= (sb->s_blocksize << 3));
1904	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1905	/* Don't bother if the block group is corrupt. */
1906	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1907		return;
1908
1909	mb_check_buddy(e4b);
1910	mb_free_blocks_double(inode, e4b, first, count);
1911
1912	/* access memory sequentially: check left neighbour,
1913	 * clear range and then check right neighbour
1914	 */
1915	if (first != 0)
1916		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1917	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1918	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1919		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1920
1921	if (unlikely(block != -1)) {
1922		struct ext4_sb_info *sbi = EXT4_SB(sb);
1923		ext4_fsblk_t blocknr;
1924
1925		/*
1926		 * Fastcommit replay can free already freed blocks which
1927		 * corrupts allocation info. Regenerate it.
1928		 */
1929		if (sbi->s_mount_state & EXT4_FC_REPLAY) {
1930			mb_regenerate_buddy(e4b);
1931			goto check;
1932		}
1933
1934		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1935		blocknr += EXT4_C2B(sbi, block);
1936		ext4_grp_locked_error(sb, e4b->bd_group,
1937				      inode ? inode->i_ino : 0, blocknr,
1938				      "freeing already freed block (bit %u); block bitmap corrupt.",
1939				      block);
1940		ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1941				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1942		return;
1943	}
1944
1945	this_cpu_inc(discard_pa_seq);
1946	e4b->bd_info->bb_free += count;
1947	if (first < e4b->bd_info->bb_first_free)
1948		e4b->bd_info->bb_first_free = first;
1949
1950	/* let's maintain fragments counter */
1951	if (left_is_free && right_is_free)
1952		e4b->bd_info->bb_fragments--;
1953	else if (!left_is_free && !right_is_free)
1954		e4b->bd_info->bb_fragments++;
1955
1956	/* buddy[0] == bd_bitmap is a special case, so handle
1957	 * it right away and let mb_buddy_mark_free stay free of
1958	 * zero order checks.
1959	 * Check if neighbours are to be coaleasced,
1960	 * adjust bitmap bb_counters and borders appropriately.
1961	 */
1962	if (first & 1) {
1963		first += !left_is_free;
1964		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1965	}
1966	if (!(last & 1)) {
1967		last -= !right_is_free;
1968		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1969	}
1970
1971	if (first <= last)
1972		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1973
1974	mb_set_largest_free_order(sb, e4b->bd_info);
1975	mb_update_avg_fragment_size(sb, e4b->bd_info);
1976check:
1977	mb_check_buddy(e4b);
1978}
1979
1980static int mb_find_extent(struct ext4_buddy *e4b, int block,
1981				int needed, struct ext4_free_extent *ex)
1982{
1983	int next = block;
1984	int max, order;
1985	void *buddy;
1986
1987	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1988	BUG_ON(ex == NULL);
1989
1990	buddy = mb_find_buddy(e4b, 0, &max);
1991	BUG_ON(buddy == NULL);
1992	BUG_ON(block >= max);
1993	if (mb_test_bit(block, buddy)) {
1994		ex->fe_len = 0;
1995		ex->fe_start = 0;
1996		ex->fe_group = 0;
1997		return 0;
1998	}
1999
2000	/* find actual order */
2001	order = mb_find_order_for_block(e4b, block);
2002	block = block >> order;
2003
2004	ex->fe_len = 1 << order;
2005	ex->fe_start = block << order;
2006	ex->fe_group = e4b->bd_group;
2007
2008	/* calc difference from given start */
2009	next = next - ex->fe_start;
2010	ex->fe_len -= next;
2011	ex->fe_start += next;
2012
2013	while (needed > ex->fe_len &&
2014	       mb_find_buddy(e4b, order, &max)) {
2015
2016		if (block + 1 >= max)
2017			break;
2018
2019		next = (block + 1) * (1 << order);
2020		if (mb_test_bit(next, e4b->bd_bitmap))
2021			break;
2022
2023		order = mb_find_order_for_block(e4b, next);
2024
2025		block = next >> order;
2026		ex->fe_len += 1 << order;
2027	}
2028
2029	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2030		/* Should never happen! (but apparently sometimes does?!?) */
2031		WARN_ON(1);
2032		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2033			"corruption or bug in mb_find_extent "
2034			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2035			block, order, needed, ex->fe_group, ex->fe_start,
2036			ex->fe_len, ex->fe_logical);
2037		ex->fe_len = 0;
2038		ex->fe_start = 0;
2039		ex->fe_group = 0;
2040	}
2041	return ex->fe_len;
2042}
2043
2044static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2045{
2046	int ord;
2047	int mlen = 0;
2048	int max = 0;
2049	int cur;
2050	int start = ex->fe_start;
2051	int len = ex->fe_len;
2052	unsigned ret = 0;
2053	int len0 = len;
2054	void *buddy;
2055	bool split = false;
2056
2057	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2058	BUG_ON(e4b->bd_group != ex->fe_group);
2059	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2060	mb_check_buddy(e4b);
2061	mb_mark_used_double(e4b, start, len);
2062
2063	this_cpu_inc(discard_pa_seq);
2064	e4b->bd_info->bb_free -= len;
2065	if (e4b->bd_info->bb_first_free == start)
2066		e4b->bd_info->bb_first_free += len;
2067
2068	/* let's maintain fragments counter */
2069	if (start != 0)
2070		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2071	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2072		max = !mb_test_bit(start + len, e4b->bd_bitmap);
2073	if (mlen && max)
2074		e4b->bd_info->bb_fragments++;
2075	else if (!mlen && !max)
2076		e4b->bd_info->bb_fragments--;
2077
2078	/* let's maintain buddy itself */
2079	while (len) {
2080		if (!split)
2081			ord = mb_find_order_for_block(e4b, start);
2082
2083		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2084			/* the whole chunk may be allocated at once! */
2085			mlen = 1 << ord;
2086			if (!split)
2087				buddy = mb_find_buddy(e4b, ord, &max);
2088			else
2089				split = false;
2090			BUG_ON((start >> ord) >= max);
2091			mb_set_bit(start >> ord, buddy);
2092			e4b->bd_info->bb_counters[ord]--;
2093			start += mlen;
2094			len -= mlen;
2095			BUG_ON(len < 0);
2096			continue;
2097		}
2098
2099		/* store for history */
2100		if (ret == 0)
2101			ret = len | (ord << 16);
2102
2103		/* we have to split large buddy */
2104		BUG_ON(ord <= 0);
2105		buddy = mb_find_buddy(e4b, ord, &max);
2106		mb_set_bit(start >> ord, buddy);
2107		e4b->bd_info->bb_counters[ord]--;
2108
2109		ord--;
2110		cur = (start >> ord) & ~1U;
2111		buddy = mb_find_buddy(e4b, ord, &max);
2112		mb_clear_bit(cur, buddy);
2113		mb_clear_bit(cur + 1, buddy);
2114		e4b->bd_info->bb_counters[ord]++;
2115		e4b->bd_info->bb_counters[ord]++;
2116		split = true;
2117	}
2118	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2119
2120	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2121	mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2122	mb_check_buddy(e4b);
2123
2124	return ret;
2125}
2126
2127/*
2128 * Must be called under group lock!
2129 */
2130static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2131					struct ext4_buddy *e4b)
2132{
2133	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2134	int ret;
2135
2136	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2137	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2138
2139	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2140	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2141	ret = mb_mark_used(e4b, &ac->ac_b_ex);
2142
2143	/* preallocation can change ac_b_ex, thus we store actually
2144	 * allocated blocks for history */
2145	ac->ac_f_ex = ac->ac_b_ex;
2146
2147	ac->ac_status = AC_STATUS_FOUND;
2148	ac->ac_tail = ret & 0xffff;
2149	ac->ac_buddy = ret >> 16;
2150
2151	/*
2152	 * take the page reference. We want the page to be pinned
2153	 * so that we don't get a ext4_mb_init_cache_call for this
2154	 * group until we update the bitmap. That would mean we
2155	 * double allocate blocks. The reference is dropped
2156	 * in ext4_mb_release_context
2157	 */
2158	ac->ac_bitmap_page = e4b->bd_bitmap_page;
2159	get_page(ac->ac_bitmap_page);
2160	ac->ac_buddy_page = e4b->bd_buddy_page;
2161	get_page(ac->ac_buddy_page);
2162	/* store last allocated for subsequent stream allocation */
2163	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2164		spin_lock(&sbi->s_md_lock);
2165		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2166		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2167		spin_unlock(&sbi->s_md_lock);
2168	}
2169	/*
2170	 * As we've just preallocated more space than
2171	 * user requested originally, we store allocated
2172	 * space in a special descriptor.
2173	 */
2174	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2175		ext4_mb_new_preallocation(ac);
2176
2177}
2178
2179static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2180					struct ext4_buddy *e4b,
2181					int finish_group)
2182{
2183	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2184	struct ext4_free_extent *bex = &ac->ac_b_ex;
2185	struct ext4_free_extent *gex = &ac->ac_g_ex;
2186
2187	if (ac->ac_status == AC_STATUS_FOUND)
2188		return;
2189	/*
2190	 * We don't want to scan for a whole year
2191	 */
2192	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2193			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2194		ac->ac_status = AC_STATUS_BREAK;
2195		return;
2196	}
2197
2198	/*
2199	 * Haven't found good chunk so far, let's continue
2200	 */
2201	if (bex->fe_len < gex->fe_len)
2202		return;
2203
2204	if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2205		ext4_mb_use_best_found(ac, e4b);
2206}
2207
2208/*
2209 * The routine checks whether found extent is good enough. If it is,
2210 * then the extent gets marked used and flag is set to the context
2211 * to stop scanning. Otherwise, the extent is compared with the
2212 * previous found extent and if new one is better, then it's stored
2213 * in the context. Later, the best found extent will be used, if
2214 * mballoc can't find good enough extent.
2215 *
2216 * The algorithm used is roughly as follows:
2217 *
2218 * * If free extent found is exactly as big as goal, then
2219 *   stop the scan and use it immediately
2220 *
2221 * * If free extent found is smaller than goal, then keep retrying
2222 *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2223 *   that stop scanning and use whatever we have.
2224 *
2225 * * If free extent found is bigger than goal, then keep retrying
2226 *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2227 *   stopping the scan and using the extent.
2228 *
2229 *
2230 * FIXME: real allocation policy is to be designed yet!
2231 */
2232static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2233					struct ext4_free_extent *ex,
2234					struct ext4_buddy *e4b)
2235{
2236	struct ext4_free_extent *bex = &ac->ac_b_ex;
2237	struct ext4_free_extent *gex = &ac->ac_g_ex;
2238
2239	BUG_ON(ex->fe_len <= 0);
2240	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2241	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2242	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2243
2244	ac->ac_found++;
2245	ac->ac_cX_found[ac->ac_criteria]++;
2246
2247	/*
2248	 * The special case - take what you catch first
2249	 */
2250	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2251		*bex = *ex;
2252		ext4_mb_use_best_found(ac, e4b);
2253		return;
2254	}
2255
2256	/*
2257	 * Let's check whether the chuck is good enough
2258	 */
2259	if (ex->fe_len == gex->fe_len) {
2260		*bex = *ex;
2261		ext4_mb_use_best_found(ac, e4b);
2262		return;
2263	}
2264
2265	/*
2266	 * If this is first found extent, just store it in the context
2267	 */
2268	if (bex->fe_len == 0) {
2269		*bex = *ex;
2270		return;
2271	}
2272
2273	/*
2274	 * If new found extent is better, store it in the context
2275	 */
2276	if (bex->fe_len < gex->fe_len) {
2277		/* if the request isn't satisfied, any found extent
2278		 * larger than previous best one is better */
2279		if (ex->fe_len > bex->fe_len)
2280			*bex = *ex;
2281	} else if (ex->fe_len > gex->fe_len) {
2282		/* if the request is satisfied, then we try to find
2283		 * an extent that still satisfy the request, but is
2284		 * smaller than previous one */
2285		if (ex->fe_len < bex->fe_len)
2286			*bex = *ex;
2287	}
2288
2289	ext4_mb_check_limits(ac, e4b, 0);
2290}
2291
2292static noinline_for_stack
2293void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2294					struct ext4_buddy *e4b)
2295{
2296	struct ext4_free_extent ex = ac->ac_b_ex;
2297	ext4_group_t group = ex.fe_group;
2298	int max;
2299	int err;
2300
2301	BUG_ON(ex.fe_len <= 0);
2302	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2303	if (err)
2304		return;
2305
2306	ext4_lock_group(ac->ac_sb, group);
2307	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2308		goto out;
2309
2310	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2311
2312	if (max > 0) {
2313		ac->ac_b_ex = ex;
2314		ext4_mb_use_best_found(ac, e4b);
2315	}
2316
2317out:
2318	ext4_unlock_group(ac->ac_sb, group);
2319	ext4_mb_unload_buddy(e4b);
2320}
2321
2322static noinline_for_stack
2323int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2324				struct ext4_buddy *e4b)
2325{
2326	ext4_group_t group = ac->ac_g_ex.fe_group;
2327	int max;
2328	int err;
2329	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2330	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2331	struct ext4_free_extent ex;
2332
2333	if (!grp)
2334		return -EFSCORRUPTED;
2335	if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2336		return 0;
2337	if (grp->bb_free == 0)
2338		return 0;
2339
2340	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2341	if (err)
2342		return err;
2343
2344	ext4_lock_group(ac->ac_sb, group);
2345	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2346		goto out;
2347
2348	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2349			     ac->ac_g_ex.fe_len, &ex);
2350	ex.fe_logical = 0xDEADFA11; /* debug value */
2351
2352	if (max >= ac->ac_g_ex.fe_len &&
2353	    ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2354		ext4_fsblk_t start;
2355
2356		start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2357		/* use do_div to get remainder (would be 64-bit modulo) */
2358		if (do_div(start, sbi->s_stripe) == 0) {
2359			ac->ac_found++;
2360			ac->ac_b_ex = ex;
2361			ext4_mb_use_best_found(ac, e4b);
2362		}
2363	} else if (max >= ac->ac_g_ex.fe_len) {
2364		BUG_ON(ex.fe_len <= 0);
2365		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2366		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2367		ac->ac_found++;
2368		ac->ac_b_ex = ex;
2369		ext4_mb_use_best_found(ac, e4b);
2370	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2371		/* Sometimes, caller may want to merge even small
2372		 * number of blocks to an existing extent */
2373		BUG_ON(ex.fe_len <= 0);
2374		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2375		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2376		ac->ac_found++;
2377		ac->ac_b_ex = ex;
2378		ext4_mb_use_best_found(ac, e4b);
2379	}
2380out:
2381	ext4_unlock_group(ac->ac_sb, group);
2382	ext4_mb_unload_buddy(e4b);
2383
2384	return 0;
2385}
2386
2387/*
2388 * The routine scans buddy structures (not bitmap!) from given order
2389 * to max order and tries to find big enough chunk to satisfy the req
2390 */
2391static noinline_for_stack
2392void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2393					struct ext4_buddy *e4b)
2394{
2395	struct super_block *sb = ac->ac_sb;
2396	struct ext4_group_info *grp = e4b->bd_info;
2397	void *buddy;
2398	int i;
2399	int k;
2400	int max;
2401
2402	BUG_ON(ac->ac_2order <= 0);
2403	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2404		if (grp->bb_counters[i] == 0)
2405			continue;
2406
2407		buddy = mb_find_buddy(e4b, i, &max);
2408		if (WARN_RATELIMIT(buddy == NULL,
2409			 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2410			continue;
2411
2412		k = mb_find_next_zero_bit(buddy, max, 0);
2413		if (k >= max) {
2414			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2415				"%d free clusters of order %d. But found 0",
2416				grp->bb_counters[i], i);
2417			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2418					 e4b->bd_group,
2419					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2420			break;
2421		}
2422		ac->ac_found++;
2423		ac->ac_cX_found[ac->ac_criteria]++;
2424
2425		ac->ac_b_ex.fe_len = 1 << i;
2426		ac->ac_b_ex.fe_start = k << i;
2427		ac->ac_b_ex.fe_group = e4b->bd_group;
2428
2429		ext4_mb_use_best_found(ac, e4b);
2430
2431		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2432
2433		if (EXT4_SB(sb)->s_mb_stats)
2434			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2435
2436		break;
2437	}
2438}
2439
2440/*
2441 * The routine scans the group and measures all found extents.
2442 * In order to optimize scanning, caller must pass number of
2443 * free blocks in the group, so the routine can know upper limit.
2444 */
2445static noinline_for_stack
2446void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2447					struct ext4_buddy *e4b)
2448{
2449	struct super_block *sb = ac->ac_sb;
2450	void *bitmap = e4b->bd_bitmap;
2451	struct ext4_free_extent ex;
2452	int i, j, freelen;
2453	int free;
2454
2455	free = e4b->bd_info->bb_free;
2456	if (WARN_ON(free <= 0))
2457		return;
2458
2459	i = e4b->bd_info->bb_first_free;
2460
2461	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2462		i = mb_find_next_zero_bit(bitmap,
2463						EXT4_CLUSTERS_PER_GROUP(sb), i);
2464		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2465			/*
2466			 * IF we have corrupt bitmap, we won't find any
2467			 * free blocks even though group info says we
2468			 * have free blocks
2469			 */
2470			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2471					"%d free clusters as per "
2472					"group info. But bitmap says 0",
2473					free);
2474			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2475					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2476			break;
2477		}
2478
2479		if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2480			/*
2481			 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2482			 * sure that this group will have a large enough
2483			 * continuous free extent, so skip over the smaller free
2484			 * extents
2485			 */
2486			j = mb_find_next_bit(bitmap,
2487						EXT4_CLUSTERS_PER_GROUP(sb), i);
2488			freelen = j - i;
2489
2490			if (freelen < ac->ac_g_ex.fe_len) {
2491				i = j;
2492				free -= freelen;
2493				continue;
2494			}
2495		}
2496
2497		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2498		if (WARN_ON(ex.fe_len <= 0))
2499			break;
2500		if (free < ex.fe_len) {
2501			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2502					"%d free clusters as per "
2503					"group info. But got %d blocks",
2504					free, ex.fe_len);
2505			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2506					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2507			/*
2508			 * The number of free blocks differs. This mostly
2509			 * indicate that the bitmap is corrupt. So exit
2510			 * without claiming the space.
2511			 */
2512			break;
2513		}
2514		ex.fe_logical = 0xDEADC0DE; /* debug value */
2515		ext4_mb_measure_extent(ac, &ex, e4b);
2516
2517		i += ex.fe_len;
2518		free -= ex.fe_len;
2519	}
2520
2521	ext4_mb_check_limits(ac, e4b, 1);
2522}
2523
2524/*
2525 * This is a special case for storages like raid5
2526 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2527 */
2528static noinline_for_stack
2529void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2530				 struct ext4_buddy *e4b)
2531{
2532	struct super_block *sb = ac->ac_sb;
2533	struct ext4_sb_info *sbi = EXT4_SB(sb);
2534	void *bitmap = e4b->bd_bitmap;
2535	struct ext4_free_extent ex;
2536	ext4_fsblk_t first_group_block;
2537	ext4_fsblk_t a;
2538	ext4_grpblk_t i, stripe;
2539	int max;
2540
2541	BUG_ON(sbi->s_stripe == 0);
2542
2543	/* find first stripe-aligned block in group */
2544	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2545
2546	a = first_group_block + sbi->s_stripe - 1;
2547	do_div(a, sbi->s_stripe);
2548	i = (a * sbi->s_stripe) - first_group_block;
2549
2550	stripe = EXT4_B2C(sbi, sbi->s_stripe);
2551	i = EXT4_B2C(sbi, i);
2552	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2553		if (!mb_test_bit(i, bitmap)) {
2554			max = mb_find_extent(e4b, i, stripe, &ex);
2555			if (max >= stripe) {
2556				ac->ac_found++;
2557				ac->ac_cX_found[ac->ac_criteria]++;
2558				ex.fe_logical = 0xDEADF00D; /* debug value */
2559				ac->ac_b_ex = ex;
2560				ext4_mb_use_best_found(ac, e4b);
2561				break;
2562			}
2563		}
2564		i += stripe;
2565	}
2566}
2567
2568/*
2569 * This is also called BEFORE we load the buddy bitmap.
2570 * Returns either 1 or 0 indicating that the group is either suitable
2571 * for the allocation or not.
2572 */
2573static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2574				ext4_group_t group, enum criteria cr)
2575{
2576	ext4_grpblk_t free, fragments;
2577	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2578	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2579
2580	BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2581
2582	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2583		return false;
2584
2585	free = grp->bb_free;
2586	if (free == 0)
2587		return false;
2588
2589	fragments = grp->bb_fragments;
2590	if (fragments == 0)
2591		return false;
2592
2593	switch (cr) {
2594	case CR_POWER2_ALIGNED:
2595		BUG_ON(ac->ac_2order == 0);
2596
2597		/* Avoid using the first bg of a flexgroup for data files */
2598		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2599		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2600		    ((group % flex_size) == 0))
2601			return false;
2602
2603		if (free < ac->ac_g_ex.fe_len)
2604			return false;
2605
2606		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2607			return true;
2608
2609		if (grp->bb_largest_free_order < ac->ac_2order)
2610			return false;
2611
2612		return true;
2613	case CR_GOAL_LEN_FAST:
2614	case CR_BEST_AVAIL_LEN:
2615		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2616			return true;
2617		break;
2618	case CR_GOAL_LEN_SLOW:
2619		if (free >= ac->ac_g_ex.fe_len)
2620			return true;
2621		break;
2622	case CR_ANY_FREE:
2623		return true;
2624	default:
2625		BUG();
2626	}
2627
2628	return false;
2629}
2630
2631/*
2632 * This could return negative error code if something goes wrong
2633 * during ext4_mb_init_group(). This should not be called with
2634 * ext4_lock_group() held.
2635 *
2636 * Note: because we are conditionally operating with the group lock in
2637 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2638 * function using __acquire and __release.  This means we need to be
2639 * super careful before messing with the error path handling via "goto
2640 * out"!
2641 */
2642static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2643				     ext4_group_t group, enum criteria cr)
2644{
2645	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2646	struct super_block *sb = ac->ac_sb;
2647	struct ext4_sb_info *sbi = EXT4_SB(sb);
2648	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2649	ext4_grpblk_t free;
2650	int ret = 0;
2651
2652	if (!grp)
2653		return -EFSCORRUPTED;
2654	if (sbi->s_mb_stats)
2655		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2656	if (should_lock) {
2657		ext4_lock_group(sb, group);
2658		__release(ext4_group_lock_ptr(sb, group));
2659	}
2660	free = grp->bb_free;
2661	if (free == 0)
2662		goto out;
2663	/*
2664	 * In all criterias except CR_ANY_FREE we try to avoid groups that
2665	 * can't possibly satisfy the full goal request due to insufficient
2666	 * free blocks.
2667	 */
2668	if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2669		goto out;
2670	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2671		goto out;
2672	if (should_lock) {
2673		__acquire(ext4_group_lock_ptr(sb, group));
2674		ext4_unlock_group(sb, group);
2675	}
2676
2677	/* We only do this if the grp has never been initialized */
2678	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2679		struct ext4_group_desc *gdp =
2680			ext4_get_group_desc(sb, group, NULL);
2681		int ret;
2682
2683		/*
2684		 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2685		 * search to find large good chunks almost for free. If buddy
2686		 * data is not ready, then this optimization makes no sense. But
2687		 * we never skip the first block group in a flex_bg, since this
2688		 * gets used for metadata block allocation, and we want to make
2689		 * sure we locate metadata blocks in the first block group in
2690		 * the flex_bg if possible.
2691		 */
2692		if (!ext4_mb_cr_expensive(cr) &&
2693		    (!sbi->s_log_groups_per_flex ||
2694		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2695		    !(ext4_has_group_desc_csum(sb) &&
2696		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2697			return 0;
2698		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2699		if (ret)
2700			return ret;
2701	}
2702
2703	if (should_lock) {
2704		ext4_lock_group(sb, group);
2705		__release(ext4_group_lock_ptr(sb, group));
2706	}
2707	ret = ext4_mb_good_group(ac, group, cr);
2708out:
2709	if (should_lock) {
2710		__acquire(ext4_group_lock_ptr(sb, group));
2711		ext4_unlock_group(sb, group);
2712	}
2713	return ret;
2714}
2715
2716/*
2717 * Start prefetching @nr block bitmaps starting at @group.
2718 * Return the next group which needs to be prefetched.
2719 */
2720ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2721			      unsigned int nr, int *cnt)
2722{
2723	ext4_group_t ngroups = ext4_get_groups_count(sb);
2724	struct buffer_head *bh;
2725	struct blk_plug plug;
2726
2727	blk_start_plug(&plug);
2728	while (nr-- > 0) {
2729		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2730								  NULL);
2731		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2732
2733		/*
2734		 * Prefetch block groups with free blocks; but don't
2735		 * bother if it is marked uninitialized on disk, since
2736		 * it won't require I/O to read.  Also only try to
2737		 * prefetch once, so we avoid getblk() call, which can
2738		 * be expensive.
2739		 */
2740		if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2741		    EXT4_MB_GRP_NEED_INIT(grp) &&
2742		    ext4_free_group_clusters(sb, gdp) > 0 ) {
2743			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2744			if (bh && !IS_ERR(bh)) {
2745				if (!buffer_uptodate(bh) && cnt)
2746					(*cnt)++;
2747				brelse(bh);
2748			}
2749		}
2750		if (++group >= ngroups)
2751			group = 0;
2752	}
2753	blk_finish_plug(&plug);
2754	return group;
2755}
2756
2757/*
2758 * Prefetching reads the block bitmap into the buffer cache; but we
2759 * need to make sure that the buddy bitmap in the page cache has been
2760 * initialized.  Note that ext4_mb_init_group() will block if the I/O
2761 * is not yet completed, or indeed if it was not initiated by
2762 * ext4_mb_prefetch did not start the I/O.
2763 *
2764 * TODO: We should actually kick off the buddy bitmap setup in a work
2765 * queue when the buffer I/O is completed, so that we don't block
2766 * waiting for the block allocation bitmap read to finish when
2767 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2768 */
2769void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2770			   unsigned int nr)
2771{
2772	struct ext4_group_desc *gdp;
2773	struct ext4_group_info *grp;
2774
2775	while (nr-- > 0) {
2776		if (!group)
2777			group = ext4_get_groups_count(sb);
2778		group--;
2779		gdp = ext4_get_group_desc(sb, group, NULL);
2780		grp = ext4_get_group_info(sb, group);
2781
2782		if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2783		    ext4_free_group_clusters(sb, gdp) > 0) {
2784			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2785				break;
2786		}
2787	}
2788}
2789
2790static noinline_for_stack int
2791ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2792{
2793	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2794	enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2795	int err = 0, first_err = 0;
2796	unsigned int nr = 0, prefetch_ios = 0;
2797	struct ext4_sb_info *sbi;
2798	struct super_block *sb;
2799	struct ext4_buddy e4b;
2800	int lost;
2801
2802	sb = ac->ac_sb;
2803	sbi = EXT4_SB(sb);
2804	ngroups = ext4_get_groups_count(sb);
2805	/* non-extent files are limited to low blocks/groups */
2806	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2807		ngroups = sbi->s_blockfile_groups;
2808
2809	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2810
2811	/* first, try the goal */
2812	err = ext4_mb_find_by_goal(ac, &e4b);
2813	if (err || ac->ac_status == AC_STATUS_FOUND)
2814		goto out;
2815
2816	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2817		goto out;
2818
2819	/*
2820	 * ac->ac_2order is set only if the fe_len is a power of 2
2821	 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2822	 * so that we try exact allocation using buddy.
2823	 */
2824	i = fls(ac->ac_g_ex.fe_len);
2825	ac->ac_2order = 0;
2826	/*
2827	 * We search using buddy data only if the order of the request
2828	 * is greater than equal to the sbi_s_mb_order2_reqs
2829	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2830	 * We also support searching for power-of-two requests only for
2831	 * requests upto maximum buddy size we have constructed.
2832	 */
2833	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2834		if (is_power_of_2(ac->ac_g_ex.fe_len))
2835			ac->ac_2order = array_index_nospec(i - 1,
2836							   MB_NUM_ORDERS(sb));
2837	}
2838
2839	/* if stream allocation is enabled, use global goal */
2840	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2841		/* TBD: may be hot point */
2842		spin_lock(&sbi->s_md_lock);
2843		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2844		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2845		spin_unlock(&sbi->s_md_lock);
2846	}
2847
2848	/*
2849	 * Let's just scan groups to find more-less suitable blocks We
2850	 * start with CR_GOAL_LEN_FAST, unless it is power of 2
2851	 * aligned, in which case let's do that faster approach first.
2852	 */
2853	if (ac->ac_2order)
2854		cr = CR_POWER2_ALIGNED;
2855repeat:
2856	for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2857		ac->ac_criteria = cr;
2858		/*
2859		 * searching for the right group start
2860		 * from the goal value specified
2861		 */
2862		group = ac->ac_g_ex.fe_group;
2863		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2864		prefetch_grp = group;
2865
2866		for (i = 0, new_cr = cr; i < ngroups; i++,
2867		     ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2868			int ret = 0;
2869
2870			cond_resched();
2871			if (new_cr != cr) {
2872				cr = new_cr;
2873				goto repeat;
2874			}
2875
2876			/*
2877			 * Batch reads of the block allocation bitmaps
2878			 * to get multiple READs in flight; limit
2879			 * prefetching at inexpensive CR, otherwise mballoc
2880			 * can spend a lot of time loading imperfect groups
2881			 */
2882			if ((prefetch_grp == group) &&
2883			    (ext4_mb_cr_expensive(cr) ||
2884			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2885				nr = sbi->s_mb_prefetch;
2886				if (ext4_has_feature_flex_bg(sb)) {
2887					nr = 1 << sbi->s_log_groups_per_flex;
2888					nr -= group & (nr - 1);
2889					nr = min(nr, sbi->s_mb_prefetch);
2890				}
2891				prefetch_grp = ext4_mb_prefetch(sb, group,
2892							nr, &prefetch_ios);
2893			}
2894
2895			/* This now checks without needing the buddy page */
2896			ret = ext4_mb_good_group_nolock(ac, group, cr);
2897			if (ret <= 0) {
2898				if (!first_err)
2899					first_err = ret;
2900				continue;
2901			}
2902
2903			err = ext4_mb_load_buddy(sb, group, &e4b);
2904			if (err)
2905				goto out;
2906
2907			ext4_lock_group(sb, group);
2908
2909			/*
2910			 * We need to check again after locking the
2911			 * block group
2912			 */
2913			ret = ext4_mb_good_group(ac, group, cr);
2914			if (ret == 0) {
2915				ext4_unlock_group(sb, group);
2916				ext4_mb_unload_buddy(&e4b);
2917				continue;
2918			}
2919
2920			ac->ac_groups_scanned++;
2921			if (cr == CR_POWER2_ALIGNED)
2922				ext4_mb_simple_scan_group(ac, &e4b);
2923			else if ((cr == CR_GOAL_LEN_FAST ||
2924				 cr == CR_BEST_AVAIL_LEN) &&
2925				 sbi->s_stripe &&
2926				 !(ac->ac_g_ex.fe_len %
2927				 EXT4_B2C(sbi, sbi->s_stripe)))
2928				ext4_mb_scan_aligned(ac, &e4b);
2929			else
2930				ext4_mb_complex_scan_group(ac, &e4b);
2931
2932			ext4_unlock_group(sb, group);
2933			ext4_mb_unload_buddy(&e4b);
2934
2935			if (ac->ac_status != AC_STATUS_CONTINUE)
2936				break;
2937		}
2938		/* Processed all groups and haven't found blocks */
2939		if (sbi->s_mb_stats && i == ngroups)
2940			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2941
2942		if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2943			/* Reset goal length to original goal length before
2944			 * falling into CR_GOAL_LEN_SLOW */
2945			ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2946	}
2947
2948	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2949	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2950		/*
2951		 * We've been searching too long. Let's try to allocate
2952		 * the best chunk we've found so far
2953		 */
2954		ext4_mb_try_best_found(ac, &e4b);
2955		if (ac->ac_status != AC_STATUS_FOUND) {
2956			/*
2957			 * Someone more lucky has already allocated it.
2958			 * The only thing we can do is just take first
2959			 * found block(s)
2960			 */
2961			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2962			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2963				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2964				 ac->ac_b_ex.fe_len, lost);
2965
2966			ac->ac_b_ex.fe_group = 0;
2967			ac->ac_b_ex.fe_start = 0;
2968			ac->ac_b_ex.fe_len = 0;
2969			ac->ac_status = AC_STATUS_CONTINUE;
2970			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2971			cr = CR_ANY_FREE;
2972			goto repeat;
2973		}
2974	}
2975
2976	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2977		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2978out:
2979	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2980		err = first_err;
2981
2982	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2983		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2984		 ac->ac_flags, cr, err);
2985
2986	if (nr)
2987		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2988
2989	return err;
2990}
2991
2992static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2993{
2994	struct super_block *sb = pde_data(file_inode(seq->file));
2995	ext4_group_t group;
2996
2997	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2998		return NULL;
2999	group = *pos + 1;
3000	return (void *) ((unsigned long) group);
3001}
3002
3003static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
3004{
3005	struct super_block *sb = pde_data(file_inode(seq->file));
3006	ext4_group_t group;
3007
3008	++*pos;
3009	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3010		return NULL;
3011	group = *pos + 1;
3012	return (void *) ((unsigned long) group);
3013}
3014
3015static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
3016{
3017	struct super_block *sb = pde_data(file_inode(seq->file));
3018	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
3019	int i;
3020	int err, buddy_loaded = 0;
3021	struct ext4_buddy e4b;
3022	struct ext4_group_info *grinfo;
3023	unsigned char blocksize_bits = min_t(unsigned char,
3024					     sb->s_blocksize_bits,
3025					     EXT4_MAX_BLOCK_LOG_SIZE);
3026	struct sg {
3027		struct ext4_group_info info;
3028		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3029	} sg;
3030
3031	group--;
3032	if (group == 0)
3033		seq_puts(seq, "#group: free  frags first ["
3034			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
3035			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
3036
3037	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3038		sizeof(struct ext4_group_info);
3039
3040	grinfo = ext4_get_group_info(sb, group);
3041	if (!grinfo)
3042		return 0;
3043	/* Load the group info in memory only if not already loaded. */
3044	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3045		err = ext4_mb_load_buddy(sb, group, &e4b);
3046		if (err) {
3047			seq_printf(seq, "#%-5u: I/O error\n", group);
3048			return 0;
3049		}
3050		buddy_loaded = 1;
3051	}
3052
3053	memcpy(&sg, grinfo, i);
3054
3055	if (buddy_loaded)
3056		ext4_mb_unload_buddy(&e4b);
3057
3058	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3059			sg.info.bb_fragments, sg.info.bb_first_free);
3060	for (i = 0; i <= 13; i++)
3061		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3062				sg.info.bb_counters[i] : 0);
3063	seq_puts(seq, " ]\n");
3064
3065	return 0;
3066}
3067
3068static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3069{
3070}
3071
3072const struct seq_operations ext4_mb_seq_groups_ops = {
3073	.start  = ext4_mb_seq_groups_start,
3074	.next   = ext4_mb_seq_groups_next,
3075	.stop   = ext4_mb_seq_groups_stop,
3076	.show   = ext4_mb_seq_groups_show,
3077};
3078
3079int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3080{
3081	struct super_block *sb = seq->private;
3082	struct ext4_sb_info *sbi = EXT4_SB(sb);
3083
3084	seq_puts(seq, "mballoc:\n");
3085	if (!sbi->s_mb_stats) {
3086		seq_puts(seq, "\tmb stats collection turned off.\n");
3087		seq_puts(
3088			seq,
3089			"\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3090		return 0;
3091	}
3092	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3093	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3094
3095	seq_printf(seq, "\tgroups_scanned: %u\n",
3096		   atomic_read(&sbi->s_bal_groups_scanned));
3097
3098	/* CR_POWER2_ALIGNED stats */
3099	seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3100	seq_printf(seq, "\t\thits: %llu\n",
3101		   atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3102	seq_printf(
3103		seq, "\t\tgroups_considered: %llu\n",
3104		atomic64_read(
3105			&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3106	seq_printf(seq, "\t\textents_scanned: %u\n",
3107		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3108	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3109		   atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3110	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3111		   atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3112
3113	/* CR_GOAL_LEN_FAST stats */
3114	seq_puts(seq, "\tcr_goal_fast_stats:\n");
3115	seq_printf(seq, "\t\thits: %llu\n",
3116		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3117	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3118		   atomic64_read(
3119			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3120	seq_printf(seq, "\t\textents_scanned: %u\n",
3121		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3122	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3123		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3124	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3125		   atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3126
3127	/* CR_BEST_AVAIL_LEN stats */
3128	seq_puts(seq, "\tcr_best_avail_stats:\n");
3129	seq_printf(seq, "\t\thits: %llu\n",
3130		   atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3131	seq_printf(
3132		seq, "\t\tgroups_considered: %llu\n",
3133		atomic64_read(
3134			&sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3135	seq_printf(seq, "\t\textents_scanned: %u\n",
3136		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3137	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3138		   atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3139	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3140		   atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3141
3142	/* CR_GOAL_LEN_SLOW stats */
3143	seq_puts(seq, "\tcr_goal_slow_stats:\n");
3144	seq_printf(seq, "\t\thits: %llu\n",
3145		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3146	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3147		   atomic64_read(
3148			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3149	seq_printf(seq, "\t\textents_scanned: %u\n",
3150		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3151	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3152		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3153
3154	/* CR_ANY_FREE stats */
3155	seq_puts(seq, "\tcr_any_free_stats:\n");
3156	seq_printf(seq, "\t\thits: %llu\n",
3157		   atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3158	seq_printf(
3159		seq, "\t\tgroups_considered: %llu\n",
3160		atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3161	seq_printf(seq, "\t\textents_scanned: %u\n",
3162		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3163	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3164		   atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3165
3166	/* Aggregates */
3167	seq_printf(seq, "\textents_scanned: %u\n",
3168		   atomic_read(&sbi->s_bal_ex_scanned));
3169	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3170	seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3171		   atomic_read(&sbi->s_bal_len_goals));
3172	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3173	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3174	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3175	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3176		   atomic_read(&sbi->s_mb_buddies_generated),
3177		   ext4_get_groups_count(sb));
3178	seq_printf(seq, "\tbuddies_time_used: %llu\n",
3179		   atomic64_read(&sbi->s_mb_generation_time));
3180	seq_printf(seq, "\tpreallocated: %u\n",
3181		   atomic_read(&sbi->s_mb_preallocated));
3182	seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3183	return 0;
3184}
3185
3186static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3187__acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3188{
3189	struct super_block *sb = pde_data(file_inode(seq->file));
3190	unsigned long position;
3191
3192	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3193		return NULL;
3194	position = *pos + 1;
3195	return (void *) ((unsigned long) position);
3196}
3197
3198static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3199{
3200	struct super_block *sb = pde_data(file_inode(seq->file));
3201	unsigned long position;
3202
3203	++*pos;
3204	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3205		return NULL;
3206	position = *pos + 1;
3207	return (void *) ((unsigned long) position);
3208}
3209
3210static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3211{
3212	struct super_block *sb = pde_data(file_inode(seq->file));
3213	struct ext4_sb_info *sbi = EXT4_SB(sb);
3214	unsigned long position = ((unsigned long) v);
3215	struct ext4_group_info *grp;
3216	unsigned int count;
3217
3218	position--;
3219	if (position >= MB_NUM_ORDERS(sb)) {
3220		position -= MB_NUM_ORDERS(sb);
3221		if (position == 0)
3222			seq_puts(seq, "avg_fragment_size_lists:\n");
3223
3224		count = 0;
3225		read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3226		list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3227				    bb_avg_fragment_size_node)
3228			count++;
3229		read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3230		seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3231					(unsigned int)position, count);
3232		return 0;
3233	}
3234
3235	if (position == 0) {
3236		seq_printf(seq, "optimize_scan: %d\n",
3237			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3238		seq_puts(seq, "max_free_order_lists:\n");
3239	}
3240	count = 0;
3241	read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3242	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3243			    bb_largest_free_order_node)
3244		count++;
3245	read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3246	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3247		   (unsigned int)position, count);
3248
3249	return 0;
3250}
3251
3252static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3253{
3254}
3255
3256const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3257	.start  = ext4_mb_seq_structs_summary_start,
3258	.next   = ext4_mb_seq_structs_summary_next,
3259	.stop   = ext4_mb_seq_structs_summary_stop,
3260	.show   = ext4_mb_seq_structs_summary_show,
3261};
3262
3263static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3264{
3265	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3266	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3267
3268	BUG_ON(!cachep);
3269	return cachep;
3270}
3271
3272/*
3273 * Allocate the top-level s_group_info array for the specified number
3274 * of groups
3275 */
3276int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3277{
3278	struct ext4_sb_info *sbi = EXT4_SB(sb);
3279	unsigned size;
3280	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3281
3282	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3283		EXT4_DESC_PER_BLOCK_BITS(sb);
3284	if (size <= sbi->s_group_info_size)
3285		return 0;
3286
3287	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3288	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3289	if (!new_groupinfo) {
3290		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3291		return -ENOMEM;
3292	}
3293	rcu_read_lock();
3294	old_groupinfo = rcu_dereference(sbi->s_group_info);
3295	if (old_groupinfo)
3296		memcpy(new_groupinfo, old_groupinfo,
3297		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3298	rcu_read_unlock();
3299	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3300	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3301	if (old_groupinfo)
3302		ext4_kvfree_array_rcu(old_groupinfo);
3303	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3304		   sbi->s_group_info_size);
3305	return 0;
3306}
3307
3308/* Create and initialize ext4_group_info data for the given group. */
3309int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3310			  struct ext4_group_desc *desc)
3311{
3312	int i;
3313	int metalen = 0;
3314	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3315	struct ext4_sb_info *sbi = EXT4_SB(sb);
3316	struct ext4_group_info **meta_group_info;
3317	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3318
3319	/*
3320	 * First check if this group is the first of a reserved block.
3321	 * If it's true, we have to allocate a new table of pointers
3322	 * to ext4_group_info structures
3323	 */
3324	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3325		metalen = sizeof(*meta_group_info) <<
3326			EXT4_DESC_PER_BLOCK_BITS(sb);
3327		meta_group_info = kmalloc(metalen, GFP_NOFS);
3328		if (meta_group_info == NULL) {
3329			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3330				 "for a buddy group");
3331			return -ENOMEM;
3332		}
3333		rcu_read_lock();
3334		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3335		rcu_read_unlock();
3336	}
3337
3338	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3339	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3340
3341	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3342	if (meta_group_info[i] == NULL) {
3343		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3344		goto exit_group_info;
3345	}
3346	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3347		&(meta_group_info[i]->bb_state));
3348
3349	/*
3350	 * initialize bb_free to be able to skip
3351	 * empty groups without initialization
3352	 */
3353	if (ext4_has_group_desc_csum(sb) &&
3354	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3355		meta_group_info[i]->bb_free =
3356			ext4_free_clusters_after_init(sb, group, desc);
3357	} else {
3358		meta_group_info[i]->bb_free =
3359			ext4_free_group_clusters(sb, desc);
3360	}
3361
3362	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3363	init_rwsem(&meta_group_info[i]->alloc_sem);
3364	meta_group_info[i]->bb_free_root = RB_ROOT;
3365	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3366	INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3367	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3368	meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3369	meta_group_info[i]->bb_group = group;
3370
3371	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3372	return 0;
3373
3374exit_group_info:
3375	/* If a meta_group_info table has been allocated, release it now */
3376	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3377		struct ext4_group_info ***group_info;
3378
3379		rcu_read_lock();
3380		group_info = rcu_dereference(sbi->s_group_info);
3381		kfree(group_info[idx]);
3382		group_info[idx] = NULL;
3383		rcu_read_unlock();
3384	}
3385	return -ENOMEM;
3386} /* ext4_mb_add_groupinfo */
3387
3388static int ext4_mb_init_backend(struct super_block *sb)
3389{
3390	ext4_group_t ngroups = ext4_get_groups_count(sb);
3391	ext4_group_t i;
3392	struct ext4_sb_info *sbi = EXT4_SB(sb);
3393	int err;
3394	struct ext4_group_desc *desc;
3395	struct ext4_group_info ***group_info;
3396	struct kmem_cache *cachep;
3397
3398	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3399	if (err)
3400		return err;
3401
3402	sbi->s_buddy_cache = new_inode(sb);
3403	if (sbi->s_buddy_cache == NULL) {
3404		ext4_msg(sb, KERN_ERR, "can't get new inode");
3405		goto err_freesgi;
3406	}
3407	/* To avoid potentially colliding with an valid on-disk inode number,
3408	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3409	 * not in the inode hash, so it should never be found by iget(), but
3410	 * this will avoid confusion if it ever shows up during debugging. */
3411	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3412	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3413	for (i = 0; i < ngroups; i++) {
3414		cond_resched();
3415		desc = ext4_get_group_desc(sb, i, NULL);
3416		if (desc == NULL) {
3417			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3418			goto err_freebuddy;
3419		}
3420		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3421			goto err_freebuddy;
3422	}
3423
3424	if (ext4_has_feature_flex_bg(sb)) {
3425		/* a single flex group is supposed to be read by a single IO.
3426		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3427		 * unsigned integer, so the maximum shift is 32.
3428		 */
3429		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3430			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3431			goto err_freebuddy;
3432		}
3433		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3434			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3435		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3436	} else {
3437		sbi->s_mb_prefetch = 32;
3438	}
3439	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3440		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3441	/* now many real IOs to prefetch within a single allocation at cr=0
3442	 * given cr=0 is an CPU-related optimization we shouldn't try to
3443	 * load too many groups, at some point we should start to use what
3444	 * we've got in memory.
3445	 * with an average random access time 5ms, it'd take a second to get
3446	 * 200 groups (* N with flex_bg), so let's make this limit 4
3447	 */
3448	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3449	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3450		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3451
3452	return 0;
3453
3454err_freebuddy:
3455	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3456	while (i-- > 0) {
3457		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3458
3459		if (grp)
3460			kmem_cache_free(cachep, grp);
3461	}
3462	i = sbi->s_group_info_size;
3463	rcu_read_lock();
3464	group_info = rcu_dereference(sbi->s_group_info);
3465	while (i-- > 0)
3466		kfree(group_info[i]);
3467	rcu_read_unlock();
3468	iput(sbi->s_buddy_cache);
3469err_freesgi:
3470	rcu_read_lock();
3471	kvfree(rcu_dereference(sbi->s_group_info));
3472	rcu_read_unlock();
3473	return -ENOMEM;
3474}
3475
3476static void ext4_groupinfo_destroy_slabs(void)
3477{
3478	int i;
3479
3480	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3481		kmem_cache_destroy(ext4_groupinfo_caches[i]);
3482		ext4_groupinfo_caches[i] = NULL;
3483	}
3484}
3485
3486static int ext4_groupinfo_create_slab(size_t size)
3487{
3488	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3489	int slab_size;
3490	int blocksize_bits = order_base_2(size);
3491	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3492	struct kmem_cache *cachep;
3493
3494	if (cache_index >= NR_GRPINFO_CACHES)
3495		return -EINVAL;
3496
3497	if (unlikely(cache_index < 0))
3498		cache_index = 0;
3499
3500	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3501	if (ext4_groupinfo_caches[cache_index]) {
3502		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3503		return 0;	/* Already created */
3504	}
3505
3506	slab_size = offsetof(struct ext4_group_info,
3507				bb_counters[blocksize_bits + 2]);
3508
3509	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3510					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3511					NULL);
3512
3513	ext4_groupinfo_caches[cache_index] = cachep;
3514
3515	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3516	if (!cachep) {
3517		printk(KERN_EMERG
3518		       "EXT4-fs: no memory for groupinfo slab cache\n");
3519		return -ENOMEM;
3520	}
3521
3522	return 0;
3523}
3524
3525static void ext4_discard_work(struct work_struct *work)
3526{
3527	struct ext4_sb_info *sbi = container_of(work,
3528			struct ext4_sb_info, s_discard_work);
3529	struct super_block *sb = sbi->s_sb;
3530	struct ext4_free_data *fd, *nfd;
3531	struct ext4_buddy e4b;
3532	LIST_HEAD(discard_list);
3533	ext4_group_t grp, load_grp;
3534	int err = 0;
3535
3536	spin_lock(&sbi->s_md_lock);
3537	list_splice_init(&sbi->s_discard_list, &discard_list);
3538	spin_unlock(&sbi->s_md_lock);
3539
3540	load_grp = UINT_MAX;
3541	list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3542		/*
3543		 * If filesystem is umounting or no memory or suffering
3544		 * from no space, give up the discard
3545		 */
3546		if ((sb->s_flags & SB_ACTIVE) && !err &&
3547		    !atomic_read(&sbi->s_retry_alloc_pending)) {
3548			grp = fd->efd_group;
3549			if (grp != load_grp) {
3550				if (load_grp != UINT_MAX)
3551					ext4_mb_unload_buddy(&e4b);
3552
3553				err = ext4_mb_load_buddy(sb, grp, &e4b);
3554				if (err) {
3555					kmem_cache_free(ext4_free_data_cachep, fd);
3556					load_grp = UINT_MAX;
3557					continue;
3558				} else {
3559					load_grp = grp;
3560				}
3561			}
3562
3563			ext4_lock_group(sb, grp);
3564			ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3565						fd->efd_start_cluster + fd->efd_count - 1, 1);
3566			ext4_unlock_group(sb, grp);
3567		}
3568		kmem_cache_free(ext4_free_data_cachep, fd);
3569	}
3570
3571	if (load_grp != UINT_MAX)
3572		ext4_mb_unload_buddy(&e4b);
3573}
3574
3575int ext4_mb_init(struct super_block *sb)
3576{
3577	struct ext4_sb_info *sbi = EXT4_SB(sb);
3578	unsigned i, j;
3579	unsigned offset, offset_incr;
3580	unsigned max;
3581	int ret;
3582
3583	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3584
3585	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3586	if (sbi->s_mb_offsets == NULL) {
3587		ret = -ENOMEM;
3588		goto out;
3589	}
3590
3591	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3592	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3593	if (sbi->s_mb_maxs == NULL) {
3594		ret = -ENOMEM;
3595		goto out;
3596	}
3597
3598	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3599	if (ret < 0)
3600		goto out;
3601
3602	/* order 0 is regular bitmap */
3603	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3604	sbi->s_mb_offsets[0] = 0;
3605
3606	i = 1;
3607	offset = 0;
3608	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3609	max = sb->s_blocksize << 2;
3610	do {
3611		sbi->s_mb_offsets[i] = offset;
3612		sbi->s_mb_maxs[i] = max;
3613		offset += offset_incr;
3614		offset_incr = offset_incr >> 1;
3615		max = max >> 1;
3616		i++;
3617	} while (i < MB_NUM_ORDERS(sb));
3618
3619	sbi->s_mb_avg_fragment_size =
3620		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3621			GFP_KERNEL);
3622	if (!sbi->s_mb_avg_fragment_size) {
3623		ret = -ENOMEM;
3624		goto out;
3625	}
3626	sbi->s_mb_avg_fragment_size_locks =
3627		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3628			GFP_KERNEL);
3629	if (!sbi->s_mb_avg_fragment_size_locks) {
3630		ret = -ENOMEM;
3631		goto out;
3632	}
3633	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3634		INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3635		rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3636	}
3637	sbi->s_mb_largest_free_orders =
3638		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3639			GFP_KERNEL);
3640	if (!sbi->s_mb_largest_free_orders) {
3641		ret = -ENOMEM;
3642		goto out;
3643	}
3644	sbi->s_mb_largest_free_orders_locks =
3645		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3646			GFP_KERNEL);
3647	if (!sbi->s_mb_largest_free_orders_locks) {
3648		ret = -ENOMEM;
3649		goto out;
3650	}
3651	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3652		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3653		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3654	}
3655
3656	spin_lock_init(&sbi->s_md_lock);
3657	sbi->s_mb_free_pending = 0;
3658	INIT_LIST_HEAD(&sbi->s_freed_data_list);
3659	INIT_LIST_HEAD(&sbi->s_discard_list);
3660	INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3661	atomic_set(&sbi->s_retry_alloc_pending, 0);
3662
3663	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3664	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3665	sbi->s_mb_stats = MB_DEFAULT_STATS;
3666	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3667	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3668	sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3669
3670	/*
3671	 * The default group preallocation is 512, which for 4k block
3672	 * sizes translates to 2 megabytes.  However for bigalloc file
3673	 * systems, this is probably too big (i.e, if the cluster size
3674	 * is 1 megabyte, then group preallocation size becomes half a
3675	 * gigabyte!).  As a default, we will keep a two megabyte
3676	 * group pralloc size for cluster sizes up to 64k, and after
3677	 * that, we will force a minimum group preallocation size of
3678	 * 32 clusters.  This translates to 8 megs when the cluster
3679	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3680	 * which seems reasonable as a default.
3681	 */
3682	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3683				       sbi->s_cluster_bits, 32);
3684	/*
3685	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3686	 * to the lowest multiple of s_stripe which is bigger than
3687	 * the s_mb_group_prealloc as determined above. We want
3688	 * the preallocation size to be an exact multiple of the
3689	 * RAID stripe size so that preallocations don't fragment
3690	 * the stripes.
3691	 */
3692	if (sbi->s_stripe > 1) {
3693		sbi->s_mb_group_prealloc = roundup(
3694			sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3695	}
3696
3697	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3698	if (sbi->s_locality_groups == NULL) {
3699		ret = -ENOMEM;
3700		goto out;
3701	}
3702	for_each_possible_cpu(i) {
3703		struct ext4_locality_group *lg;
3704		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3705		mutex_init(&lg->lg_mutex);
3706		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3707			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3708		spin_lock_init(&lg->lg_prealloc_lock);
3709	}
3710
3711	if (bdev_nonrot(sb->s_bdev))
3712		sbi->s_mb_max_linear_groups = 0;
3713	else
3714		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3715	/* init file for buddy data */
3716	ret = ext4_mb_init_backend(sb);
3717	if (ret != 0)
3718		goto out_free_locality_groups;
3719
3720	return 0;
3721
3722out_free_locality_groups:
3723	free_percpu(sbi->s_locality_groups);
3724	sbi->s_locality_groups = NULL;
3725out:
3726	kfree(sbi->s_mb_avg_fragment_size);
3727	kfree(sbi->s_mb_avg_fragment_size_locks);
3728	kfree(sbi->s_mb_largest_free_orders);
3729	kfree(sbi->s_mb_largest_free_orders_locks);
3730	kfree(sbi->s_mb_offsets);
3731	sbi->s_mb_offsets = NULL;
3732	kfree(sbi->s_mb_maxs);
3733	sbi->s_mb_maxs = NULL;
3734	return ret;
3735}
3736
3737/* need to called with the ext4 group lock held */
3738static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3739{
3740	struct ext4_prealloc_space *pa;
3741	struct list_head *cur, *tmp;
3742	int count = 0;
3743
3744	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3745		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3746		list_del(&pa->pa_group_list);
3747		count++;
3748		kmem_cache_free(ext4_pspace_cachep, pa);
3749	}
3750	return count;
3751}
3752
3753int ext4_mb_release(struct super_block *sb)
3754{
3755	ext4_group_t ngroups = ext4_get_groups_count(sb);
3756	ext4_group_t i;
3757	int num_meta_group_infos;
3758	struct ext4_group_info *grinfo, ***group_info;
3759	struct ext4_sb_info *sbi = EXT4_SB(sb);
3760	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3761	int count;
3762
3763	if (test_opt(sb, DISCARD)) {
3764		/*
3765		 * wait the discard work to drain all of ext4_free_data
3766		 */
3767		flush_work(&sbi->s_discard_work);
3768		WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3769	}
3770
3771	if (sbi->s_group_info) {
3772		for (i = 0; i < ngroups; i++) {
3773			cond_resched();
3774			grinfo = ext4_get_group_info(sb, i);
3775			if (!grinfo)
3776				continue;
3777			mb_group_bb_bitmap_free(grinfo);
3778			ext4_lock_group(sb, i);
3779			count = ext4_mb_cleanup_pa(grinfo);
3780			if (count)
3781				mb_debug(sb, "mballoc: %d PAs left\n",
3782					 count);
3783			ext4_unlock_group(sb, i);
3784			kmem_cache_free(cachep, grinfo);
3785		}
3786		num_meta_group_infos = (ngroups +
3787				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3788			EXT4_DESC_PER_BLOCK_BITS(sb);
3789		rcu_read_lock();
3790		group_info = rcu_dereference(sbi->s_group_info);
3791		for (i = 0; i < num_meta_group_infos; i++)
3792			kfree(group_info[i]);
3793		kvfree(group_info);
3794		rcu_read_unlock();
3795	}
3796	kfree(sbi->s_mb_avg_fragment_size);
3797	kfree(sbi->s_mb_avg_fragment_size_locks);
3798	kfree(sbi->s_mb_largest_free_orders);
3799	kfree(sbi->s_mb_largest_free_orders_locks);
3800	kfree(sbi->s_mb_offsets);
3801	kfree(sbi->s_mb_maxs);
3802	iput(sbi->s_buddy_cache);
3803	if (sbi->s_mb_stats) {
3804		ext4_msg(sb, KERN_INFO,
3805		       "mballoc: %u blocks %u reqs (%u success)",
3806				atomic_read(&sbi->s_bal_allocated),
3807				atomic_read(&sbi->s_bal_reqs),
3808				atomic_read(&sbi->s_bal_success));
3809		ext4_msg(sb, KERN_INFO,
3810		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3811				"%u 2^N hits, %u breaks, %u lost",
3812				atomic_read(&sbi->s_bal_ex_scanned),
3813				atomic_read(&sbi->s_bal_groups_scanned),
3814				atomic_read(&sbi->s_bal_goals),
3815				atomic_read(&sbi->s_bal_2orders),
3816				atomic_read(&sbi->s_bal_breaks),
3817				atomic_read(&sbi->s_mb_lost_chunks));
3818		ext4_msg(sb, KERN_INFO,
3819		       "mballoc: %u generated and it took %llu",
3820				atomic_read(&sbi->s_mb_buddies_generated),
3821				atomic64_read(&sbi->s_mb_generation_time));
3822		ext4_msg(sb, KERN_INFO,
3823		       "mballoc: %u preallocated, %u discarded",
3824				atomic_read(&sbi->s_mb_preallocated),
3825				atomic_read(&sbi->s_mb_discarded));
3826	}
3827
3828	free_percpu(sbi->s_locality_groups);
3829
3830	return 0;
3831}
3832
3833static inline int ext4_issue_discard(struct super_block *sb,
3834		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3835		struct bio **biop)
3836{
3837	ext4_fsblk_t discard_block;
3838
3839	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3840			 ext4_group_first_block_no(sb, block_group));
3841	count = EXT4_C2B(EXT4_SB(sb), count);
3842	trace_ext4_discard_blocks(sb,
3843			(unsigned long long) discard_block, count);
3844	if (biop) {
3845		return __blkdev_issue_discard(sb->s_bdev,
3846			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3847			(sector_t)count << (sb->s_blocksize_bits - 9),
3848			GFP_NOFS, biop);
3849	} else
3850		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3851}
3852
3853static void ext4_free_data_in_buddy(struct super_block *sb,
3854				    struct ext4_free_data *entry)
3855{
3856	struct ext4_buddy e4b;
3857	struct ext4_group_info *db;
3858	int err, count = 0;
3859
3860	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3861		 entry->efd_count, entry->efd_group, entry);
3862
3863	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3864	/* we expect to find existing buddy because it's pinned */
3865	BUG_ON(err != 0);
3866
3867	spin_lock(&EXT4_SB(sb)->s_md_lock);
3868	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3869	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3870
3871	db = e4b.bd_info;
3872	/* there are blocks to put in buddy to make them really free */
3873	count += entry->efd_count;
3874	ext4_lock_group(sb, entry->efd_group);
3875	/* Take it out of per group rb tree */
3876	rb_erase(&entry->efd_node, &(db->bb_free_root));
3877	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3878
3879	/*
3880	 * Clear the trimmed flag for the group so that the next
3881	 * ext4_trim_fs can trim it.
3882	 * If the volume is mounted with -o discard, online discard
3883	 * is supported and the free blocks will be trimmed online.
3884	 */
3885	if (!test_opt(sb, DISCARD))
3886		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3887
3888	if (!db->bb_free_root.rb_node) {
3889		/* No more items in the per group rb tree
3890		 * balance refcounts from ext4_mb_free_metadata()
3891		 */
3892		put_page(e4b.bd_buddy_page);
3893		put_page(e4b.bd_bitmap_page);
3894	}
3895	ext4_unlock_group(sb, entry->efd_group);
3896	ext4_mb_unload_buddy(&e4b);
3897
3898	mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3899}
3900
3901/*
3902 * This function is called by the jbd2 layer once the commit has finished,
3903 * so we know we can free the blocks that were released with that commit.
3904 */
3905void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3906{
3907	struct ext4_sb_info *sbi = EXT4_SB(sb);
3908	struct ext4_free_data *entry, *tmp;
3909	LIST_HEAD(freed_data_list);
3910	struct list_head *cut_pos = NULL;
3911	bool wake;
3912
3913	spin_lock(&sbi->s_md_lock);
3914	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3915		if (entry->efd_tid != commit_tid)
3916			break;
3917		cut_pos = &entry->efd_list;
3918	}
3919	if (cut_pos)
3920		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3921				  cut_pos);
3922	spin_unlock(&sbi->s_md_lock);
3923
3924	list_for_each_entry(entry, &freed_data_list, efd_list)
3925		ext4_free_data_in_buddy(sb, entry);
3926
3927	if (test_opt(sb, DISCARD)) {
3928		spin_lock(&sbi->s_md_lock);
3929		wake = list_empty(&sbi->s_discard_list);
3930		list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3931		spin_unlock(&sbi->s_md_lock);
3932		if (wake)
3933			queue_work(system_unbound_wq, &sbi->s_discard_work);
3934	} else {
3935		list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3936			kmem_cache_free(ext4_free_data_cachep, entry);
3937	}
3938}
3939
3940int __init ext4_init_mballoc(void)
3941{
3942	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3943					SLAB_RECLAIM_ACCOUNT);
3944	if (ext4_pspace_cachep == NULL)
3945		goto out;
3946
3947	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3948				    SLAB_RECLAIM_ACCOUNT);
3949	if (ext4_ac_cachep == NULL)
3950		goto out_pa_free;
3951
3952	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3953					   SLAB_RECLAIM_ACCOUNT);
3954	if (ext4_free_data_cachep == NULL)
3955		goto out_ac_free;
3956
3957	return 0;
3958
3959out_ac_free:
3960	kmem_cache_destroy(ext4_ac_cachep);
3961out_pa_free:
3962	kmem_cache_destroy(ext4_pspace_cachep);
3963out:
3964	return -ENOMEM;
3965}
3966
3967void ext4_exit_mballoc(void)
3968{
3969	/*
3970	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3971	 * before destroying the slab cache.
3972	 */
3973	rcu_barrier();
3974	kmem_cache_destroy(ext4_pspace_cachep);
3975	kmem_cache_destroy(ext4_ac_cachep);
3976	kmem_cache_destroy(ext4_free_data_cachep);
3977	ext4_groupinfo_destroy_slabs();
3978}
3979
3980
3981/*
3982 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3983 * Returns 0 if success or error code
3984 */
3985static noinline_for_stack int
3986ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3987				handle_t *handle, unsigned int reserv_clstrs)
3988{
3989	struct buffer_head *bitmap_bh = NULL;
3990	struct ext4_group_desc *gdp;
3991	struct buffer_head *gdp_bh;
3992	struct ext4_sb_info *sbi;
3993	struct super_block *sb;
3994	ext4_fsblk_t block;
3995	int err, len;
3996
3997	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3998	BUG_ON(ac->ac_b_ex.fe_len <= 0);
3999
4000	sb = ac->ac_sb;
4001	sbi = EXT4_SB(sb);
4002
4003	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
4004	if (IS_ERR(bitmap_bh)) {
4005		return PTR_ERR(bitmap_bh);
4006	}
4007
4008	BUFFER_TRACE(bitmap_bh, "getting write access");
4009	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
4010					    EXT4_JTR_NONE);
4011	if (err)
4012		goto out_err;
4013
4014	err = -EIO;
4015	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
4016	if (!gdp)
4017		goto out_err;
4018
4019	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4020			ext4_free_group_clusters(sb, gdp));
4021
4022	BUFFER_TRACE(gdp_bh, "get_write_access");
4023	err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE);
4024	if (err)
4025		goto out_err;
4026
4027	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4028
4029	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4030	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4031		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4032			   "fs metadata", block, block+len);
4033		/* File system mounted not to panic on error
4034		 * Fix the bitmap and return EFSCORRUPTED
4035		 * We leak some of the blocks here.
4036		 */
4037		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
4038		mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
4039			      ac->ac_b_ex.fe_len);
4040		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
4041		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4042		if (!err)
4043			err = -EFSCORRUPTED;
4044		goto out_err;
4045	}
4046
4047	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
4048#ifdef AGGRESSIVE_CHECK
4049	{
4050		int i;
4051		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
4052			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
4053						bitmap_bh->b_data));
4054		}
4055	}
4056#endif
4057	mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
4058		      ac->ac_b_ex.fe_len);
4059	if (ext4_has_group_desc_csum(sb) &&
4060	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4061		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4062		ext4_free_group_clusters_set(sb, gdp,
4063					     ext4_free_clusters_after_init(sb,
4064						ac->ac_b_ex.fe_group, gdp));
4065	}
4066	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
4067	ext4_free_group_clusters_set(sb, gdp, len);
4068	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4069	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
4070
4071	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
4072	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4073	/*
4074	 * Now reduce the dirty block count also. Should not go negative
4075	 */
4076	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4077		/* release all the reserved blocks if non delalloc */
4078		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4079				   reserv_clstrs);
4080
4081	if (sbi->s_log_groups_per_flex) {
4082		ext4_group_t flex_group = ext4_flex_group(sbi,
4083							  ac->ac_b_ex.fe_group);
4084		atomic64_sub(ac->ac_b_ex.fe_len,
4085			     &sbi_array_rcu_deref(sbi, s_flex_groups,
4086						  flex_group)->free_clusters);
4087	}
4088
4089	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4090	if (err)
4091		goto out_err;
4092	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4093
4094out_err:
4095	brelse(bitmap_bh);
4096	return err;
4097}
4098
4099/*
4100 * Idempotent helper for Ext4 fast commit replay path to set the state of
4101 * blocks in bitmaps and update counters.
4102 */
4103void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4104			int len, int state)
4105{
4106	struct buffer_head *bitmap_bh = NULL;
4107	struct ext4_group_desc *gdp;
4108	struct buffer_head *gdp_bh;
4109	struct ext4_sb_info *sbi = EXT4_SB(sb);
4110	ext4_group_t group;
4111	ext4_grpblk_t blkoff;
4112	int i, err = 0;
4113	int already;
4114	unsigned int clen, clen_changed, thisgrp_len;
4115
4116	while (len > 0) {
4117		ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4118
4119		/*
4120		 * Check to see if we are freeing blocks across a group
4121		 * boundary.
4122		 * In case of flex_bg, this can happen that (block, len) may
4123		 * span across more than one group. In that case we need to
4124		 * get the corresponding group metadata to work with.
4125		 * For this we have goto again loop.
4126		 */
4127		thisgrp_len = min_t(unsigned int, (unsigned int)len,
4128			EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4129		clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4130
4131		if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4132			ext4_error(sb, "Marking blocks in system zone - "
4133				   "Block = %llu, len = %u",
4134				   block, thisgrp_len);
4135			bitmap_bh = NULL;
4136			break;
4137		}
4138
4139		bitmap_bh = ext4_read_block_bitmap(sb, group);
4140		if (IS_ERR(bitmap_bh)) {
4141			err = PTR_ERR(bitmap_bh);
4142			bitmap_bh = NULL;
4143			break;
4144		}
4145
4146		err = -EIO;
4147		gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4148		if (!gdp)
4149			break;
4150
4151		ext4_lock_group(sb, group);
4152		already = 0;
4153		for (i = 0; i < clen; i++)
4154			if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4155					 !state)
4156				already++;
4157
4158		clen_changed = clen - already;
4159		if (state)
4160			mb_set_bits(bitmap_bh->b_data, blkoff, clen);
4161		else
4162			mb_clear_bits(bitmap_bh->b_data, blkoff, clen);
4163		if (ext4_has_group_desc_csum(sb) &&
4164		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4165			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4166			ext4_free_group_clusters_set(sb, gdp,
4167			     ext4_free_clusters_after_init(sb, group, gdp));
4168		}
4169		if (state)
4170			clen = ext4_free_group_clusters(sb, gdp) - clen_changed;
4171		else
4172			clen = ext4_free_group_clusters(sb, gdp) + clen_changed;
4173
4174		ext4_free_group_clusters_set(sb, gdp, clen);
4175		ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4176		ext4_group_desc_csum_set(sb, group, gdp);
4177
4178		ext4_unlock_group(sb, group);
4179
4180		if (sbi->s_log_groups_per_flex) {
4181			ext4_group_t flex_group = ext4_flex_group(sbi, group);
4182			struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4183						   s_flex_groups, flex_group);
4184
4185			if (state)
4186				atomic64_sub(clen_changed, &fg->free_clusters);
4187			else
4188				atomic64_add(clen_changed, &fg->free_clusters);
4189
4190		}
4191
4192		err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
4193		if (err)
4194			break;
4195		sync_dirty_buffer(bitmap_bh);
4196		err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
4197		sync_dirty_buffer(gdp_bh);
4198		if (err)
4199			break;
4200
4201		block += thisgrp_len;
4202		len -= thisgrp_len;
4203		brelse(bitmap_bh);
4204		BUG_ON(len < 0);
4205	}
4206
4207	if (err)
4208		brelse(bitmap_bh);
4209}
4210
4211/*
4212 * here we normalize request for locality group
4213 * Group request are normalized to s_mb_group_prealloc, which goes to
4214 * s_strip if we set the same via mount option.
4215 * s_mb_group_prealloc can be configured via
4216 * /sys/fs/ext4/<partition>/mb_group_prealloc
4217 *
4218 * XXX: should we try to preallocate more than the group has now?
4219 */
4220static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4221{
4222	struct super_block *sb = ac->ac_sb;
4223	struct ext4_locality_group *lg = ac->ac_lg;
4224
4225	BUG_ON(lg == NULL);
4226	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4227	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4228}
4229
4230/*
4231 * This function returns the next element to look at during inode
4232 * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4233 * (ei->i_prealloc_lock)
4234 *
4235 * new_start	The start of the range we want to compare
4236 * cur_start	The existing start that we are comparing against
4237 * node	The node of the rb_tree
4238 */
4239static inline struct rb_node*
4240ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4241{
4242	if (new_start < cur_start)
4243		return node->rb_left;
4244	else
4245		return node->rb_right;
4246}
4247
4248static inline void
4249ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4250			  ext4_lblk_t start, loff_t end)
4251{
4252	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4253	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4254	struct ext4_prealloc_space *tmp_pa;
4255	ext4_lblk_t tmp_pa_start;
4256	loff_t tmp_pa_end;
4257	struct rb_node *iter;
4258
4259	read_lock(&ei->i_prealloc_lock);
4260	for (iter = ei->i_prealloc_node.rb_node; iter;
4261	     iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4262		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4263				  pa_node.inode_node);
4264		tmp_pa_start = tmp_pa->pa_lstart;
4265		tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4266
4267		spin_lock(&tmp_pa->pa_lock);
4268		if (tmp_pa->pa_deleted == 0)
4269			BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4270		spin_unlock(&tmp_pa->pa_lock);
4271	}
4272	read_unlock(&ei->i_prealloc_lock);
4273}
4274
4275/*
4276 * Given an allocation context "ac" and a range "start", "end", check
4277 * and adjust boundaries if the range overlaps with any of the existing
4278 * preallocatoins stored in the corresponding inode of the allocation context.
4279 *
4280 * Parameters:
4281 *	ac			allocation context
4282 *	start			start of the new range
4283 *	end			end of the new range
4284 */
4285static inline void
4286ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4287			  ext4_lblk_t *start, loff_t *end)
4288{
4289	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4290	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4291	struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4292	struct rb_node *iter;
4293	ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4294	loff_t new_end, tmp_pa_end, left_pa_end = -1;
4295
4296	new_start = *start;
4297	new_end = *end;
4298
4299	/*
4300	 * Adjust the normalized range so that it doesn't overlap with any
4301	 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4302	 * so it doesn't change underneath us.
4303	 */
4304	read_lock(&ei->i_prealloc_lock);
4305
4306	/* Step 1: find any one immediate neighboring PA of the normalized range */
4307	for (iter = ei->i_prealloc_node.rb_node; iter;
4308	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4309					    tmp_pa_start, iter)) {
4310		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4311				  pa_node.inode_node);
4312		tmp_pa_start = tmp_pa->pa_lstart;
4313		tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4314
4315		/* PA must not overlap original request */
4316		spin_lock(&tmp_pa->pa_lock);
4317		if (tmp_pa->pa_deleted == 0)
4318			BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4319				 ac->ac_o_ex.fe_logical < tmp_pa_start));
4320		spin_unlock(&tmp_pa->pa_lock);
4321	}
4322
4323	/*
4324	 * Step 2: check if the found PA is left or right neighbor and
4325	 * get the other neighbor
4326	 */
4327	if (tmp_pa) {
4328		if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4329			struct rb_node *tmp;
4330
4331			left_pa = tmp_pa;
4332			tmp = rb_next(&left_pa->pa_node.inode_node);
4333			if (tmp) {
4334				right_pa = rb_entry(tmp,
4335						    struct ext4_prealloc_space,
4336						    pa_node.inode_node);
4337			}
4338		} else {
4339			struct rb_node *tmp;
4340
4341			right_pa = tmp_pa;
4342			tmp = rb_prev(&right_pa->pa_node.inode_node);
4343			if (tmp) {
4344				left_pa = rb_entry(tmp,
4345						   struct ext4_prealloc_space,
4346						   pa_node.inode_node);
4347			}
4348		}
4349	}
4350
4351	/* Step 3: get the non deleted neighbors */
4352	if (left_pa) {
4353		for (iter = &left_pa->pa_node.inode_node;;
4354		     iter = rb_prev(iter)) {
4355			if (!iter) {
4356				left_pa = NULL;
4357				break;
4358			}
4359
4360			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4361					  pa_node.inode_node);
4362			left_pa = tmp_pa;
4363			spin_lock(&tmp_pa->pa_lock);
4364			if (tmp_pa->pa_deleted == 0) {
4365				spin_unlock(&tmp_pa->pa_lock);
4366				break;
4367			}
4368			spin_unlock(&tmp_pa->pa_lock);
4369		}
4370	}
4371
4372	if (right_pa) {
4373		for (iter = &right_pa->pa_node.inode_node;;
4374		     iter = rb_next(iter)) {
4375			if (!iter) {
4376				right_pa = NULL;
4377				break;
4378			}
4379
4380			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4381					  pa_node.inode_node);
4382			right_pa = tmp_pa;
4383			spin_lock(&tmp_pa->pa_lock);
4384			if (tmp_pa->pa_deleted == 0) {
4385				spin_unlock(&tmp_pa->pa_lock);
4386				break;
4387			}
4388			spin_unlock(&tmp_pa->pa_lock);
4389		}
4390	}
4391
4392	if (left_pa) {
4393		left_pa_end = pa_logical_end(sbi, left_pa);
4394		BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4395	}
4396
4397	if (right_pa) {
4398		right_pa_start = right_pa->pa_lstart;
4399		BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4400	}
4401
4402	/* Step 4: trim our normalized range to not overlap with the neighbors */
4403	if (left_pa) {
4404		if (left_pa_end > new_start)
4405			new_start = left_pa_end;
4406	}
4407
4408	if (right_pa) {
4409		if (right_pa_start < new_end)
4410			new_end = right_pa_start;
4411	}
4412	read_unlock(&ei->i_prealloc_lock);
4413
4414	/* XXX: extra loop to check we really don't overlap preallocations */
4415	ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4416
4417	*start = new_start;
4418	*end = new_end;
4419}
4420
4421/*
4422 * Normalization means making request better in terms of
4423 * size and alignment
4424 */
4425static noinline_for_stack void
4426ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4427				struct ext4_allocation_request *ar)
4428{
4429	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4430	struct ext4_super_block *es = sbi->s_es;
4431	int bsbits, max;
4432	loff_t size, start_off, end;
4433	loff_t orig_size __maybe_unused;
4434	ext4_lblk_t start;
4435
4436	/* do normalize only data requests, metadata requests
4437	   do not need preallocation */
4438	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4439		return;
4440
4441	/* sometime caller may want exact blocks */
4442	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4443		return;
4444
4445	/* caller may indicate that preallocation isn't
4446	 * required (it's a tail, for example) */
4447	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4448		return;
4449
4450	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4451		ext4_mb_normalize_group_request(ac);
4452		return ;
4453	}
4454
4455	bsbits = ac->ac_sb->s_blocksize_bits;
4456
4457	/* first, let's learn actual file size
4458	 * given current request is allocated */
4459	size = extent_logical_end(sbi, &ac->ac_o_ex);
4460	size = size << bsbits;
4461	if (size < i_size_read(ac->ac_inode))
4462		size = i_size_read(ac->ac_inode);
4463	orig_size = size;
4464
4465	/* max size of free chunks */
4466	max = 2 << bsbits;
4467
4468#define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
4469		(req <= (size) || max <= (chunk_size))
4470
4471	/* first, try to predict filesize */
4472	/* XXX: should this table be tunable? */
4473	start_off = 0;
4474	if (size <= 16 * 1024) {
4475		size = 16 * 1024;
4476	} else if (size <= 32 * 1024) {
4477		size = 32 * 1024;
4478	} else if (size <= 64 * 1024) {
4479		size = 64 * 1024;
4480	} else if (size <= 128 * 1024) {
4481		size = 128 * 1024;
4482	} else if (size <= 256 * 1024) {
4483		size = 256 * 1024;
4484	} else if (size <= 512 * 1024) {
4485		size = 512 * 1024;
4486	} else if (size <= 1024 * 1024) {
4487		size = 1024 * 1024;
4488	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4489		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4490						(21 - bsbits)) << 21;
4491		size = 2 * 1024 * 1024;
4492	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4493		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4494							(22 - bsbits)) << 22;
4495		size = 4 * 1024 * 1024;
4496	} else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4497					(8<<20)>>bsbits, max, 8 * 1024)) {
4498		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4499							(23 - bsbits)) << 23;
4500		size = 8 * 1024 * 1024;
4501	} else {
4502		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4503		size	  = (loff_t) EXT4_C2B(sbi,
4504					      ac->ac_o_ex.fe_len) << bsbits;
4505	}
4506	size = size >> bsbits;
4507	start = start_off >> bsbits;
4508
4509	/*
4510	 * For tiny groups (smaller than 8MB) the chosen allocation
4511	 * alignment may be larger than group size. Make sure the
4512	 * alignment does not move allocation to a different group which
4513	 * makes mballoc fail assertions later.
4514	 */
4515	start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4516			(ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4517
4518	/* avoid unnecessary preallocation that may trigger assertions */
4519	if (start + size > EXT_MAX_BLOCKS)
4520		size = EXT_MAX_BLOCKS - start;
4521
4522	/* don't cover already allocated blocks in selected range */
4523	if (ar->pleft && start <= ar->lleft) {
4524		size -= ar->lleft + 1 - start;
4525		start = ar->lleft + 1;
4526	}
4527	if (ar->pright && start + size - 1 >= ar->lright)
4528		size -= start + size - ar->lright;
4529
4530	/*
4531	 * Trim allocation request for filesystems with artificially small
4532	 * groups.
4533	 */
4534	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4535		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4536
4537	end = start + size;
4538
4539	ext4_mb_pa_adjust_overlap(ac, &start, &end);
4540
4541	size = end - start;
4542
4543	/*
4544	 * In this function "start" and "size" are normalized for better
4545	 * alignment and length such that we could preallocate more blocks.
4546	 * This normalization is done such that original request of
4547	 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4548	 * "size" boundaries.
4549	 * (Note fe_len can be relaxed since FS block allocation API does not
4550	 * provide gurantee on number of contiguous blocks allocation since that
4551	 * depends upon free space left, etc).
4552	 * In case of inode pa, later we use the allocated blocks
4553	 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4554	 * range of goal/best blocks [start, size] to put it at the
4555	 * ac_o_ex.fe_logical extent of this inode.
4556	 * (See ext4_mb_use_inode_pa() for more details)
4557	 */
4558	if (start + size <= ac->ac_o_ex.fe_logical ||
4559			start > ac->ac_o_ex.fe_logical) {
4560		ext4_msg(ac->ac_sb, KERN_ERR,
4561			 "start %lu, size %lu, fe_logical %lu",
4562			 (unsigned long) start, (unsigned long) size,
4563			 (unsigned long) ac->ac_o_ex.fe_logical);
4564		BUG();
4565	}
4566	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4567
4568	/* now prepare goal request */
4569
4570	/* XXX: is it better to align blocks WRT to logical
4571	 * placement or satisfy big request as is */
4572	ac->ac_g_ex.fe_logical = start;
4573	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4574	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4575
4576	/* define goal start in order to merge */
4577	if (ar->pright && (ar->lright == (start + size)) &&
4578	    ar->pright >= size &&
4579	    ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4580		/* merge to the right */
4581		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4582						&ac->ac_g_ex.fe_group,
4583						&ac->ac_g_ex.fe_start);
4584		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4585	}
4586	if (ar->pleft && (ar->lleft + 1 == start) &&
4587	    ar->pleft + 1 < ext4_blocks_count(es)) {
4588		/* merge to the left */
4589		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4590						&ac->ac_g_ex.fe_group,
4591						&ac->ac_g_ex.fe_start);
4592		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4593	}
4594
4595	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4596		 orig_size, start);
4597}
4598
4599static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4600{
4601	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4602
4603	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4604		atomic_inc(&sbi->s_bal_reqs);
4605		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4606		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4607			atomic_inc(&sbi->s_bal_success);
4608
4609		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4610		for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4611			atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4612		}
4613
4614		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4615		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4616				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4617			atomic_inc(&sbi->s_bal_goals);
4618		/* did we allocate as much as normalizer originally wanted? */
4619		if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4620			atomic_inc(&sbi->s_bal_len_goals);
4621
4622		if (ac->ac_found > sbi->s_mb_max_to_scan)
4623			atomic_inc(&sbi->s_bal_breaks);
4624	}
4625
4626	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4627		trace_ext4_mballoc_alloc(ac);
4628	else
4629		trace_ext4_mballoc_prealloc(ac);
4630}
4631
4632/*
4633 * Called on failure; free up any blocks from the inode PA for this
4634 * context.  We don't need this for MB_GROUP_PA because we only change
4635 * pa_free in ext4_mb_release_context(), but on failure, we've already
4636 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4637 */
4638static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4639{
4640	struct ext4_prealloc_space *pa = ac->ac_pa;
4641	struct ext4_buddy e4b;
4642	int err;
4643
4644	if (pa == NULL) {
4645		if (ac->ac_f_ex.fe_len == 0)
4646			return;
4647		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4648		if (WARN_RATELIMIT(err,
4649				   "ext4: mb_load_buddy failed (%d)", err))
4650			/*
4651			 * This should never happen since we pin the
4652			 * pages in the ext4_allocation_context so
4653			 * ext4_mb_load_buddy() should never fail.
4654			 */
4655			return;
4656		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4657		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4658			       ac->ac_f_ex.fe_len);
4659		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4660		ext4_mb_unload_buddy(&e4b);
4661		return;
4662	}
4663	if (pa->pa_type == MB_INODE_PA) {
4664		spin_lock(&pa->pa_lock);
4665		pa->pa_free += ac->ac_b_ex.fe_len;
4666		spin_unlock(&pa->pa_lock);
4667	}
4668}
4669
4670/*
4671 * use blocks preallocated to inode
4672 */
4673static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4674				struct ext4_prealloc_space *pa)
4675{
4676	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4677	ext4_fsblk_t start;
4678	ext4_fsblk_t end;
4679	int len;
4680
4681	/* found preallocated blocks, use them */
4682	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4683	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4684		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4685	len = EXT4_NUM_B2C(sbi, end - start);
4686	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4687					&ac->ac_b_ex.fe_start);
4688	ac->ac_b_ex.fe_len = len;
4689	ac->ac_status = AC_STATUS_FOUND;
4690	ac->ac_pa = pa;
4691
4692	BUG_ON(start < pa->pa_pstart);
4693	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4694	BUG_ON(pa->pa_free < len);
4695	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4696	pa->pa_free -= len;
4697
4698	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4699}
4700
4701/*
4702 * use blocks preallocated to locality group
4703 */
4704static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4705				struct ext4_prealloc_space *pa)
4706{
4707	unsigned int len = ac->ac_o_ex.fe_len;
4708
4709	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4710					&ac->ac_b_ex.fe_group,
4711					&ac->ac_b_ex.fe_start);
4712	ac->ac_b_ex.fe_len = len;
4713	ac->ac_status = AC_STATUS_FOUND;
4714	ac->ac_pa = pa;
4715
4716	/* we don't correct pa_pstart or pa_len here to avoid
4717	 * possible race when the group is being loaded concurrently
4718	 * instead we correct pa later, after blocks are marked
4719	 * in on-disk bitmap -- see ext4_mb_release_context()
4720	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4721	 */
4722	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4723		 pa->pa_lstart, len, pa);
4724}
4725
4726/*
4727 * Return the prealloc space that have minimal distance
4728 * from the goal block. @cpa is the prealloc
4729 * space that is having currently known minimal distance
4730 * from the goal block.
4731 */
4732static struct ext4_prealloc_space *
4733ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4734			struct ext4_prealloc_space *pa,
4735			struct ext4_prealloc_space *cpa)
4736{
4737	ext4_fsblk_t cur_distance, new_distance;
4738
4739	if (cpa == NULL) {
4740		atomic_inc(&pa->pa_count);
4741		return pa;
4742	}
4743	cur_distance = abs(goal_block - cpa->pa_pstart);
4744	new_distance = abs(goal_block - pa->pa_pstart);
4745
4746	if (cur_distance <= new_distance)
4747		return cpa;
4748
4749	/* drop the previous reference */
4750	atomic_dec(&cpa->pa_count);
4751	atomic_inc(&pa->pa_count);
4752	return pa;
4753}
4754
4755/*
4756 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4757 */
4758static bool
4759ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4760		      struct ext4_prealloc_space *pa)
4761{
4762	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4763	ext4_fsblk_t start;
4764
4765	if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4766		return true;
4767
4768	/*
4769	 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4770	 * in ext4_mb_normalize_request and will keep same with ac_o_ex
4771	 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4772	 * consistent with ext4_mb_find_by_goal.
4773	 */
4774	start = pa->pa_pstart +
4775		(ac->ac_g_ex.fe_logical - pa->pa_lstart);
4776	if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4777		return false;
4778
4779	if (ac->ac_g_ex.fe_len > pa->pa_len -
4780	    EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4781		return false;
4782
4783	return true;
4784}
4785
4786/*
4787 * search goal blocks in preallocated space
4788 */
4789static noinline_for_stack bool
4790ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4791{
4792	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4793	int order, i;
4794	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4795	struct ext4_locality_group *lg;
4796	struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4797	struct rb_node *iter;
4798	ext4_fsblk_t goal_block;
4799
4800	/* only data can be preallocated */
4801	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4802		return false;
4803
4804	/*
4805	 * first, try per-file preallocation by searching the inode pa rbtree.
4806	 *
4807	 * Here, we can't do a direct traversal of the tree because
4808	 * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4809	 * deleted and that can cause direct traversal to skip some entries.
4810	 */
4811	read_lock(&ei->i_prealloc_lock);
4812
4813	if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4814		goto try_group_pa;
4815	}
4816
4817	/*
4818	 * Step 1: Find a pa with logical start immediately adjacent to the
4819	 * original logical start. This could be on the left or right.
4820	 *
4821	 * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4822	 */
4823	for (iter = ei->i_prealloc_node.rb_node; iter;
4824	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4825					    tmp_pa->pa_lstart, iter)) {
4826		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4827				  pa_node.inode_node);
4828	}
4829
4830	/*
4831	 * Step 2: The adjacent pa might be to the right of logical start, find
4832	 * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4833	 * logical start is towards the left of original request's logical start
4834	 */
4835	if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4836		struct rb_node *tmp;
4837		tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4838
4839		if (tmp) {
4840			tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4841					    pa_node.inode_node);
4842		} else {
4843			/*
4844			 * If there is no adjacent pa to the left then finding
4845			 * an overlapping pa is not possible hence stop searching
4846			 * inode pa tree
4847			 */
4848			goto try_group_pa;
4849		}
4850	}
4851
4852	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4853
4854	/*
4855	 * Step 3: If the left adjacent pa is deleted, keep moving left to find
4856	 * the first non deleted adjacent pa. After this step we should have a
4857	 * valid tmp_pa which is guaranteed to be non deleted.
4858	 */
4859	for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4860		if (!iter) {
4861			/*
4862			 * no non deleted left adjacent pa, so stop searching
4863			 * inode pa tree
4864			 */
4865			goto try_group_pa;
4866		}
4867		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4868				  pa_node.inode_node);
4869		spin_lock(&tmp_pa->pa_lock);
4870		if (tmp_pa->pa_deleted == 0) {
4871			/*
4872			 * We will keep holding the pa_lock from
4873			 * this point on because we don't want group discard
4874			 * to delete this pa underneath us. Since group
4875			 * discard is anyways an ENOSPC operation it
4876			 * should be okay for it to wait a few more cycles.
4877			 */
4878			break;
4879		} else {
4880			spin_unlock(&tmp_pa->pa_lock);
4881		}
4882	}
4883
4884	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4885	BUG_ON(tmp_pa->pa_deleted == 1);
4886
4887	/*
4888	 * Step 4: We now have the non deleted left adjacent pa. Only this
4889	 * pa can possibly satisfy the request hence check if it overlaps
4890	 * original logical start and stop searching if it doesn't.
4891	 */
4892	if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4893		spin_unlock(&tmp_pa->pa_lock);
4894		goto try_group_pa;
4895	}
4896
4897	/* non-extent files can't have physical blocks past 2^32 */
4898	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4899	    (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4900	     EXT4_MAX_BLOCK_FILE_PHYS)) {
4901		/*
4902		 * Since PAs don't overlap, we won't find any other PA to
4903		 * satisfy this.
4904		 */
4905		spin_unlock(&tmp_pa->pa_lock);
4906		goto try_group_pa;
4907	}
4908
4909	if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4910		atomic_inc(&tmp_pa->pa_count);
4911		ext4_mb_use_inode_pa(ac, tmp_pa);
4912		spin_unlock(&tmp_pa->pa_lock);
4913		read_unlock(&ei->i_prealloc_lock);
4914		return true;
4915	} else {
4916		/*
4917		 * We found a valid overlapping pa but couldn't use it because
4918		 * it had no free blocks. This should ideally never happen
4919		 * because:
4920		 *
4921		 * 1. When a new inode pa is added to rbtree it must have
4922		 *    pa_free > 0 since otherwise we won't actually need
4923		 *    preallocation.
4924		 *
4925		 * 2. An inode pa that is in the rbtree can only have it's
4926		 *    pa_free become zero when another thread calls:
4927		 *      ext4_mb_new_blocks
4928		 *       ext4_mb_use_preallocated
4929		 *        ext4_mb_use_inode_pa
4930		 *
4931		 * 3. Further, after the above calls make pa_free == 0, we will
4932		 *    immediately remove it from the rbtree in:
4933		 *      ext4_mb_new_blocks
4934		 *       ext4_mb_release_context
4935		 *        ext4_mb_put_pa
4936		 *
4937		 * 4. Since the pa_free becoming 0 and pa_free getting removed
4938		 * from tree both happen in ext4_mb_new_blocks, which is always
4939		 * called with i_data_sem held for data allocations, we can be
4940		 * sure that another process will never see a pa in rbtree with
4941		 * pa_free == 0.
4942		 */
4943		WARN_ON_ONCE(tmp_pa->pa_free == 0);
4944	}
4945	spin_unlock(&tmp_pa->pa_lock);
4946try_group_pa:
4947	read_unlock(&ei->i_prealloc_lock);
4948
4949	/* can we use group allocation? */
4950	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4951		return false;
4952
4953	/* inode may have no locality group for some reason */
4954	lg = ac->ac_lg;
4955	if (lg == NULL)
4956		return false;
4957	order  = fls(ac->ac_o_ex.fe_len) - 1;
4958	if (order > PREALLOC_TB_SIZE - 1)
4959		/* The max size of hash table is PREALLOC_TB_SIZE */
4960		order = PREALLOC_TB_SIZE - 1;
4961
4962	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4963	/*
4964	 * search for the prealloc space that is having
4965	 * minimal distance from the goal block.
4966	 */
4967	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4968		rcu_read_lock();
4969		list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4970					pa_node.lg_list) {
4971			spin_lock(&tmp_pa->pa_lock);
4972			if (tmp_pa->pa_deleted == 0 &&
4973					tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4974
4975				cpa = ext4_mb_check_group_pa(goal_block,
4976								tmp_pa, cpa);
4977			}
4978			spin_unlock(&tmp_pa->pa_lock);
4979		}
4980		rcu_read_unlock();
4981	}
4982	if (cpa) {
4983		ext4_mb_use_group_pa(ac, cpa);
4984		return true;
4985	}
4986	return false;
4987}
4988
4989/*
4990 * the function goes through all preallocation in this group and marks them
4991 * used in in-core bitmap. buddy must be generated from this bitmap
4992 * Need to be called with ext4 group lock held
4993 */
4994static noinline_for_stack
4995void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4996					ext4_group_t group)
4997{
4998	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4999	struct ext4_prealloc_space *pa;
5000	struct list_head *cur;
5001	ext4_group_t groupnr;
5002	ext4_grpblk_t start;
5003	int preallocated = 0;
5004	int len;
5005
5006	if (!grp)
5007		return;
5008
5009	/* all form of preallocation discards first load group,
5010	 * so the only competing code is preallocation use.
5011	 * we don't need any locking here
5012	 * notice we do NOT ignore preallocations with pa_deleted
5013	 * otherwise we could leave used blocks available for
5014	 * allocation in buddy when concurrent ext4_mb_put_pa()
5015	 * is dropping preallocation
5016	 */
5017	list_for_each(cur, &grp->bb_prealloc_list) {
5018		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5019		spin_lock(&pa->pa_lock);
5020		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5021					     &groupnr, &start);
5022		len = pa->pa_len;
5023		spin_unlock(&pa->pa_lock);
5024		if (unlikely(len == 0))
5025			continue;
5026		BUG_ON(groupnr != group);
5027		mb_set_bits(bitmap, start, len);
5028		preallocated += len;
5029	}
5030	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5031}
5032
5033static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5034				    struct ext4_prealloc_space *pa)
5035{
5036	struct ext4_inode_info *ei;
5037
5038	if (pa->pa_deleted) {
5039		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5040			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5041			     pa->pa_len);
5042		return;
5043	}
5044
5045	pa->pa_deleted = 1;
5046
5047	if (pa->pa_type == MB_INODE_PA) {
5048		ei = EXT4_I(pa->pa_inode);
5049		atomic_dec(&ei->i_prealloc_active);
5050	}
5051}
5052
5053static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5054{
5055	BUG_ON(!pa);
5056	BUG_ON(atomic_read(&pa->pa_count));
5057	BUG_ON(pa->pa_deleted == 0);
5058	kmem_cache_free(ext4_pspace_cachep, pa);
5059}
5060
5061static void ext4_mb_pa_callback(struct rcu_head *head)
5062{
5063	struct ext4_prealloc_space *pa;
5064
5065	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5066	ext4_mb_pa_free(pa);
5067}
5068
5069/*
5070 * drops a reference to preallocated space descriptor
5071 * if this was the last reference and the space is consumed
5072 */
5073static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5074			struct super_block *sb, struct ext4_prealloc_space *pa)
5075{
5076	ext4_group_t grp;
5077	ext4_fsblk_t grp_blk;
5078	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5079
5080	/* in this short window concurrent discard can set pa_deleted */
5081	spin_lock(&pa->pa_lock);
5082	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5083		spin_unlock(&pa->pa_lock);
5084		return;
5085	}
5086
5087	if (pa->pa_deleted == 1) {
5088		spin_unlock(&pa->pa_lock);
5089		return;
5090	}
5091
5092	ext4_mb_mark_pa_deleted(sb, pa);
5093	spin_unlock(&pa->pa_lock);
5094
5095	grp_blk = pa->pa_pstart;
5096	/*
5097	 * If doing group-based preallocation, pa_pstart may be in the
5098	 * next group when pa is used up
5099	 */
5100	if (pa->pa_type == MB_GROUP_PA)
5101		grp_blk--;
5102
5103	grp = ext4_get_group_number(sb, grp_blk);
5104
5105	/*
5106	 * possible race:
5107	 *
5108	 *  P1 (buddy init)			P2 (regular allocation)
5109	 *					find block B in PA
5110	 *  copy on-disk bitmap to buddy
5111	 *  					mark B in on-disk bitmap
5112	 *					drop PA from group
5113	 *  mark all PAs in buddy
5114	 *
5115	 * thus, P1 initializes buddy with B available. to prevent this
5116	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5117	 * against that pair
5118	 */
5119	ext4_lock_group(sb, grp);
5120	list_del(&pa->pa_group_list);
5121	ext4_unlock_group(sb, grp);
5122
5123	if (pa->pa_type == MB_INODE_PA) {
5124		write_lock(pa->pa_node_lock.inode_lock);
5125		rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5126		write_unlock(pa->pa_node_lock.inode_lock);
5127		ext4_mb_pa_free(pa);
5128	} else {
5129		spin_lock(pa->pa_node_lock.lg_lock);
5130		list_del_rcu(&pa->pa_node.lg_list);
5131		spin_unlock(pa->pa_node_lock.lg_lock);
5132		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5133	}
5134}
5135
5136static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5137{
5138	struct rb_node **iter = &root->rb_node, *parent = NULL;
5139	struct ext4_prealloc_space *iter_pa, *new_pa;
5140	ext4_lblk_t iter_start, new_start;
5141
5142	while (*iter) {
5143		iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5144				   pa_node.inode_node);
5145		new_pa = rb_entry(new, struct ext4_prealloc_space,
5146				   pa_node.inode_node);
5147		iter_start = iter_pa->pa_lstart;
5148		new_start = new_pa->pa_lstart;
5149
5150		parent = *iter;
5151		if (new_start < iter_start)
5152			iter = &((*iter)->rb_left);
5153		else
5154			iter = &((*iter)->rb_right);
5155	}
5156
5157	rb_link_node(new, parent, iter);
5158	rb_insert_color(new, root);
5159}
5160
5161/*
5162 * creates new preallocated space for given inode
5163 */
5164static noinline_for_stack void
5165ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5166{
5167	struct super_block *sb = ac->ac_sb;
5168	struct ext4_sb_info *sbi = EXT4_SB(sb);
5169	struct ext4_prealloc_space *pa;
5170	struct ext4_group_info *grp;
5171	struct ext4_inode_info *ei;
5172
5173	/* preallocate only when found space is larger then requested */
5174	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5175	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5176	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5177	BUG_ON(ac->ac_pa == NULL);
5178
5179	pa = ac->ac_pa;
5180
5181	if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5182		struct ext4_free_extent ex = {
5183			.fe_logical = ac->ac_g_ex.fe_logical,
5184			.fe_len = ac->ac_orig_goal_len,
5185		};
5186		loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5187		loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex);
5188
5189		/*
5190		 * We can't allocate as much as normalizer wants, so we try
5191		 * to get proper lstart to cover the original request, except
5192		 * when the goal doesn't cover the original request as below:
5193		 *
5194		 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048
5195		 * best_ex:0/200(200) -> adjusted: 1848/2048(200)
5196		 */
5197		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5198		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5199
5200		/*
5201		 * Use the below logic for adjusting best extent as it keeps
5202		 * fragmentation in check while ensuring logical range of best
5203		 * extent doesn't overflow out of goal extent:
5204		 *
5205		 * 1. Check if best ex can be kept at end of goal (before
5206		 *    cr_best_avail trimmed it) and still cover original start
5207		 * 2. Else, check if best ex can be kept at start of goal and
5208		 *    still cover original end
5209		 * 3. Else, keep the best ex at start of original request.
5210		 */
5211		ex.fe_len = ac->ac_b_ex.fe_len;
5212
5213		ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5214		if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5215			goto adjust_bex;
5216
5217		ex.fe_logical = ac->ac_g_ex.fe_logical;
5218		if (o_ex_end <= extent_logical_end(sbi, &ex))
5219			goto adjust_bex;
5220
5221		ex.fe_logical = ac->ac_o_ex.fe_logical;
5222adjust_bex:
5223		ac->ac_b_ex.fe_logical = ex.fe_logical;
5224
5225		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5226		BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5227	}
5228
5229	pa->pa_lstart = ac->ac_b_ex.fe_logical;
5230	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5231	pa->pa_len = ac->ac_b_ex.fe_len;
5232	pa->pa_free = pa->pa_len;
5233	spin_lock_init(&pa->pa_lock);
5234	INIT_LIST_HEAD(&pa->pa_group_list);
5235	pa->pa_deleted = 0;
5236	pa->pa_type = MB_INODE_PA;
5237
5238	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5239		 pa->pa_len, pa->pa_lstart);
5240	trace_ext4_mb_new_inode_pa(ac, pa);
5241
5242	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5243	ext4_mb_use_inode_pa(ac, pa);
5244
5245	ei = EXT4_I(ac->ac_inode);
5246	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5247	if (!grp)
5248		return;
5249
5250	pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5251	pa->pa_inode = ac->ac_inode;
5252
5253	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5254
5255	write_lock(pa->pa_node_lock.inode_lock);
5256	ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5257	write_unlock(pa->pa_node_lock.inode_lock);
5258	atomic_inc(&ei->i_prealloc_active);
5259}
5260
5261/*
5262 * creates new preallocated space for locality group inodes belongs to
5263 */
5264static noinline_for_stack void
5265ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5266{
5267	struct super_block *sb = ac->ac_sb;
5268	struct ext4_locality_group *lg;
5269	struct ext4_prealloc_space *pa;
5270	struct ext4_group_info *grp;
5271
5272	/* preallocate only when found space is larger then requested */
5273	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5274	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5275	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5276	BUG_ON(ac->ac_pa == NULL);
5277
5278	pa = ac->ac_pa;
5279
5280	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5281	pa->pa_lstart = pa->pa_pstart;
5282	pa->pa_len = ac->ac_b_ex.fe_len;
5283	pa->pa_free = pa->pa_len;
5284	spin_lock_init(&pa->pa_lock);
5285	INIT_LIST_HEAD(&pa->pa_node.lg_list);
5286	INIT_LIST_HEAD(&pa->pa_group_list);
5287	pa->pa_deleted = 0;
5288	pa->pa_type = MB_GROUP_PA;
5289
5290	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5291		 pa->pa_len, pa->pa_lstart);
5292	trace_ext4_mb_new_group_pa(ac, pa);
5293
5294	ext4_mb_use_group_pa(ac, pa);
5295	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5296
5297	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5298	if (!grp)
5299		return;
5300	lg = ac->ac_lg;
5301	BUG_ON(lg == NULL);
5302
5303	pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5304	pa->pa_inode = NULL;
5305
5306	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5307
5308	/*
5309	 * We will later add the new pa to the right bucket
5310	 * after updating the pa_free in ext4_mb_release_context
5311	 */
5312}
5313
5314static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5315{
5316	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5317		ext4_mb_new_group_pa(ac);
5318	else
5319		ext4_mb_new_inode_pa(ac);
5320}
5321
5322/*
5323 * finds all unused blocks in on-disk bitmap, frees them in
5324 * in-core bitmap and buddy.
5325 * @pa must be unlinked from inode and group lists, so that
5326 * nobody else can find/use it.
5327 * the caller MUST hold group/inode locks.
5328 * TODO: optimize the case when there are no in-core structures yet
5329 */
5330static noinline_for_stack int
5331ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5332			struct ext4_prealloc_space *pa)
5333{
5334	struct super_block *sb = e4b->bd_sb;
5335	struct ext4_sb_info *sbi = EXT4_SB(sb);
5336	unsigned int end;
5337	unsigned int next;
5338	ext4_group_t group;
5339	ext4_grpblk_t bit;
5340	unsigned long long grp_blk_start;
5341	int free = 0;
5342
5343	BUG_ON(pa->pa_deleted == 0);
5344	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5345	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5346	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5347	end = bit + pa->pa_len;
5348
5349	while (bit < end) {
5350		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5351		if (bit >= end)
5352			break;
5353		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5354		mb_debug(sb, "free preallocated %u/%u in group %u\n",
5355			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5356			 (unsigned) next - bit, (unsigned) group);
5357		free += next - bit;
5358
5359		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5360		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5361						    EXT4_C2B(sbi, bit)),
5362					       next - bit);
5363		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5364		bit = next + 1;
5365	}
5366	if (free != pa->pa_free) {
5367		ext4_msg(e4b->bd_sb, KERN_CRIT,
5368			 "pa %p: logic %lu, phys. %lu, len %d",
5369			 pa, (unsigned long) pa->pa_lstart,
5370			 (unsigned long) pa->pa_pstart,
5371			 pa->pa_len);
5372		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5373					free, pa->pa_free);
5374		/*
5375		 * pa is already deleted so we use the value obtained
5376		 * from the bitmap and continue.
5377		 */
5378	}
5379	atomic_add(free, &sbi->s_mb_discarded);
5380
5381	return 0;
5382}
5383
5384static noinline_for_stack int
5385ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5386				struct ext4_prealloc_space *pa)
5387{
5388	struct super_block *sb = e4b->bd_sb;
5389	ext4_group_t group;
5390	ext4_grpblk_t bit;
5391
5392	trace_ext4_mb_release_group_pa(sb, pa);
5393	BUG_ON(pa->pa_deleted == 0);
5394	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5395	if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5396		ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5397			     e4b->bd_group, group, pa->pa_pstart);
5398		return 0;
5399	}
5400	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5401	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5402	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5403
5404	return 0;
5405}
5406
5407/*
5408 * releases all preallocations in given group
5409 *
5410 * first, we need to decide discard policy:
5411 * - when do we discard
5412 *   1) ENOSPC
5413 * - how many do we discard
5414 *   1) how many requested
5415 */
5416static noinline_for_stack int
5417ext4_mb_discard_group_preallocations(struct super_block *sb,
5418				     ext4_group_t group, int *busy)
5419{
5420	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5421	struct buffer_head *bitmap_bh = NULL;
5422	struct ext4_prealloc_space *pa, *tmp;
5423	LIST_HEAD(list);
5424	struct ext4_buddy e4b;
5425	struct ext4_inode_info *ei;
5426	int err;
5427	int free = 0;
5428
5429	if (!grp)
5430		return 0;
5431	mb_debug(sb, "discard preallocation for group %u\n", group);
5432	if (list_empty(&grp->bb_prealloc_list))
5433		goto out_dbg;
5434
5435	bitmap_bh = ext4_read_block_bitmap(sb, group);
5436	if (IS_ERR(bitmap_bh)) {
5437		err = PTR_ERR(bitmap_bh);
5438		ext4_error_err(sb, -err,
5439			       "Error %d reading block bitmap for %u",
5440			       err, group);
5441		goto out_dbg;
5442	}
5443
5444	err = ext4_mb_load_buddy(sb, group, &e4b);
5445	if (err) {
5446		ext4_warning(sb, "Error %d loading buddy information for %u",
5447			     err, group);
5448		put_bh(bitmap_bh);
5449		goto out_dbg;
5450	}
5451
5452	ext4_lock_group(sb, group);
5453	list_for_each_entry_safe(pa, tmp,
5454				&grp->bb_prealloc_list, pa_group_list) {
5455		spin_lock(&pa->pa_lock);
5456		if (atomic_read(&pa->pa_count)) {
5457			spin_unlock(&pa->pa_lock);
5458			*busy = 1;
5459			continue;
5460		}
5461		if (pa->pa_deleted) {
5462			spin_unlock(&pa->pa_lock);
5463			continue;
5464		}
5465
5466		/* seems this one can be freed ... */
5467		ext4_mb_mark_pa_deleted(sb, pa);
5468
5469		if (!free)
5470			this_cpu_inc(discard_pa_seq);
5471
5472		/* we can trust pa_free ... */
5473		free += pa->pa_free;
5474
5475		spin_unlock(&pa->pa_lock);
5476
5477		list_del(&pa->pa_group_list);
5478		list_add(&pa->u.pa_tmp_list, &list);
5479	}
5480
5481	/* now free all selected PAs */
5482	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5483
5484		/* remove from object (inode or locality group) */
5485		if (pa->pa_type == MB_GROUP_PA) {
5486			spin_lock(pa->pa_node_lock.lg_lock);
5487			list_del_rcu(&pa->pa_node.lg_list);
5488			spin_unlock(pa->pa_node_lock.lg_lock);
5489		} else {
5490			write_lock(pa->pa_node_lock.inode_lock);
5491			ei = EXT4_I(pa->pa_inode);
5492			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5493			write_unlock(pa->pa_node_lock.inode_lock);
5494		}
5495
5496		list_del(&pa->u.pa_tmp_list);
5497
5498		if (pa->pa_type == MB_GROUP_PA) {
5499			ext4_mb_release_group_pa(&e4b, pa);
5500			call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5501		} else {
5502			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5503			ext4_mb_pa_free(pa);
5504		}
5505	}
5506
5507	ext4_unlock_group(sb, group);
5508	ext4_mb_unload_buddy(&e4b);
5509	put_bh(bitmap_bh);
5510out_dbg:
5511	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5512		 free, group, grp->bb_free);
5513	return free;
5514}
5515
5516/*
5517 * releases all non-used preallocated blocks for given inode
5518 *
5519 * It's important to discard preallocations under i_data_sem
5520 * We don't want another block to be served from the prealloc
5521 * space when we are discarding the inode prealloc space.
5522 *
5523 * FIXME!! Make sure it is valid at all the call sites
5524 */
5525void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
5526{
5527	struct ext4_inode_info *ei = EXT4_I(inode);
5528	struct super_block *sb = inode->i_sb;
5529	struct buffer_head *bitmap_bh = NULL;
5530	struct ext4_prealloc_space *pa, *tmp;
5531	ext4_group_t group = 0;
5532	LIST_HEAD(list);
5533	struct ext4_buddy e4b;
5534	struct rb_node *iter;
5535	int err;
5536
5537	if (!S_ISREG(inode->i_mode)) {
5538		return;
5539	}
5540
5541	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5542		return;
5543
5544	mb_debug(sb, "discard preallocation for inode %lu\n",
5545		 inode->i_ino);
5546	trace_ext4_discard_preallocations(inode,
5547			atomic_read(&ei->i_prealloc_active), needed);
5548
5549	if (needed == 0)
5550		needed = UINT_MAX;
5551
5552repeat:
5553	/* first, collect all pa's in the inode */
5554	write_lock(&ei->i_prealloc_lock);
5555	for (iter = rb_first(&ei->i_prealloc_node); iter && needed;
5556	     iter = rb_next(iter)) {
5557		pa = rb_entry(iter, struct ext4_prealloc_space,
5558			      pa_node.inode_node);
5559		BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5560
5561		spin_lock(&pa->pa_lock);
5562		if (atomic_read(&pa->pa_count)) {
5563			/* this shouldn't happen often - nobody should
5564			 * use preallocation while we're discarding it */
5565			spin_unlock(&pa->pa_lock);
5566			write_unlock(&ei->i_prealloc_lock);
5567			ext4_msg(sb, KERN_ERR,
5568				 "uh-oh! used pa while discarding");
5569			WARN_ON(1);
5570			schedule_timeout_uninterruptible(HZ);
5571			goto repeat;
5572
5573		}
5574		if (pa->pa_deleted == 0) {
5575			ext4_mb_mark_pa_deleted(sb, pa);
5576			spin_unlock(&pa->pa_lock);
5577			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5578			list_add(&pa->u.pa_tmp_list, &list);
5579			needed--;
5580			continue;
5581		}
5582
5583		/* someone is deleting pa right now */
5584		spin_unlock(&pa->pa_lock);
5585		write_unlock(&ei->i_prealloc_lock);
5586
5587		/* we have to wait here because pa_deleted
5588		 * doesn't mean pa is already unlinked from
5589		 * the list. as we might be called from
5590		 * ->clear_inode() the inode will get freed
5591		 * and concurrent thread which is unlinking
5592		 * pa from inode's list may access already
5593		 * freed memory, bad-bad-bad */
5594
5595		/* XXX: if this happens too often, we can
5596		 * add a flag to force wait only in case
5597		 * of ->clear_inode(), but not in case of
5598		 * regular truncate */
5599		schedule_timeout_uninterruptible(HZ);
5600		goto repeat;
5601	}
5602	write_unlock(&ei->i_prealloc_lock);
5603
5604	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5605		BUG_ON(pa->pa_type != MB_INODE_PA);
5606		group = ext4_get_group_number(sb, pa->pa_pstart);
5607
5608		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5609					     GFP_NOFS|__GFP_NOFAIL);
5610		if (err) {
5611			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5612				       err, group);
5613			continue;
5614		}
5615
5616		bitmap_bh = ext4_read_block_bitmap(sb, group);
5617		if (IS_ERR(bitmap_bh)) {
5618			err = PTR_ERR(bitmap_bh);
5619			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5620				       err, group);
5621			ext4_mb_unload_buddy(&e4b);
5622			continue;
5623		}
5624
5625		ext4_lock_group(sb, group);
5626		list_del(&pa->pa_group_list);
5627		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5628		ext4_unlock_group(sb, group);
5629
5630		ext4_mb_unload_buddy(&e4b);
5631		put_bh(bitmap_bh);
5632
5633		list_del(&pa->u.pa_tmp_list);
5634		ext4_mb_pa_free(pa);
5635	}
5636}
5637
5638static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5639{
5640	struct ext4_prealloc_space *pa;
5641
5642	BUG_ON(ext4_pspace_cachep == NULL);
5643	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5644	if (!pa)
5645		return -ENOMEM;
5646	atomic_set(&pa->pa_count, 1);
5647	ac->ac_pa = pa;
5648	return 0;
5649}
5650
5651static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5652{
5653	struct ext4_prealloc_space *pa = ac->ac_pa;
5654
5655	BUG_ON(!pa);
5656	ac->ac_pa = NULL;
5657	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5658	/*
5659	 * current function is only called due to an error or due to
5660	 * len of found blocks < len of requested blocks hence the PA has not
5661	 * been added to grp->bb_prealloc_list. So we don't need to lock it
5662	 */
5663	pa->pa_deleted = 1;
5664	ext4_mb_pa_free(pa);
5665}
5666
5667#ifdef CONFIG_EXT4_DEBUG
5668static inline void ext4_mb_show_pa(struct super_block *sb)
5669{
5670	ext4_group_t i, ngroups;
5671
5672	if (ext4_forced_shutdown(sb))
5673		return;
5674
5675	ngroups = ext4_get_groups_count(sb);
5676	mb_debug(sb, "groups: ");
5677	for (i = 0; i < ngroups; i++) {
5678		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5679		struct ext4_prealloc_space *pa;
5680		ext4_grpblk_t start;
5681		struct list_head *cur;
5682
5683		if (!grp)
5684			continue;
5685		ext4_lock_group(sb, i);
5686		list_for_each(cur, &grp->bb_prealloc_list) {
5687			pa = list_entry(cur, struct ext4_prealloc_space,
5688					pa_group_list);
5689			spin_lock(&pa->pa_lock);
5690			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5691						     NULL, &start);
5692			spin_unlock(&pa->pa_lock);
5693			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5694				 pa->pa_len);
5695		}
5696		ext4_unlock_group(sb, i);
5697		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5698			 grp->bb_fragments);
5699	}
5700}
5701
5702static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5703{
5704	struct super_block *sb = ac->ac_sb;
5705
5706	if (ext4_forced_shutdown(sb))
5707		return;
5708
5709	mb_debug(sb, "Can't allocate:"
5710			" Allocation context details:");
5711	mb_debug(sb, "status %u flags 0x%x",
5712			ac->ac_status, ac->ac_flags);
5713	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5714			"goal %lu/%lu/%lu@%lu, "
5715			"best %lu/%lu/%lu@%lu cr %d",
5716			(unsigned long)ac->ac_o_ex.fe_group,
5717			(unsigned long)ac->ac_o_ex.fe_start,
5718			(unsigned long)ac->ac_o_ex.fe_len,
5719			(unsigned long)ac->ac_o_ex.fe_logical,
5720			(unsigned long)ac->ac_g_ex.fe_group,
5721			(unsigned long)ac->ac_g_ex.fe_start,
5722			(unsigned long)ac->ac_g_ex.fe_len,
5723			(unsigned long)ac->ac_g_ex.fe_logical,
5724			(unsigned long)ac->ac_b_ex.fe_group,
5725			(unsigned long)ac->ac_b_ex.fe_start,
5726			(unsigned long)ac->ac_b_ex.fe_len,
5727			(unsigned long)ac->ac_b_ex.fe_logical,
5728			(int)ac->ac_criteria);
5729	mb_debug(sb, "%u found", ac->ac_found);
5730	mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5731	if (ac->ac_pa)
5732		mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5733			 "group pa" : "inode pa");
5734	ext4_mb_show_pa(sb);
5735}
5736#else
5737static inline void ext4_mb_show_pa(struct super_block *sb)
5738{
5739}
5740static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5741{
5742	ext4_mb_show_pa(ac->ac_sb);
5743}
5744#endif
5745
5746/*
5747 * We use locality group preallocation for small size file. The size of the
5748 * file is determined by the current size or the resulting size after
5749 * allocation which ever is larger
5750 *
5751 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5752 */
5753static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5754{
5755	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5756	int bsbits = ac->ac_sb->s_blocksize_bits;
5757	loff_t size, isize;
5758	bool inode_pa_eligible, group_pa_eligible;
5759
5760	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5761		return;
5762
5763	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5764		return;
5765
5766	group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5767	inode_pa_eligible = true;
5768	size = extent_logical_end(sbi, &ac->ac_o_ex);
5769	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5770		>> bsbits;
5771
5772	/* No point in using inode preallocation for closed files */
5773	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5774	    !inode_is_open_for_write(ac->ac_inode))
5775		inode_pa_eligible = false;
5776
5777	size = max(size, isize);
5778	/* Don't use group allocation for large files */
5779	if (size > sbi->s_mb_stream_request)
5780		group_pa_eligible = false;
5781
5782	if (!group_pa_eligible) {
5783		if (inode_pa_eligible)
5784			ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5785		else
5786			ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5787		return;
5788	}
5789
5790	BUG_ON(ac->ac_lg != NULL);
5791	/*
5792	 * locality group prealloc space are per cpu. The reason for having
5793	 * per cpu locality group is to reduce the contention between block
5794	 * request from multiple CPUs.
5795	 */
5796	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5797
5798	/* we're going to use group allocation */
5799	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5800
5801	/* serialize all allocations in the group */
5802	mutex_lock(&ac->ac_lg->lg_mutex);
5803}
5804
5805static noinline_for_stack void
5806ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5807				struct ext4_allocation_request *ar)
5808{
5809	struct super_block *sb = ar->inode->i_sb;
5810	struct ext4_sb_info *sbi = EXT4_SB(sb);
5811	struct ext4_super_block *es = sbi->s_es;
5812	ext4_group_t group;
5813	unsigned int len;
5814	ext4_fsblk_t goal;
5815	ext4_grpblk_t block;
5816
5817	/* we can't allocate > group size */
5818	len = ar->len;
5819
5820	/* just a dirty hack to filter too big requests  */
5821	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5822		len = EXT4_CLUSTERS_PER_GROUP(sb);
5823
5824	/* start searching from the goal */
5825	goal = ar->goal;
5826	if (goal < le32_to_cpu(es->s_first_data_block) ||
5827			goal >= ext4_blocks_count(es))
5828		goal = le32_to_cpu(es->s_first_data_block);
5829	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5830
5831	/* set up allocation goals */
5832	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5833	ac->ac_status = AC_STATUS_CONTINUE;
5834	ac->ac_sb = sb;
5835	ac->ac_inode = ar->inode;
5836	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5837	ac->ac_o_ex.fe_group = group;
5838	ac->ac_o_ex.fe_start = block;
5839	ac->ac_o_ex.fe_len = len;
5840	ac->ac_g_ex = ac->ac_o_ex;
5841	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5842	ac->ac_flags = ar->flags;
5843
5844	/* we have to define context: we'll work with a file or
5845	 * locality group. this is a policy, actually */
5846	ext4_mb_group_or_file(ac);
5847
5848	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5849			"left: %u/%u, right %u/%u to %swritable\n",
5850			(unsigned) ar->len, (unsigned) ar->logical,
5851			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5852			(unsigned) ar->lleft, (unsigned) ar->pleft,
5853			(unsigned) ar->lright, (unsigned) ar->pright,
5854			inode_is_open_for_write(ar->inode) ? "" : "non-");
5855}
5856
5857static noinline_for_stack void
5858ext4_mb_discard_lg_preallocations(struct super_block *sb,
5859					struct ext4_locality_group *lg,
5860					int order, int total_entries)
5861{
5862	ext4_group_t group = 0;
5863	struct ext4_buddy e4b;
5864	LIST_HEAD(discard_list);
5865	struct ext4_prealloc_space *pa, *tmp;
5866
5867	mb_debug(sb, "discard locality group preallocation\n");
5868
5869	spin_lock(&lg->lg_prealloc_lock);
5870	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5871				pa_node.lg_list,
5872				lockdep_is_held(&lg->lg_prealloc_lock)) {
5873		spin_lock(&pa->pa_lock);
5874		if (atomic_read(&pa->pa_count)) {
5875			/*
5876			 * This is the pa that we just used
5877			 * for block allocation. So don't
5878			 * free that
5879			 */
5880			spin_unlock(&pa->pa_lock);
5881			continue;
5882		}
5883		if (pa->pa_deleted) {
5884			spin_unlock(&pa->pa_lock);
5885			continue;
5886		}
5887		/* only lg prealloc space */
5888		BUG_ON(pa->pa_type != MB_GROUP_PA);
5889
5890		/* seems this one can be freed ... */
5891		ext4_mb_mark_pa_deleted(sb, pa);
5892		spin_unlock(&pa->pa_lock);
5893
5894		list_del_rcu(&pa->pa_node.lg_list);
5895		list_add(&pa->u.pa_tmp_list, &discard_list);
5896
5897		total_entries--;
5898		if (total_entries <= 5) {
5899			/*
5900			 * we want to keep only 5 entries
5901			 * allowing it to grow to 8. This
5902			 * mak sure we don't call discard
5903			 * soon for this list.
5904			 */
5905			break;
5906		}
5907	}
5908	spin_unlock(&lg->lg_prealloc_lock);
5909
5910	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5911		int err;
5912
5913		group = ext4_get_group_number(sb, pa->pa_pstart);
5914		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5915					     GFP_NOFS|__GFP_NOFAIL);
5916		if (err) {
5917			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5918				       err, group);
5919			continue;
5920		}
5921		ext4_lock_group(sb, group);
5922		list_del(&pa->pa_group_list);
5923		ext4_mb_release_group_pa(&e4b, pa);
5924		ext4_unlock_group(sb, group);
5925
5926		ext4_mb_unload_buddy(&e4b);
5927		list_del(&pa->u.pa_tmp_list);
5928		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5929	}
5930}
5931
5932/*
5933 * We have incremented pa_count. So it cannot be freed at this
5934 * point. Also we hold lg_mutex. So no parallel allocation is
5935 * possible from this lg. That means pa_free cannot be updated.
5936 *
5937 * A parallel ext4_mb_discard_group_preallocations is possible.
5938 * which can cause the lg_prealloc_list to be updated.
5939 */
5940
5941static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5942{
5943	int order, added = 0, lg_prealloc_count = 1;
5944	struct super_block *sb = ac->ac_sb;
5945	struct ext4_locality_group *lg = ac->ac_lg;
5946	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5947
5948	order = fls(pa->pa_free) - 1;
5949	if (order > PREALLOC_TB_SIZE - 1)
5950		/* The max size of hash table is PREALLOC_TB_SIZE */
5951		order = PREALLOC_TB_SIZE - 1;
5952	/* Add the prealloc space to lg */
5953	spin_lock(&lg->lg_prealloc_lock);
5954	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5955				pa_node.lg_list,
5956				lockdep_is_held(&lg->lg_prealloc_lock)) {
5957		spin_lock(&tmp_pa->pa_lock);
5958		if (tmp_pa->pa_deleted) {
5959			spin_unlock(&tmp_pa->pa_lock);
5960			continue;
5961		}
5962		if (!added && pa->pa_free < tmp_pa->pa_free) {
5963			/* Add to the tail of the previous entry */
5964			list_add_tail_rcu(&pa->pa_node.lg_list,
5965						&tmp_pa->pa_node.lg_list);
5966			added = 1;
5967			/*
5968			 * we want to count the total
5969			 * number of entries in the list
5970			 */
5971		}
5972		spin_unlock(&tmp_pa->pa_lock);
5973		lg_prealloc_count++;
5974	}
5975	if (!added)
5976		list_add_tail_rcu(&pa->pa_node.lg_list,
5977					&lg->lg_prealloc_list[order]);
5978	spin_unlock(&lg->lg_prealloc_lock);
5979
5980	/* Now trim the list to be not more than 8 elements */
5981	if (lg_prealloc_count > 8)
5982		ext4_mb_discard_lg_preallocations(sb, lg,
5983						  order, lg_prealloc_count);
5984}
5985
5986/*
5987 * release all resource we used in allocation
5988 */
5989static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5990{
5991	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5992	struct ext4_prealloc_space *pa = ac->ac_pa;
5993	if (pa) {
5994		if (pa->pa_type == MB_GROUP_PA) {
5995			/* see comment in ext4_mb_use_group_pa() */
5996			spin_lock(&pa->pa_lock);
5997			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5998			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5999			pa->pa_free -= ac->ac_b_ex.fe_len;
6000			pa->pa_len -= ac->ac_b_ex.fe_len;
6001			spin_unlock(&pa->pa_lock);
6002
6003			/*
6004			 * We want to add the pa to the right bucket.
6005			 * Remove it from the list and while adding
6006			 * make sure the list to which we are adding
6007			 * doesn't grow big.
6008			 */
6009			if (likely(pa->pa_free)) {
6010				spin_lock(pa->pa_node_lock.lg_lock);
6011				list_del_rcu(&pa->pa_node.lg_list);
6012				spin_unlock(pa->pa_node_lock.lg_lock);
6013				ext4_mb_add_n_trim(ac);
6014			}
6015		}
6016
6017		ext4_mb_put_pa(ac, ac->ac_sb, pa);
6018	}
6019	if (ac->ac_bitmap_page)
6020		put_page(ac->ac_bitmap_page);
6021	if (ac->ac_buddy_page)
6022		put_page(ac->ac_buddy_page);
6023	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
6024		mutex_unlock(&ac->ac_lg->lg_mutex);
6025	ext4_mb_collect_stats(ac);
6026	return 0;
6027}
6028
6029static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6030{
6031	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6032	int ret;
6033	int freed = 0, busy = 0;
6034	int retry = 0;
6035
6036	trace_ext4_mb_discard_preallocations(sb, needed);
6037
6038	if (needed == 0)
6039		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6040 repeat:
6041	for (i = 0; i < ngroups && needed > 0; i++) {
6042		ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6043		freed += ret;
6044		needed -= ret;
6045		cond_resched();
6046	}
6047
6048	if (needed > 0 && busy && ++retry < 3) {
6049		busy = 0;
6050		goto repeat;
6051	}
6052
6053	return freed;
6054}
6055
6056static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6057			struct ext4_allocation_context *ac, u64 *seq)
6058{
6059	int freed;
6060	u64 seq_retry = 0;
6061	bool ret = false;
6062
6063	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6064	if (freed) {
6065		ret = true;
6066		goto out_dbg;
6067	}
6068	seq_retry = ext4_get_discard_pa_seq_sum();
6069	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6070		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6071		*seq = seq_retry;
6072		ret = true;
6073	}
6074
6075out_dbg:
6076	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6077	return ret;
6078}
6079
6080/*
6081 * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6082 * linearly starting at the goal block and also excludes the blocks which
6083 * are going to be in use after fast commit replay.
6084 */
6085static ext4_fsblk_t
6086ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6087{
6088	struct buffer_head *bitmap_bh;
6089	struct super_block *sb = ar->inode->i_sb;
6090	struct ext4_sb_info *sbi = EXT4_SB(sb);
6091	ext4_group_t group, nr;
6092	ext4_grpblk_t blkoff;
6093	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6094	ext4_grpblk_t i = 0;
6095	ext4_fsblk_t goal, block;
6096	struct ext4_super_block *es = sbi->s_es;
6097
6098	goal = ar->goal;
6099	if (goal < le32_to_cpu(es->s_first_data_block) ||
6100			goal >= ext4_blocks_count(es))
6101		goal = le32_to_cpu(es->s_first_data_block);
6102
6103	ar->len = 0;
6104	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6105	for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6106		bitmap_bh = ext4_read_block_bitmap(sb, group);
6107		if (IS_ERR(bitmap_bh)) {
6108			*errp = PTR_ERR(bitmap_bh);
6109			pr_warn("Failed to read block bitmap\n");
6110			return 0;
6111		}
6112
6113		while (1) {
6114			i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6115						blkoff);
6116			if (i >= max)
6117				break;
6118			if (ext4_fc_replay_check_excluded(sb,
6119				ext4_group_first_block_no(sb, group) +
6120				EXT4_C2B(sbi, i))) {
6121				blkoff = i + 1;
6122			} else
6123				break;
6124		}
6125		brelse(bitmap_bh);
6126		if (i < max)
6127			break;
6128
6129		if (++group >= ext4_get_groups_count(sb))
6130			group = 0;
6131
6132		blkoff = 0;
6133	}
6134
6135	if (i >= max) {
6136		*errp = -ENOSPC;
6137		return 0;
6138	}
6139
6140	block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6141	ext4_mb_mark_bb(sb, block, 1, 1);
6142	ar->len = 1;
6143
6144	return block;
6145}
6146
6147/*
6148 * Main entry point into mballoc to allocate blocks
6149 * it tries to use preallocation first, then falls back
6150 * to usual allocation
6151 */
6152ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6153				struct ext4_allocation_request *ar, int *errp)
6154{
6155	struct ext4_allocation_context *ac = NULL;
6156	struct ext4_sb_info *sbi;
6157	struct super_block *sb;
6158	ext4_fsblk_t block = 0;
6159	unsigned int inquota = 0;
6160	unsigned int reserv_clstrs = 0;
6161	int retries = 0;
6162	u64 seq;
6163
6164	might_sleep();
6165	sb = ar->inode->i_sb;
6166	sbi = EXT4_SB(sb);
6167
6168	trace_ext4_request_blocks(ar);
6169	if (sbi->s_mount_state & EXT4_FC_REPLAY)
6170		return ext4_mb_new_blocks_simple(ar, errp);
6171
6172	/* Allow to use superuser reservation for quota file */
6173	if (ext4_is_quota_file(ar->inode))
6174		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6175
6176	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6177		/* Without delayed allocation we need to verify
6178		 * there is enough free blocks to do block allocation
6179		 * and verify allocation doesn't exceed the quota limits.
6180		 */
6181		while (ar->len &&
6182			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6183
6184			/* let others to free the space */
6185			cond_resched();
6186			ar->len = ar->len >> 1;
6187		}
6188		if (!ar->len) {
6189			ext4_mb_show_pa(sb);
6190			*errp = -ENOSPC;
6191			return 0;
6192		}
6193		reserv_clstrs = ar->len;
6194		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6195			dquot_alloc_block_nofail(ar->inode,
6196						 EXT4_C2B(sbi, ar->len));
6197		} else {
6198			while (ar->len &&
6199				dquot_alloc_block(ar->inode,
6200						  EXT4_C2B(sbi, ar->len))) {
6201
6202				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6203				ar->len--;
6204			}
6205		}
6206		inquota = ar->len;
6207		if (ar->len == 0) {
6208			*errp = -EDQUOT;
6209			goto out;
6210		}
6211	}
6212
6213	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6214	if (!ac) {
6215		ar->len = 0;
6216		*errp = -ENOMEM;
6217		goto out;
6218	}
6219
6220	ext4_mb_initialize_context(ac, ar);
6221
6222	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6223	seq = this_cpu_read(discard_pa_seq);
6224	if (!ext4_mb_use_preallocated(ac)) {
6225		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6226		ext4_mb_normalize_request(ac, ar);
6227
6228		*errp = ext4_mb_pa_alloc(ac);
6229		if (*errp)
6230			goto errout;
6231repeat:
6232		/* allocate space in core */
6233		*errp = ext4_mb_regular_allocator(ac);
6234		/*
6235		 * pa allocated above is added to grp->bb_prealloc_list only
6236		 * when we were able to allocate some block i.e. when
6237		 * ac->ac_status == AC_STATUS_FOUND.
6238		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
6239		 * So we have to free this pa here itself.
6240		 */
6241		if (*errp) {
6242			ext4_mb_pa_put_free(ac);
6243			ext4_discard_allocated_blocks(ac);
6244			goto errout;
6245		}
6246		if (ac->ac_status == AC_STATUS_FOUND &&
6247			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6248			ext4_mb_pa_put_free(ac);
6249	}
6250	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6251		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6252		if (*errp) {
6253			ext4_discard_allocated_blocks(ac);
6254			goto errout;
6255		} else {
6256			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6257			ar->len = ac->ac_b_ex.fe_len;
6258		}
6259	} else {
6260		if (++retries < 3 &&
6261		    ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6262			goto repeat;
6263		/*
6264		 * If block allocation fails then the pa allocated above
6265		 * needs to be freed here itself.
6266		 */
6267		ext4_mb_pa_put_free(ac);
6268		*errp = -ENOSPC;
6269	}
6270
6271	if (*errp) {
6272errout:
6273		ac->ac_b_ex.fe_len = 0;
6274		ar->len = 0;
6275		ext4_mb_show_ac(ac);
6276	}
6277	ext4_mb_release_context(ac);
6278	kmem_cache_free(ext4_ac_cachep, ac);
6279out:
6280	if (inquota && ar->len < inquota)
6281		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6282	if (!ar->len) {
6283		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6284			/* release all the reserved blocks if non delalloc */
6285			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6286						reserv_clstrs);
6287	}
6288
6289	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6290
6291	return block;
6292}
6293
6294/*
6295 * We can merge two free data extents only if the physical blocks
6296 * are contiguous, AND the extents were freed by the same transaction,
6297 * AND the blocks are associated with the same group.
6298 */
6299static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6300					struct ext4_free_data *entry,
6301					struct ext4_free_data *new_entry,
6302					struct rb_root *entry_rb_root)
6303{
6304	if ((entry->efd_tid != new_entry->efd_tid) ||
6305	    (entry->efd_group != new_entry->efd_group))
6306		return;
6307	if (entry->efd_start_cluster + entry->efd_count ==
6308	    new_entry->efd_start_cluster) {
6309		new_entry->efd_start_cluster = entry->efd_start_cluster;
6310		new_entry->efd_count += entry->efd_count;
6311	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6312		   entry->efd_start_cluster) {
6313		new_entry->efd_count += entry->efd_count;
6314	} else
6315		return;
6316	spin_lock(&sbi->s_md_lock);
6317	list_del(&entry->efd_list);
6318	spin_unlock(&sbi->s_md_lock);
6319	rb_erase(&entry->efd_node, entry_rb_root);
6320	kmem_cache_free(ext4_free_data_cachep, entry);
6321}
6322
6323static noinline_for_stack void
6324ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6325		      struct ext4_free_data *new_entry)
6326{
6327	ext4_group_t group = e4b->bd_group;
6328	ext4_grpblk_t cluster;
6329	ext4_grpblk_t clusters = new_entry->efd_count;
6330	struct ext4_free_data *entry;
6331	struct ext4_group_info *db = e4b->bd_info;
6332	struct super_block *sb = e4b->bd_sb;
6333	struct ext4_sb_info *sbi = EXT4_SB(sb);
6334	struct rb_node **n = &db->bb_free_root.rb_node, *node;
6335	struct rb_node *parent = NULL, *new_node;
6336
6337	BUG_ON(!ext4_handle_valid(handle));
6338	BUG_ON(e4b->bd_bitmap_page == NULL);
6339	BUG_ON(e4b->bd_buddy_page == NULL);
6340
6341	new_node = &new_entry->efd_node;
6342	cluster = new_entry->efd_start_cluster;
6343
6344	if (!*n) {
6345		/* first free block exent. We need to
6346		   protect buddy cache from being freed,
6347		 * otherwise we'll refresh it from
6348		 * on-disk bitmap and lose not-yet-available
6349		 * blocks */
6350		get_page(e4b->bd_buddy_page);
6351		get_page(e4b->bd_bitmap_page);
6352	}
6353	while (*n) {
6354		parent = *n;
6355		entry = rb_entry(parent, struct ext4_free_data, efd_node);
6356		if (cluster < entry->efd_start_cluster)
6357			n = &(*n)->rb_left;
6358		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6359			n = &(*n)->rb_right;
6360		else {
6361			ext4_grp_locked_error(sb, group, 0,
6362				ext4_group_first_block_no(sb, group) +
6363				EXT4_C2B(sbi, cluster),
6364				"Block already on to-be-freed list");
6365			kmem_cache_free(ext4_free_data_cachep, new_entry);
6366			return;
6367		}
6368	}
6369
6370	rb_link_node(new_node, parent, n);
6371	rb_insert_color(new_node, &db->bb_free_root);
6372
6373	/* Now try to see the extent can be merged to left and right */
6374	node = rb_prev(new_node);
6375	if (node) {
6376		entry = rb_entry(node, struct ext4_free_data, efd_node);
6377		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6378					    &(db->bb_free_root));
6379	}
6380
6381	node = rb_next(new_node);
6382	if (node) {
6383		entry = rb_entry(node, struct ext4_free_data, efd_node);
6384		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6385					    &(db->bb_free_root));
6386	}
6387
6388	spin_lock(&sbi->s_md_lock);
6389	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
6390	sbi->s_mb_free_pending += clusters;
6391	spin_unlock(&sbi->s_md_lock);
6392}
6393
6394static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6395					unsigned long count)
6396{
6397	struct buffer_head *bitmap_bh;
6398	struct super_block *sb = inode->i_sb;
6399	struct ext4_group_desc *gdp;
6400	struct buffer_head *gdp_bh;
6401	ext4_group_t group;
6402	ext4_grpblk_t blkoff;
6403	int already_freed = 0, err, i;
6404
6405	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6406	bitmap_bh = ext4_read_block_bitmap(sb, group);
6407	if (IS_ERR(bitmap_bh)) {
6408		pr_warn("Failed to read block bitmap\n");
6409		return;
6410	}
6411	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
6412	if (!gdp)
6413		goto err_out;
6414
6415	for (i = 0; i < count; i++) {
6416		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
6417			already_freed++;
6418	}
6419	mb_clear_bits(bitmap_bh->b_data, blkoff, count);
6420	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
6421	if (err)
6422		goto err_out;
6423	ext4_free_group_clusters_set(
6424		sb, gdp, ext4_free_group_clusters(sb, gdp) +
6425		count - already_freed);
6426	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6427	ext4_group_desc_csum_set(sb, group, gdp);
6428	ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
6429	sync_dirty_buffer(bitmap_bh);
6430	sync_dirty_buffer(gdp_bh);
6431
6432err_out:
6433	brelse(bitmap_bh);
6434}
6435
6436/**
6437 * ext4_mb_clear_bb() -- helper function for freeing blocks.
6438 *			Used by ext4_free_blocks()
6439 * @handle:		handle for this transaction
6440 * @inode:		inode
6441 * @block:		starting physical block to be freed
6442 * @count:		number of blocks to be freed
6443 * @flags:		flags used by ext4_free_blocks
6444 */
6445static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6446			       ext4_fsblk_t block, unsigned long count,
6447			       int flags)
6448{
6449	struct buffer_head *bitmap_bh = NULL;
6450	struct super_block *sb = inode->i_sb;
6451	struct ext4_group_desc *gdp;
6452	struct ext4_group_info *grp;
6453	unsigned int overflow;
6454	ext4_grpblk_t bit;
6455	struct buffer_head *gd_bh;
6456	ext4_group_t block_group;
6457	struct ext4_sb_info *sbi;
6458	struct ext4_buddy e4b;
6459	unsigned int count_clusters;
6460	int err = 0;
6461	int ret;
6462
6463	sbi = EXT4_SB(sb);
6464
6465	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6466	    !ext4_inode_block_valid(inode, block, count)) {
6467		ext4_error(sb, "Freeing blocks in system zone - "
6468			   "Block = %llu, count = %lu", block, count);
6469		/* err = 0. ext4_std_error should be a no op */
6470		goto error_return;
6471	}
6472	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6473
6474do_more:
6475	overflow = 0;
6476	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6477
6478	grp = ext4_get_group_info(sb, block_group);
6479	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6480		return;
6481
6482	/*
6483	 * Check to see if we are freeing blocks across a group
6484	 * boundary.
6485	 */
6486	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6487		overflow = EXT4_C2B(sbi, bit) + count -
6488			EXT4_BLOCKS_PER_GROUP(sb);
6489		count -= overflow;
6490		/* The range changed so it's no longer validated */
6491		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6492	}
6493	count_clusters = EXT4_NUM_B2C(sbi, count);
6494	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6495	if (IS_ERR(bitmap_bh)) {
6496		err = PTR_ERR(bitmap_bh);
6497		bitmap_bh = NULL;
6498		goto error_return;
6499	}
6500	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
6501	if (!gdp) {
6502		err = -EIO;
6503		goto error_return;
6504	}
6505
6506	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6507	    !ext4_inode_block_valid(inode, block, count)) {
6508		ext4_error(sb, "Freeing blocks in system zone - "
6509			   "Block = %llu, count = %lu", block, count);
6510		/* err = 0. ext4_std_error should be a no op */
6511		goto error_return;
6512	}
6513
6514	BUFFER_TRACE(bitmap_bh, "getting write access");
6515	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6516					    EXT4_JTR_NONE);
6517	if (err)
6518		goto error_return;
6519
6520	/*
6521	 * We are about to modify some metadata.  Call the journal APIs
6522	 * to unshare ->b_data if a currently-committing transaction is
6523	 * using it
6524	 */
6525	BUFFER_TRACE(gd_bh, "get_write_access");
6526	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6527	if (err)
6528		goto error_return;
6529#ifdef AGGRESSIVE_CHECK
6530	{
6531		int i;
6532		for (i = 0; i < count_clusters; i++)
6533			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
6534	}
6535#endif
6536	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6537
6538	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6539	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6540				     GFP_NOFS|__GFP_NOFAIL);
6541	if (err)
6542		goto error_return;
6543
6544	/*
6545	 * We need to make sure we don't reuse the freed block until after the
6546	 * transaction is committed. We make an exception if the inode is to be
6547	 * written in writeback mode since writeback mode has weak data
6548	 * consistency guarantees.
6549	 */
6550	if (ext4_handle_valid(handle) &&
6551	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6552	     !ext4_should_writeback_data(inode))) {
6553		struct ext4_free_data *new_entry;
6554		/*
6555		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6556		 * to fail.
6557		 */
6558		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6559				GFP_NOFS|__GFP_NOFAIL);
6560		new_entry->efd_start_cluster = bit;
6561		new_entry->efd_group = block_group;
6562		new_entry->efd_count = count_clusters;
6563		new_entry->efd_tid = handle->h_transaction->t_tid;
6564
6565		ext4_lock_group(sb, block_group);
6566		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6567		ext4_mb_free_metadata(handle, &e4b, new_entry);
6568	} else {
6569		/* need to update group_info->bb_free and bitmap
6570		 * with group lock held. generate_buddy look at
6571		 * them with group lock_held
6572		 */
6573		if (test_opt(sb, DISCARD)) {
6574			err = ext4_issue_discard(sb, block_group, bit,
6575						 count_clusters, NULL);
6576			if (err && err != -EOPNOTSUPP)
6577				ext4_msg(sb, KERN_WARNING, "discard request in"
6578					 " group:%u block:%d count:%lu failed"
6579					 " with %d", block_group, bit, count,
6580					 err);
6581		} else
6582			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6583
6584		ext4_lock_group(sb, block_group);
6585		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6586		mb_free_blocks(inode, &e4b, bit, count_clusters);
6587	}
6588
6589	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
6590	ext4_free_group_clusters_set(sb, gdp, ret);
6591	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6592	ext4_group_desc_csum_set(sb, block_group, gdp);
6593	ext4_unlock_group(sb, block_group);
6594
6595	if (sbi->s_log_groups_per_flex) {
6596		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6597		atomic64_add(count_clusters,
6598			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6599						  flex_group)->free_clusters);
6600	}
6601
6602	/*
6603	 * on a bigalloc file system, defer the s_freeclusters_counter
6604	 * update to the caller (ext4_remove_space and friends) so they
6605	 * can determine if a cluster freed here should be rereserved
6606	 */
6607	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6608		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6609			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6610		percpu_counter_add(&sbi->s_freeclusters_counter,
6611				   count_clusters);
6612	}
6613
6614	ext4_mb_unload_buddy(&e4b);
6615
6616	/* We dirtied the bitmap block */
6617	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6618	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6619
6620	/* And the group descriptor block */
6621	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6622	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6623	if (!err)
6624		err = ret;
6625
6626	if (overflow && !err) {
6627		block += count;
6628		count = overflow;
6629		put_bh(bitmap_bh);
6630		/* The range changed so it's no longer validated */
6631		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6632		goto do_more;
6633	}
6634error_return:
6635	brelse(bitmap_bh);
6636	ext4_std_error(sb, err);
6637}
6638
6639/**
6640 * ext4_free_blocks() -- Free given blocks and update quota
6641 * @handle:		handle for this transaction
6642 * @inode:		inode
6643 * @bh:			optional buffer of the block to be freed
6644 * @block:		starting physical block to be freed
6645 * @count:		number of blocks to be freed
6646 * @flags:		flags used by ext4_free_blocks
6647 */
6648void ext4_free_blocks(handle_t *handle, struct inode *inode,
6649		      struct buffer_head *bh, ext4_fsblk_t block,
6650		      unsigned long count, int flags)
6651{
6652	struct super_block *sb = inode->i_sb;
6653	unsigned int overflow;
6654	struct ext4_sb_info *sbi;
6655
6656	sbi = EXT4_SB(sb);
6657
6658	if (bh) {
6659		if (block)
6660			BUG_ON(block != bh->b_blocknr);
6661		else
6662			block = bh->b_blocknr;
6663	}
6664
6665	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6666		ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6667		return;
6668	}
6669
6670	might_sleep();
6671
6672	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6673	    !ext4_inode_block_valid(inode, block, count)) {
6674		ext4_error(sb, "Freeing blocks not in datazone - "
6675			   "block = %llu, count = %lu", block, count);
6676		return;
6677	}
6678	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6679
6680	ext4_debug("freeing block %llu\n", block);
6681	trace_ext4_free_blocks(inode, block, count, flags);
6682
6683	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6684		BUG_ON(count > 1);
6685
6686		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6687			    inode, bh, block);
6688	}
6689
6690	/*
6691	 * If the extent to be freed does not begin on a cluster
6692	 * boundary, we need to deal with partial clusters at the
6693	 * beginning and end of the extent.  Normally we will free
6694	 * blocks at the beginning or the end unless we are explicitly
6695	 * requested to avoid doing so.
6696	 */
6697	overflow = EXT4_PBLK_COFF(sbi, block);
6698	if (overflow) {
6699		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6700			overflow = sbi->s_cluster_ratio - overflow;
6701			block += overflow;
6702			if (count > overflow)
6703				count -= overflow;
6704			else
6705				return;
6706		} else {
6707			block -= overflow;
6708			count += overflow;
6709		}
6710		/* The range changed so it's no longer validated */
6711		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6712	}
6713	overflow = EXT4_LBLK_COFF(sbi, count);
6714	if (overflow) {
6715		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6716			if (count > overflow)
6717				count -= overflow;
6718			else
6719				return;
6720		} else
6721			count += sbi->s_cluster_ratio - overflow;
6722		/* The range changed so it's no longer validated */
6723		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6724	}
6725
6726	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6727		int i;
6728		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6729
6730		for (i = 0; i < count; i++) {
6731			cond_resched();
6732			if (is_metadata)
6733				bh = sb_find_get_block(inode->i_sb, block + i);
6734			ext4_forget(handle, is_metadata, inode, bh, block + i);
6735		}
6736	}
6737
6738	ext4_mb_clear_bb(handle, inode, block, count, flags);
6739}
6740
6741/**
6742 * ext4_group_add_blocks() -- Add given blocks to an existing group
6743 * @handle:			handle to this transaction
6744 * @sb:				super block
6745 * @block:			start physical block to add to the block group
6746 * @count:			number of blocks to free
6747 *
6748 * This marks the blocks as free in the bitmap and buddy.
6749 */
6750int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6751			 ext4_fsblk_t block, unsigned long count)
6752{
6753	struct buffer_head *bitmap_bh = NULL;
6754	struct buffer_head *gd_bh;
6755	ext4_group_t block_group;
6756	ext4_grpblk_t bit;
6757	unsigned int i;
6758	struct ext4_group_desc *desc;
6759	struct ext4_sb_info *sbi = EXT4_SB(sb);
6760	struct ext4_buddy e4b;
6761	int err = 0, ret, free_clusters_count;
6762	ext4_grpblk_t clusters_freed;
6763	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6764	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6765	unsigned long cluster_count = last_cluster - first_cluster + 1;
6766
6767	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6768
6769	if (count == 0)
6770		return 0;
6771
6772	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6773	/*
6774	 * Check to see if we are freeing blocks across a group
6775	 * boundary.
6776	 */
6777	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6778		ext4_warning(sb, "too many blocks added to group %u",
6779			     block_group);
6780		err = -EINVAL;
6781		goto error_return;
6782	}
6783
6784	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6785	if (IS_ERR(bitmap_bh)) {
6786		err = PTR_ERR(bitmap_bh);
6787		bitmap_bh = NULL;
6788		goto error_return;
6789	}
6790
6791	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
6792	if (!desc) {
6793		err = -EIO;
6794		goto error_return;
6795	}
6796
6797	if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6798		ext4_error(sb, "Adding blocks in system zones - "
6799			   "Block = %llu, count = %lu",
6800			   block, count);
6801		err = -EINVAL;
6802		goto error_return;
6803	}
6804
6805	BUFFER_TRACE(bitmap_bh, "getting write access");
6806	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6807					    EXT4_JTR_NONE);
6808	if (err)
6809		goto error_return;
6810
6811	/*
6812	 * We are about to modify some metadata.  Call the journal APIs
6813	 * to unshare ->b_data if a currently-committing transaction is
6814	 * using it
6815	 */
6816	BUFFER_TRACE(gd_bh, "get_write_access");
6817	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6818	if (err)
6819		goto error_return;
6820
6821	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
6822		BUFFER_TRACE(bitmap_bh, "clear bit");
6823		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
6824			ext4_error(sb, "bit already cleared for block %llu",
6825				   (ext4_fsblk_t)(block + i));
6826			BUFFER_TRACE(bitmap_bh, "bit already cleared");
6827		} else {
6828			clusters_freed++;
6829		}
6830	}
6831
6832	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6833	if (err)
6834		goto error_return;
6835
6836	/*
6837	 * need to update group_info->bb_free and bitmap
6838	 * with group lock held. generate_buddy look at
6839	 * them with group lock_held
6840	 */
6841	ext4_lock_group(sb, block_group);
6842	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
6843	mb_free_blocks(NULL, &e4b, bit, cluster_count);
6844	free_clusters_count = clusters_freed +
6845		ext4_free_group_clusters(sb, desc);
6846	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
6847	ext4_block_bitmap_csum_set(sb, desc, bitmap_bh);
6848	ext4_group_desc_csum_set(sb, block_group, desc);
6849	ext4_unlock_group(sb, block_group);
6850	percpu_counter_add(&sbi->s_freeclusters_counter,
6851			   clusters_freed);
6852
6853	if (sbi->s_log_groups_per_flex) {
6854		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6855		atomic64_add(clusters_freed,
6856			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6857						  flex_group)->free_clusters);
6858	}
6859
6860	ext4_mb_unload_buddy(&e4b);
6861
6862	/* We dirtied the bitmap block */
6863	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6864	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6865
6866	/* And the group descriptor block */
6867	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6868	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6869	if (!err)
6870		err = ret;
6871
6872error_return:
6873	brelse(bitmap_bh);
6874	ext4_std_error(sb, err);
6875	return err;
6876}
6877
6878/**
6879 * ext4_trim_extent -- function to TRIM one single free extent in the group
6880 * @sb:		super block for the file system
6881 * @start:	starting block of the free extent in the alloc. group
6882 * @count:	number of blocks to TRIM
6883 * @e4b:	ext4 buddy for the group
6884 *
6885 * Trim "count" blocks starting at "start" in the "group". To assure that no
6886 * one will allocate those blocks, mark it as used in buddy bitmap. This must
6887 * be called with under the group lock.
6888 */
6889static int ext4_trim_extent(struct super_block *sb,
6890		int start, int count, struct ext4_buddy *e4b)
6891__releases(bitlock)
6892__acquires(bitlock)
6893{
6894	struct ext4_free_extent ex;
6895	ext4_group_t group = e4b->bd_group;
6896	int ret = 0;
6897
6898	trace_ext4_trim_extent(sb, group, start, count);
6899
6900	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6901
6902	ex.fe_start = start;
6903	ex.fe_group = group;
6904	ex.fe_len = count;
6905
6906	/*
6907	 * Mark blocks used, so no one can reuse them while
6908	 * being trimmed.
6909	 */
6910	mb_mark_used(e4b, &ex);
6911	ext4_unlock_group(sb, group);
6912	ret = ext4_issue_discard(sb, group, start, count, NULL);
6913	ext4_lock_group(sb, group);
6914	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6915	return ret;
6916}
6917
6918static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6919					   ext4_group_t grp)
6920{
6921	unsigned long nr_clusters_in_group;
6922
6923	if (grp < (ext4_get_groups_count(sb) - 1))
6924		nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6925	else
6926		nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6927					ext4_group_first_block_no(sb, grp))
6928				       >> EXT4_CLUSTER_BITS(sb);
6929
6930	return nr_clusters_in_group - 1;
6931}
6932
6933static bool ext4_trim_interrupted(void)
6934{
6935	return fatal_signal_pending(current) || freezing(current);
6936}
6937
6938static int ext4_try_to_trim_range(struct super_block *sb,
6939		struct ext4_buddy *e4b, ext4_grpblk_t start,
6940		ext4_grpblk_t max, ext4_grpblk_t minblocks)
6941__acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6942__releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6943{
6944	ext4_grpblk_t next, count, free_count, last, origin_start;
6945	bool set_trimmed = false;
6946	void *bitmap;
6947
6948	last = ext4_last_grp_cluster(sb, e4b->bd_group);
6949	bitmap = e4b->bd_bitmap;
6950	if (start == 0 && max >= last)
6951		set_trimmed = true;
6952	origin_start = start;
6953	start = max(e4b->bd_info->bb_first_free, start);
6954	count = 0;
6955	free_count = 0;
6956
6957	while (start <= max) {
6958		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6959		if (start > max)
6960			break;
6961
6962		next = mb_find_next_bit(bitmap, last + 1, start);
6963		if (origin_start == 0 && next >= last)
6964			set_trimmed = true;
6965
6966		if ((next - start) >= minblocks) {
6967			int ret = ext4_trim_extent(sb, start, next - start, e4b);
6968
6969			if (ret && ret != -EOPNOTSUPP)
6970				return count;
6971			count += next - start;
6972		}
6973		free_count += next - start;
6974		start = next + 1;
6975
6976		if (ext4_trim_interrupted())
6977			return count;
6978
6979		if (need_resched()) {
6980			ext4_unlock_group(sb, e4b->bd_group);
6981			cond_resched();
6982			ext4_lock_group(sb, e4b->bd_group);
6983		}
6984
6985		if ((e4b->bd_info->bb_free - free_count) < minblocks)
6986			break;
6987	}
6988
6989	if (set_trimmed)
6990		EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6991
6992	return count;
6993}
6994
6995/**
6996 * ext4_trim_all_free -- function to trim all free space in alloc. group
6997 * @sb:			super block for file system
6998 * @group:		group to be trimmed
6999 * @start:		first group block to examine
7000 * @max:		last group block to examine
7001 * @minblocks:		minimum extent block count
7002 *
7003 * ext4_trim_all_free walks through group's block bitmap searching for free
7004 * extents. When the free extent is found, mark it as used in group buddy
7005 * bitmap. Then issue a TRIM command on this extent and free the extent in
7006 * the group buddy bitmap.
7007 */
7008static ext4_grpblk_t
7009ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
7010		   ext4_grpblk_t start, ext4_grpblk_t max,
7011		   ext4_grpblk_t minblocks)
7012{
7013	struct ext4_buddy e4b;
7014	int ret;
7015
7016	trace_ext4_trim_all_free(sb, group, start, max);
7017
7018	ret = ext4_mb_load_buddy(sb, group, &e4b);
7019	if (ret) {
7020		ext4_warning(sb, "Error %d loading buddy information for %u",
7021			     ret, group);
7022		return ret;
7023	}
7024
7025	ext4_lock_group(sb, group);
7026
7027	if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
7028	    minblocks < EXT4_SB(sb)->s_last_trim_minblks)
7029		ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
7030	else
7031		ret = 0;
7032
7033	ext4_unlock_group(sb, group);
7034	ext4_mb_unload_buddy(&e4b);
7035
7036	ext4_debug("trimmed %d blocks in the group %d\n",
7037		ret, group);
7038
7039	return ret;
7040}
7041
7042/**
7043 * ext4_trim_fs() -- trim ioctl handle function
7044 * @sb:			superblock for filesystem
7045 * @range:		fstrim_range structure
7046 *
7047 * start:	First Byte to trim
7048 * len:		number of Bytes to trim from start
7049 * minlen:	minimum extent length in Bytes
7050 * ext4_trim_fs goes through all allocation groups containing Bytes from
7051 * start to start+len. For each such a group ext4_trim_all_free function
7052 * is invoked to trim all free space.
7053 */
7054int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
7055{
7056	unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
7057	struct ext4_group_info *grp;
7058	ext4_group_t group, first_group, last_group;
7059	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
7060	uint64_t start, end, minlen, trimmed = 0;
7061	ext4_fsblk_t first_data_blk =
7062			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
7063	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
7064	int ret = 0;
7065
7066	start = range->start >> sb->s_blocksize_bits;
7067	end = start + (range->len >> sb->s_blocksize_bits) - 1;
7068	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7069			      range->minlen >> sb->s_blocksize_bits);
7070
7071	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
7072	    start >= max_blks ||
7073	    range->len < sb->s_blocksize)
7074		return -EINVAL;
7075	/* No point to try to trim less than discard granularity */
7076	if (range->minlen < discard_granularity) {
7077		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7078				discard_granularity >> sb->s_blocksize_bits);
7079		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
7080			goto out;
7081	}
7082	if (end >= max_blks - 1)
7083		end = max_blks - 1;
7084	if (end <= first_data_blk)
7085		goto out;
7086	if (start < first_data_blk)
7087		start = first_data_blk;
7088
7089	/* Determine first and last group to examine based on start and end */
7090	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
7091				     &first_group, &first_cluster);
7092	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
7093				     &last_group, &last_cluster);
7094
7095	/* end now represents the last cluster to discard in this group */
7096	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7097
7098	for (group = first_group; group <= last_group; group++) {
7099		if (ext4_trim_interrupted())
7100			break;
7101		grp = ext4_get_group_info(sb, group);
7102		if (!grp)
7103			continue;
7104		/* We only do this if the grp has never been initialized */
7105		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
7106			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
7107			if (ret)
7108				break;
7109		}
7110
7111		/*
7112		 * For all the groups except the last one, last cluster will
7113		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
7114		 * change it for the last group, note that last_cluster is
7115		 * already computed earlier by ext4_get_group_no_and_offset()
7116		 */
7117		if (group == last_group)
7118			end = last_cluster;
7119		if (grp->bb_free >= minlen) {
7120			cnt = ext4_trim_all_free(sb, group, first_cluster,
7121						 end, minlen);
7122			if (cnt < 0) {
7123				ret = cnt;
7124				break;
7125			}
7126			trimmed += cnt;
7127		}
7128
7129		/*
7130		 * For every group except the first one, we are sure
7131		 * that the first cluster to discard will be cluster #0.
7132		 */
7133		first_cluster = 0;
7134	}
7135
7136	if (!ret)
7137		EXT4_SB(sb)->s_last_trim_minblks = minlen;
7138
7139out:
7140	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
7141	return ret;
7142}
7143
7144/* Iterate all the free extents in the group. */
7145int
7146ext4_mballoc_query_range(
7147	struct super_block		*sb,
7148	ext4_group_t			group,
7149	ext4_grpblk_t			start,
7150	ext4_grpblk_t			end,
7151	ext4_mballoc_query_range_fn	formatter,
7152	void				*priv)
7153{
7154	void				*bitmap;
7155	ext4_grpblk_t			next;
7156	struct ext4_buddy		e4b;
7157	int				error;
7158
7159	error = ext4_mb_load_buddy(sb, group, &e4b);
7160	if (error)
7161		return error;
7162	bitmap = e4b.bd_bitmap;
7163
7164	ext4_lock_group(sb, group);
7165
7166	start = max(e4b.bd_info->bb_first_free, start);
7167	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7168		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7169
7170	while (start <= end) {
7171		start = mb_find_next_zero_bit(bitmap, end + 1, start);
7172		if (start > end)
7173			break;
7174		next = mb_find_next_bit(bitmap, end + 1, start);
7175
7176		ext4_unlock_group(sb, group);
7177		error = formatter(sb, group, start, next - start, priv);
7178		if (error)
7179			goto out_unload;
7180		ext4_lock_group(sb, group);
7181
7182		start = next + 1;
7183	}
7184
7185	ext4_unlock_group(sb, group);
7186out_unload:
7187	ext4_mb_unload_buddy(&e4b);
7188
7189	return error;
7190}
7191