xref: /kernel/linux/linux-6.6/fs/ext4/inode.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 *  from
11 *
12 *  linux/fs/minix/inode.c
13 *
14 *  Copyright (C) 1991, 1992  Linus Torvalds
15 *
16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
17 *	(jj@sunsite.ms.mff.cuni.cz)
18 *
19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22#include <linux/fs.h>
23#include <linux/mount.h>
24#include <linux/time.h>
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
27#include <linux/dax.h>
28#include <linux/quotaops.h>
29#include <linux/string.h>
30#include <linux/buffer_head.h>
31#include <linux/writeback.h>
32#include <linux/pagevec.h>
33#include <linux/mpage.h>
34#include <linux/namei.h>
35#include <linux/uio.h>
36#include <linux/bio.h>
37#include <linux/workqueue.h>
38#include <linux/kernel.h>
39#include <linux/printk.h>
40#include <linux/slab.h>
41#include <linux/bitops.h>
42#include <linux/iomap.h>
43#include <linux/iversion.h>
44
45#include "ext4_jbd2.h"
46#include "xattr.h"
47#include "acl.h"
48#include "truncate.h"
49
50#include <trace/events/ext4.h>
51
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53			      struct ext4_inode_info *ei)
54{
55	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56	__u32 csum;
57	__u16 dummy_csum = 0;
58	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59	unsigned int csum_size = sizeof(dummy_csum);
60
61	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63	offset += csum_size;
64	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68		offset = offsetof(struct ext4_inode, i_checksum_hi);
69		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70				   EXT4_GOOD_OLD_INODE_SIZE,
71				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74					   csum_size);
75			offset += csum_size;
76		}
77		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79	}
80
81	return csum;
82}
83
84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85				  struct ext4_inode_info *ei)
86{
87	__u32 provided, calculated;
88
89	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90	    cpu_to_le32(EXT4_OS_LINUX) ||
91	    !ext4_has_metadata_csum(inode->i_sb))
92		return 1;
93
94	provided = le16_to_cpu(raw->i_checksum_lo);
95	calculated = ext4_inode_csum(inode, raw, ei);
96	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99	else
100		calculated &= 0xFFFF;
101
102	return provided == calculated;
103}
104
105void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106			 struct ext4_inode_info *ei)
107{
108	__u32 csum;
109
110	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111	    cpu_to_le32(EXT4_OS_LINUX) ||
112	    !ext4_has_metadata_csum(inode->i_sb))
113		return;
114
115	csum = ext4_inode_csum(inode, raw, ei);
116	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120}
121
122static inline int ext4_begin_ordered_truncate(struct inode *inode,
123					      loff_t new_size)
124{
125	trace_ext4_begin_ordered_truncate(inode, new_size);
126	/*
127	 * If jinode is zero, then we never opened the file for
128	 * writing, so there's no need to call
129	 * jbd2_journal_begin_ordered_truncate() since there's no
130	 * outstanding writes we need to flush.
131	 */
132	if (!EXT4_I(inode)->jinode)
133		return 0;
134	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135						   EXT4_I(inode)->jinode,
136						   new_size);
137}
138
139static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140				  int pextents);
141
142/*
143 * Test whether an inode is a fast symlink.
144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
145 */
146int ext4_inode_is_fast_symlink(struct inode *inode)
147{
148	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
149		int ea_blocks = EXT4_I(inode)->i_file_acl ?
150				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151
152		if (ext4_has_inline_data(inode))
153			return 0;
154
155		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
156	}
157	return S_ISLNK(inode->i_mode) && inode->i_size &&
158	       (inode->i_size < EXT4_N_BLOCKS * 4);
159}
160
161/*
162 * Called at the last iput() if i_nlink is zero.
163 */
164void ext4_evict_inode(struct inode *inode)
165{
166	handle_t *handle;
167	int err;
168	/*
169	 * Credits for final inode cleanup and freeing:
170	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
171	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
172	 */
173	int extra_credits = 6;
174	struct ext4_xattr_inode_array *ea_inode_array = NULL;
175	bool freeze_protected = false;
176
177	trace_ext4_evict_inode(inode);
178
179	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
180		ext4_evict_ea_inode(inode);
181	if (inode->i_nlink) {
182		truncate_inode_pages_final(&inode->i_data);
183
184		goto no_delete;
185	}
186
187	if (is_bad_inode(inode))
188		goto no_delete;
189	dquot_initialize(inode);
190
191	if (ext4_should_order_data(inode))
192		ext4_begin_ordered_truncate(inode, 0);
193	truncate_inode_pages_final(&inode->i_data);
194
195	/*
196	 * For inodes with journalled data, transaction commit could have
197	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
198	 * extents converting worker could merge extents and also have dirtied
199	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
200	 * we still need to remove the inode from the writeback lists.
201	 */
202	if (!list_empty_careful(&inode->i_io_list))
203		inode_io_list_del(inode);
204
205	/*
206	 * Protect us against freezing - iput() caller didn't have to have any
207	 * protection against it. When we are in a running transaction though,
208	 * we are already protected against freezing and we cannot grab further
209	 * protection due to lock ordering constraints.
210	 */
211	if (!ext4_journal_current_handle()) {
212		sb_start_intwrite(inode->i_sb);
213		freeze_protected = true;
214	}
215
216	if (!IS_NOQUOTA(inode))
217		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
218
219	/*
220	 * Block bitmap, group descriptor, and inode are accounted in both
221	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
222	 */
223	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
224			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
225	if (IS_ERR(handle)) {
226		ext4_std_error(inode->i_sb, PTR_ERR(handle));
227		/*
228		 * If we're going to skip the normal cleanup, we still need to
229		 * make sure that the in-core orphan linked list is properly
230		 * cleaned up.
231		 */
232		ext4_orphan_del(NULL, inode);
233		if (freeze_protected)
234			sb_end_intwrite(inode->i_sb);
235		goto no_delete;
236	}
237
238	if (IS_SYNC(inode))
239		ext4_handle_sync(handle);
240
241	/*
242	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
243	 * special handling of symlinks here because i_size is used to
244	 * determine whether ext4_inode_info->i_data contains symlink data or
245	 * block mappings. Setting i_size to 0 will remove its fast symlink
246	 * status. Erase i_data so that it becomes a valid empty block map.
247	 */
248	if (ext4_inode_is_fast_symlink(inode))
249		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
250	inode->i_size = 0;
251	err = ext4_mark_inode_dirty(handle, inode);
252	if (err) {
253		ext4_warning(inode->i_sb,
254			     "couldn't mark inode dirty (err %d)", err);
255		goto stop_handle;
256	}
257	if (inode->i_blocks) {
258		err = ext4_truncate(inode);
259		if (err) {
260			ext4_error_err(inode->i_sb, -err,
261				       "couldn't truncate inode %lu (err %d)",
262				       inode->i_ino, err);
263			goto stop_handle;
264		}
265	}
266
267	/* Remove xattr references. */
268	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
269				      extra_credits);
270	if (err) {
271		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
272stop_handle:
273		ext4_journal_stop(handle);
274		ext4_orphan_del(NULL, inode);
275		if (freeze_protected)
276			sb_end_intwrite(inode->i_sb);
277		ext4_xattr_inode_array_free(ea_inode_array);
278		goto no_delete;
279	}
280
281	/*
282	 * Kill off the orphan record which ext4_truncate created.
283	 * AKPM: I think this can be inside the above `if'.
284	 * Note that ext4_orphan_del() has to be able to cope with the
285	 * deletion of a non-existent orphan - this is because we don't
286	 * know if ext4_truncate() actually created an orphan record.
287	 * (Well, we could do this if we need to, but heck - it works)
288	 */
289	ext4_orphan_del(handle, inode);
290	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
291
292	/*
293	 * One subtle ordering requirement: if anything has gone wrong
294	 * (transaction abort, IO errors, whatever), then we can still
295	 * do these next steps (the fs will already have been marked as
296	 * having errors), but we can't free the inode if the mark_dirty
297	 * fails.
298	 */
299	if (ext4_mark_inode_dirty(handle, inode))
300		/* If that failed, just do the required in-core inode clear. */
301		ext4_clear_inode(inode);
302	else
303		ext4_free_inode(handle, inode);
304	ext4_journal_stop(handle);
305	if (freeze_protected)
306		sb_end_intwrite(inode->i_sb);
307	ext4_xattr_inode_array_free(ea_inode_array);
308	return;
309no_delete:
310	/*
311	 * Check out some where else accidentally dirty the evicting inode,
312	 * which may probably cause inode use-after-free issues later.
313	 */
314	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
315
316	if (!list_empty(&EXT4_I(inode)->i_fc_list))
317		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
318	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
319}
320
321#ifdef CONFIG_QUOTA
322qsize_t *ext4_get_reserved_space(struct inode *inode)
323{
324	return &EXT4_I(inode)->i_reserved_quota;
325}
326#endif
327
328/*
329 * Called with i_data_sem down, which is important since we can call
330 * ext4_discard_preallocations() from here.
331 */
332void ext4_da_update_reserve_space(struct inode *inode,
333					int used, int quota_claim)
334{
335	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336	struct ext4_inode_info *ei = EXT4_I(inode);
337
338	spin_lock(&ei->i_block_reservation_lock);
339	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340	if (unlikely(used > ei->i_reserved_data_blocks)) {
341		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
342			 "with only %d reserved data blocks",
343			 __func__, inode->i_ino, used,
344			 ei->i_reserved_data_blocks);
345		WARN_ON(1);
346		used = ei->i_reserved_data_blocks;
347	}
348
349	/* Update per-inode reservations */
350	ei->i_reserved_data_blocks -= used;
351	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352
353	spin_unlock(&ei->i_block_reservation_lock);
354
355	/* Update quota subsystem for data blocks */
356	if (quota_claim)
357		dquot_claim_block(inode, EXT4_C2B(sbi, used));
358	else {
359		/*
360		 * We did fallocate with an offset that is already delayed
361		 * allocated. So on delayed allocated writeback we should
362		 * not re-claim the quota for fallocated blocks.
363		 */
364		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
365	}
366
367	/*
368	 * If we have done all the pending block allocations and if
369	 * there aren't any writers on the inode, we can discard the
370	 * inode's preallocations.
371	 */
372	if ((ei->i_reserved_data_blocks == 0) &&
373	    !inode_is_open_for_write(inode))
374		ext4_discard_preallocations(inode, 0);
375}
376
377static int __check_block_validity(struct inode *inode, const char *func,
378				unsigned int line,
379				struct ext4_map_blocks *map)
380{
381	if (ext4_has_feature_journal(inode->i_sb) &&
382	    (inode->i_ino ==
383	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
384		return 0;
385	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
386		ext4_error_inode(inode, func, line, map->m_pblk,
387				 "lblock %lu mapped to illegal pblock %llu "
388				 "(length %d)", (unsigned long) map->m_lblk,
389				 map->m_pblk, map->m_len);
390		return -EFSCORRUPTED;
391	}
392	return 0;
393}
394
395int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
396		       ext4_lblk_t len)
397{
398	int ret;
399
400	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
401		return fscrypt_zeroout_range(inode, lblk, pblk, len);
402
403	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
404	if (ret > 0)
405		ret = 0;
406
407	return ret;
408}
409
410#define check_block_validity(inode, map)	\
411	__check_block_validity((inode), __func__, __LINE__, (map))
412
413#ifdef ES_AGGRESSIVE_TEST
414static void ext4_map_blocks_es_recheck(handle_t *handle,
415				       struct inode *inode,
416				       struct ext4_map_blocks *es_map,
417				       struct ext4_map_blocks *map,
418				       int flags)
419{
420	int retval;
421
422	map->m_flags = 0;
423	/*
424	 * There is a race window that the result is not the same.
425	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
426	 * is that we lookup a block mapping in extent status tree with
427	 * out taking i_data_sem.  So at the time the unwritten extent
428	 * could be converted.
429	 */
430	down_read(&EXT4_I(inode)->i_data_sem);
431	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
432		retval = ext4_ext_map_blocks(handle, inode, map, 0);
433	} else {
434		retval = ext4_ind_map_blocks(handle, inode, map, 0);
435	}
436	up_read((&EXT4_I(inode)->i_data_sem));
437
438	/*
439	 * We don't check m_len because extent will be collpased in status
440	 * tree.  So the m_len might not equal.
441	 */
442	if (es_map->m_lblk != map->m_lblk ||
443	    es_map->m_flags != map->m_flags ||
444	    es_map->m_pblk != map->m_pblk) {
445		printk("ES cache assertion failed for inode: %lu "
446		       "es_cached ex [%d/%d/%llu/%x] != "
447		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
448		       inode->i_ino, es_map->m_lblk, es_map->m_len,
449		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
450		       map->m_len, map->m_pblk, map->m_flags,
451		       retval, flags);
452	}
453}
454#endif /* ES_AGGRESSIVE_TEST */
455
456/*
457 * The ext4_map_blocks() function tries to look up the requested blocks,
458 * and returns if the blocks are already mapped.
459 *
460 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
461 * and store the allocated blocks in the result buffer head and mark it
462 * mapped.
463 *
464 * If file type is extents based, it will call ext4_ext_map_blocks(),
465 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
466 * based files
467 *
468 * On success, it returns the number of blocks being mapped or allocated.  if
469 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
470 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
471 *
472 * It returns 0 if plain look up failed (blocks have not been allocated), in
473 * that case, @map is returned as unmapped but we still do fill map->m_len to
474 * indicate the length of a hole starting at map->m_lblk.
475 *
476 * It returns the error in case of allocation failure.
477 */
478int ext4_map_blocks(handle_t *handle, struct inode *inode,
479		    struct ext4_map_blocks *map, int flags)
480{
481	struct extent_status es;
482	int retval;
483	int ret = 0;
484#ifdef ES_AGGRESSIVE_TEST
485	struct ext4_map_blocks orig_map;
486
487	memcpy(&orig_map, map, sizeof(*map));
488#endif
489
490	map->m_flags = 0;
491	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
492		  flags, map->m_len, (unsigned long) map->m_lblk);
493
494	/*
495	 * ext4_map_blocks returns an int, and m_len is an unsigned int
496	 */
497	if (unlikely(map->m_len > INT_MAX))
498		map->m_len = INT_MAX;
499
500	/* We can handle the block number less than EXT_MAX_BLOCKS */
501	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
502		return -EFSCORRUPTED;
503
504	/* Lookup extent status tree firstly */
505	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
506	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
507		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
508			map->m_pblk = ext4_es_pblock(&es) +
509					map->m_lblk - es.es_lblk;
510			map->m_flags |= ext4_es_is_written(&es) ?
511					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
512			retval = es.es_len - (map->m_lblk - es.es_lblk);
513			if (retval > map->m_len)
514				retval = map->m_len;
515			map->m_len = retval;
516		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
517			map->m_pblk = 0;
518			retval = es.es_len - (map->m_lblk - es.es_lblk);
519			if (retval > map->m_len)
520				retval = map->m_len;
521			map->m_len = retval;
522			retval = 0;
523		} else {
524			BUG();
525		}
526
527		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
528			return retval;
529#ifdef ES_AGGRESSIVE_TEST
530		ext4_map_blocks_es_recheck(handle, inode, map,
531					   &orig_map, flags);
532#endif
533		goto found;
534	}
535	/*
536	 * In the query cache no-wait mode, nothing we can do more if we
537	 * cannot find extent in the cache.
538	 */
539	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
540		return 0;
541
542	/*
543	 * Try to see if we can get the block without requesting a new
544	 * file system block.
545	 */
546	down_read(&EXT4_I(inode)->i_data_sem);
547	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548		retval = ext4_ext_map_blocks(handle, inode, map, 0);
549	} else {
550		retval = ext4_ind_map_blocks(handle, inode, map, 0);
551	}
552	if (retval > 0) {
553		unsigned int status;
554
555		if (unlikely(retval != map->m_len)) {
556			ext4_warning(inode->i_sb,
557				     "ES len assertion failed for inode "
558				     "%lu: retval %d != map->m_len %d",
559				     inode->i_ino, retval, map->m_len);
560			WARN_ON(1);
561		}
562
563		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
564				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
565		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
566		    !(status & EXTENT_STATUS_WRITTEN) &&
567		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
568				       map->m_lblk + map->m_len - 1))
569			status |= EXTENT_STATUS_DELAYED;
570		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
571				      map->m_pblk, status);
572	}
573	up_read((&EXT4_I(inode)->i_data_sem));
574
575found:
576	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577		ret = check_block_validity(inode, map);
578		if (ret != 0)
579			return ret;
580	}
581
582	/* If it is only a block(s) look up */
583	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584		return retval;
585
586	/*
587	 * Returns if the blocks have already allocated
588	 *
589	 * Note that if blocks have been preallocated
590	 * ext4_ext_get_block() returns the create = 0
591	 * with buffer head unmapped.
592	 */
593	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594		/*
595		 * If we need to convert extent to unwritten
596		 * we continue and do the actual work in
597		 * ext4_ext_map_blocks()
598		 */
599		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
600			return retval;
601
602	/*
603	 * Here we clear m_flags because after allocating an new extent,
604	 * it will be set again.
605	 */
606	map->m_flags &= ~EXT4_MAP_FLAGS;
607
608	/*
609	 * New blocks allocate and/or writing to unwritten extent
610	 * will possibly result in updating i_data, so we take
611	 * the write lock of i_data_sem, and call get_block()
612	 * with create == 1 flag.
613	 */
614	down_write(&EXT4_I(inode)->i_data_sem);
615
616	/*
617	 * We need to check for EXT4 here because migrate
618	 * could have changed the inode type in between
619	 */
620	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
621		retval = ext4_ext_map_blocks(handle, inode, map, flags);
622	} else {
623		retval = ext4_ind_map_blocks(handle, inode, map, flags);
624
625		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
626			/*
627			 * We allocated new blocks which will result in
628			 * i_data's format changing.  Force the migrate
629			 * to fail by clearing migrate flags
630			 */
631			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
632		}
633	}
634
635	if (retval > 0) {
636		unsigned int status;
637
638		if (unlikely(retval != map->m_len)) {
639			ext4_warning(inode->i_sb,
640				     "ES len assertion failed for inode "
641				     "%lu: retval %d != map->m_len %d",
642				     inode->i_ino, retval, map->m_len);
643			WARN_ON(1);
644		}
645
646		/*
647		 * We have to zeroout blocks before inserting them into extent
648		 * status tree. Otherwise someone could look them up there and
649		 * use them before they are really zeroed. We also have to
650		 * unmap metadata before zeroing as otherwise writeback can
651		 * overwrite zeros with stale data from block device.
652		 */
653		if (flags & EXT4_GET_BLOCKS_ZERO &&
654		    map->m_flags & EXT4_MAP_MAPPED &&
655		    map->m_flags & EXT4_MAP_NEW) {
656			ret = ext4_issue_zeroout(inode, map->m_lblk,
657						 map->m_pblk, map->m_len);
658			if (ret) {
659				retval = ret;
660				goto out_sem;
661			}
662		}
663
664		/*
665		 * If the extent has been zeroed out, we don't need to update
666		 * extent status tree.
667		 */
668		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
669		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
670			if (ext4_es_is_written(&es))
671				goto out_sem;
672		}
673		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
674				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
675		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
676		    !(status & EXTENT_STATUS_WRITTEN) &&
677		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
678				       map->m_lblk + map->m_len - 1))
679			status |= EXTENT_STATUS_DELAYED;
680		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
681				      map->m_pblk, status);
682	}
683
684out_sem:
685	up_write((&EXT4_I(inode)->i_data_sem));
686	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
687		ret = check_block_validity(inode, map);
688		if (ret != 0)
689			return ret;
690
691		/*
692		 * Inodes with freshly allocated blocks where contents will be
693		 * visible after transaction commit must be on transaction's
694		 * ordered data list.
695		 */
696		if (map->m_flags & EXT4_MAP_NEW &&
697		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
698		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
699		    !ext4_is_quota_file(inode) &&
700		    ext4_should_order_data(inode)) {
701			loff_t start_byte =
702				(loff_t)map->m_lblk << inode->i_blkbits;
703			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
704
705			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
706				ret = ext4_jbd2_inode_add_wait(handle, inode,
707						start_byte, length);
708			else
709				ret = ext4_jbd2_inode_add_write(handle, inode,
710						start_byte, length);
711			if (ret)
712				return ret;
713		}
714	}
715	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
716				map->m_flags & EXT4_MAP_MAPPED))
717		ext4_fc_track_range(handle, inode, map->m_lblk,
718					map->m_lblk + map->m_len - 1);
719	if (retval < 0)
720		ext_debug(inode, "failed with err %d\n", retval);
721	return retval;
722}
723
724/*
725 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
726 * we have to be careful as someone else may be manipulating b_state as well.
727 */
728static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
729{
730	unsigned long old_state;
731	unsigned long new_state;
732
733	flags &= EXT4_MAP_FLAGS;
734
735	/* Dummy buffer_head? Set non-atomically. */
736	if (!bh->b_page) {
737		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
738		return;
739	}
740	/*
741	 * Someone else may be modifying b_state. Be careful! This is ugly but
742	 * once we get rid of using bh as a container for mapping information
743	 * to pass to / from get_block functions, this can go away.
744	 */
745	old_state = READ_ONCE(bh->b_state);
746	do {
747		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
748	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
749}
750
751static int _ext4_get_block(struct inode *inode, sector_t iblock,
752			   struct buffer_head *bh, int flags)
753{
754	struct ext4_map_blocks map;
755	int ret = 0;
756
757	if (ext4_has_inline_data(inode))
758		return -ERANGE;
759
760	map.m_lblk = iblock;
761	map.m_len = bh->b_size >> inode->i_blkbits;
762
763	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
764			      flags);
765	if (ret > 0) {
766		map_bh(bh, inode->i_sb, map.m_pblk);
767		ext4_update_bh_state(bh, map.m_flags);
768		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
769		ret = 0;
770	} else if (ret == 0) {
771		/* hole case, need to fill in bh->b_size */
772		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
773	}
774	return ret;
775}
776
777int ext4_get_block(struct inode *inode, sector_t iblock,
778		   struct buffer_head *bh, int create)
779{
780	return _ext4_get_block(inode, iblock, bh,
781			       create ? EXT4_GET_BLOCKS_CREATE : 0);
782}
783
784/*
785 * Get block function used when preparing for buffered write if we require
786 * creating an unwritten extent if blocks haven't been allocated.  The extent
787 * will be converted to written after the IO is complete.
788 */
789int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
790			     struct buffer_head *bh_result, int create)
791{
792	int ret = 0;
793
794	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
795		   inode->i_ino, create);
796	ret = _ext4_get_block(inode, iblock, bh_result,
797			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
798
799	/*
800	 * If the buffer is marked unwritten, mark it as new to make sure it is
801	 * zeroed out correctly in case of partial writes. Otherwise, there is
802	 * a chance of stale data getting exposed.
803	 */
804	if (ret == 0 && buffer_unwritten(bh_result))
805		set_buffer_new(bh_result);
806
807	return ret;
808}
809
810/* Maximum number of blocks we map for direct IO at once. */
811#define DIO_MAX_BLOCKS 4096
812
813/*
814 * `handle' can be NULL if create is zero
815 */
816struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
817				ext4_lblk_t block, int map_flags)
818{
819	struct ext4_map_blocks map;
820	struct buffer_head *bh;
821	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
822	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
823	int err;
824
825	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
826		    || handle != NULL || create == 0);
827	ASSERT(create == 0 || !nowait);
828
829	map.m_lblk = block;
830	map.m_len = 1;
831	err = ext4_map_blocks(handle, inode, &map, map_flags);
832
833	if (err == 0)
834		return create ? ERR_PTR(-ENOSPC) : NULL;
835	if (err < 0)
836		return ERR_PTR(err);
837
838	if (nowait)
839		return sb_find_get_block(inode->i_sb, map.m_pblk);
840
841	bh = sb_getblk(inode->i_sb, map.m_pblk);
842	if (unlikely(!bh))
843		return ERR_PTR(-ENOMEM);
844	if (map.m_flags & EXT4_MAP_NEW) {
845		ASSERT(create != 0);
846		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
847			    || (handle != NULL));
848
849		/*
850		 * Now that we do not always journal data, we should
851		 * keep in mind whether this should always journal the
852		 * new buffer as metadata.  For now, regular file
853		 * writes use ext4_get_block instead, so it's not a
854		 * problem.
855		 */
856		lock_buffer(bh);
857		BUFFER_TRACE(bh, "call get_create_access");
858		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
859						     EXT4_JTR_NONE);
860		if (unlikely(err)) {
861			unlock_buffer(bh);
862			goto errout;
863		}
864		if (!buffer_uptodate(bh)) {
865			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
866			set_buffer_uptodate(bh);
867		}
868		unlock_buffer(bh);
869		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
870		err = ext4_handle_dirty_metadata(handle, inode, bh);
871		if (unlikely(err))
872			goto errout;
873	} else
874		BUFFER_TRACE(bh, "not a new buffer");
875	return bh;
876errout:
877	brelse(bh);
878	return ERR_PTR(err);
879}
880
881struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
882			       ext4_lblk_t block, int map_flags)
883{
884	struct buffer_head *bh;
885	int ret;
886
887	bh = ext4_getblk(handle, inode, block, map_flags);
888	if (IS_ERR(bh))
889		return bh;
890	if (!bh || ext4_buffer_uptodate(bh))
891		return bh;
892
893	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
894	if (ret) {
895		put_bh(bh);
896		return ERR_PTR(ret);
897	}
898	return bh;
899}
900
901/* Read a contiguous batch of blocks. */
902int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
903		     bool wait, struct buffer_head **bhs)
904{
905	int i, err;
906
907	for (i = 0; i < bh_count; i++) {
908		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
909		if (IS_ERR(bhs[i])) {
910			err = PTR_ERR(bhs[i]);
911			bh_count = i;
912			goto out_brelse;
913		}
914	}
915
916	for (i = 0; i < bh_count; i++)
917		/* Note that NULL bhs[i] is valid because of holes. */
918		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
919			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
920
921	if (!wait)
922		return 0;
923
924	for (i = 0; i < bh_count; i++)
925		if (bhs[i])
926			wait_on_buffer(bhs[i]);
927
928	for (i = 0; i < bh_count; i++) {
929		if (bhs[i] && !buffer_uptodate(bhs[i])) {
930			err = -EIO;
931			goto out_brelse;
932		}
933	}
934	return 0;
935
936out_brelse:
937	for (i = 0; i < bh_count; i++) {
938		brelse(bhs[i]);
939		bhs[i] = NULL;
940	}
941	return err;
942}
943
944int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
945			   struct buffer_head *head,
946			   unsigned from,
947			   unsigned to,
948			   int *partial,
949			   int (*fn)(handle_t *handle, struct inode *inode,
950				     struct buffer_head *bh))
951{
952	struct buffer_head *bh;
953	unsigned block_start, block_end;
954	unsigned blocksize = head->b_size;
955	int err, ret = 0;
956	struct buffer_head *next;
957
958	for (bh = head, block_start = 0;
959	     ret == 0 && (bh != head || !block_start);
960	     block_start = block_end, bh = next) {
961		next = bh->b_this_page;
962		block_end = block_start + blocksize;
963		if (block_end <= from || block_start >= to) {
964			if (partial && !buffer_uptodate(bh))
965				*partial = 1;
966			continue;
967		}
968		err = (*fn)(handle, inode, bh);
969		if (!ret)
970			ret = err;
971	}
972	return ret;
973}
974
975/*
976 * Helper for handling dirtying of journalled data. We also mark the folio as
977 * dirty so that writeback code knows about this page (and inode) contains
978 * dirty data. ext4_writepages() then commits appropriate transaction to
979 * make data stable.
980 */
981static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
982{
983	folio_mark_dirty(bh->b_folio);
984	return ext4_handle_dirty_metadata(handle, NULL, bh);
985}
986
987int do_journal_get_write_access(handle_t *handle, struct inode *inode,
988				struct buffer_head *bh)
989{
990	int dirty = buffer_dirty(bh);
991	int ret;
992
993	if (!buffer_mapped(bh) || buffer_freed(bh))
994		return 0;
995	/*
996	 * __block_write_begin() could have dirtied some buffers. Clean
997	 * the dirty bit as jbd2_journal_get_write_access() could complain
998	 * otherwise about fs integrity issues. Setting of the dirty bit
999	 * by __block_write_begin() isn't a real problem here as we clear
1000	 * the bit before releasing a page lock and thus writeback cannot
1001	 * ever write the buffer.
1002	 */
1003	if (dirty)
1004		clear_buffer_dirty(bh);
1005	BUFFER_TRACE(bh, "get write access");
1006	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1007					    EXT4_JTR_NONE);
1008	if (!ret && dirty)
1009		ret = ext4_dirty_journalled_data(handle, bh);
1010	return ret;
1011}
1012
1013#ifdef CONFIG_FS_ENCRYPTION
1014static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1015				  get_block_t *get_block)
1016{
1017	unsigned from = pos & (PAGE_SIZE - 1);
1018	unsigned to = from + len;
1019	struct inode *inode = folio->mapping->host;
1020	unsigned block_start, block_end;
1021	sector_t block;
1022	int err = 0;
1023	unsigned blocksize = inode->i_sb->s_blocksize;
1024	unsigned bbits;
1025	struct buffer_head *bh, *head, *wait[2];
1026	int nr_wait = 0;
1027	int i;
1028
1029	BUG_ON(!folio_test_locked(folio));
1030	BUG_ON(from > PAGE_SIZE);
1031	BUG_ON(to > PAGE_SIZE);
1032	BUG_ON(from > to);
1033
1034	head = folio_buffers(folio);
1035	if (!head) {
1036		create_empty_buffers(&folio->page, blocksize, 0);
1037		head = folio_buffers(folio);
1038	}
1039	bbits = ilog2(blocksize);
1040	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1041
1042	for (bh = head, block_start = 0; bh != head || !block_start;
1043	    block++, block_start = block_end, bh = bh->b_this_page) {
1044		block_end = block_start + blocksize;
1045		if (block_end <= from || block_start >= to) {
1046			if (folio_test_uptodate(folio)) {
1047				set_buffer_uptodate(bh);
1048			}
1049			continue;
1050		}
1051		if (buffer_new(bh))
1052			clear_buffer_new(bh);
1053		if (!buffer_mapped(bh)) {
1054			WARN_ON(bh->b_size != blocksize);
1055			err = get_block(inode, block, bh, 1);
1056			if (err)
1057				break;
1058			if (buffer_new(bh)) {
1059				if (folio_test_uptodate(folio)) {
1060					clear_buffer_new(bh);
1061					set_buffer_uptodate(bh);
1062					mark_buffer_dirty(bh);
1063					continue;
1064				}
1065				if (block_end > to || block_start < from)
1066					folio_zero_segments(folio, to,
1067							    block_end,
1068							    block_start, from);
1069				continue;
1070			}
1071		}
1072		if (folio_test_uptodate(folio)) {
1073			set_buffer_uptodate(bh);
1074			continue;
1075		}
1076		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1077		    !buffer_unwritten(bh) &&
1078		    (block_start < from || block_end > to)) {
1079			ext4_read_bh_lock(bh, 0, false);
1080			wait[nr_wait++] = bh;
1081		}
1082	}
1083	/*
1084	 * If we issued read requests, let them complete.
1085	 */
1086	for (i = 0; i < nr_wait; i++) {
1087		wait_on_buffer(wait[i]);
1088		if (!buffer_uptodate(wait[i]))
1089			err = -EIO;
1090	}
1091	if (unlikely(err)) {
1092		folio_zero_new_buffers(folio, from, to);
1093	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1094		for (i = 0; i < nr_wait; i++) {
1095			int err2;
1096
1097			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1098						blocksize, bh_offset(wait[i]));
1099			if (err2) {
1100				clear_buffer_uptodate(wait[i]);
1101				err = err2;
1102			}
1103		}
1104	}
1105
1106	return err;
1107}
1108#endif
1109
1110/*
1111 * To preserve ordering, it is essential that the hole instantiation and
1112 * the data write be encapsulated in a single transaction.  We cannot
1113 * close off a transaction and start a new one between the ext4_get_block()
1114 * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1115 * ext4_write_begin() is the right place.
1116 */
1117static int ext4_write_begin(struct file *file, struct address_space *mapping,
1118			    loff_t pos, unsigned len,
1119			    struct page **pagep, void **fsdata)
1120{
1121	struct inode *inode = mapping->host;
1122	int ret, needed_blocks;
1123	handle_t *handle;
1124	int retries = 0;
1125	struct folio *folio;
1126	pgoff_t index;
1127	unsigned from, to;
1128
1129	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1130		return -EIO;
1131
1132	trace_ext4_write_begin(inode, pos, len);
1133	/*
1134	 * Reserve one block more for addition to orphan list in case
1135	 * we allocate blocks but write fails for some reason
1136	 */
1137	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1138	index = pos >> PAGE_SHIFT;
1139	from = pos & (PAGE_SIZE - 1);
1140	to = from + len;
1141
1142	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1143		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1144						    pagep);
1145		if (ret < 0)
1146			return ret;
1147		if (ret == 1)
1148			return 0;
1149	}
1150
1151	/*
1152	 * __filemap_get_folio() can take a long time if the
1153	 * system is thrashing due to memory pressure, or if the folio
1154	 * is being written back.  So grab it first before we start
1155	 * the transaction handle.  This also allows us to allocate
1156	 * the folio (if needed) without using GFP_NOFS.
1157	 */
1158retry_grab:
1159	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1160					mapping_gfp_mask(mapping));
1161	if (IS_ERR(folio))
1162		return PTR_ERR(folio);
1163	/*
1164	 * The same as page allocation, we prealloc buffer heads before
1165	 * starting the handle.
1166	 */
1167	if (!folio_buffers(folio))
1168		create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0);
1169
1170	folio_unlock(folio);
1171
1172retry_journal:
1173	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1174	if (IS_ERR(handle)) {
1175		folio_put(folio);
1176		return PTR_ERR(handle);
1177	}
1178
1179	folio_lock(folio);
1180	if (folio->mapping != mapping) {
1181		/* The folio got truncated from under us */
1182		folio_unlock(folio);
1183		folio_put(folio);
1184		ext4_journal_stop(handle);
1185		goto retry_grab;
1186	}
1187	/* In case writeback began while the folio was unlocked */
1188	folio_wait_stable(folio);
1189
1190#ifdef CONFIG_FS_ENCRYPTION
1191	if (ext4_should_dioread_nolock(inode))
1192		ret = ext4_block_write_begin(folio, pos, len,
1193					     ext4_get_block_unwritten);
1194	else
1195		ret = ext4_block_write_begin(folio, pos, len, ext4_get_block);
1196#else
1197	if (ext4_should_dioread_nolock(inode))
1198		ret = __block_write_begin(&folio->page, pos, len,
1199					  ext4_get_block_unwritten);
1200	else
1201		ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1202#endif
1203	if (!ret && ext4_should_journal_data(inode)) {
1204		ret = ext4_walk_page_buffers(handle, inode,
1205					     folio_buffers(folio), from, to,
1206					     NULL, do_journal_get_write_access);
1207	}
1208
1209	if (ret) {
1210		bool extended = (pos + len > inode->i_size) &&
1211				!ext4_verity_in_progress(inode);
1212
1213		folio_unlock(folio);
1214		/*
1215		 * __block_write_begin may have instantiated a few blocks
1216		 * outside i_size.  Trim these off again. Don't need
1217		 * i_size_read because we hold i_rwsem.
1218		 *
1219		 * Add inode to orphan list in case we crash before
1220		 * truncate finishes
1221		 */
1222		if (extended && ext4_can_truncate(inode))
1223			ext4_orphan_add(handle, inode);
1224
1225		ext4_journal_stop(handle);
1226		if (extended) {
1227			ext4_truncate_failed_write(inode);
1228			/*
1229			 * If truncate failed early the inode might
1230			 * still be on the orphan list; we need to
1231			 * make sure the inode is removed from the
1232			 * orphan list in that case.
1233			 */
1234			if (inode->i_nlink)
1235				ext4_orphan_del(NULL, inode);
1236		}
1237
1238		if (ret == -ENOSPC &&
1239		    ext4_should_retry_alloc(inode->i_sb, &retries))
1240			goto retry_journal;
1241		folio_put(folio);
1242		return ret;
1243	}
1244	*pagep = &folio->page;
1245	return ret;
1246}
1247
1248/* For write_end() in data=journal mode */
1249static int write_end_fn(handle_t *handle, struct inode *inode,
1250			struct buffer_head *bh)
1251{
1252	int ret;
1253	if (!buffer_mapped(bh) || buffer_freed(bh))
1254		return 0;
1255	set_buffer_uptodate(bh);
1256	ret = ext4_dirty_journalled_data(handle, bh);
1257	clear_buffer_meta(bh);
1258	clear_buffer_prio(bh);
1259	return ret;
1260}
1261
1262/*
1263 * We need to pick up the new inode size which generic_commit_write gave us
1264 * `file' can be NULL - eg, when called from page_symlink().
1265 *
1266 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1267 * buffers are managed internally.
1268 */
1269static int ext4_write_end(struct file *file,
1270			  struct address_space *mapping,
1271			  loff_t pos, unsigned len, unsigned copied,
1272			  struct page *page, void *fsdata)
1273{
1274	struct folio *folio = page_folio(page);
1275	handle_t *handle = ext4_journal_current_handle();
1276	struct inode *inode = mapping->host;
1277	loff_t old_size = inode->i_size;
1278	int ret = 0, ret2;
1279	int i_size_changed = 0;
1280	bool verity = ext4_verity_in_progress(inode);
1281
1282	trace_ext4_write_end(inode, pos, len, copied);
1283
1284	if (ext4_has_inline_data(inode) &&
1285	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1286		return ext4_write_inline_data_end(inode, pos, len, copied,
1287						  folio);
1288
1289	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1290	/*
1291	 * it's important to update i_size while still holding folio lock:
1292	 * page writeout could otherwise come in and zero beyond i_size.
1293	 *
1294	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1295	 * blocks are being written past EOF, so skip the i_size update.
1296	 */
1297	if (!verity)
1298		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1299	folio_unlock(folio);
1300	folio_put(folio);
1301
1302	if (old_size < pos && !verity)
1303		pagecache_isize_extended(inode, old_size, pos);
1304	/*
1305	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1306	 * makes the holding time of folio lock longer. Second, it forces lock
1307	 * ordering of folio lock and transaction start for journaling
1308	 * filesystems.
1309	 */
1310	if (i_size_changed)
1311		ret = ext4_mark_inode_dirty(handle, inode);
1312
1313	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1314		/* if we have allocated more blocks and copied
1315		 * less. We will have blocks allocated outside
1316		 * inode->i_size. So truncate them
1317		 */
1318		ext4_orphan_add(handle, inode);
1319
1320	ret2 = ext4_journal_stop(handle);
1321	if (!ret)
1322		ret = ret2;
1323
1324	if (pos + len > inode->i_size && !verity) {
1325		ext4_truncate_failed_write(inode);
1326		/*
1327		 * If truncate failed early the inode might still be
1328		 * on the orphan list; we need to make sure the inode
1329		 * is removed from the orphan list in that case.
1330		 */
1331		if (inode->i_nlink)
1332			ext4_orphan_del(NULL, inode);
1333	}
1334
1335	return ret ? ret : copied;
1336}
1337
1338/*
1339 * This is a private version of folio_zero_new_buffers() which doesn't
1340 * set the buffer to be dirty, since in data=journalled mode we need
1341 * to call ext4_dirty_journalled_data() instead.
1342 */
1343static void ext4_journalled_zero_new_buffers(handle_t *handle,
1344					    struct inode *inode,
1345					    struct folio *folio,
1346					    unsigned from, unsigned to)
1347{
1348	unsigned int block_start = 0, block_end;
1349	struct buffer_head *head, *bh;
1350
1351	bh = head = folio_buffers(folio);
1352	do {
1353		block_end = block_start + bh->b_size;
1354		if (buffer_new(bh)) {
1355			if (block_end > from && block_start < to) {
1356				if (!folio_test_uptodate(folio)) {
1357					unsigned start, size;
1358
1359					start = max(from, block_start);
1360					size = min(to, block_end) - start;
1361
1362					folio_zero_range(folio, start, size);
1363					write_end_fn(handle, inode, bh);
1364				}
1365				clear_buffer_new(bh);
1366			}
1367		}
1368		block_start = block_end;
1369		bh = bh->b_this_page;
1370	} while (bh != head);
1371}
1372
1373static int ext4_journalled_write_end(struct file *file,
1374				     struct address_space *mapping,
1375				     loff_t pos, unsigned len, unsigned copied,
1376				     struct page *page, void *fsdata)
1377{
1378	struct folio *folio = page_folio(page);
1379	handle_t *handle = ext4_journal_current_handle();
1380	struct inode *inode = mapping->host;
1381	loff_t old_size = inode->i_size;
1382	int ret = 0, ret2;
1383	int partial = 0;
1384	unsigned from, to;
1385	int size_changed = 0;
1386	bool verity = ext4_verity_in_progress(inode);
1387
1388	trace_ext4_journalled_write_end(inode, pos, len, copied);
1389	from = pos & (PAGE_SIZE - 1);
1390	to = from + len;
1391
1392	BUG_ON(!ext4_handle_valid(handle));
1393
1394	if (ext4_has_inline_data(inode))
1395		return ext4_write_inline_data_end(inode, pos, len, copied,
1396						  folio);
1397
1398	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1399		copied = 0;
1400		ext4_journalled_zero_new_buffers(handle, inode, folio,
1401						 from, to);
1402	} else {
1403		if (unlikely(copied < len))
1404			ext4_journalled_zero_new_buffers(handle, inode, folio,
1405							 from + copied, to);
1406		ret = ext4_walk_page_buffers(handle, inode,
1407					     folio_buffers(folio),
1408					     from, from + copied, &partial,
1409					     write_end_fn);
1410		if (!partial)
1411			folio_mark_uptodate(folio);
1412	}
1413	if (!verity)
1414		size_changed = ext4_update_inode_size(inode, pos + copied);
1415	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1416	folio_unlock(folio);
1417	folio_put(folio);
1418
1419	if (old_size < pos && !verity)
1420		pagecache_isize_extended(inode, old_size, pos);
1421
1422	if (size_changed) {
1423		ret2 = ext4_mark_inode_dirty(handle, inode);
1424		if (!ret)
1425			ret = ret2;
1426	}
1427
1428	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1429		/* if we have allocated more blocks and copied
1430		 * less. We will have blocks allocated outside
1431		 * inode->i_size. So truncate them
1432		 */
1433		ext4_orphan_add(handle, inode);
1434
1435	ret2 = ext4_journal_stop(handle);
1436	if (!ret)
1437		ret = ret2;
1438	if (pos + len > inode->i_size && !verity) {
1439		ext4_truncate_failed_write(inode);
1440		/*
1441		 * If truncate failed early the inode might still be
1442		 * on the orphan list; we need to make sure the inode
1443		 * is removed from the orphan list in that case.
1444		 */
1445		if (inode->i_nlink)
1446			ext4_orphan_del(NULL, inode);
1447	}
1448
1449	return ret ? ret : copied;
1450}
1451
1452/*
1453 * Reserve space for a single cluster
1454 */
1455static int ext4_da_reserve_space(struct inode *inode)
1456{
1457	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1458	struct ext4_inode_info *ei = EXT4_I(inode);
1459	int ret;
1460
1461	/*
1462	 * We will charge metadata quota at writeout time; this saves
1463	 * us from metadata over-estimation, though we may go over by
1464	 * a small amount in the end.  Here we just reserve for data.
1465	 */
1466	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1467	if (ret)
1468		return ret;
1469
1470	spin_lock(&ei->i_block_reservation_lock);
1471	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1472		spin_unlock(&ei->i_block_reservation_lock);
1473		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1474		return -ENOSPC;
1475	}
1476	ei->i_reserved_data_blocks++;
1477	trace_ext4_da_reserve_space(inode);
1478	spin_unlock(&ei->i_block_reservation_lock);
1479
1480	return 0;       /* success */
1481}
1482
1483void ext4_da_release_space(struct inode *inode, int to_free)
1484{
1485	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1486	struct ext4_inode_info *ei = EXT4_I(inode);
1487
1488	if (!to_free)
1489		return;		/* Nothing to release, exit */
1490
1491	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1492
1493	trace_ext4_da_release_space(inode, to_free);
1494	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1495		/*
1496		 * if there aren't enough reserved blocks, then the
1497		 * counter is messed up somewhere.  Since this
1498		 * function is called from invalidate page, it's
1499		 * harmless to return without any action.
1500		 */
1501		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1502			 "ino %lu, to_free %d with only %d reserved "
1503			 "data blocks", inode->i_ino, to_free,
1504			 ei->i_reserved_data_blocks);
1505		WARN_ON(1);
1506		to_free = ei->i_reserved_data_blocks;
1507	}
1508	ei->i_reserved_data_blocks -= to_free;
1509
1510	/* update fs dirty data blocks counter */
1511	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1512
1513	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1514
1515	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1516}
1517
1518/*
1519 * Delayed allocation stuff
1520 */
1521
1522struct mpage_da_data {
1523	/* These are input fields for ext4_do_writepages() */
1524	struct inode *inode;
1525	struct writeback_control *wbc;
1526	unsigned int can_map:1;	/* Can writepages call map blocks? */
1527
1528	/* These are internal state of ext4_do_writepages() */
1529	pgoff_t first_page;	/* The first page to write */
1530	pgoff_t next_page;	/* Current page to examine */
1531	pgoff_t last_page;	/* Last page to examine */
1532	/*
1533	 * Extent to map - this can be after first_page because that can be
1534	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1535	 * is delalloc or unwritten.
1536	 */
1537	struct ext4_map_blocks map;
1538	struct ext4_io_submit io_submit;	/* IO submission data */
1539	unsigned int do_map:1;
1540	unsigned int scanned_until_end:1;
1541	unsigned int journalled_more_data:1;
1542};
1543
1544static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1545				       bool invalidate)
1546{
1547	unsigned nr, i;
1548	pgoff_t index, end;
1549	struct folio_batch fbatch;
1550	struct inode *inode = mpd->inode;
1551	struct address_space *mapping = inode->i_mapping;
1552
1553	/* This is necessary when next_page == 0. */
1554	if (mpd->first_page >= mpd->next_page)
1555		return;
1556
1557	mpd->scanned_until_end = 0;
1558	index = mpd->first_page;
1559	end   = mpd->next_page - 1;
1560	if (invalidate) {
1561		ext4_lblk_t start, last;
1562		start = index << (PAGE_SHIFT - inode->i_blkbits);
1563		last = end << (PAGE_SHIFT - inode->i_blkbits);
1564
1565		/*
1566		 * avoid racing with extent status tree scans made by
1567		 * ext4_insert_delayed_block()
1568		 */
1569		down_write(&EXT4_I(inode)->i_data_sem);
1570		ext4_es_remove_extent(inode, start, last - start + 1);
1571		up_write(&EXT4_I(inode)->i_data_sem);
1572	}
1573
1574	folio_batch_init(&fbatch);
1575	while (index <= end) {
1576		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1577		if (nr == 0)
1578			break;
1579		for (i = 0; i < nr; i++) {
1580			struct folio *folio = fbatch.folios[i];
1581
1582			if (folio->index < mpd->first_page)
1583				continue;
1584			if (folio_next_index(folio) - 1 > end)
1585				continue;
1586			BUG_ON(!folio_test_locked(folio));
1587			BUG_ON(folio_test_writeback(folio));
1588			if (invalidate) {
1589				if (folio_mapped(folio))
1590					folio_clear_dirty_for_io(folio);
1591				block_invalidate_folio(folio, 0,
1592						folio_size(folio));
1593				folio_clear_uptodate(folio);
1594			}
1595			folio_unlock(folio);
1596		}
1597		folio_batch_release(&fbatch);
1598	}
1599}
1600
1601static void ext4_print_free_blocks(struct inode *inode)
1602{
1603	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1604	struct super_block *sb = inode->i_sb;
1605	struct ext4_inode_info *ei = EXT4_I(inode);
1606
1607	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1608	       EXT4_C2B(EXT4_SB(inode->i_sb),
1609			ext4_count_free_clusters(sb)));
1610	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1611	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1612	       (long long) EXT4_C2B(EXT4_SB(sb),
1613		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1614	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1615	       (long long) EXT4_C2B(EXT4_SB(sb),
1616		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1617	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1618	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1619		 ei->i_reserved_data_blocks);
1620	return;
1621}
1622
1623/*
1624 * ext4_insert_delayed_block - adds a delayed block to the extents status
1625 *                             tree, incrementing the reserved cluster/block
1626 *                             count or making a pending reservation
1627 *                             where needed
1628 *
1629 * @inode - file containing the newly added block
1630 * @lblk - logical block to be added
1631 *
1632 * Returns 0 on success, negative error code on failure.
1633 */
1634static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1635{
1636	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1637	int ret;
1638	bool allocated = false;
1639
1640	/*
1641	 * If the cluster containing lblk is shared with a delayed,
1642	 * written, or unwritten extent in a bigalloc file system, it's
1643	 * already been accounted for and does not need to be reserved.
1644	 * A pending reservation must be made for the cluster if it's
1645	 * shared with a written or unwritten extent and doesn't already
1646	 * have one.  Written and unwritten extents can be purged from the
1647	 * extents status tree if the system is under memory pressure, so
1648	 * it's necessary to examine the extent tree if a search of the
1649	 * extents status tree doesn't get a match.
1650	 */
1651	if (sbi->s_cluster_ratio == 1) {
1652		ret = ext4_da_reserve_space(inode);
1653		if (ret != 0)   /* ENOSPC */
1654			return ret;
1655	} else {   /* bigalloc */
1656		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1657			if (!ext4_es_scan_clu(inode,
1658					      &ext4_es_is_mapped, lblk)) {
1659				ret = ext4_clu_mapped(inode,
1660						      EXT4_B2C(sbi, lblk));
1661				if (ret < 0)
1662					return ret;
1663				if (ret == 0) {
1664					ret = ext4_da_reserve_space(inode);
1665					if (ret != 0)   /* ENOSPC */
1666						return ret;
1667				} else {
1668					allocated = true;
1669				}
1670			} else {
1671				allocated = true;
1672			}
1673		}
1674	}
1675
1676	ext4_es_insert_delayed_block(inode, lblk, allocated);
1677	return 0;
1678}
1679
1680/*
1681 * This function is grabs code from the very beginning of
1682 * ext4_map_blocks, but assumes that the caller is from delayed write
1683 * time. This function looks up the requested blocks and sets the
1684 * buffer delay bit under the protection of i_data_sem.
1685 */
1686static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1687			      struct ext4_map_blocks *map,
1688			      struct buffer_head *bh)
1689{
1690	struct extent_status es;
1691	int retval;
1692	sector_t invalid_block = ~((sector_t) 0xffff);
1693#ifdef ES_AGGRESSIVE_TEST
1694	struct ext4_map_blocks orig_map;
1695
1696	memcpy(&orig_map, map, sizeof(*map));
1697#endif
1698
1699	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1700		invalid_block = ~0;
1701
1702	map->m_flags = 0;
1703	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1704		  (unsigned long) map->m_lblk);
1705
1706	/* Lookup extent status tree firstly */
1707	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1708		if (ext4_es_is_hole(&es)) {
1709			retval = 0;
1710			down_read(&EXT4_I(inode)->i_data_sem);
1711			goto add_delayed;
1712		}
1713
1714		/*
1715		 * Delayed extent could be allocated by fallocate.
1716		 * So we need to check it.
1717		 */
1718		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1719			map_bh(bh, inode->i_sb, invalid_block);
1720			set_buffer_new(bh);
1721			set_buffer_delay(bh);
1722			return 0;
1723		}
1724
1725		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1726		retval = es.es_len - (iblock - es.es_lblk);
1727		if (retval > map->m_len)
1728			retval = map->m_len;
1729		map->m_len = retval;
1730		if (ext4_es_is_written(&es))
1731			map->m_flags |= EXT4_MAP_MAPPED;
1732		else if (ext4_es_is_unwritten(&es))
1733			map->m_flags |= EXT4_MAP_UNWRITTEN;
1734		else
1735			BUG();
1736
1737#ifdef ES_AGGRESSIVE_TEST
1738		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1739#endif
1740		return retval;
1741	}
1742
1743	/*
1744	 * Try to see if we can get the block without requesting a new
1745	 * file system block.
1746	 */
1747	down_read(&EXT4_I(inode)->i_data_sem);
1748	if (ext4_has_inline_data(inode))
1749		retval = 0;
1750	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1751		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1752	else
1753		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1754
1755add_delayed:
1756	if (retval == 0) {
1757		int ret;
1758
1759		/*
1760		 * XXX: __block_prepare_write() unmaps passed block,
1761		 * is it OK?
1762		 */
1763
1764		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1765		if (ret != 0) {
1766			retval = ret;
1767			goto out_unlock;
1768		}
1769
1770		map_bh(bh, inode->i_sb, invalid_block);
1771		set_buffer_new(bh);
1772		set_buffer_delay(bh);
1773	} else if (retval > 0) {
1774		unsigned int status;
1775
1776		if (unlikely(retval != map->m_len)) {
1777			ext4_warning(inode->i_sb,
1778				     "ES len assertion failed for inode "
1779				     "%lu: retval %d != map->m_len %d",
1780				     inode->i_ino, retval, map->m_len);
1781			WARN_ON(1);
1782		}
1783
1784		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1785				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1786		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1787				      map->m_pblk, status);
1788	}
1789
1790out_unlock:
1791	up_read((&EXT4_I(inode)->i_data_sem));
1792
1793	return retval;
1794}
1795
1796/*
1797 * This is a special get_block_t callback which is used by
1798 * ext4_da_write_begin().  It will either return mapped block or
1799 * reserve space for a single block.
1800 *
1801 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1802 * We also have b_blocknr = -1 and b_bdev initialized properly
1803 *
1804 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1805 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1806 * initialized properly.
1807 */
1808int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1809			   struct buffer_head *bh, int create)
1810{
1811	struct ext4_map_blocks map;
1812	int ret = 0;
1813
1814	BUG_ON(create == 0);
1815	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1816
1817	map.m_lblk = iblock;
1818	map.m_len = 1;
1819
1820	/*
1821	 * first, we need to know whether the block is allocated already
1822	 * preallocated blocks are unmapped but should treated
1823	 * the same as allocated blocks.
1824	 */
1825	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1826	if (ret <= 0)
1827		return ret;
1828
1829	map_bh(bh, inode->i_sb, map.m_pblk);
1830	ext4_update_bh_state(bh, map.m_flags);
1831
1832	if (buffer_unwritten(bh)) {
1833		/* A delayed write to unwritten bh should be marked
1834		 * new and mapped.  Mapped ensures that we don't do
1835		 * get_block multiple times when we write to the same
1836		 * offset and new ensures that we do proper zero out
1837		 * for partial write.
1838		 */
1839		set_buffer_new(bh);
1840		set_buffer_mapped(bh);
1841	}
1842	return 0;
1843}
1844
1845static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1846{
1847	mpd->first_page += folio_nr_pages(folio);
1848	folio_unlock(folio);
1849}
1850
1851static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1852{
1853	size_t len;
1854	loff_t size;
1855	int err;
1856
1857	BUG_ON(folio->index != mpd->first_page);
1858	folio_clear_dirty_for_io(folio);
1859	/*
1860	 * We have to be very careful here!  Nothing protects writeback path
1861	 * against i_size changes and the page can be writeably mapped into
1862	 * page tables. So an application can be growing i_size and writing
1863	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1864	 * write-protects our page in page tables and the page cannot get
1865	 * written to again until we release folio lock. So only after
1866	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1867	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1868	 * on the barrier provided by folio_test_clear_dirty() in
1869	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1870	 * after page tables are updated.
1871	 */
1872	size = i_size_read(mpd->inode);
1873	len = folio_size(folio);
1874	if (folio_pos(folio) + len > size &&
1875	    !ext4_verity_in_progress(mpd->inode))
1876		len = size & ~PAGE_MASK;
1877	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1878	if (!err)
1879		mpd->wbc->nr_to_write--;
1880
1881	return err;
1882}
1883
1884#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1885
1886/*
1887 * mballoc gives us at most this number of blocks...
1888 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1889 * The rest of mballoc seems to handle chunks up to full group size.
1890 */
1891#define MAX_WRITEPAGES_EXTENT_LEN 2048
1892
1893/*
1894 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1895 *
1896 * @mpd - extent of blocks
1897 * @lblk - logical number of the block in the file
1898 * @bh - buffer head we want to add to the extent
1899 *
1900 * The function is used to collect contig. blocks in the same state. If the
1901 * buffer doesn't require mapping for writeback and we haven't started the
1902 * extent of buffers to map yet, the function returns 'true' immediately - the
1903 * caller can write the buffer right away. Otherwise the function returns true
1904 * if the block has been added to the extent, false if the block couldn't be
1905 * added.
1906 */
1907static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1908				   struct buffer_head *bh)
1909{
1910	struct ext4_map_blocks *map = &mpd->map;
1911
1912	/* Buffer that doesn't need mapping for writeback? */
1913	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1914	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1915		/* So far no extent to map => we write the buffer right away */
1916		if (map->m_len == 0)
1917			return true;
1918		return false;
1919	}
1920
1921	/* First block in the extent? */
1922	if (map->m_len == 0) {
1923		/* We cannot map unless handle is started... */
1924		if (!mpd->do_map)
1925			return false;
1926		map->m_lblk = lblk;
1927		map->m_len = 1;
1928		map->m_flags = bh->b_state & BH_FLAGS;
1929		return true;
1930	}
1931
1932	/* Don't go larger than mballoc is willing to allocate */
1933	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1934		return false;
1935
1936	/* Can we merge the block to our big extent? */
1937	if (lblk == map->m_lblk + map->m_len &&
1938	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1939		map->m_len++;
1940		return true;
1941	}
1942	return false;
1943}
1944
1945/*
1946 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1947 *
1948 * @mpd - extent of blocks for mapping
1949 * @head - the first buffer in the page
1950 * @bh - buffer we should start processing from
1951 * @lblk - logical number of the block in the file corresponding to @bh
1952 *
1953 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1954 * the page for IO if all buffers in this page were mapped and there's no
1955 * accumulated extent of buffers to map or add buffers in the page to the
1956 * extent of buffers to map. The function returns 1 if the caller can continue
1957 * by processing the next page, 0 if it should stop adding buffers to the
1958 * extent to map because we cannot extend it anymore. It can also return value
1959 * < 0 in case of error during IO submission.
1960 */
1961static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1962				   struct buffer_head *head,
1963				   struct buffer_head *bh,
1964				   ext4_lblk_t lblk)
1965{
1966	struct inode *inode = mpd->inode;
1967	int err;
1968	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
1969							>> inode->i_blkbits;
1970
1971	if (ext4_verity_in_progress(inode))
1972		blocks = EXT_MAX_BLOCKS;
1973
1974	do {
1975		BUG_ON(buffer_locked(bh));
1976
1977		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1978			/* Found extent to map? */
1979			if (mpd->map.m_len)
1980				return 0;
1981			/* Buffer needs mapping and handle is not started? */
1982			if (!mpd->do_map)
1983				return 0;
1984			/* Everything mapped so far and we hit EOF */
1985			break;
1986		}
1987	} while (lblk++, (bh = bh->b_this_page) != head);
1988	/* So far everything mapped? Submit the page for IO. */
1989	if (mpd->map.m_len == 0) {
1990		err = mpage_submit_folio(mpd, head->b_folio);
1991		if (err < 0)
1992			return err;
1993		mpage_folio_done(mpd, head->b_folio);
1994	}
1995	if (lblk >= blocks) {
1996		mpd->scanned_until_end = 1;
1997		return 0;
1998	}
1999	return 1;
2000}
2001
2002/*
2003 * mpage_process_folio - update folio buffers corresponding to changed extent
2004 *			 and may submit fully mapped page for IO
2005 * @mpd: description of extent to map, on return next extent to map
2006 * @folio: Contains these buffers.
2007 * @m_lblk: logical block mapping.
2008 * @m_pblk: corresponding physical mapping.
2009 * @map_bh: determines on return whether this page requires any further
2010 *		  mapping or not.
2011 *
2012 * Scan given folio buffers corresponding to changed extent and update buffer
2013 * state according to new extent state.
2014 * We map delalloc buffers to their physical location, clear unwritten bits.
2015 * If the given folio is not fully mapped, we update @mpd to the next extent in
2016 * the given folio that needs mapping & return @map_bh as true.
2017 */
2018static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2019			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2020			      bool *map_bh)
2021{
2022	struct buffer_head *head, *bh;
2023	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2024	ext4_lblk_t lblk = *m_lblk;
2025	ext4_fsblk_t pblock = *m_pblk;
2026	int err = 0;
2027	int blkbits = mpd->inode->i_blkbits;
2028	ssize_t io_end_size = 0;
2029	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2030
2031	bh = head = folio_buffers(folio);
2032	do {
2033		if (lblk < mpd->map.m_lblk)
2034			continue;
2035		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2036			/*
2037			 * Buffer after end of mapped extent.
2038			 * Find next buffer in the folio to map.
2039			 */
2040			mpd->map.m_len = 0;
2041			mpd->map.m_flags = 0;
2042			io_end_vec->size += io_end_size;
2043
2044			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2045			if (err > 0)
2046				err = 0;
2047			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2048				io_end_vec = ext4_alloc_io_end_vec(io_end);
2049				if (IS_ERR(io_end_vec)) {
2050					err = PTR_ERR(io_end_vec);
2051					goto out;
2052				}
2053				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2054			}
2055			*map_bh = true;
2056			goto out;
2057		}
2058		if (buffer_delay(bh)) {
2059			clear_buffer_delay(bh);
2060			bh->b_blocknr = pblock++;
2061		}
2062		clear_buffer_unwritten(bh);
2063		io_end_size += (1 << blkbits);
2064	} while (lblk++, (bh = bh->b_this_page) != head);
2065
2066	io_end_vec->size += io_end_size;
2067	*map_bh = false;
2068out:
2069	*m_lblk = lblk;
2070	*m_pblk = pblock;
2071	return err;
2072}
2073
2074/*
2075 * mpage_map_buffers - update buffers corresponding to changed extent and
2076 *		       submit fully mapped pages for IO
2077 *
2078 * @mpd - description of extent to map, on return next extent to map
2079 *
2080 * Scan buffers corresponding to changed extent (we expect corresponding pages
2081 * to be already locked) and update buffer state according to new extent state.
2082 * We map delalloc buffers to their physical location, clear unwritten bits,
2083 * and mark buffers as uninit when we perform writes to unwritten extents
2084 * and do extent conversion after IO is finished. If the last page is not fully
2085 * mapped, we update @map to the next extent in the last page that needs
2086 * mapping. Otherwise we submit the page for IO.
2087 */
2088static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2089{
2090	struct folio_batch fbatch;
2091	unsigned nr, i;
2092	struct inode *inode = mpd->inode;
2093	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2094	pgoff_t start, end;
2095	ext4_lblk_t lblk;
2096	ext4_fsblk_t pblock;
2097	int err;
2098	bool map_bh = false;
2099
2100	start = mpd->map.m_lblk >> bpp_bits;
2101	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2102	lblk = start << bpp_bits;
2103	pblock = mpd->map.m_pblk;
2104
2105	folio_batch_init(&fbatch);
2106	while (start <= end) {
2107		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2108		if (nr == 0)
2109			break;
2110		for (i = 0; i < nr; i++) {
2111			struct folio *folio = fbatch.folios[i];
2112
2113			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2114						 &map_bh);
2115			/*
2116			 * If map_bh is true, means page may require further bh
2117			 * mapping, or maybe the page was submitted for IO.
2118			 * So we return to call further extent mapping.
2119			 */
2120			if (err < 0 || map_bh)
2121				goto out;
2122			/* Page fully mapped - let IO run! */
2123			err = mpage_submit_folio(mpd, folio);
2124			if (err < 0)
2125				goto out;
2126			mpage_folio_done(mpd, folio);
2127		}
2128		folio_batch_release(&fbatch);
2129	}
2130	/* Extent fully mapped and matches with page boundary. We are done. */
2131	mpd->map.m_len = 0;
2132	mpd->map.m_flags = 0;
2133	return 0;
2134out:
2135	folio_batch_release(&fbatch);
2136	return err;
2137}
2138
2139static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2140{
2141	struct inode *inode = mpd->inode;
2142	struct ext4_map_blocks *map = &mpd->map;
2143	int get_blocks_flags;
2144	int err, dioread_nolock;
2145
2146	trace_ext4_da_write_pages_extent(inode, map);
2147	/*
2148	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2149	 * to convert an unwritten extent to be initialized (in the case
2150	 * where we have written into one or more preallocated blocks).  It is
2151	 * possible that we're going to need more metadata blocks than
2152	 * previously reserved. However we must not fail because we're in
2153	 * writeback and there is nothing we can do about it so it might result
2154	 * in data loss.  So use reserved blocks to allocate metadata if
2155	 * possible.
2156	 *
2157	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2158	 * the blocks in question are delalloc blocks.  This indicates
2159	 * that the blocks and quotas has already been checked when
2160	 * the data was copied into the page cache.
2161	 */
2162	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2163			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2164			   EXT4_GET_BLOCKS_IO_SUBMIT;
2165	dioread_nolock = ext4_should_dioread_nolock(inode);
2166	if (dioread_nolock)
2167		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2168	if (map->m_flags & BIT(BH_Delay))
2169		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2170
2171	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2172	if (err < 0)
2173		return err;
2174	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2175		if (!mpd->io_submit.io_end->handle &&
2176		    ext4_handle_valid(handle)) {
2177			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2178			handle->h_rsv_handle = NULL;
2179		}
2180		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2181	}
2182
2183	BUG_ON(map->m_len == 0);
2184	return 0;
2185}
2186
2187/*
2188 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2189 *				 mpd->len and submit pages underlying it for IO
2190 *
2191 * @handle - handle for journal operations
2192 * @mpd - extent to map
2193 * @give_up_on_write - we set this to true iff there is a fatal error and there
2194 *                     is no hope of writing the data. The caller should discard
2195 *                     dirty pages to avoid infinite loops.
2196 *
2197 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2198 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2199 * them to initialized or split the described range from larger unwritten
2200 * extent. Note that we need not map all the described range since allocation
2201 * can return less blocks or the range is covered by more unwritten extents. We
2202 * cannot map more because we are limited by reserved transaction credits. On
2203 * the other hand we always make sure that the last touched page is fully
2204 * mapped so that it can be written out (and thus forward progress is
2205 * guaranteed). After mapping we submit all mapped pages for IO.
2206 */
2207static int mpage_map_and_submit_extent(handle_t *handle,
2208				       struct mpage_da_data *mpd,
2209				       bool *give_up_on_write)
2210{
2211	struct inode *inode = mpd->inode;
2212	struct ext4_map_blocks *map = &mpd->map;
2213	int err;
2214	loff_t disksize;
2215	int progress = 0;
2216	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2217	struct ext4_io_end_vec *io_end_vec;
2218
2219	io_end_vec = ext4_alloc_io_end_vec(io_end);
2220	if (IS_ERR(io_end_vec))
2221		return PTR_ERR(io_end_vec);
2222	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2223	do {
2224		err = mpage_map_one_extent(handle, mpd);
2225		if (err < 0) {
2226			struct super_block *sb = inode->i_sb;
2227
2228			if (ext4_forced_shutdown(sb))
2229				goto invalidate_dirty_pages;
2230			/*
2231			 * Let the uper layers retry transient errors.
2232			 * In the case of ENOSPC, if ext4_count_free_blocks()
2233			 * is non-zero, a commit should free up blocks.
2234			 */
2235			if ((err == -ENOMEM) ||
2236			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2237				if (progress)
2238					goto update_disksize;
2239				return err;
2240			}
2241			ext4_msg(sb, KERN_CRIT,
2242				 "Delayed block allocation failed for "
2243				 "inode %lu at logical offset %llu with"
2244				 " max blocks %u with error %d",
2245				 inode->i_ino,
2246				 (unsigned long long)map->m_lblk,
2247				 (unsigned)map->m_len, -err);
2248			ext4_msg(sb, KERN_CRIT,
2249				 "This should not happen!! Data will "
2250				 "be lost\n");
2251			if (err == -ENOSPC)
2252				ext4_print_free_blocks(inode);
2253		invalidate_dirty_pages:
2254			*give_up_on_write = true;
2255			return err;
2256		}
2257		progress = 1;
2258		/*
2259		 * Update buffer state, submit mapped pages, and get us new
2260		 * extent to map
2261		 */
2262		err = mpage_map_and_submit_buffers(mpd);
2263		if (err < 0)
2264			goto update_disksize;
2265	} while (map->m_len);
2266
2267update_disksize:
2268	/*
2269	 * Update on-disk size after IO is submitted.  Races with
2270	 * truncate are avoided by checking i_size under i_data_sem.
2271	 */
2272	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2273	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2274		int err2;
2275		loff_t i_size;
2276
2277		down_write(&EXT4_I(inode)->i_data_sem);
2278		i_size = i_size_read(inode);
2279		if (disksize > i_size)
2280			disksize = i_size;
2281		if (disksize > EXT4_I(inode)->i_disksize)
2282			EXT4_I(inode)->i_disksize = disksize;
2283		up_write(&EXT4_I(inode)->i_data_sem);
2284		err2 = ext4_mark_inode_dirty(handle, inode);
2285		if (err2) {
2286			ext4_error_err(inode->i_sb, -err2,
2287				       "Failed to mark inode %lu dirty",
2288				       inode->i_ino);
2289		}
2290		if (!err)
2291			err = err2;
2292	}
2293	return err;
2294}
2295
2296/*
2297 * Calculate the total number of credits to reserve for one writepages
2298 * iteration. This is called from ext4_writepages(). We map an extent of
2299 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2300 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2301 * bpp - 1 blocks in bpp different extents.
2302 */
2303static int ext4_da_writepages_trans_blocks(struct inode *inode)
2304{
2305	int bpp = ext4_journal_blocks_per_page(inode);
2306
2307	return ext4_meta_trans_blocks(inode,
2308				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2309}
2310
2311static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2312				     size_t len)
2313{
2314	struct buffer_head *page_bufs = folio_buffers(folio);
2315	struct inode *inode = folio->mapping->host;
2316	int ret, err;
2317
2318	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2319				     NULL, do_journal_get_write_access);
2320	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2321				     NULL, write_end_fn);
2322	if (ret == 0)
2323		ret = err;
2324	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2325	if (ret == 0)
2326		ret = err;
2327	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2328
2329	return ret;
2330}
2331
2332static int mpage_journal_page_buffers(handle_t *handle,
2333				      struct mpage_da_data *mpd,
2334				      struct folio *folio)
2335{
2336	struct inode *inode = mpd->inode;
2337	loff_t size = i_size_read(inode);
2338	size_t len = folio_size(folio);
2339
2340	folio_clear_checked(folio);
2341	mpd->wbc->nr_to_write--;
2342
2343	if (folio_pos(folio) + len > size &&
2344	    !ext4_verity_in_progress(inode))
2345		len = size - folio_pos(folio);
2346
2347	return ext4_journal_folio_buffers(handle, folio, len);
2348}
2349
2350/*
2351 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2352 * 				 needing mapping, submit mapped pages
2353 *
2354 * @mpd - where to look for pages
2355 *
2356 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2357 * IO immediately. If we cannot map blocks, we submit just already mapped
2358 * buffers in the page for IO and keep page dirty. When we can map blocks and
2359 * we find a page which isn't mapped we start accumulating extent of buffers
2360 * underlying these pages that needs mapping (formed by either delayed or
2361 * unwritten buffers). We also lock the pages containing these buffers. The
2362 * extent found is returned in @mpd structure (starting at mpd->lblk with
2363 * length mpd->len blocks).
2364 *
2365 * Note that this function can attach bios to one io_end structure which are
2366 * neither logically nor physically contiguous. Although it may seem as an
2367 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2368 * case as we need to track IO to all buffers underlying a page in one io_end.
2369 */
2370static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2371{
2372	struct address_space *mapping = mpd->inode->i_mapping;
2373	struct folio_batch fbatch;
2374	unsigned int nr_folios;
2375	pgoff_t index = mpd->first_page;
2376	pgoff_t end = mpd->last_page;
2377	xa_mark_t tag;
2378	int i, err = 0;
2379	int blkbits = mpd->inode->i_blkbits;
2380	ext4_lblk_t lblk;
2381	struct buffer_head *head;
2382	handle_t *handle = NULL;
2383	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2384
2385	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2386		tag = PAGECACHE_TAG_TOWRITE;
2387	else
2388		tag = PAGECACHE_TAG_DIRTY;
2389
2390	mpd->map.m_len = 0;
2391	mpd->next_page = index;
2392	if (ext4_should_journal_data(mpd->inode)) {
2393		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2394					    bpp);
2395		if (IS_ERR(handle))
2396			return PTR_ERR(handle);
2397	}
2398	folio_batch_init(&fbatch);
2399	while (index <= end) {
2400		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2401				tag, &fbatch);
2402		if (nr_folios == 0)
2403			break;
2404
2405		for (i = 0; i < nr_folios; i++) {
2406			struct folio *folio = fbatch.folios[i];
2407
2408			/*
2409			 * Accumulated enough dirty pages? This doesn't apply
2410			 * to WB_SYNC_ALL mode. For integrity sync we have to
2411			 * keep going because someone may be concurrently
2412			 * dirtying pages, and we might have synced a lot of
2413			 * newly appeared dirty pages, but have not synced all
2414			 * of the old dirty pages.
2415			 */
2416			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2417			    mpd->wbc->nr_to_write <=
2418			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2419				goto out;
2420
2421			/* If we can't merge this page, we are done. */
2422			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2423				goto out;
2424
2425			if (handle) {
2426				err = ext4_journal_ensure_credits(handle, bpp,
2427								  0);
2428				if (err < 0)
2429					goto out;
2430			}
2431
2432			folio_lock(folio);
2433			/*
2434			 * If the page is no longer dirty, or its mapping no
2435			 * longer corresponds to inode we are writing (which
2436			 * means it has been truncated or invalidated), or the
2437			 * page is already under writeback and we are not doing
2438			 * a data integrity writeback, skip the page
2439			 */
2440			if (!folio_test_dirty(folio) ||
2441			    (folio_test_writeback(folio) &&
2442			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2443			    unlikely(folio->mapping != mapping)) {
2444				folio_unlock(folio);
2445				continue;
2446			}
2447
2448			folio_wait_writeback(folio);
2449			BUG_ON(folio_test_writeback(folio));
2450
2451			/*
2452			 * Should never happen but for buggy code in
2453			 * other subsystems that call
2454			 * set_page_dirty() without properly warning
2455			 * the file system first.  See [1] for more
2456			 * information.
2457			 *
2458			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2459			 */
2460			if (!folio_buffers(folio)) {
2461				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2462				folio_clear_dirty(folio);
2463				folio_unlock(folio);
2464				continue;
2465			}
2466
2467			if (mpd->map.m_len == 0)
2468				mpd->first_page = folio->index;
2469			mpd->next_page = folio_next_index(folio);
2470			/*
2471			 * Writeout when we cannot modify metadata is simple.
2472			 * Just submit the page. For data=journal mode we
2473			 * first handle writeout of the page for checkpoint and
2474			 * only after that handle delayed page dirtying. This
2475			 * makes sure current data is checkpointed to the final
2476			 * location before possibly journalling it again which
2477			 * is desirable when the page is frequently dirtied
2478			 * through a pin.
2479			 */
2480			if (!mpd->can_map) {
2481				err = mpage_submit_folio(mpd, folio);
2482				if (err < 0)
2483					goto out;
2484				/* Pending dirtying of journalled data? */
2485				if (folio_test_checked(folio)) {
2486					err = mpage_journal_page_buffers(handle,
2487						mpd, folio);
2488					if (err < 0)
2489						goto out;
2490					mpd->journalled_more_data = 1;
2491				}
2492				mpage_folio_done(mpd, folio);
2493			} else {
2494				/* Add all dirty buffers to mpd */
2495				lblk = ((ext4_lblk_t)folio->index) <<
2496					(PAGE_SHIFT - blkbits);
2497				head = folio_buffers(folio);
2498				err = mpage_process_page_bufs(mpd, head, head,
2499						lblk);
2500				if (err <= 0)
2501					goto out;
2502				err = 0;
2503			}
2504		}
2505		folio_batch_release(&fbatch);
2506		cond_resched();
2507	}
2508	mpd->scanned_until_end = 1;
2509	if (handle)
2510		ext4_journal_stop(handle);
2511	return 0;
2512out:
2513	folio_batch_release(&fbatch);
2514	if (handle)
2515		ext4_journal_stop(handle);
2516	return err;
2517}
2518
2519static int ext4_do_writepages(struct mpage_da_data *mpd)
2520{
2521	struct writeback_control *wbc = mpd->wbc;
2522	pgoff_t	writeback_index = 0;
2523	long nr_to_write = wbc->nr_to_write;
2524	int range_whole = 0;
2525	int cycled = 1;
2526	handle_t *handle = NULL;
2527	struct inode *inode = mpd->inode;
2528	struct address_space *mapping = inode->i_mapping;
2529	int needed_blocks, rsv_blocks = 0, ret = 0;
2530	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2531	struct blk_plug plug;
2532	bool give_up_on_write = false;
2533
2534	trace_ext4_writepages(inode, wbc);
2535
2536	/*
2537	 * No pages to write? This is mainly a kludge to avoid starting
2538	 * a transaction for special inodes like journal inode on last iput()
2539	 * because that could violate lock ordering on umount
2540	 */
2541	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2542		goto out_writepages;
2543
2544	/*
2545	 * If the filesystem has aborted, it is read-only, so return
2546	 * right away instead of dumping stack traces later on that
2547	 * will obscure the real source of the problem.  We test
2548	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2549	 * the latter could be true if the filesystem is mounted
2550	 * read-only, and in that case, ext4_writepages should
2551	 * *never* be called, so if that ever happens, we would want
2552	 * the stack trace.
2553	 */
2554	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2555		ret = -EROFS;
2556		goto out_writepages;
2557	}
2558
2559	/*
2560	 * If we have inline data and arrive here, it means that
2561	 * we will soon create the block for the 1st page, so
2562	 * we'd better clear the inline data here.
2563	 */
2564	if (ext4_has_inline_data(inode)) {
2565		/* Just inode will be modified... */
2566		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2567		if (IS_ERR(handle)) {
2568			ret = PTR_ERR(handle);
2569			goto out_writepages;
2570		}
2571		BUG_ON(ext4_test_inode_state(inode,
2572				EXT4_STATE_MAY_INLINE_DATA));
2573		ext4_destroy_inline_data(handle, inode);
2574		ext4_journal_stop(handle);
2575	}
2576
2577	/*
2578	 * data=journal mode does not do delalloc so we just need to writeout /
2579	 * journal already mapped buffers. On the other hand we need to commit
2580	 * transaction to make data stable. We expect all the data to be
2581	 * already in the journal (the only exception are DMA pinned pages
2582	 * dirtied behind our back) so we commit transaction here and run the
2583	 * writeback loop to checkpoint them. The checkpointing is not actually
2584	 * necessary to make data persistent *but* quite a few places (extent
2585	 * shifting operations, fsverity, ...) depend on being able to drop
2586	 * pagecache pages after calling filemap_write_and_wait() and for that
2587	 * checkpointing needs to happen.
2588	 */
2589	if (ext4_should_journal_data(inode)) {
2590		mpd->can_map = 0;
2591		if (wbc->sync_mode == WB_SYNC_ALL)
2592			ext4_fc_commit(sbi->s_journal,
2593				       EXT4_I(inode)->i_datasync_tid);
2594	}
2595	mpd->journalled_more_data = 0;
2596
2597	if (ext4_should_dioread_nolock(inode)) {
2598		/*
2599		 * We may need to convert up to one extent per block in
2600		 * the page and we may dirty the inode.
2601		 */
2602		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2603						PAGE_SIZE >> inode->i_blkbits);
2604	}
2605
2606	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2607		range_whole = 1;
2608
2609	if (wbc->range_cyclic) {
2610		writeback_index = mapping->writeback_index;
2611		if (writeback_index)
2612			cycled = 0;
2613		mpd->first_page = writeback_index;
2614		mpd->last_page = -1;
2615	} else {
2616		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2617		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2618	}
2619
2620	ext4_io_submit_init(&mpd->io_submit, wbc);
2621retry:
2622	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2623		tag_pages_for_writeback(mapping, mpd->first_page,
2624					mpd->last_page);
2625	blk_start_plug(&plug);
2626
2627	/*
2628	 * First writeback pages that don't need mapping - we can avoid
2629	 * starting a transaction unnecessarily and also avoid being blocked
2630	 * in the block layer on device congestion while having transaction
2631	 * started.
2632	 */
2633	mpd->do_map = 0;
2634	mpd->scanned_until_end = 0;
2635	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2636	if (!mpd->io_submit.io_end) {
2637		ret = -ENOMEM;
2638		goto unplug;
2639	}
2640	ret = mpage_prepare_extent_to_map(mpd);
2641	/* Unlock pages we didn't use */
2642	mpage_release_unused_pages(mpd, false);
2643	/* Submit prepared bio */
2644	ext4_io_submit(&mpd->io_submit);
2645	ext4_put_io_end_defer(mpd->io_submit.io_end);
2646	mpd->io_submit.io_end = NULL;
2647	if (ret < 0)
2648		goto unplug;
2649
2650	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2651		/* For each extent of pages we use new io_end */
2652		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2653		if (!mpd->io_submit.io_end) {
2654			ret = -ENOMEM;
2655			break;
2656		}
2657
2658		WARN_ON_ONCE(!mpd->can_map);
2659		/*
2660		 * We have two constraints: We find one extent to map and we
2661		 * must always write out whole page (makes a difference when
2662		 * blocksize < pagesize) so that we don't block on IO when we
2663		 * try to write out the rest of the page. Journalled mode is
2664		 * not supported by delalloc.
2665		 */
2666		BUG_ON(ext4_should_journal_data(inode));
2667		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2668
2669		/* start a new transaction */
2670		handle = ext4_journal_start_with_reserve(inode,
2671				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2672		if (IS_ERR(handle)) {
2673			ret = PTR_ERR(handle);
2674			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2675			       "%ld pages, ino %lu; err %d", __func__,
2676				wbc->nr_to_write, inode->i_ino, ret);
2677			/* Release allocated io_end */
2678			ext4_put_io_end(mpd->io_submit.io_end);
2679			mpd->io_submit.io_end = NULL;
2680			break;
2681		}
2682		mpd->do_map = 1;
2683
2684		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2685		ret = mpage_prepare_extent_to_map(mpd);
2686		if (!ret && mpd->map.m_len)
2687			ret = mpage_map_and_submit_extent(handle, mpd,
2688					&give_up_on_write);
2689		/*
2690		 * Caution: If the handle is synchronous,
2691		 * ext4_journal_stop() can wait for transaction commit
2692		 * to finish which may depend on writeback of pages to
2693		 * complete or on page lock to be released.  In that
2694		 * case, we have to wait until after we have
2695		 * submitted all the IO, released page locks we hold,
2696		 * and dropped io_end reference (for extent conversion
2697		 * to be able to complete) before stopping the handle.
2698		 */
2699		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2700			ext4_journal_stop(handle);
2701			handle = NULL;
2702			mpd->do_map = 0;
2703		}
2704		/* Unlock pages we didn't use */
2705		mpage_release_unused_pages(mpd, give_up_on_write);
2706		/* Submit prepared bio */
2707		ext4_io_submit(&mpd->io_submit);
2708
2709		/*
2710		 * Drop our io_end reference we got from init. We have
2711		 * to be careful and use deferred io_end finishing if
2712		 * we are still holding the transaction as we can
2713		 * release the last reference to io_end which may end
2714		 * up doing unwritten extent conversion.
2715		 */
2716		if (handle) {
2717			ext4_put_io_end_defer(mpd->io_submit.io_end);
2718			ext4_journal_stop(handle);
2719		} else
2720			ext4_put_io_end(mpd->io_submit.io_end);
2721		mpd->io_submit.io_end = NULL;
2722
2723		if (ret == -ENOSPC && sbi->s_journal) {
2724			/*
2725			 * Commit the transaction which would
2726			 * free blocks released in the transaction
2727			 * and try again
2728			 */
2729			jbd2_journal_force_commit_nested(sbi->s_journal);
2730			ret = 0;
2731			continue;
2732		}
2733		/* Fatal error - ENOMEM, EIO... */
2734		if (ret)
2735			break;
2736	}
2737unplug:
2738	blk_finish_plug(&plug);
2739	if (!ret && !cycled && wbc->nr_to_write > 0) {
2740		cycled = 1;
2741		mpd->last_page = writeback_index - 1;
2742		mpd->first_page = 0;
2743		goto retry;
2744	}
2745
2746	/* Update index */
2747	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2748		/*
2749		 * Set the writeback_index so that range_cyclic
2750		 * mode will write it back later
2751		 */
2752		mapping->writeback_index = mpd->first_page;
2753
2754out_writepages:
2755	trace_ext4_writepages_result(inode, wbc, ret,
2756				     nr_to_write - wbc->nr_to_write);
2757	return ret;
2758}
2759
2760static int ext4_writepages(struct address_space *mapping,
2761			   struct writeback_control *wbc)
2762{
2763	struct super_block *sb = mapping->host->i_sb;
2764	struct mpage_da_data mpd = {
2765		.inode = mapping->host,
2766		.wbc = wbc,
2767		.can_map = 1,
2768	};
2769	int ret;
2770	int alloc_ctx;
2771
2772	if (unlikely(ext4_forced_shutdown(sb)))
2773		return -EIO;
2774
2775	alloc_ctx = ext4_writepages_down_read(sb);
2776	ret = ext4_do_writepages(&mpd);
2777	/*
2778	 * For data=journal writeback we could have come across pages marked
2779	 * for delayed dirtying (PageChecked) which were just added to the
2780	 * running transaction. Try once more to get them to stable storage.
2781	 */
2782	if (!ret && mpd.journalled_more_data)
2783		ret = ext4_do_writepages(&mpd);
2784	ext4_writepages_up_read(sb, alloc_ctx);
2785
2786	return ret;
2787}
2788
2789int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2790{
2791	struct writeback_control wbc = {
2792		.sync_mode = WB_SYNC_ALL,
2793		.nr_to_write = LONG_MAX,
2794		.range_start = jinode->i_dirty_start,
2795		.range_end = jinode->i_dirty_end,
2796	};
2797	struct mpage_da_data mpd = {
2798		.inode = jinode->i_vfs_inode,
2799		.wbc = &wbc,
2800		.can_map = 0,
2801	};
2802	return ext4_do_writepages(&mpd);
2803}
2804
2805static int ext4_dax_writepages(struct address_space *mapping,
2806			       struct writeback_control *wbc)
2807{
2808	int ret;
2809	long nr_to_write = wbc->nr_to_write;
2810	struct inode *inode = mapping->host;
2811	int alloc_ctx;
2812
2813	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2814		return -EIO;
2815
2816	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2817	trace_ext4_writepages(inode, wbc);
2818
2819	ret = dax_writeback_mapping_range(mapping,
2820					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2821	trace_ext4_writepages_result(inode, wbc, ret,
2822				     nr_to_write - wbc->nr_to_write);
2823	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2824	return ret;
2825}
2826
2827static int ext4_nonda_switch(struct super_block *sb)
2828{
2829	s64 free_clusters, dirty_clusters;
2830	struct ext4_sb_info *sbi = EXT4_SB(sb);
2831
2832	/*
2833	 * switch to non delalloc mode if we are running low
2834	 * on free block. The free block accounting via percpu
2835	 * counters can get slightly wrong with percpu_counter_batch getting
2836	 * accumulated on each CPU without updating global counters
2837	 * Delalloc need an accurate free block accounting. So switch
2838	 * to non delalloc when we are near to error range.
2839	 */
2840	free_clusters =
2841		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2842	dirty_clusters =
2843		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2844	/*
2845	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2846	 */
2847	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2848		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2849
2850	if (2 * free_clusters < 3 * dirty_clusters ||
2851	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2852		/*
2853		 * free block count is less than 150% of dirty blocks
2854		 * or free blocks is less than watermark
2855		 */
2856		return 1;
2857	}
2858	return 0;
2859}
2860
2861static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2862			       loff_t pos, unsigned len,
2863			       struct page **pagep, void **fsdata)
2864{
2865	int ret, retries = 0;
2866	struct folio *folio;
2867	pgoff_t index;
2868	struct inode *inode = mapping->host;
2869
2870	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2871		return -EIO;
2872
2873	index = pos >> PAGE_SHIFT;
2874
2875	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2876		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2877		return ext4_write_begin(file, mapping, pos,
2878					len, pagep, fsdata);
2879	}
2880	*fsdata = (void *)0;
2881	trace_ext4_da_write_begin(inode, pos, len);
2882
2883	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2884		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2885						      pagep, fsdata);
2886		if (ret < 0)
2887			return ret;
2888		if (ret == 1)
2889			return 0;
2890	}
2891
2892retry:
2893	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2894			mapping_gfp_mask(mapping));
2895	if (IS_ERR(folio))
2896		return PTR_ERR(folio);
2897
2898	/* In case writeback began while the folio was unlocked */
2899	folio_wait_stable(folio);
2900
2901#ifdef CONFIG_FS_ENCRYPTION
2902	ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep);
2903#else
2904	ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2905#endif
2906	if (ret < 0) {
2907		folio_unlock(folio);
2908		folio_put(folio);
2909		/*
2910		 * block_write_begin may have instantiated a few blocks
2911		 * outside i_size.  Trim these off again. Don't need
2912		 * i_size_read because we hold inode lock.
2913		 */
2914		if (pos + len > inode->i_size)
2915			ext4_truncate_failed_write(inode);
2916
2917		if (ret == -ENOSPC &&
2918		    ext4_should_retry_alloc(inode->i_sb, &retries))
2919			goto retry;
2920		return ret;
2921	}
2922
2923	*pagep = &folio->page;
2924	return ret;
2925}
2926
2927/*
2928 * Check if we should update i_disksize
2929 * when write to the end of file but not require block allocation
2930 */
2931static int ext4_da_should_update_i_disksize(struct folio *folio,
2932					    unsigned long offset)
2933{
2934	struct buffer_head *bh;
2935	struct inode *inode = folio->mapping->host;
2936	unsigned int idx;
2937	int i;
2938
2939	bh = folio_buffers(folio);
2940	idx = offset >> inode->i_blkbits;
2941
2942	for (i = 0; i < idx; i++)
2943		bh = bh->b_this_page;
2944
2945	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2946		return 0;
2947	return 1;
2948}
2949
2950static int ext4_da_do_write_end(struct address_space *mapping,
2951			loff_t pos, unsigned len, unsigned copied,
2952			struct page *page)
2953{
2954	struct inode *inode = mapping->host;
2955	loff_t old_size = inode->i_size;
2956	bool disksize_changed = false;
2957	loff_t new_i_size;
2958
2959	/*
2960	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2961	 * flag, which all that's needed to trigger page writeback.
2962	 */
2963	copied = block_write_end(NULL, mapping, pos, len, copied, page, NULL);
2964	new_i_size = pos + copied;
2965
2966	/*
2967	 * It's important to update i_size while still holding page lock,
2968	 * because page writeout could otherwise come in and zero beyond
2969	 * i_size.
2970	 *
2971	 * Since we are holding inode lock, we are sure i_disksize <=
2972	 * i_size. We also know that if i_disksize < i_size, there are
2973	 * delalloc writes pending in the range up to i_size. If the end of
2974	 * the current write is <= i_size, there's no need to touch
2975	 * i_disksize since writeback will push i_disksize up to i_size
2976	 * eventually. If the end of the current write is > i_size and
2977	 * inside an allocated block which ext4_da_should_update_i_disksize()
2978	 * checked, we need to update i_disksize here as certain
2979	 * ext4_writepages() paths not allocating blocks and update i_disksize.
2980	 */
2981	if (new_i_size > inode->i_size) {
2982		unsigned long end;
2983
2984		i_size_write(inode, new_i_size);
2985		end = (new_i_size - 1) & (PAGE_SIZE - 1);
2986		if (copied && ext4_da_should_update_i_disksize(page_folio(page), end)) {
2987			ext4_update_i_disksize(inode, new_i_size);
2988			disksize_changed = true;
2989		}
2990	}
2991
2992	unlock_page(page);
2993	put_page(page);
2994
2995	if (old_size < pos)
2996		pagecache_isize_extended(inode, old_size, pos);
2997
2998	if (disksize_changed) {
2999		handle_t *handle;
3000
3001		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3002		if (IS_ERR(handle))
3003			return PTR_ERR(handle);
3004		ext4_mark_inode_dirty(handle, inode);
3005		ext4_journal_stop(handle);
3006	}
3007
3008	return copied;
3009}
3010
3011static int ext4_da_write_end(struct file *file,
3012			     struct address_space *mapping,
3013			     loff_t pos, unsigned len, unsigned copied,
3014			     struct page *page, void *fsdata)
3015{
3016	struct inode *inode = mapping->host;
3017	int write_mode = (int)(unsigned long)fsdata;
3018	struct folio *folio = page_folio(page);
3019
3020	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3021		return ext4_write_end(file, mapping, pos,
3022				      len, copied, &folio->page, fsdata);
3023
3024	trace_ext4_da_write_end(inode, pos, len, copied);
3025
3026	if (write_mode != CONVERT_INLINE_DATA &&
3027	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3028	    ext4_has_inline_data(inode))
3029		return ext4_write_inline_data_end(inode, pos, len, copied,
3030						  folio);
3031
3032	if (unlikely(copied < len) && !PageUptodate(page))
3033		copied = 0;
3034
3035	return ext4_da_do_write_end(mapping, pos, len, copied, &folio->page);
3036}
3037
3038/*
3039 * Force all delayed allocation blocks to be allocated for a given inode.
3040 */
3041int ext4_alloc_da_blocks(struct inode *inode)
3042{
3043	trace_ext4_alloc_da_blocks(inode);
3044
3045	if (!EXT4_I(inode)->i_reserved_data_blocks)
3046		return 0;
3047
3048	/*
3049	 * We do something simple for now.  The filemap_flush() will
3050	 * also start triggering a write of the data blocks, which is
3051	 * not strictly speaking necessary (and for users of
3052	 * laptop_mode, not even desirable).  However, to do otherwise
3053	 * would require replicating code paths in:
3054	 *
3055	 * ext4_writepages() ->
3056	 *    write_cache_pages() ---> (via passed in callback function)
3057	 *        __mpage_da_writepage() -->
3058	 *           mpage_add_bh_to_extent()
3059	 *           mpage_da_map_blocks()
3060	 *
3061	 * The problem is that write_cache_pages(), located in
3062	 * mm/page-writeback.c, marks pages clean in preparation for
3063	 * doing I/O, which is not desirable if we're not planning on
3064	 * doing I/O at all.
3065	 *
3066	 * We could call write_cache_pages(), and then redirty all of
3067	 * the pages by calling redirty_page_for_writepage() but that
3068	 * would be ugly in the extreme.  So instead we would need to
3069	 * replicate parts of the code in the above functions,
3070	 * simplifying them because we wouldn't actually intend to
3071	 * write out the pages, but rather only collect contiguous
3072	 * logical block extents, call the multi-block allocator, and
3073	 * then update the buffer heads with the block allocations.
3074	 *
3075	 * For now, though, we'll cheat by calling filemap_flush(),
3076	 * which will map the blocks, and start the I/O, but not
3077	 * actually wait for the I/O to complete.
3078	 */
3079	return filemap_flush(inode->i_mapping);
3080}
3081
3082/*
3083 * bmap() is special.  It gets used by applications such as lilo and by
3084 * the swapper to find the on-disk block of a specific piece of data.
3085 *
3086 * Naturally, this is dangerous if the block concerned is still in the
3087 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3088 * filesystem and enables swap, then they may get a nasty shock when the
3089 * data getting swapped to that swapfile suddenly gets overwritten by
3090 * the original zero's written out previously to the journal and
3091 * awaiting writeback in the kernel's buffer cache.
3092 *
3093 * So, if we see any bmap calls here on a modified, data-journaled file,
3094 * take extra steps to flush any blocks which might be in the cache.
3095 */
3096static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3097{
3098	struct inode *inode = mapping->host;
3099	sector_t ret = 0;
3100
3101	inode_lock_shared(inode);
3102	/*
3103	 * We can get here for an inline file via the FIBMAP ioctl
3104	 */
3105	if (ext4_has_inline_data(inode))
3106		goto out;
3107
3108	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3109	    (test_opt(inode->i_sb, DELALLOC) ||
3110	     ext4_should_journal_data(inode))) {
3111		/*
3112		 * With delalloc or journalled data we want to sync the file so
3113		 * that we can make sure we allocate blocks for file and data
3114		 * is in place for the user to see it
3115		 */
3116		filemap_write_and_wait(mapping);
3117	}
3118
3119	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3120
3121out:
3122	inode_unlock_shared(inode);
3123	return ret;
3124}
3125
3126static int ext4_read_folio(struct file *file, struct folio *folio)
3127{
3128	int ret = -EAGAIN;
3129	struct inode *inode = folio->mapping->host;
3130
3131	trace_ext4_read_folio(inode, folio);
3132
3133	if (ext4_has_inline_data(inode))
3134		ret = ext4_readpage_inline(inode, folio);
3135
3136	if (ret == -EAGAIN)
3137		return ext4_mpage_readpages(inode, NULL, folio);
3138
3139	return ret;
3140}
3141
3142static void ext4_readahead(struct readahead_control *rac)
3143{
3144	struct inode *inode = rac->mapping->host;
3145
3146	/* If the file has inline data, no need to do readahead. */
3147	if (ext4_has_inline_data(inode))
3148		return;
3149
3150	ext4_mpage_readpages(inode, rac, NULL);
3151}
3152
3153static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3154				size_t length)
3155{
3156	trace_ext4_invalidate_folio(folio, offset, length);
3157
3158	/* No journalling happens on data buffers when this function is used */
3159	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3160
3161	block_invalidate_folio(folio, offset, length);
3162}
3163
3164static int __ext4_journalled_invalidate_folio(struct folio *folio,
3165					    size_t offset, size_t length)
3166{
3167	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3168
3169	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3170
3171	/*
3172	 * If it's a full truncate we just forget about the pending dirtying
3173	 */
3174	if (offset == 0 && length == folio_size(folio))
3175		folio_clear_checked(folio);
3176
3177	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3178}
3179
3180/* Wrapper for aops... */
3181static void ext4_journalled_invalidate_folio(struct folio *folio,
3182					   size_t offset,
3183					   size_t length)
3184{
3185	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3186}
3187
3188static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3189{
3190	struct inode *inode = folio->mapping->host;
3191	journal_t *journal = EXT4_JOURNAL(inode);
3192
3193	trace_ext4_release_folio(inode, folio);
3194
3195	/* Page has dirty journalled data -> cannot release */
3196	if (folio_test_checked(folio))
3197		return false;
3198	if (journal)
3199		return jbd2_journal_try_to_free_buffers(journal, folio);
3200	else
3201		return try_to_free_buffers(folio);
3202}
3203
3204static bool ext4_inode_datasync_dirty(struct inode *inode)
3205{
3206	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3207
3208	if (journal) {
3209		if (jbd2_transaction_committed(journal,
3210			EXT4_I(inode)->i_datasync_tid))
3211			return false;
3212		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3213			return !list_empty(&EXT4_I(inode)->i_fc_list);
3214		return true;
3215	}
3216
3217	/* Any metadata buffers to write? */
3218	if (!list_empty(&inode->i_mapping->private_list))
3219		return true;
3220	return inode->i_state & I_DIRTY_DATASYNC;
3221}
3222
3223static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3224			   struct ext4_map_blocks *map, loff_t offset,
3225			   loff_t length, unsigned int flags)
3226{
3227	u8 blkbits = inode->i_blkbits;
3228
3229	/*
3230	 * Writes that span EOF might trigger an I/O size update on completion,
3231	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3232	 * there is no other metadata changes being made or are pending.
3233	 */
3234	iomap->flags = 0;
3235	if (ext4_inode_datasync_dirty(inode) ||
3236	    offset + length > i_size_read(inode))
3237		iomap->flags |= IOMAP_F_DIRTY;
3238
3239	if (map->m_flags & EXT4_MAP_NEW)
3240		iomap->flags |= IOMAP_F_NEW;
3241
3242	if (flags & IOMAP_DAX)
3243		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3244	else
3245		iomap->bdev = inode->i_sb->s_bdev;
3246	iomap->offset = (u64) map->m_lblk << blkbits;
3247	iomap->length = (u64) map->m_len << blkbits;
3248
3249	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3250	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3251		iomap->flags |= IOMAP_F_MERGED;
3252
3253	/*
3254	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3255	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3256	 * set. In order for any allocated unwritten extents to be converted
3257	 * into written extents correctly within the ->end_io() handler, we
3258	 * need to ensure that the iomap->type is set appropriately. Hence, the
3259	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3260	 * been set first.
3261	 */
3262	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3263		iomap->type = IOMAP_UNWRITTEN;
3264		iomap->addr = (u64) map->m_pblk << blkbits;
3265		if (flags & IOMAP_DAX)
3266			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3267	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3268		iomap->type = IOMAP_MAPPED;
3269		iomap->addr = (u64) map->m_pblk << blkbits;
3270		if (flags & IOMAP_DAX)
3271			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3272	} else {
3273		iomap->type = IOMAP_HOLE;
3274		iomap->addr = IOMAP_NULL_ADDR;
3275	}
3276}
3277
3278static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3279			    unsigned int flags)
3280{
3281	handle_t *handle;
3282	u8 blkbits = inode->i_blkbits;
3283	int ret, dio_credits, m_flags = 0, retries = 0;
3284
3285	/*
3286	 * Trim the mapping request to the maximum value that we can map at
3287	 * once for direct I/O.
3288	 */
3289	if (map->m_len > DIO_MAX_BLOCKS)
3290		map->m_len = DIO_MAX_BLOCKS;
3291	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3292
3293retry:
3294	/*
3295	 * Either we allocate blocks and then don't get an unwritten extent, so
3296	 * in that case we have reserved enough credits. Or, the blocks are
3297	 * already allocated and unwritten. In that case, the extent conversion
3298	 * fits into the credits as well.
3299	 */
3300	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3301	if (IS_ERR(handle))
3302		return PTR_ERR(handle);
3303
3304	/*
3305	 * DAX and direct I/O are the only two operations that are currently
3306	 * supported with IOMAP_WRITE.
3307	 */
3308	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3309	if (flags & IOMAP_DAX)
3310		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3311	/*
3312	 * We use i_size instead of i_disksize here because delalloc writeback
3313	 * can complete at any point during the I/O and subsequently push the
3314	 * i_disksize out to i_size. This could be beyond where direct I/O is
3315	 * happening and thus expose allocated blocks to direct I/O reads.
3316	 */
3317	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3318		m_flags = EXT4_GET_BLOCKS_CREATE;
3319	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3320		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3321
3322	ret = ext4_map_blocks(handle, inode, map, m_flags);
3323
3324	/*
3325	 * We cannot fill holes in indirect tree based inodes as that could
3326	 * expose stale data in the case of a crash. Use the magic error code
3327	 * to fallback to buffered I/O.
3328	 */
3329	if (!m_flags && !ret)
3330		ret = -ENOTBLK;
3331
3332	ext4_journal_stop(handle);
3333	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3334		goto retry;
3335
3336	return ret;
3337}
3338
3339
3340static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3341		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3342{
3343	int ret;
3344	struct ext4_map_blocks map;
3345	u8 blkbits = inode->i_blkbits;
3346
3347	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3348		return -EINVAL;
3349
3350	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3351		return -ERANGE;
3352
3353	/*
3354	 * Calculate the first and last logical blocks respectively.
3355	 */
3356	map.m_lblk = offset >> blkbits;
3357	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3358			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3359
3360	if (flags & IOMAP_WRITE) {
3361		/*
3362		 * We check here if the blocks are already allocated, then we
3363		 * don't need to start a journal txn and we can directly return
3364		 * the mapping information. This could boost performance
3365		 * especially in multi-threaded overwrite requests.
3366		 */
3367		if (offset + length <= i_size_read(inode)) {
3368			ret = ext4_map_blocks(NULL, inode, &map, 0);
3369			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3370				goto out;
3371		}
3372		ret = ext4_iomap_alloc(inode, &map, flags);
3373	} else {
3374		ret = ext4_map_blocks(NULL, inode, &map, 0);
3375	}
3376
3377	if (ret < 0)
3378		return ret;
3379out:
3380	/*
3381	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3382	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3383	 * limiting the length of the mapping returned.
3384	 */
3385	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3386
3387	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3388
3389	return 0;
3390}
3391
3392static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3393		loff_t length, unsigned flags, struct iomap *iomap,
3394		struct iomap *srcmap)
3395{
3396	int ret;
3397
3398	/*
3399	 * Even for writes we don't need to allocate blocks, so just pretend
3400	 * we are reading to save overhead of starting a transaction.
3401	 */
3402	flags &= ~IOMAP_WRITE;
3403	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3404	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3405	return ret;
3406}
3407
3408static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3409			  ssize_t written, unsigned flags, struct iomap *iomap)
3410{
3411	/*
3412	 * Check to see whether an error occurred while writing out the data to
3413	 * the allocated blocks. If so, return the magic error code so that we
3414	 * fallback to buffered I/O and attempt to complete the remainder of
3415	 * the I/O. Any blocks that may have been allocated in preparation for
3416	 * the direct I/O will be reused during buffered I/O.
3417	 */
3418	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3419		return -ENOTBLK;
3420
3421	return 0;
3422}
3423
3424const struct iomap_ops ext4_iomap_ops = {
3425	.iomap_begin		= ext4_iomap_begin,
3426	.iomap_end		= ext4_iomap_end,
3427};
3428
3429const struct iomap_ops ext4_iomap_overwrite_ops = {
3430	.iomap_begin		= ext4_iomap_overwrite_begin,
3431	.iomap_end		= ext4_iomap_end,
3432};
3433
3434static bool ext4_iomap_is_delalloc(struct inode *inode,
3435				   struct ext4_map_blocks *map)
3436{
3437	struct extent_status es;
3438	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3439
3440	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3441				  map->m_lblk, end, &es);
3442
3443	if (!es.es_len || es.es_lblk > end)
3444		return false;
3445
3446	if (es.es_lblk > map->m_lblk) {
3447		map->m_len = es.es_lblk - map->m_lblk;
3448		return false;
3449	}
3450
3451	offset = map->m_lblk - es.es_lblk;
3452	map->m_len = es.es_len - offset;
3453
3454	return true;
3455}
3456
3457static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3458				   loff_t length, unsigned int flags,
3459				   struct iomap *iomap, struct iomap *srcmap)
3460{
3461	int ret;
3462	bool delalloc = false;
3463	struct ext4_map_blocks map;
3464	u8 blkbits = inode->i_blkbits;
3465
3466	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3467		return -EINVAL;
3468
3469	if (ext4_has_inline_data(inode)) {
3470		ret = ext4_inline_data_iomap(inode, iomap);
3471		if (ret != -EAGAIN) {
3472			if (ret == 0 && offset >= iomap->length)
3473				ret = -ENOENT;
3474			return ret;
3475		}
3476	}
3477
3478	/*
3479	 * Calculate the first and last logical block respectively.
3480	 */
3481	map.m_lblk = offset >> blkbits;
3482	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3483			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3484
3485	/*
3486	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3487	 * So handle it here itself instead of querying ext4_map_blocks().
3488	 * Since ext4_map_blocks() will warn about it and will return
3489	 * -EIO error.
3490	 */
3491	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3492		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3493
3494		if (offset >= sbi->s_bitmap_maxbytes) {
3495			map.m_flags = 0;
3496			goto set_iomap;
3497		}
3498	}
3499
3500	ret = ext4_map_blocks(NULL, inode, &map, 0);
3501	if (ret < 0)
3502		return ret;
3503	if (ret == 0)
3504		delalloc = ext4_iomap_is_delalloc(inode, &map);
3505
3506set_iomap:
3507	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3508	if (delalloc && iomap->type == IOMAP_HOLE)
3509		iomap->type = IOMAP_DELALLOC;
3510
3511	return 0;
3512}
3513
3514const struct iomap_ops ext4_iomap_report_ops = {
3515	.iomap_begin = ext4_iomap_begin_report,
3516};
3517
3518/*
3519 * For data=journal mode, folio should be marked dirty only when it was
3520 * writeably mapped. When that happens, it was already attached to the
3521 * transaction and marked as jbddirty (we take care of this in
3522 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3523 * so we should have nothing to do here, except for the case when someone
3524 * had the page pinned and dirtied the page through this pin (e.g. by doing
3525 * direct IO to it). In that case we'd need to attach buffers here to the
3526 * transaction but we cannot due to lock ordering.  We cannot just dirty the
3527 * folio and leave attached buffers clean, because the buffers' dirty state is
3528 * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3529 * the journalling code will explode.  So what we do is to mark the folio
3530 * "pending dirty" and next time ext4_writepages() is called, attach buffers
3531 * to the transaction appropriately.
3532 */
3533static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3534		struct folio *folio)
3535{
3536	WARN_ON_ONCE(!folio_buffers(folio));
3537	if (folio_maybe_dma_pinned(folio))
3538		folio_set_checked(folio);
3539	return filemap_dirty_folio(mapping, folio);
3540}
3541
3542static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3543{
3544	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3545	WARN_ON_ONCE(!folio_buffers(folio));
3546	return block_dirty_folio(mapping, folio);
3547}
3548
3549static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3550				    struct file *file, sector_t *span)
3551{
3552	return iomap_swapfile_activate(sis, file, span,
3553				       &ext4_iomap_report_ops);
3554}
3555
3556static const struct address_space_operations ext4_aops = {
3557	.read_folio		= ext4_read_folio,
3558	.readahead		= ext4_readahead,
3559	.writepages		= ext4_writepages,
3560	.write_begin		= ext4_write_begin,
3561	.write_end		= ext4_write_end,
3562	.dirty_folio		= ext4_dirty_folio,
3563	.bmap			= ext4_bmap,
3564	.invalidate_folio	= ext4_invalidate_folio,
3565	.release_folio		= ext4_release_folio,
3566	.direct_IO		= noop_direct_IO,
3567	.migrate_folio		= buffer_migrate_folio,
3568	.is_partially_uptodate  = block_is_partially_uptodate,
3569	.error_remove_page	= generic_error_remove_page,
3570	.swap_activate		= ext4_iomap_swap_activate,
3571};
3572
3573static const struct address_space_operations ext4_journalled_aops = {
3574	.read_folio		= ext4_read_folio,
3575	.readahead		= ext4_readahead,
3576	.writepages		= ext4_writepages,
3577	.write_begin		= ext4_write_begin,
3578	.write_end		= ext4_journalled_write_end,
3579	.dirty_folio		= ext4_journalled_dirty_folio,
3580	.bmap			= ext4_bmap,
3581	.invalidate_folio	= ext4_journalled_invalidate_folio,
3582	.release_folio		= ext4_release_folio,
3583	.direct_IO		= noop_direct_IO,
3584	.migrate_folio		= buffer_migrate_folio_norefs,
3585	.is_partially_uptodate  = block_is_partially_uptodate,
3586	.error_remove_page	= generic_error_remove_page,
3587	.swap_activate		= ext4_iomap_swap_activate,
3588};
3589
3590static const struct address_space_operations ext4_da_aops = {
3591	.read_folio		= ext4_read_folio,
3592	.readahead		= ext4_readahead,
3593	.writepages		= ext4_writepages,
3594	.write_begin		= ext4_da_write_begin,
3595	.write_end		= ext4_da_write_end,
3596	.dirty_folio		= ext4_dirty_folio,
3597	.bmap			= ext4_bmap,
3598	.invalidate_folio	= ext4_invalidate_folio,
3599	.release_folio		= ext4_release_folio,
3600	.direct_IO		= noop_direct_IO,
3601	.migrate_folio		= buffer_migrate_folio,
3602	.is_partially_uptodate  = block_is_partially_uptodate,
3603	.error_remove_page	= generic_error_remove_page,
3604	.swap_activate		= ext4_iomap_swap_activate,
3605};
3606
3607static const struct address_space_operations ext4_dax_aops = {
3608	.writepages		= ext4_dax_writepages,
3609	.direct_IO		= noop_direct_IO,
3610	.dirty_folio		= noop_dirty_folio,
3611	.bmap			= ext4_bmap,
3612	.swap_activate		= ext4_iomap_swap_activate,
3613};
3614
3615void ext4_set_aops(struct inode *inode)
3616{
3617	switch (ext4_inode_journal_mode(inode)) {
3618	case EXT4_INODE_ORDERED_DATA_MODE:
3619	case EXT4_INODE_WRITEBACK_DATA_MODE:
3620		break;
3621	case EXT4_INODE_JOURNAL_DATA_MODE:
3622		inode->i_mapping->a_ops = &ext4_journalled_aops;
3623		return;
3624	default:
3625		BUG();
3626	}
3627	if (IS_DAX(inode))
3628		inode->i_mapping->a_ops = &ext4_dax_aops;
3629	else if (test_opt(inode->i_sb, DELALLOC))
3630		inode->i_mapping->a_ops = &ext4_da_aops;
3631	else
3632		inode->i_mapping->a_ops = &ext4_aops;
3633}
3634
3635static int __ext4_block_zero_page_range(handle_t *handle,
3636		struct address_space *mapping, loff_t from, loff_t length)
3637{
3638	ext4_fsblk_t index = from >> PAGE_SHIFT;
3639	unsigned offset = from & (PAGE_SIZE-1);
3640	unsigned blocksize, pos;
3641	ext4_lblk_t iblock;
3642	struct inode *inode = mapping->host;
3643	struct buffer_head *bh;
3644	struct folio *folio;
3645	int err = 0;
3646
3647	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3648				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3649				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3650	if (IS_ERR(folio))
3651		return PTR_ERR(folio);
3652
3653	blocksize = inode->i_sb->s_blocksize;
3654
3655	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3656
3657	bh = folio_buffers(folio);
3658	if (!bh) {
3659		create_empty_buffers(&folio->page, blocksize, 0);
3660		bh = folio_buffers(folio);
3661	}
3662
3663	/* Find the buffer that contains "offset" */
3664	pos = blocksize;
3665	while (offset >= pos) {
3666		bh = bh->b_this_page;
3667		iblock++;
3668		pos += blocksize;
3669	}
3670	if (buffer_freed(bh)) {
3671		BUFFER_TRACE(bh, "freed: skip");
3672		goto unlock;
3673	}
3674	if (!buffer_mapped(bh)) {
3675		BUFFER_TRACE(bh, "unmapped");
3676		ext4_get_block(inode, iblock, bh, 0);
3677		/* unmapped? It's a hole - nothing to do */
3678		if (!buffer_mapped(bh)) {
3679			BUFFER_TRACE(bh, "still unmapped");
3680			goto unlock;
3681		}
3682	}
3683
3684	/* Ok, it's mapped. Make sure it's up-to-date */
3685	if (folio_test_uptodate(folio))
3686		set_buffer_uptodate(bh);
3687
3688	if (!buffer_uptodate(bh)) {
3689		err = ext4_read_bh_lock(bh, 0, true);
3690		if (err)
3691			goto unlock;
3692		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3693			/* We expect the key to be set. */
3694			BUG_ON(!fscrypt_has_encryption_key(inode));
3695			err = fscrypt_decrypt_pagecache_blocks(folio,
3696							       blocksize,
3697							       bh_offset(bh));
3698			if (err) {
3699				clear_buffer_uptodate(bh);
3700				goto unlock;
3701			}
3702		}
3703	}
3704	if (ext4_should_journal_data(inode)) {
3705		BUFFER_TRACE(bh, "get write access");
3706		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3707						    EXT4_JTR_NONE);
3708		if (err)
3709			goto unlock;
3710	}
3711	folio_zero_range(folio, offset, length);
3712	BUFFER_TRACE(bh, "zeroed end of block");
3713
3714	if (ext4_should_journal_data(inode)) {
3715		err = ext4_dirty_journalled_data(handle, bh);
3716	} else {
3717		err = 0;
3718		mark_buffer_dirty(bh);
3719		if (ext4_should_order_data(inode))
3720			err = ext4_jbd2_inode_add_write(handle, inode, from,
3721					length);
3722	}
3723
3724unlock:
3725	folio_unlock(folio);
3726	folio_put(folio);
3727	return err;
3728}
3729
3730/*
3731 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3732 * starting from file offset 'from'.  The range to be zero'd must
3733 * be contained with in one block.  If the specified range exceeds
3734 * the end of the block it will be shortened to end of the block
3735 * that corresponds to 'from'
3736 */
3737static int ext4_block_zero_page_range(handle_t *handle,
3738		struct address_space *mapping, loff_t from, loff_t length)
3739{
3740	struct inode *inode = mapping->host;
3741	unsigned offset = from & (PAGE_SIZE-1);
3742	unsigned blocksize = inode->i_sb->s_blocksize;
3743	unsigned max = blocksize - (offset & (blocksize - 1));
3744
3745	/*
3746	 * correct length if it does not fall between
3747	 * 'from' and the end of the block
3748	 */
3749	if (length > max || length < 0)
3750		length = max;
3751
3752	if (IS_DAX(inode)) {
3753		return dax_zero_range(inode, from, length, NULL,
3754				      &ext4_iomap_ops);
3755	}
3756	return __ext4_block_zero_page_range(handle, mapping, from, length);
3757}
3758
3759/*
3760 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3761 * up to the end of the block which corresponds to `from'.
3762 * This required during truncate. We need to physically zero the tail end
3763 * of that block so it doesn't yield old data if the file is later grown.
3764 */
3765static int ext4_block_truncate_page(handle_t *handle,
3766		struct address_space *mapping, loff_t from)
3767{
3768	unsigned offset = from & (PAGE_SIZE-1);
3769	unsigned length;
3770	unsigned blocksize;
3771	struct inode *inode = mapping->host;
3772
3773	/* If we are processing an encrypted inode during orphan list handling */
3774	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3775		return 0;
3776
3777	blocksize = inode->i_sb->s_blocksize;
3778	length = blocksize - (offset & (blocksize - 1));
3779
3780	return ext4_block_zero_page_range(handle, mapping, from, length);
3781}
3782
3783int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3784			     loff_t lstart, loff_t length)
3785{
3786	struct super_block *sb = inode->i_sb;
3787	struct address_space *mapping = inode->i_mapping;
3788	unsigned partial_start, partial_end;
3789	ext4_fsblk_t start, end;
3790	loff_t byte_end = (lstart + length - 1);
3791	int err = 0;
3792
3793	partial_start = lstart & (sb->s_blocksize - 1);
3794	partial_end = byte_end & (sb->s_blocksize - 1);
3795
3796	start = lstart >> sb->s_blocksize_bits;
3797	end = byte_end >> sb->s_blocksize_bits;
3798
3799	/* Handle partial zero within the single block */
3800	if (start == end &&
3801	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3802		err = ext4_block_zero_page_range(handle, mapping,
3803						 lstart, length);
3804		return err;
3805	}
3806	/* Handle partial zero out on the start of the range */
3807	if (partial_start) {
3808		err = ext4_block_zero_page_range(handle, mapping,
3809						 lstart, sb->s_blocksize);
3810		if (err)
3811			return err;
3812	}
3813	/* Handle partial zero out on the end of the range */
3814	if (partial_end != sb->s_blocksize - 1)
3815		err = ext4_block_zero_page_range(handle, mapping,
3816						 byte_end - partial_end,
3817						 partial_end + 1);
3818	return err;
3819}
3820
3821int ext4_can_truncate(struct inode *inode)
3822{
3823	if (S_ISREG(inode->i_mode))
3824		return 1;
3825	if (S_ISDIR(inode->i_mode))
3826		return 1;
3827	if (S_ISLNK(inode->i_mode))
3828		return !ext4_inode_is_fast_symlink(inode);
3829	return 0;
3830}
3831
3832/*
3833 * We have to make sure i_disksize gets properly updated before we truncate
3834 * page cache due to hole punching or zero range. Otherwise i_disksize update
3835 * can get lost as it may have been postponed to submission of writeback but
3836 * that will never happen after we truncate page cache.
3837 */
3838int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3839				      loff_t len)
3840{
3841	handle_t *handle;
3842	int ret;
3843
3844	loff_t size = i_size_read(inode);
3845
3846	WARN_ON(!inode_is_locked(inode));
3847	if (offset > size || offset + len < size)
3848		return 0;
3849
3850	if (EXT4_I(inode)->i_disksize >= size)
3851		return 0;
3852
3853	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3854	if (IS_ERR(handle))
3855		return PTR_ERR(handle);
3856	ext4_update_i_disksize(inode, size);
3857	ret = ext4_mark_inode_dirty(handle, inode);
3858	ext4_journal_stop(handle);
3859
3860	return ret;
3861}
3862
3863static void ext4_wait_dax_page(struct inode *inode)
3864{
3865	filemap_invalidate_unlock(inode->i_mapping);
3866	schedule();
3867	filemap_invalidate_lock(inode->i_mapping);
3868}
3869
3870int ext4_break_layouts(struct inode *inode)
3871{
3872	struct page *page;
3873	int error;
3874
3875	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3876		return -EINVAL;
3877
3878	do {
3879		page = dax_layout_busy_page(inode->i_mapping);
3880		if (!page)
3881			return 0;
3882
3883		error = ___wait_var_event(&page->_refcount,
3884				atomic_read(&page->_refcount) == 1,
3885				TASK_INTERRUPTIBLE, 0, 0,
3886				ext4_wait_dax_page(inode));
3887	} while (error == 0);
3888
3889	return error;
3890}
3891
3892/*
3893 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3894 * associated with the given offset and length
3895 *
3896 * @inode:  File inode
3897 * @offset: The offset where the hole will begin
3898 * @len:    The length of the hole
3899 *
3900 * Returns: 0 on success or negative on failure
3901 */
3902
3903int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3904{
3905	struct inode *inode = file_inode(file);
3906	struct super_block *sb = inode->i_sb;
3907	ext4_lblk_t first_block, stop_block;
3908	struct address_space *mapping = inode->i_mapping;
3909	loff_t first_block_offset, last_block_offset, max_length;
3910	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3911	handle_t *handle;
3912	unsigned int credits;
3913	int ret = 0, ret2 = 0;
3914
3915	trace_ext4_punch_hole(inode, offset, length, 0);
3916
3917	/*
3918	 * Write out all dirty pages to avoid race conditions
3919	 * Then release them.
3920	 */
3921	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3922		ret = filemap_write_and_wait_range(mapping, offset,
3923						   offset + length - 1);
3924		if (ret)
3925			return ret;
3926	}
3927
3928	inode_lock(inode);
3929
3930	/* No need to punch hole beyond i_size */
3931	if (offset >= inode->i_size)
3932		goto out_mutex;
3933
3934	/*
3935	 * If the hole extends beyond i_size, set the hole
3936	 * to end after the page that contains i_size
3937	 */
3938	if (offset + length > inode->i_size) {
3939		length = inode->i_size +
3940		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3941		   offset;
3942	}
3943
3944	/*
3945	 * For punch hole the length + offset needs to be within one block
3946	 * before last range. Adjust the length if it goes beyond that limit.
3947	 */
3948	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3949	if (offset + length > max_length)
3950		length = max_length - offset;
3951
3952	if (offset & (sb->s_blocksize - 1) ||
3953	    (offset + length) & (sb->s_blocksize - 1)) {
3954		/*
3955		 * Attach jinode to inode for jbd2 if we do any zeroing of
3956		 * partial block
3957		 */
3958		ret = ext4_inode_attach_jinode(inode);
3959		if (ret < 0)
3960			goto out_mutex;
3961
3962	}
3963
3964	/* Wait all existing dio workers, newcomers will block on i_rwsem */
3965	inode_dio_wait(inode);
3966
3967	ret = file_modified(file);
3968	if (ret)
3969		goto out_mutex;
3970
3971	/*
3972	 * Prevent page faults from reinstantiating pages we have released from
3973	 * page cache.
3974	 */
3975	filemap_invalidate_lock(mapping);
3976
3977	ret = ext4_break_layouts(inode);
3978	if (ret)
3979		goto out_dio;
3980
3981	first_block_offset = round_up(offset, sb->s_blocksize);
3982	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3983
3984	/* Now release the pages and zero block aligned part of pages*/
3985	if (last_block_offset > first_block_offset) {
3986		ret = ext4_update_disksize_before_punch(inode, offset, length);
3987		if (ret)
3988			goto out_dio;
3989		truncate_pagecache_range(inode, first_block_offset,
3990					 last_block_offset);
3991	}
3992
3993	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3994		credits = ext4_writepage_trans_blocks(inode);
3995	else
3996		credits = ext4_blocks_for_truncate(inode);
3997	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3998	if (IS_ERR(handle)) {
3999		ret = PTR_ERR(handle);
4000		ext4_std_error(sb, ret);
4001		goto out_dio;
4002	}
4003
4004	ret = ext4_zero_partial_blocks(handle, inode, offset,
4005				       length);
4006	if (ret)
4007		goto out_stop;
4008
4009	first_block = (offset + sb->s_blocksize - 1) >>
4010		EXT4_BLOCK_SIZE_BITS(sb);
4011	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4012
4013	/* If there are blocks to remove, do it */
4014	if (stop_block > first_block) {
4015
4016		down_write(&EXT4_I(inode)->i_data_sem);
4017		ext4_discard_preallocations(inode, 0);
4018
4019		ext4_es_remove_extent(inode, first_block,
4020				      stop_block - first_block);
4021
4022		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4023			ret = ext4_ext_remove_space(inode, first_block,
4024						    stop_block - 1);
4025		else
4026			ret = ext4_ind_remove_space(handle, inode, first_block,
4027						    stop_block);
4028
4029		up_write(&EXT4_I(inode)->i_data_sem);
4030	}
4031	ext4_fc_track_range(handle, inode, first_block, stop_block);
4032	if (IS_SYNC(inode))
4033		ext4_handle_sync(handle);
4034
4035	inode->i_mtime = inode_set_ctime_current(inode);
4036	ret2 = ext4_mark_inode_dirty(handle, inode);
4037	if (unlikely(ret2))
4038		ret = ret2;
4039	if (ret >= 0)
4040		ext4_update_inode_fsync_trans(handle, inode, 1);
4041out_stop:
4042	ext4_journal_stop(handle);
4043out_dio:
4044	filemap_invalidate_unlock(mapping);
4045out_mutex:
4046	inode_unlock(inode);
4047	return ret;
4048}
4049
4050int ext4_inode_attach_jinode(struct inode *inode)
4051{
4052	struct ext4_inode_info *ei = EXT4_I(inode);
4053	struct jbd2_inode *jinode;
4054
4055	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4056		return 0;
4057
4058	jinode = jbd2_alloc_inode(GFP_KERNEL);
4059	spin_lock(&inode->i_lock);
4060	if (!ei->jinode) {
4061		if (!jinode) {
4062			spin_unlock(&inode->i_lock);
4063			return -ENOMEM;
4064		}
4065		ei->jinode = jinode;
4066		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4067		jinode = NULL;
4068	}
4069	spin_unlock(&inode->i_lock);
4070	if (unlikely(jinode != NULL))
4071		jbd2_free_inode(jinode);
4072	return 0;
4073}
4074
4075/*
4076 * ext4_truncate()
4077 *
4078 * We block out ext4_get_block() block instantiations across the entire
4079 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4080 * simultaneously on behalf of the same inode.
4081 *
4082 * As we work through the truncate and commit bits of it to the journal there
4083 * is one core, guiding principle: the file's tree must always be consistent on
4084 * disk.  We must be able to restart the truncate after a crash.
4085 *
4086 * The file's tree may be transiently inconsistent in memory (although it
4087 * probably isn't), but whenever we close off and commit a journal transaction,
4088 * the contents of (the filesystem + the journal) must be consistent and
4089 * restartable.  It's pretty simple, really: bottom up, right to left (although
4090 * left-to-right works OK too).
4091 *
4092 * Note that at recovery time, journal replay occurs *before* the restart of
4093 * truncate against the orphan inode list.
4094 *
4095 * The committed inode has the new, desired i_size (which is the same as
4096 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4097 * that this inode's truncate did not complete and it will again call
4098 * ext4_truncate() to have another go.  So there will be instantiated blocks
4099 * to the right of the truncation point in a crashed ext4 filesystem.  But
4100 * that's fine - as long as they are linked from the inode, the post-crash
4101 * ext4_truncate() run will find them and release them.
4102 */
4103int ext4_truncate(struct inode *inode)
4104{
4105	struct ext4_inode_info *ei = EXT4_I(inode);
4106	unsigned int credits;
4107	int err = 0, err2;
4108	handle_t *handle;
4109	struct address_space *mapping = inode->i_mapping;
4110
4111	/*
4112	 * There is a possibility that we're either freeing the inode
4113	 * or it's a completely new inode. In those cases we might not
4114	 * have i_rwsem locked because it's not necessary.
4115	 */
4116	if (!(inode->i_state & (I_NEW|I_FREEING)))
4117		WARN_ON(!inode_is_locked(inode));
4118	trace_ext4_truncate_enter(inode);
4119
4120	if (!ext4_can_truncate(inode))
4121		goto out_trace;
4122
4123	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4124		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4125
4126	if (ext4_has_inline_data(inode)) {
4127		int has_inline = 1;
4128
4129		err = ext4_inline_data_truncate(inode, &has_inline);
4130		if (err || has_inline)
4131			goto out_trace;
4132	}
4133
4134	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4135	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4136		err = ext4_inode_attach_jinode(inode);
4137		if (err)
4138			goto out_trace;
4139	}
4140
4141	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4142		credits = ext4_writepage_trans_blocks(inode);
4143	else
4144		credits = ext4_blocks_for_truncate(inode);
4145
4146	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4147	if (IS_ERR(handle)) {
4148		err = PTR_ERR(handle);
4149		goto out_trace;
4150	}
4151
4152	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4153		ext4_block_truncate_page(handle, mapping, inode->i_size);
4154
4155	/*
4156	 * We add the inode to the orphan list, so that if this
4157	 * truncate spans multiple transactions, and we crash, we will
4158	 * resume the truncate when the filesystem recovers.  It also
4159	 * marks the inode dirty, to catch the new size.
4160	 *
4161	 * Implication: the file must always be in a sane, consistent
4162	 * truncatable state while each transaction commits.
4163	 */
4164	err = ext4_orphan_add(handle, inode);
4165	if (err)
4166		goto out_stop;
4167
4168	down_write(&EXT4_I(inode)->i_data_sem);
4169
4170	ext4_discard_preallocations(inode, 0);
4171
4172	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4173		err = ext4_ext_truncate(handle, inode);
4174	else
4175		ext4_ind_truncate(handle, inode);
4176
4177	up_write(&ei->i_data_sem);
4178	if (err)
4179		goto out_stop;
4180
4181	if (IS_SYNC(inode))
4182		ext4_handle_sync(handle);
4183
4184out_stop:
4185	/*
4186	 * If this was a simple ftruncate() and the file will remain alive,
4187	 * then we need to clear up the orphan record which we created above.
4188	 * However, if this was a real unlink then we were called by
4189	 * ext4_evict_inode(), and we allow that function to clean up the
4190	 * orphan info for us.
4191	 */
4192	if (inode->i_nlink)
4193		ext4_orphan_del(handle, inode);
4194
4195	inode->i_mtime = inode_set_ctime_current(inode);
4196	err2 = ext4_mark_inode_dirty(handle, inode);
4197	if (unlikely(err2 && !err))
4198		err = err2;
4199	ext4_journal_stop(handle);
4200
4201out_trace:
4202	trace_ext4_truncate_exit(inode);
4203	return err;
4204}
4205
4206static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4207{
4208	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4209		return inode_peek_iversion_raw(inode);
4210	else
4211		return inode_peek_iversion(inode);
4212}
4213
4214static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4215				 struct ext4_inode_info *ei)
4216{
4217	struct inode *inode = &(ei->vfs_inode);
4218	u64 i_blocks = READ_ONCE(inode->i_blocks);
4219	struct super_block *sb = inode->i_sb;
4220
4221	if (i_blocks <= ~0U) {
4222		/*
4223		 * i_blocks can be represented in a 32 bit variable
4224		 * as multiple of 512 bytes
4225		 */
4226		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4227		raw_inode->i_blocks_high = 0;
4228		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4229		return 0;
4230	}
4231
4232	/*
4233	 * This should never happen since sb->s_maxbytes should not have
4234	 * allowed this, sb->s_maxbytes was set according to the huge_file
4235	 * feature in ext4_fill_super().
4236	 */
4237	if (!ext4_has_feature_huge_file(sb))
4238		return -EFSCORRUPTED;
4239
4240	if (i_blocks <= 0xffffffffffffULL) {
4241		/*
4242		 * i_blocks can be represented in a 48 bit variable
4243		 * as multiple of 512 bytes
4244		 */
4245		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4246		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4247		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4248	} else {
4249		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4250		/* i_block is stored in file system block size */
4251		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4252		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4253		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4254	}
4255	return 0;
4256}
4257
4258static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4259{
4260	struct ext4_inode_info *ei = EXT4_I(inode);
4261	uid_t i_uid;
4262	gid_t i_gid;
4263	projid_t i_projid;
4264	int block;
4265	int err;
4266
4267	err = ext4_inode_blocks_set(raw_inode, ei);
4268
4269	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4270	i_uid = i_uid_read(inode);
4271	i_gid = i_gid_read(inode);
4272	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4273	if (!(test_opt(inode->i_sb, NO_UID32))) {
4274		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4275		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4276		/*
4277		 * Fix up interoperability with old kernels. Otherwise,
4278		 * old inodes get re-used with the upper 16 bits of the
4279		 * uid/gid intact.
4280		 */
4281		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4282			raw_inode->i_uid_high = 0;
4283			raw_inode->i_gid_high = 0;
4284		} else {
4285			raw_inode->i_uid_high =
4286				cpu_to_le16(high_16_bits(i_uid));
4287			raw_inode->i_gid_high =
4288				cpu_to_le16(high_16_bits(i_gid));
4289		}
4290	} else {
4291		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4292		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4293		raw_inode->i_uid_high = 0;
4294		raw_inode->i_gid_high = 0;
4295	}
4296	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4297
4298	EXT4_INODE_SET_CTIME(inode, raw_inode);
4299	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4300	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4301	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4302
4303	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4304	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4305	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4306		raw_inode->i_file_acl_high =
4307			cpu_to_le16(ei->i_file_acl >> 32);
4308	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4309	ext4_isize_set(raw_inode, ei->i_disksize);
4310
4311	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4312	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4313		if (old_valid_dev(inode->i_rdev)) {
4314			raw_inode->i_block[0] =
4315				cpu_to_le32(old_encode_dev(inode->i_rdev));
4316			raw_inode->i_block[1] = 0;
4317		} else {
4318			raw_inode->i_block[0] = 0;
4319			raw_inode->i_block[1] =
4320				cpu_to_le32(new_encode_dev(inode->i_rdev));
4321			raw_inode->i_block[2] = 0;
4322		}
4323	} else if (!ext4_has_inline_data(inode)) {
4324		for (block = 0; block < EXT4_N_BLOCKS; block++)
4325			raw_inode->i_block[block] = ei->i_data[block];
4326	}
4327
4328	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4329		u64 ivers = ext4_inode_peek_iversion(inode);
4330
4331		raw_inode->i_disk_version = cpu_to_le32(ivers);
4332		if (ei->i_extra_isize) {
4333			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4334				raw_inode->i_version_hi =
4335					cpu_to_le32(ivers >> 32);
4336			raw_inode->i_extra_isize =
4337				cpu_to_le16(ei->i_extra_isize);
4338		}
4339	}
4340
4341	if (i_projid != EXT4_DEF_PROJID &&
4342	    !ext4_has_feature_project(inode->i_sb))
4343		err = err ?: -EFSCORRUPTED;
4344
4345	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4346	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4347		raw_inode->i_projid = cpu_to_le32(i_projid);
4348
4349	ext4_inode_csum_set(inode, raw_inode, ei);
4350	return err;
4351}
4352
4353/*
4354 * ext4_get_inode_loc returns with an extra refcount against the inode's
4355 * underlying buffer_head on success. If we pass 'inode' and it does not
4356 * have in-inode xattr, we have all inode data in memory that is needed
4357 * to recreate the on-disk version of this inode.
4358 */
4359static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4360				struct inode *inode, struct ext4_iloc *iloc,
4361				ext4_fsblk_t *ret_block)
4362{
4363	struct ext4_group_desc	*gdp;
4364	struct buffer_head	*bh;
4365	ext4_fsblk_t		block;
4366	struct blk_plug		plug;
4367	int			inodes_per_block, inode_offset;
4368
4369	iloc->bh = NULL;
4370	if (ino < EXT4_ROOT_INO ||
4371	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4372		return -EFSCORRUPTED;
4373
4374	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4375	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4376	if (!gdp)
4377		return -EIO;
4378
4379	/*
4380	 * Figure out the offset within the block group inode table
4381	 */
4382	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4383	inode_offset = ((ino - 1) %
4384			EXT4_INODES_PER_GROUP(sb));
4385	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4386
4387	block = ext4_inode_table(sb, gdp);
4388	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4389	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4390		ext4_error(sb, "Invalid inode table block %llu in "
4391			   "block_group %u", block, iloc->block_group);
4392		return -EFSCORRUPTED;
4393	}
4394	block += (inode_offset / inodes_per_block);
4395
4396	bh = sb_getblk(sb, block);
4397	if (unlikely(!bh))
4398		return -ENOMEM;
4399	if (ext4_buffer_uptodate(bh))
4400		goto has_buffer;
4401
4402	lock_buffer(bh);
4403	if (ext4_buffer_uptodate(bh)) {
4404		/* Someone brought it uptodate while we waited */
4405		unlock_buffer(bh);
4406		goto has_buffer;
4407	}
4408
4409	/*
4410	 * If we have all information of the inode in memory and this
4411	 * is the only valid inode in the block, we need not read the
4412	 * block.
4413	 */
4414	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4415		struct buffer_head *bitmap_bh;
4416		int i, start;
4417
4418		start = inode_offset & ~(inodes_per_block - 1);
4419
4420		/* Is the inode bitmap in cache? */
4421		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4422		if (unlikely(!bitmap_bh))
4423			goto make_io;
4424
4425		/*
4426		 * If the inode bitmap isn't in cache then the
4427		 * optimisation may end up performing two reads instead
4428		 * of one, so skip it.
4429		 */
4430		if (!buffer_uptodate(bitmap_bh)) {
4431			brelse(bitmap_bh);
4432			goto make_io;
4433		}
4434		for (i = start; i < start + inodes_per_block; i++) {
4435			if (i == inode_offset)
4436				continue;
4437			if (ext4_test_bit(i, bitmap_bh->b_data))
4438				break;
4439		}
4440		brelse(bitmap_bh);
4441		if (i == start + inodes_per_block) {
4442			struct ext4_inode *raw_inode =
4443				(struct ext4_inode *) (bh->b_data + iloc->offset);
4444
4445			/* all other inodes are free, so skip I/O */
4446			memset(bh->b_data, 0, bh->b_size);
4447			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4448				ext4_fill_raw_inode(inode, raw_inode);
4449			set_buffer_uptodate(bh);
4450			unlock_buffer(bh);
4451			goto has_buffer;
4452		}
4453	}
4454
4455make_io:
4456	/*
4457	 * If we need to do any I/O, try to pre-readahead extra
4458	 * blocks from the inode table.
4459	 */
4460	blk_start_plug(&plug);
4461	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4462		ext4_fsblk_t b, end, table;
4463		unsigned num;
4464		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4465
4466		table = ext4_inode_table(sb, gdp);
4467		/* s_inode_readahead_blks is always a power of 2 */
4468		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4469		if (table > b)
4470			b = table;
4471		end = b + ra_blks;
4472		num = EXT4_INODES_PER_GROUP(sb);
4473		if (ext4_has_group_desc_csum(sb))
4474			num -= ext4_itable_unused_count(sb, gdp);
4475		table += num / inodes_per_block;
4476		if (end > table)
4477			end = table;
4478		while (b <= end)
4479			ext4_sb_breadahead_unmovable(sb, b++);
4480	}
4481
4482	/*
4483	 * There are other valid inodes in the buffer, this inode
4484	 * has in-inode xattrs, or we don't have this inode in memory.
4485	 * Read the block from disk.
4486	 */
4487	trace_ext4_load_inode(sb, ino);
4488	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4489	blk_finish_plug(&plug);
4490	wait_on_buffer(bh);
4491	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4492	if (!buffer_uptodate(bh)) {
4493		if (ret_block)
4494			*ret_block = block;
4495		brelse(bh);
4496		return -EIO;
4497	}
4498has_buffer:
4499	iloc->bh = bh;
4500	return 0;
4501}
4502
4503static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4504					struct ext4_iloc *iloc)
4505{
4506	ext4_fsblk_t err_blk = 0;
4507	int ret;
4508
4509	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4510					&err_blk);
4511
4512	if (ret == -EIO)
4513		ext4_error_inode_block(inode, err_blk, EIO,
4514					"unable to read itable block");
4515
4516	return ret;
4517}
4518
4519int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4520{
4521	ext4_fsblk_t err_blk = 0;
4522	int ret;
4523
4524	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4525					&err_blk);
4526
4527	if (ret == -EIO)
4528		ext4_error_inode_block(inode, err_blk, EIO,
4529					"unable to read itable block");
4530
4531	return ret;
4532}
4533
4534
4535int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4536			  struct ext4_iloc *iloc)
4537{
4538	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4539}
4540
4541static bool ext4_should_enable_dax(struct inode *inode)
4542{
4543	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4544
4545	if (test_opt2(inode->i_sb, DAX_NEVER))
4546		return false;
4547	if (!S_ISREG(inode->i_mode))
4548		return false;
4549	if (ext4_should_journal_data(inode))
4550		return false;
4551	if (ext4_has_inline_data(inode))
4552		return false;
4553	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4554		return false;
4555	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4556		return false;
4557	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4558		return false;
4559	if (test_opt(inode->i_sb, DAX_ALWAYS))
4560		return true;
4561
4562	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4563}
4564
4565void ext4_set_inode_flags(struct inode *inode, bool init)
4566{
4567	unsigned int flags = EXT4_I(inode)->i_flags;
4568	unsigned int new_fl = 0;
4569
4570	WARN_ON_ONCE(IS_DAX(inode) && init);
4571
4572	if (flags & EXT4_SYNC_FL)
4573		new_fl |= S_SYNC;
4574	if (flags & EXT4_APPEND_FL)
4575		new_fl |= S_APPEND;
4576	if (flags & EXT4_IMMUTABLE_FL)
4577		new_fl |= S_IMMUTABLE;
4578	if (flags & EXT4_NOATIME_FL)
4579		new_fl |= S_NOATIME;
4580	if (flags & EXT4_DIRSYNC_FL)
4581		new_fl |= S_DIRSYNC;
4582
4583	/* Because of the way inode_set_flags() works we must preserve S_DAX
4584	 * here if already set. */
4585	new_fl |= (inode->i_flags & S_DAX);
4586	if (init && ext4_should_enable_dax(inode))
4587		new_fl |= S_DAX;
4588
4589	if (flags & EXT4_ENCRYPT_FL)
4590		new_fl |= S_ENCRYPTED;
4591	if (flags & EXT4_CASEFOLD_FL)
4592		new_fl |= S_CASEFOLD;
4593	if (flags & EXT4_VERITY_FL)
4594		new_fl |= S_VERITY;
4595	inode_set_flags(inode, new_fl,
4596			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4597			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4598}
4599
4600static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4601				  struct ext4_inode_info *ei)
4602{
4603	blkcnt_t i_blocks ;
4604	struct inode *inode = &(ei->vfs_inode);
4605	struct super_block *sb = inode->i_sb;
4606
4607	if (ext4_has_feature_huge_file(sb)) {
4608		/* we are using combined 48 bit field */
4609		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4610					le32_to_cpu(raw_inode->i_blocks_lo);
4611		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4612			/* i_blocks represent file system block size */
4613			return i_blocks  << (inode->i_blkbits - 9);
4614		} else {
4615			return i_blocks;
4616		}
4617	} else {
4618		return le32_to_cpu(raw_inode->i_blocks_lo);
4619	}
4620}
4621
4622static inline int ext4_iget_extra_inode(struct inode *inode,
4623					 struct ext4_inode *raw_inode,
4624					 struct ext4_inode_info *ei)
4625{
4626	__le32 *magic = (void *)raw_inode +
4627			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4628
4629	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4630	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4631		int err;
4632
4633		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4634		err = ext4_find_inline_data_nolock(inode);
4635		if (!err && ext4_has_inline_data(inode))
4636			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4637		return err;
4638	} else
4639		EXT4_I(inode)->i_inline_off = 0;
4640	return 0;
4641}
4642
4643int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4644{
4645	if (!ext4_has_feature_project(inode->i_sb))
4646		return -EOPNOTSUPP;
4647	*projid = EXT4_I(inode)->i_projid;
4648	return 0;
4649}
4650
4651/*
4652 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4653 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4654 * set.
4655 */
4656static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4657{
4658	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4659		inode_set_iversion_raw(inode, val);
4660	else
4661		inode_set_iversion_queried(inode, val);
4662}
4663
4664static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4665
4666{
4667	if (flags & EXT4_IGET_EA_INODE) {
4668		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4669			return "missing EA_INODE flag";
4670		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4671		    EXT4_I(inode)->i_file_acl)
4672			return "ea_inode with extended attributes";
4673	} else {
4674		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4675			return "unexpected EA_INODE flag";
4676	}
4677	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4678		return "unexpected bad inode w/o EXT4_IGET_BAD";
4679	return NULL;
4680}
4681
4682struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4683			  ext4_iget_flags flags, const char *function,
4684			  unsigned int line)
4685{
4686	struct ext4_iloc iloc;
4687	struct ext4_inode *raw_inode;
4688	struct ext4_inode_info *ei;
4689	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4690	struct inode *inode;
4691	const char *err_str;
4692	journal_t *journal = EXT4_SB(sb)->s_journal;
4693	long ret;
4694	loff_t size;
4695	int block;
4696	uid_t i_uid;
4697	gid_t i_gid;
4698	projid_t i_projid;
4699
4700	if ((!(flags & EXT4_IGET_SPECIAL) &&
4701	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4702	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4703	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4704	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4705	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4706	    (ino < EXT4_ROOT_INO) ||
4707	    (ino > le32_to_cpu(es->s_inodes_count))) {
4708		if (flags & EXT4_IGET_HANDLE)
4709			return ERR_PTR(-ESTALE);
4710		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4711			     "inode #%lu: comm %s: iget: illegal inode #",
4712			     ino, current->comm);
4713		return ERR_PTR(-EFSCORRUPTED);
4714	}
4715
4716	inode = iget_locked(sb, ino);
4717	if (!inode)
4718		return ERR_PTR(-ENOMEM);
4719	if (!(inode->i_state & I_NEW)) {
4720		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4721			ext4_error_inode(inode, function, line, 0, err_str);
4722			iput(inode);
4723			return ERR_PTR(-EFSCORRUPTED);
4724		}
4725		return inode;
4726	}
4727
4728	ei = EXT4_I(inode);
4729	iloc.bh = NULL;
4730
4731	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4732	if (ret < 0)
4733		goto bad_inode;
4734	raw_inode = ext4_raw_inode(&iloc);
4735
4736	if ((flags & EXT4_IGET_HANDLE) &&
4737	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4738		ret = -ESTALE;
4739		goto bad_inode;
4740	}
4741
4742	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4743		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4744		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4745			EXT4_INODE_SIZE(inode->i_sb) ||
4746		    (ei->i_extra_isize & 3)) {
4747			ext4_error_inode(inode, function, line, 0,
4748					 "iget: bad extra_isize %u "
4749					 "(inode size %u)",
4750					 ei->i_extra_isize,
4751					 EXT4_INODE_SIZE(inode->i_sb));
4752			ret = -EFSCORRUPTED;
4753			goto bad_inode;
4754		}
4755	} else
4756		ei->i_extra_isize = 0;
4757
4758	/* Precompute checksum seed for inode metadata */
4759	if (ext4_has_metadata_csum(sb)) {
4760		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4761		__u32 csum;
4762		__le32 inum = cpu_to_le32(inode->i_ino);
4763		__le32 gen = raw_inode->i_generation;
4764		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4765				   sizeof(inum));
4766		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4767					      sizeof(gen));
4768	}
4769
4770	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4771	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4772	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4773		ext4_error_inode_err(inode, function, line, 0,
4774				EFSBADCRC, "iget: checksum invalid");
4775		ret = -EFSBADCRC;
4776		goto bad_inode;
4777	}
4778
4779	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4780	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4781	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4782	if (ext4_has_feature_project(sb) &&
4783	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4784	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4785		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4786	else
4787		i_projid = EXT4_DEF_PROJID;
4788
4789	if (!(test_opt(inode->i_sb, NO_UID32))) {
4790		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4791		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4792	}
4793	i_uid_write(inode, i_uid);
4794	i_gid_write(inode, i_gid);
4795	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4796	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4797
4798	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4799	ei->i_inline_off = 0;
4800	ei->i_dir_start_lookup = 0;
4801	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4802	/* We now have enough fields to check if the inode was active or not.
4803	 * This is needed because nfsd might try to access dead inodes
4804	 * the test is that same one that e2fsck uses
4805	 * NeilBrown 1999oct15
4806	 */
4807	if (inode->i_nlink == 0) {
4808		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4809		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4810		    ino != EXT4_BOOT_LOADER_INO) {
4811			/* this inode is deleted or unallocated */
4812			if (flags & EXT4_IGET_SPECIAL) {
4813				ext4_error_inode(inode, function, line, 0,
4814						 "iget: special inode unallocated");
4815				ret = -EFSCORRUPTED;
4816			} else
4817				ret = -ESTALE;
4818			goto bad_inode;
4819		}
4820		/* The only unlinked inodes we let through here have
4821		 * valid i_mode and are being read by the orphan
4822		 * recovery code: that's fine, we're about to complete
4823		 * the process of deleting those.
4824		 * OR it is the EXT4_BOOT_LOADER_INO which is
4825		 * not initialized on a new filesystem. */
4826	}
4827	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4828	ext4_set_inode_flags(inode, true);
4829	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4830	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4831	if (ext4_has_feature_64bit(sb))
4832		ei->i_file_acl |=
4833			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4834	inode->i_size = ext4_isize(sb, raw_inode);
4835	if ((size = i_size_read(inode)) < 0) {
4836		ext4_error_inode(inode, function, line, 0,
4837				 "iget: bad i_size value: %lld", size);
4838		ret = -EFSCORRUPTED;
4839		goto bad_inode;
4840	}
4841	/*
4842	 * If dir_index is not enabled but there's dir with INDEX flag set,
4843	 * we'd normally treat htree data as empty space. But with metadata
4844	 * checksumming that corrupts checksums so forbid that.
4845	 */
4846	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4847	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4848		ext4_error_inode(inode, function, line, 0,
4849			 "iget: Dir with htree data on filesystem without dir_index feature.");
4850		ret = -EFSCORRUPTED;
4851		goto bad_inode;
4852	}
4853	ei->i_disksize = inode->i_size;
4854#ifdef CONFIG_QUOTA
4855	ei->i_reserved_quota = 0;
4856#endif
4857	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4858	ei->i_block_group = iloc.block_group;
4859	ei->i_last_alloc_group = ~0;
4860	/*
4861	 * NOTE! The in-memory inode i_data array is in little-endian order
4862	 * even on big-endian machines: we do NOT byteswap the block numbers!
4863	 */
4864	for (block = 0; block < EXT4_N_BLOCKS; block++)
4865		ei->i_data[block] = raw_inode->i_block[block];
4866	INIT_LIST_HEAD(&ei->i_orphan);
4867	ext4_fc_init_inode(&ei->vfs_inode);
4868
4869	/*
4870	 * Set transaction id's of transactions that have to be committed
4871	 * to finish f[data]sync. We set them to currently running transaction
4872	 * as we cannot be sure that the inode or some of its metadata isn't
4873	 * part of the transaction - the inode could have been reclaimed and
4874	 * now it is reread from disk.
4875	 */
4876	if (journal) {
4877		transaction_t *transaction;
4878		tid_t tid;
4879
4880		read_lock(&journal->j_state_lock);
4881		if (journal->j_running_transaction)
4882			transaction = journal->j_running_transaction;
4883		else
4884			transaction = journal->j_committing_transaction;
4885		if (transaction)
4886			tid = transaction->t_tid;
4887		else
4888			tid = journal->j_commit_sequence;
4889		read_unlock(&journal->j_state_lock);
4890		ei->i_sync_tid = tid;
4891		ei->i_datasync_tid = tid;
4892	}
4893
4894	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4895		if (ei->i_extra_isize == 0) {
4896			/* The extra space is currently unused. Use it. */
4897			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4898			ei->i_extra_isize = sizeof(struct ext4_inode) -
4899					    EXT4_GOOD_OLD_INODE_SIZE;
4900		} else {
4901			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4902			if (ret)
4903				goto bad_inode;
4904		}
4905	}
4906
4907	EXT4_INODE_GET_CTIME(inode, raw_inode);
4908	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4909	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4910	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4911
4912	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4913		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4914
4915		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4916			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4917				ivers |=
4918		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4919		}
4920		ext4_inode_set_iversion_queried(inode, ivers);
4921	}
4922
4923	ret = 0;
4924	if (ei->i_file_acl &&
4925	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4926		ext4_error_inode(inode, function, line, 0,
4927				 "iget: bad extended attribute block %llu",
4928				 ei->i_file_acl);
4929		ret = -EFSCORRUPTED;
4930		goto bad_inode;
4931	} else if (!ext4_has_inline_data(inode)) {
4932		/* validate the block references in the inode */
4933		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4934			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4935			(S_ISLNK(inode->i_mode) &&
4936			!ext4_inode_is_fast_symlink(inode)))) {
4937			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4938				ret = ext4_ext_check_inode(inode);
4939			else
4940				ret = ext4_ind_check_inode(inode);
4941		}
4942	}
4943	if (ret)
4944		goto bad_inode;
4945
4946	if (S_ISREG(inode->i_mode)) {
4947		inode->i_op = &ext4_file_inode_operations;
4948		inode->i_fop = &ext4_file_operations;
4949		ext4_set_aops(inode);
4950	} else if (S_ISDIR(inode->i_mode)) {
4951		inode->i_op = &ext4_dir_inode_operations;
4952		inode->i_fop = &ext4_dir_operations;
4953	} else if (S_ISLNK(inode->i_mode)) {
4954		/* VFS does not allow setting these so must be corruption */
4955		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4956			ext4_error_inode(inode, function, line, 0,
4957					 "iget: immutable or append flags "
4958					 "not allowed on symlinks");
4959			ret = -EFSCORRUPTED;
4960			goto bad_inode;
4961		}
4962		if (IS_ENCRYPTED(inode)) {
4963			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4964		} else if (ext4_inode_is_fast_symlink(inode)) {
4965			inode->i_link = (char *)ei->i_data;
4966			inode->i_op = &ext4_fast_symlink_inode_operations;
4967			nd_terminate_link(ei->i_data, inode->i_size,
4968				sizeof(ei->i_data) - 1);
4969		} else {
4970			inode->i_op = &ext4_symlink_inode_operations;
4971		}
4972	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4973	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4974		inode->i_op = &ext4_special_inode_operations;
4975		if (raw_inode->i_block[0])
4976			init_special_inode(inode, inode->i_mode,
4977			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4978		else
4979			init_special_inode(inode, inode->i_mode,
4980			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4981	} else if (ino == EXT4_BOOT_LOADER_INO) {
4982		make_bad_inode(inode);
4983	} else {
4984		ret = -EFSCORRUPTED;
4985		ext4_error_inode(inode, function, line, 0,
4986				 "iget: bogus i_mode (%o)", inode->i_mode);
4987		goto bad_inode;
4988	}
4989	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
4990		ext4_error_inode(inode, function, line, 0,
4991				 "casefold flag without casefold feature");
4992		ret = -EFSCORRUPTED;
4993		goto bad_inode;
4994	}
4995	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4996		ext4_error_inode(inode, function, line, 0, err_str);
4997		ret = -EFSCORRUPTED;
4998		goto bad_inode;
4999	}
5000
5001	brelse(iloc.bh);
5002	unlock_new_inode(inode);
5003	return inode;
5004
5005bad_inode:
5006	brelse(iloc.bh);
5007	iget_failed(inode);
5008	return ERR_PTR(ret);
5009}
5010
5011static void __ext4_update_other_inode_time(struct super_block *sb,
5012					   unsigned long orig_ino,
5013					   unsigned long ino,
5014					   struct ext4_inode *raw_inode)
5015{
5016	struct inode *inode;
5017
5018	inode = find_inode_by_ino_rcu(sb, ino);
5019	if (!inode)
5020		return;
5021
5022	if (!inode_is_dirtytime_only(inode))
5023		return;
5024
5025	spin_lock(&inode->i_lock);
5026	if (inode_is_dirtytime_only(inode)) {
5027		struct ext4_inode_info	*ei = EXT4_I(inode);
5028
5029		inode->i_state &= ~I_DIRTY_TIME;
5030		spin_unlock(&inode->i_lock);
5031
5032		spin_lock(&ei->i_raw_lock);
5033		EXT4_INODE_SET_CTIME(inode, raw_inode);
5034		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5035		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5036		ext4_inode_csum_set(inode, raw_inode, ei);
5037		spin_unlock(&ei->i_raw_lock);
5038		trace_ext4_other_inode_update_time(inode, orig_ino);
5039		return;
5040	}
5041	spin_unlock(&inode->i_lock);
5042}
5043
5044/*
5045 * Opportunistically update the other time fields for other inodes in
5046 * the same inode table block.
5047 */
5048static void ext4_update_other_inodes_time(struct super_block *sb,
5049					  unsigned long orig_ino, char *buf)
5050{
5051	unsigned long ino;
5052	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5053	int inode_size = EXT4_INODE_SIZE(sb);
5054
5055	/*
5056	 * Calculate the first inode in the inode table block.  Inode
5057	 * numbers are one-based.  That is, the first inode in a block
5058	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5059	 */
5060	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5061	rcu_read_lock();
5062	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5063		if (ino == orig_ino)
5064			continue;
5065		__ext4_update_other_inode_time(sb, orig_ino, ino,
5066					       (struct ext4_inode *)buf);
5067	}
5068	rcu_read_unlock();
5069}
5070
5071/*
5072 * Post the struct inode info into an on-disk inode location in the
5073 * buffer-cache.  This gobbles the caller's reference to the
5074 * buffer_head in the inode location struct.
5075 *
5076 * The caller must have write access to iloc->bh.
5077 */
5078static int ext4_do_update_inode(handle_t *handle,
5079				struct inode *inode,
5080				struct ext4_iloc *iloc)
5081{
5082	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5083	struct ext4_inode_info *ei = EXT4_I(inode);
5084	struct buffer_head *bh = iloc->bh;
5085	struct super_block *sb = inode->i_sb;
5086	int err;
5087	int need_datasync = 0, set_large_file = 0;
5088
5089	spin_lock(&ei->i_raw_lock);
5090
5091	/*
5092	 * For fields not tracked in the in-memory inode, initialise them
5093	 * to zero for new inodes.
5094	 */
5095	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5096		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5097
5098	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5099		need_datasync = 1;
5100	if (ei->i_disksize > 0x7fffffffULL) {
5101		if (!ext4_has_feature_large_file(sb) ||
5102		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5103			set_large_file = 1;
5104	}
5105
5106	err = ext4_fill_raw_inode(inode, raw_inode);
5107	spin_unlock(&ei->i_raw_lock);
5108	if (err) {
5109		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5110		goto out_brelse;
5111	}
5112
5113	if (inode->i_sb->s_flags & SB_LAZYTIME)
5114		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5115					      bh->b_data);
5116
5117	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5118	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5119	if (err)
5120		goto out_error;
5121	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5122	if (set_large_file) {
5123		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5124		err = ext4_journal_get_write_access(handle, sb,
5125						    EXT4_SB(sb)->s_sbh,
5126						    EXT4_JTR_NONE);
5127		if (err)
5128			goto out_error;
5129		lock_buffer(EXT4_SB(sb)->s_sbh);
5130		ext4_set_feature_large_file(sb);
5131		ext4_superblock_csum_set(sb);
5132		unlock_buffer(EXT4_SB(sb)->s_sbh);
5133		ext4_handle_sync(handle);
5134		err = ext4_handle_dirty_metadata(handle, NULL,
5135						 EXT4_SB(sb)->s_sbh);
5136	}
5137	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5138out_error:
5139	ext4_std_error(inode->i_sb, err);
5140out_brelse:
5141	brelse(bh);
5142	return err;
5143}
5144
5145/*
5146 * ext4_write_inode()
5147 *
5148 * We are called from a few places:
5149 *
5150 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5151 *   Here, there will be no transaction running. We wait for any running
5152 *   transaction to commit.
5153 *
5154 * - Within flush work (sys_sync(), kupdate and such).
5155 *   We wait on commit, if told to.
5156 *
5157 * - Within iput_final() -> write_inode_now()
5158 *   We wait on commit, if told to.
5159 *
5160 * In all cases it is actually safe for us to return without doing anything,
5161 * because the inode has been copied into a raw inode buffer in
5162 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5163 * writeback.
5164 *
5165 * Note that we are absolutely dependent upon all inode dirtiers doing the
5166 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5167 * which we are interested.
5168 *
5169 * It would be a bug for them to not do this.  The code:
5170 *
5171 *	mark_inode_dirty(inode)
5172 *	stuff();
5173 *	inode->i_size = expr;
5174 *
5175 * is in error because write_inode() could occur while `stuff()' is running,
5176 * and the new i_size will be lost.  Plus the inode will no longer be on the
5177 * superblock's dirty inode list.
5178 */
5179int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5180{
5181	int err;
5182
5183	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5184		return 0;
5185
5186	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5187		return -EIO;
5188
5189	if (EXT4_SB(inode->i_sb)->s_journal) {
5190		if (ext4_journal_current_handle()) {
5191			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5192			dump_stack();
5193			return -EIO;
5194		}
5195
5196		/*
5197		 * No need to force transaction in WB_SYNC_NONE mode. Also
5198		 * ext4_sync_fs() will force the commit after everything is
5199		 * written.
5200		 */
5201		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5202			return 0;
5203
5204		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5205						EXT4_I(inode)->i_sync_tid);
5206	} else {
5207		struct ext4_iloc iloc;
5208
5209		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5210		if (err)
5211			return err;
5212		/*
5213		 * sync(2) will flush the whole buffer cache. No need to do
5214		 * it here separately for each inode.
5215		 */
5216		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5217			sync_dirty_buffer(iloc.bh);
5218		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5219			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5220					       "IO error syncing inode");
5221			err = -EIO;
5222		}
5223		brelse(iloc.bh);
5224	}
5225	return err;
5226}
5227
5228/*
5229 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5230 * buffers that are attached to a folio straddling i_size and are undergoing
5231 * commit. In that case we have to wait for commit to finish and try again.
5232 */
5233static void ext4_wait_for_tail_page_commit(struct inode *inode)
5234{
5235	unsigned offset;
5236	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5237	tid_t commit_tid = 0;
5238	int ret;
5239
5240	offset = inode->i_size & (PAGE_SIZE - 1);
5241	/*
5242	 * If the folio is fully truncated, we don't need to wait for any commit
5243	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5244	 * strip all buffers from the folio but keep the folio dirty which can then
5245	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5246	 * buffers). Also we don't need to wait for any commit if all buffers in
5247	 * the folio remain valid. This is most beneficial for the common case of
5248	 * blocksize == PAGESIZE.
5249	 */
5250	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5251		return;
5252	while (1) {
5253		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5254				      inode->i_size >> PAGE_SHIFT);
5255		if (IS_ERR(folio))
5256			return;
5257		ret = __ext4_journalled_invalidate_folio(folio, offset,
5258						folio_size(folio) - offset);
5259		folio_unlock(folio);
5260		folio_put(folio);
5261		if (ret != -EBUSY)
5262			return;
5263		commit_tid = 0;
5264		read_lock(&journal->j_state_lock);
5265		if (journal->j_committing_transaction)
5266			commit_tid = journal->j_committing_transaction->t_tid;
5267		read_unlock(&journal->j_state_lock);
5268		if (commit_tid)
5269			jbd2_log_wait_commit(journal, commit_tid);
5270	}
5271}
5272
5273/*
5274 * ext4_setattr()
5275 *
5276 * Called from notify_change.
5277 *
5278 * We want to trap VFS attempts to truncate the file as soon as
5279 * possible.  In particular, we want to make sure that when the VFS
5280 * shrinks i_size, we put the inode on the orphan list and modify
5281 * i_disksize immediately, so that during the subsequent flushing of
5282 * dirty pages and freeing of disk blocks, we can guarantee that any
5283 * commit will leave the blocks being flushed in an unused state on
5284 * disk.  (On recovery, the inode will get truncated and the blocks will
5285 * be freed, so we have a strong guarantee that no future commit will
5286 * leave these blocks visible to the user.)
5287 *
5288 * Another thing we have to assure is that if we are in ordered mode
5289 * and inode is still attached to the committing transaction, we must
5290 * we start writeout of all the dirty pages which are being truncated.
5291 * This way we are sure that all the data written in the previous
5292 * transaction are already on disk (truncate waits for pages under
5293 * writeback).
5294 *
5295 * Called with inode->i_rwsem down.
5296 */
5297int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5298		 struct iattr *attr)
5299{
5300	struct inode *inode = d_inode(dentry);
5301	int error, rc = 0;
5302	int orphan = 0;
5303	const unsigned int ia_valid = attr->ia_valid;
5304	bool inc_ivers = true;
5305
5306	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5307		return -EIO;
5308
5309	if (unlikely(IS_IMMUTABLE(inode)))
5310		return -EPERM;
5311
5312	if (unlikely(IS_APPEND(inode) &&
5313		     (ia_valid & (ATTR_MODE | ATTR_UID |
5314				  ATTR_GID | ATTR_TIMES_SET))))
5315		return -EPERM;
5316
5317	error = setattr_prepare(idmap, dentry, attr);
5318	if (error)
5319		return error;
5320
5321	error = fscrypt_prepare_setattr(dentry, attr);
5322	if (error)
5323		return error;
5324
5325	error = fsverity_prepare_setattr(dentry, attr);
5326	if (error)
5327		return error;
5328
5329	if (is_quota_modification(idmap, inode, attr)) {
5330		error = dquot_initialize(inode);
5331		if (error)
5332			return error;
5333	}
5334
5335	if (i_uid_needs_update(idmap, attr, inode) ||
5336	    i_gid_needs_update(idmap, attr, inode)) {
5337		handle_t *handle;
5338
5339		/* (user+group)*(old+new) structure, inode write (sb,
5340		 * inode block, ? - but truncate inode update has it) */
5341		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5342			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5343			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5344		if (IS_ERR(handle)) {
5345			error = PTR_ERR(handle);
5346			goto err_out;
5347		}
5348
5349		/* dquot_transfer() calls back ext4_get_inode_usage() which
5350		 * counts xattr inode references.
5351		 */
5352		down_read(&EXT4_I(inode)->xattr_sem);
5353		error = dquot_transfer(idmap, inode, attr);
5354		up_read(&EXT4_I(inode)->xattr_sem);
5355
5356		if (error) {
5357			ext4_journal_stop(handle);
5358			return error;
5359		}
5360		/* Update corresponding info in inode so that everything is in
5361		 * one transaction */
5362		i_uid_update(idmap, attr, inode);
5363		i_gid_update(idmap, attr, inode);
5364		error = ext4_mark_inode_dirty(handle, inode);
5365		ext4_journal_stop(handle);
5366		if (unlikely(error)) {
5367			return error;
5368		}
5369	}
5370
5371	if (attr->ia_valid & ATTR_SIZE) {
5372		handle_t *handle;
5373		loff_t oldsize = inode->i_size;
5374		loff_t old_disksize;
5375		int shrink = (attr->ia_size < inode->i_size);
5376
5377		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5378			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5379
5380			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5381				return -EFBIG;
5382			}
5383		}
5384		if (!S_ISREG(inode->i_mode)) {
5385			return -EINVAL;
5386		}
5387
5388		if (attr->ia_size == inode->i_size)
5389			inc_ivers = false;
5390
5391		if (shrink) {
5392			if (ext4_should_order_data(inode)) {
5393				error = ext4_begin_ordered_truncate(inode,
5394							    attr->ia_size);
5395				if (error)
5396					goto err_out;
5397			}
5398			/*
5399			 * Blocks are going to be removed from the inode. Wait
5400			 * for dio in flight.
5401			 */
5402			inode_dio_wait(inode);
5403		}
5404
5405		filemap_invalidate_lock(inode->i_mapping);
5406
5407		rc = ext4_break_layouts(inode);
5408		if (rc) {
5409			filemap_invalidate_unlock(inode->i_mapping);
5410			goto err_out;
5411		}
5412
5413		if (attr->ia_size != inode->i_size) {
5414			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5415			if (IS_ERR(handle)) {
5416				error = PTR_ERR(handle);
5417				goto out_mmap_sem;
5418			}
5419			if (ext4_handle_valid(handle) && shrink) {
5420				error = ext4_orphan_add(handle, inode);
5421				orphan = 1;
5422			}
5423			/*
5424			 * Update c/mtime on truncate up, ext4_truncate() will
5425			 * update c/mtime in shrink case below
5426			 */
5427			if (!shrink)
5428				inode->i_mtime = inode_set_ctime_current(inode);
5429
5430			if (shrink)
5431				ext4_fc_track_range(handle, inode,
5432					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5433					inode->i_sb->s_blocksize_bits,
5434					EXT_MAX_BLOCKS - 1);
5435			else
5436				ext4_fc_track_range(
5437					handle, inode,
5438					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5439					inode->i_sb->s_blocksize_bits,
5440					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5441					inode->i_sb->s_blocksize_bits);
5442
5443			down_write(&EXT4_I(inode)->i_data_sem);
5444			old_disksize = EXT4_I(inode)->i_disksize;
5445			EXT4_I(inode)->i_disksize = attr->ia_size;
5446			rc = ext4_mark_inode_dirty(handle, inode);
5447			if (!error)
5448				error = rc;
5449			/*
5450			 * We have to update i_size under i_data_sem together
5451			 * with i_disksize to avoid races with writeback code
5452			 * running ext4_wb_update_i_disksize().
5453			 */
5454			if (!error)
5455				i_size_write(inode, attr->ia_size);
5456			else
5457				EXT4_I(inode)->i_disksize = old_disksize;
5458			up_write(&EXT4_I(inode)->i_data_sem);
5459			ext4_journal_stop(handle);
5460			if (error)
5461				goto out_mmap_sem;
5462			if (!shrink) {
5463				pagecache_isize_extended(inode, oldsize,
5464							 inode->i_size);
5465			} else if (ext4_should_journal_data(inode)) {
5466				ext4_wait_for_tail_page_commit(inode);
5467			}
5468		}
5469
5470		/*
5471		 * Truncate pagecache after we've waited for commit
5472		 * in data=journal mode to make pages freeable.
5473		 */
5474		truncate_pagecache(inode, inode->i_size);
5475		/*
5476		 * Call ext4_truncate() even if i_size didn't change to
5477		 * truncate possible preallocated blocks.
5478		 */
5479		if (attr->ia_size <= oldsize) {
5480			rc = ext4_truncate(inode);
5481			if (rc)
5482				error = rc;
5483		}
5484out_mmap_sem:
5485		filemap_invalidate_unlock(inode->i_mapping);
5486	}
5487
5488	if (!error) {
5489		if (inc_ivers)
5490			inode_inc_iversion(inode);
5491		setattr_copy(idmap, inode, attr);
5492		mark_inode_dirty(inode);
5493	}
5494
5495	/*
5496	 * If the call to ext4_truncate failed to get a transaction handle at
5497	 * all, we need to clean up the in-core orphan list manually.
5498	 */
5499	if (orphan && inode->i_nlink)
5500		ext4_orphan_del(NULL, inode);
5501
5502	if (!error && (ia_valid & ATTR_MODE))
5503		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5504
5505err_out:
5506	if  (error)
5507		ext4_std_error(inode->i_sb, error);
5508	if (!error)
5509		error = rc;
5510	return error;
5511}
5512
5513u32 ext4_dio_alignment(struct inode *inode)
5514{
5515	if (fsverity_active(inode))
5516		return 0;
5517	if (ext4_should_journal_data(inode))
5518		return 0;
5519	if (ext4_has_inline_data(inode))
5520		return 0;
5521	if (IS_ENCRYPTED(inode)) {
5522		if (!fscrypt_dio_supported(inode))
5523			return 0;
5524		return i_blocksize(inode);
5525	}
5526	return 1; /* use the iomap defaults */
5527}
5528
5529int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5530		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5531{
5532	struct inode *inode = d_inode(path->dentry);
5533	struct ext4_inode *raw_inode;
5534	struct ext4_inode_info *ei = EXT4_I(inode);
5535	unsigned int flags;
5536
5537	if ((request_mask & STATX_BTIME) &&
5538	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5539		stat->result_mask |= STATX_BTIME;
5540		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5541		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5542	}
5543
5544	/*
5545	 * Return the DIO alignment restrictions if requested.  We only return
5546	 * this information when requested, since on encrypted files it might
5547	 * take a fair bit of work to get if the file wasn't opened recently.
5548	 */
5549	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5550		u32 dio_align = ext4_dio_alignment(inode);
5551
5552		stat->result_mask |= STATX_DIOALIGN;
5553		if (dio_align == 1) {
5554			struct block_device *bdev = inode->i_sb->s_bdev;
5555
5556			/* iomap defaults */
5557			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5558			stat->dio_offset_align = bdev_logical_block_size(bdev);
5559		} else {
5560			stat->dio_mem_align = dio_align;
5561			stat->dio_offset_align = dio_align;
5562		}
5563	}
5564
5565	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5566	if (flags & EXT4_APPEND_FL)
5567		stat->attributes |= STATX_ATTR_APPEND;
5568	if (flags & EXT4_COMPR_FL)
5569		stat->attributes |= STATX_ATTR_COMPRESSED;
5570	if (flags & EXT4_ENCRYPT_FL)
5571		stat->attributes |= STATX_ATTR_ENCRYPTED;
5572	if (flags & EXT4_IMMUTABLE_FL)
5573		stat->attributes |= STATX_ATTR_IMMUTABLE;
5574	if (flags & EXT4_NODUMP_FL)
5575		stat->attributes |= STATX_ATTR_NODUMP;
5576	if (flags & EXT4_VERITY_FL)
5577		stat->attributes |= STATX_ATTR_VERITY;
5578
5579	stat->attributes_mask |= (STATX_ATTR_APPEND |
5580				  STATX_ATTR_COMPRESSED |
5581				  STATX_ATTR_ENCRYPTED |
5582				  STATX_ATTR_IMMUTABLE |
5583				  STATX_ATTR_NODUMP |
5584				  STATX_ATTR_VERITY);
5585
5586	generic_fillattr(idmap, request_mask, inode, stat);
5587	return 0;
5588}
5589
5590int ext4_file_getattr(struct mnt_idmap *idmap,
5591		      const struct path *path, struct kstat *stat,
5592		      u32 request_mask, unsigned int query_flags)
5593{
5594	struct inode *inode = d_inode(path->dentry);
5595	u64 delalloc_blocks;
5596
5597	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5598
5599	/*
5600	 * If there is inline data in the inode, the inode will normally not
5601	 * have data blocks allocated (it may have an external xattr block).
5602	 * Report at least one sector for such files, so tools like tar, rsync,
5603	 * others don't incorrectly think the file is completely sparse.
5604	 */
5605	if (unlikely(ext4_has_inline_data(inode)))
5606		stat->blocks += (stat->size + 511) >> 9;
5607
5608	/*
5609	 * We can't update i_blocks if the block allocation is delayed
5610	 * otherwise in the case of system crash before the real block
5611	 * allocation is done, we will have i_blocks inconsistent with
5612	 * on-disk file blocks.
5613	 * We always keep i_blocks updated together with real
5614	 * allocation. But to not confuse with user, stat
5615	 * will return the blocks that include the delayed allocation
5616	 * blocks for this file.
5617	 */
5618	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5619				   EXT4_I(inode)->i_reserved_data_blocks);
5620	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5621	return 0;
5622}
5623
5624static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5625				   int pextents)
5626{
5627	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5628		return ext4_ind_trans_blocks(inode, lblocks);
5629	return ext4_ext_index_trans_blocks(inode, pextents);
5630}
5631
5632/*
5633 * Account for index blocks, block groups bitmaps and block group
5634 * descriptor blocks if modify datablocks and index blocks
5635 * worse case, the indexs blocks spread over different block groups
5636 *
5637 * If datablocks are discontiguous, they are possible to spread over
5638 * different block groups too. If they are contiguous, with flexbg,
5639 * they could still across block group boundary.
5640 *
5641 * Also account for superblock, inode, quota and xattr blocks
5642 */
5643static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5644				  int pextents)
5645{
5646	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5647	int gdpblocks;
5648	int idxblocks;
5649	int ret;
5650
5651	/*
5652	 * How many index blocks need to touch to map @lblocks logical blocks
5653	 * to @pextents physical extents?
5654	 */
5655	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5656
5657	ret = idxblocks;
5658
5659	/*
5660	 * Now let's see how many group bitmaps and group descriptors need
5661	 * to account
5662	 */
5663	groups = idxblocks + pextents;
5664	gdpblocks = groups;
5665	if (groups > ngroups)
5666		groups = ngroups;
5667	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5668		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5669
5670	/* bitmaps and block group descriptor blocks */
5671	ret += groups + gdpblocks;
5672
5673	/* Blocks for super block, inode, quota and xattr blocks */
5674	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5675
5676	return ret;
5677}
5678
5679/*
5680 * Calculate the total number of credits to reserve to fit
5681 * the modification of a single pages into a single transaction,
5682 * which may include multiple chunks of block allocations.
5683 *
5684 * This could be called via ext4_write_begin()
5685 *
5686 * We need to consider the worse case, when
5687 * one new block per extent.
5688 */
5689int ext4_writepage_trans_blocks(struct inode *inode)
5690{
5691	int bpp = ext4_journal_blocks_per_page(inode);
5692	int ret;
5693
5694	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5695
5696	/* Account for data blocks for journalled mode */
5697	if (ext4_should_journal_data(inode))
5698		ret += bpp;
5699	return ret;
5700}
5701
5702/*
5703 * Calculate the journal credits for a chunk of data modification.
5704 *
5705 * This is called from DIO, fallocate or whoever calling
5706 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5707 *
5708 * journal buffers for data blocks are not included here, as DIO
5709 * and fallocate do no need to journal data buffers.
5710 */
5711int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5712{
5713	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5714}
5715
5716/*
5717 * The caller must have previously called ext4_reserve_inode_write().
5718 * Give this, we know that the caller already has write access to iloc->bh.
5719 */
5720int ext4_mark_iloc_dirty(handle_t *handle,
5721			 struct inode *inode, struct ext4_iloc *iloc)
5722{
5723	int err = 0;
5724
5725	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5726		put_bh(iloc->bh);
5727		return -EIO;
5728	}
5729	ext4_fc_track_inode(handle, inode);
5730
5731	/* the do_update_inode consumes one bh->b_count */
5732	get_bh(iloc->bh);
5733
5734	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5735	err = ext4_do_update_inode(handle, inode, iloc);
5736	put_bh(iloc->bh);
5737	return err;
5738}
5739
5740/*
5741 * On success, We end up with an outstanding reference count against
5742 * iloc->bh.  This _must_ be cleaned up later.
5743 */
5744
5745int
5746ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5747			 struct ext4_iloc *iloc)
5748{
5749	int err;
5750
5751	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5752		return -EIO;
5753
5754	err = ext4_get_inode_loc(inode, iloc);
5755	if (!err) {
5756		BUFFER_TRACE(iloc->bh, "get_write_access");
5757		err = ext4_journal_get_write_access(handle, inode->i_sb,
5758						    iloc->bh, EXT4_JTR_NONE);
5759		if (err) {
5760			brelse(iloc->bh);
5761			iloc->bh = NULL;
5762		}
5763	}
5764	ext4_std_error(inode->i_sb, err);
5765	return err;
5766}
5767
5768static int __ext4_expand_extra_isize(struct inode *inode,
5769				     unsigned int new_extra_isize,
5770				     struct ext4_iloc *iloc,
5771				     handle_t *handle, int *no_expand)
5772{
5773	struct ext4_inode *raw_inode;
5774	struct ext4_xattr_ibody_header *header;
5775	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5776	struct ext4_inode_info *ei = EXT4_I(inode);
5777	int error;
5778
5779	/* this was checked at iget time, but double check for good measure */
5780	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5781	    (ei->i_extra_isize & 3)) {
5782		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5783				 ei->i_extra_isize,
5784				 EXT4_INODE_SIZE(inode->i_sb));
5785		return -EFSCORRUPTED;
5786	}
5787	if ((new_extra_isize < ei->i_extra_isize) ||
5788	    (new_extra_isize < 4) ||
5789	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5790		return -EINVAL;	/* Should never happen */
5791
5792	raw_inode = ext4_raw_inode(iloc);
5793
5794	header = IHDR(inode, raw_inode);
5795
5796	/* No extended attributes present */
5797	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5798	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5799		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5800		       EXT4_I(inode)->i_extra_isize, 0,
5801		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5802		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5803		return 0;
5804	}
5805
5806	/*
5807	 * We may need to allocate external xattr block so we need quotas
5808	 * initialized. Here we can be called with various locks held so we
5809	 * cannot affort to initialize quotas ourselves. So just bail.
5810	 */
5811	if (dquot_initialize_needed(inode))
5812		return -EAGAIN;
5813
5814	/* try to expand with EAs present */
5815	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5816					   raw_inode, handle);
5817	if (error) {
5818		/*
5819		 * Inode size expansion failed; don't try again
5820		 */
5821		*no_expand = 1;
5822	}
5823
5824	return error;
5825}
5826
5827/*
5828 * Expand an inode by new_extra_isize bytes.
5829 * Returns 0 on success or negative error number on failure.
5830 */
5831static int ext4_try_to_expand_extra_isize(struct inode *inode,
5832					  unsigned int new_extra_isize,
5833					  struct ext4_iloc iloc,
5834					  handle_t *handle)
5835{
5836	int no_expand;
5837	int error;
5838
5839	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5840		return -EOVERFLOW;
5841
5842	/*
5843	 * In nojournal mode, we can immediately attempt to expand
5844	 * the inode.  When journaled, we first need to obtain extra
5845	 * buffer credits since we may write into the EA block
5846	 * with this same handle. If journal_extend fails, then it will
5847	 * only result in a minor loss of functionality for that inode.
5848	 * If this is felt to be critical, then e2fsck should be run to
5849	 * force a large enough s_min_extra_isize.
5850	 */
5851	if (ext4_journal_extend(handle,
5852				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5853		return -ENOSPC;
5854
5855	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5856		return -EBUSY;
5857
5858	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5859					  handle, &no_expand);
5860	ext4_write_unlock_xattr(inode, &no_expand);
5861
5862	return error;
5863}
5864
5865int ext4_expand_extra_isize(struct inode *inode,
5866			    unsigned int new_extra_isize,
5867			    struct ext4_iloc *iloc)
5868{
5869	handle_t *handle;
5870	int no_expand;
5871	int error, rc;
5872
5873	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5874		brelse(iloc->bh);
5875		return -EOVERFLOW;
5876	}
5877
5878	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5879				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5880	if (IS_ERR(handle)) {
5881		error = PTR_ERR(handle);
5882		brelse(iloc->bh);
5883		return error;
5884	}
5885
5886	ext4_write_lock_xattr(inode, &no_expand);
5887
5888	BUFFER_TRACE(iloc->bh, "get_write_access");
5889	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5890					      EXT4_JTR_NONE);
5891	if (error) {
5892		brelse(iloc->bh);
5893		goto out_unlock;
5894	}
5895
5896	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5897					  handle, &no_expand);
5898
5899	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5900	if (!error)
5901		error = rc;
5902
5903out_unlock:
5904	ext4_write_unlock_xattr(inode, &no_expand);
5905	ext4_journal_stop(handle);
5906	return error;
5907}
5908
5909/*
5910 * What we do here is to mark the in-core inode as clean with respect to inode
5911 * dirtiness (it may still be data-dirty).
5912 * This means that the in-core inode may be reaped by prune_icache
5913 * without having to perform any I/O.  This is a very good thing,
5914 * because *any* task may call prune_icache - even ones which
5915 * have a transaction open against a different journal.
5916 *
5917 * Is this cheating?  Not really.  Sure, we haven't written the
5918 * inode out, but prune_icache isn't a user-visible syncing function.
5919 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5920 * we start and wait on commits.
5921 */
5922int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5923				const char *func, unsigned int line)
5924{
5925	struct ext4_iloc iloc;
5926	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5927	int err;
5928
5929	might_sleep();
5930	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5931	err = ext4_reserve_inode_write(handle, inode, &iloc);
5932	if (err)
5933		goto out;
5934
5935	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5936		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5937					       iloc, handle);
5938
5939	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5940out:
5941	if (unlikely(err))
5942		ext4_error_inode_err(inode, func, line, 0, err,
5943					"mark_inode_dirty error");
5944	return err;
5945}
5946
5947/*
5948 * ext4_dirty_inode() is called from __mark_inode_dirty()
5949 *
5950 * We're really interested in the case where a file is being extended.
5951 * i_size has been changed by generic_commit_write() and we thus need
5952 * to include the updated inode in the current transaction.
5953 *
5954 * Also, dquot_alloc_block() will always dirty the inode when blocks
5955 * are allocated to the file.
5956 *
5957 * If the inode is marked synchronous, we don't honour that here - doing
5958 * so would cause a commit on atime updates, which we don't bother doing.
5959 * We handle synchronous inodes at the highest possible level.
5960 */
5961void ext4_dirty_inode(struct inode *inode, int flags)
5962{
5963	handle_t *handle;
5964
5965	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5966	if (IS_ERR(handle))
5967		return;
5968	ext4_mark_inode_dirty(handle, inode);
5969	ext4_journal_stop(handle);
5970}
5971
5972int ext4_change_inode_journal_flag(struct inode *inode, int val)
5973{
5974	journal_t *journal;
5975	handle_t *handle;
5976	int err;
5977	int alloc_ctx;
5978
5979	/*
5980	 * We have to be very careful here: changing a data block's
5981	 * journaling status dynamically is dangerous.  If we write a
5982	 * data block to the journal, change the status and then delete
5983	 * that block, we risk forgetting to revoke the old log record
5984	 * from the journal and so a subsequent replay can corrupt data.
5985	 * So, first we make sure that the journal is empty and that
5986	 * nobody is changing anything.
5987	 */
5988
5989	journal = EXT4_JOURNAL(inode);
5990	if (!journal)
5991		return 0;
5992	if (is_journal_aborted(journal))
5993		return -EROFS;
5994
5995	/* Wait for all existing dio workers */
5996	inode_dio_wait(inode);
5997
5998	/*
5999	 * Before flushing the journal and switching inode's aops, we have
6000	 * to flush all dirty data the inode has. There can be outstanding
6001	 * delayed allocations, there can be unwritten extents created by
6002	 * fallocate or buffered writes in dioread_nolock mode covered by
6003	 * dirty data which can be converted only after flushing the dirty
6004	 * data (and journalled aops don't know how to handle these cases).
6005	 */
6006	if (val) {
6007		filemap_invalidate_lock(inode->i_mapping);
6008		err = filemap_write_and_wait(inode->i_mapping);
6009		if (err < 0) {
6010			filemap_invalidate_unlock(inode->i_mapping);
6011			return err;
6012		}
6013	}
6014
6015	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6016	jbd2_journal_lock_updates(journal);
6017
6018	/*
6019	 * OK, there are no updates running now, and all cached data is
6020	 * synced to disk.  We are now in a completely consistent state
6021	 * which doesn't have anything in the journal, and we know that
6022	 * no filesystem updates are running, so it is safe to modify
6023	 * the inode's in-core data-journaling state flag now.
6024	 */
6025
6026	if (val)
6027		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6028	else {
6029		err = jbd2_journal_flush(journal, 0);
6030		if (err < 0) {
6031			jbd2_journal_unlock_updates(journal);
6032			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6033			return err;
6034		}
6035		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6036	}
6037	ext4_set_aops(inode);
6038
6039	jbd2_journal_unlock_updates(journal);
6040	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6041
6042	if (val)
6043		filemap_invalidate_unlock(inode->i_mapping);
6044
6045	/* Finally we can mark the inode as dirty. */
6046
6047	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6048	if (IS_ERR(handle))
6049		return PTR_ERR(handle);
6050
6051	ext4_fc_mark_ineligible(inode->i_sb,
6052		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6053	err = ext4_mark_inode_dirty(handle, inode);
6054	ext4_handle_sync(handle);
6055	ext4_journal_stop(handle);
6056	ext4_std_error(inode->i_sb, err);
6057
6058	return err;
6059}
6060
6061static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6062			    struct buffer_head *bh)
6063{
6064	return !buffer_mapped(bh);
6065}
6066
6067vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6068{
6069	struct vm_area_struct *vma = vmf->vma;
6070	struct folio *folio = page_folio(vmf->page);
6071	loff_t size;
6072	unsigned long len;
6073	int err;
6074	vm_fault_t ret;
6075	struct file *file = vma->vm_file;
6076	struct inode *inode = file_inode(file);
6077	struct address_space *mapping = inode->i_mapping;
6078	handle_t *handle;
6079	get_block_t *get_block;
6080	int retries = 0;
6081
6082	if (unlikely(IS_IMMUTABLE(inode)))
6083		return VM_FAULT_SIGBUS;
6084
6085	sb_start_pagefault(inode->i_sb);
6086	file_update_time(vma->vm_file);
6087
6088	filemap_invalidate_lock_shared(mapping);
6089
6090	err = ext4_convert_inline_data(inode);
6091	if (err)
6092		goto out_ret;
6093
6094	/*
6095	 * On data journalling we skip straight to the transaction handle:
6096	 * there's no delalloc; page truncated will be checked later; the
6097	 * early return w/ all buffers mapped (calculates size/len) can't
6098	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6099	 */
6100	if (ext4_should_journal_data(inode))
6101		goto retry_alloc;
6102
6103	/* Delalloc case is easy... */
6104	if (test_opt(inode->i_sb, DELALLOC) &&
6105	    !ext4_nonda_switch(inode->i_sb)) {
6106		do {
6107			err = block_page_mkwrite(vma, vmf,
6108						   ext4_da_get_block_prep);
6109		} while (err == -ENOSPC &&
6110		       ext4_should_retry_alloc(inode->i_sb, &retries));
6111		goto out_ret;
6112	}
6113
6114	folio_lock(folio);
6115	size = i_size_read(inode);
6116	/* Page got truncated from under us? */
6117	if (folio->mapping != mapping || folio_pos(folio) > size) {
6118		folio_unlock(folio);
6119		ret = VM_FAULT_NOPAGE;
6120		goto out;
6121	}
6122
6123	len = folio_size(folio);
6124	if (folio_pos(folio) + len > size)
6125		len = size - folio_pos(folio);
6126	/*
6127	 * Return if we have all the buffers mapped. This avoids the need to do
6128	 * journal_start/journal_stop which can block and take a long time
6129	 *
6130	 * This cannot be done for data journalling, as we have to add the
6131	 * inode to the transaction's list to writeprotect pages on commit.
6132	 */
6133	if (folio_buffers(folio)) {
6134		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6135					    0, len, NULL,
6136					    ext4_bh_unmapped)) {
6137			/* Wait so that we don't change page under IO */
6138			folio_wait_stable(folio);
6139			ret = VM_FAULT_LOCKED;
6140			goto out;
6141		}
6142	}
6143	folio_unlock(folio);
6144	/* OK, we need to fill the hole... */
6145	if (ext4_should_dioread_nolock(inode))
6146		get_block = ext4_get_block_unwritten;
6147	else
6148		get_block = ext4_get_block;
6149retry_alloc:
6150	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6151				    ext4_writepage_trans_blocks(inode));
6152	if (IS_ERR(handle)) {
6153		ret = VM_FAULT_SIGBUS;
6154		goto out;
6155	}
6156	/*
6157	 * Data journalling can't use block_page_mkwrite() because it
6158	 * will set_buffer_dirty() before do_journal_get_write_access()
6159	 * thus might hit warning messages for dirty metadata buffers.
6160	 */
6161	if (!ext4_should_journal_data(inode)) {
6162		err = block_page_mkwrite(vma, vmf, get_block);
6163	} else {
6164		folio_lock(folio);
6165		size = i_size_read(inode);
6166		/* Page got truncated from under us? */
6167		if (folio->mapping != mapping || folio_pos(folio) > size) {
6168			ret = VM_FAULT_NOPAGE;
6169			goto out_error;
6170		}
6171
6172		len = folio_size(folio);
6173		if (folio_pos(folio) + len > size)
6174			len = size - folio_pos(folio);
6175
6176		err = __block_write_begin(&folio->page, 0, len, ext4_get_block);
6177		if (!err) {
6178			ret = VM_FAULT_SIGBUS;
6179			if (ext4_journal_folio_buffers(handle, folio, len))
6180				goto out_error;
6181		} else {
6182			folio_unlock(folio);
6183		}
6184	}
6185	ext4_journal_stop(handle);
6186	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6187		goto retry_alloc;
6188out_ret:
6189	ret = vmf_fs_error(err);
6190out:
6191	filemap_invalidate_unlock_shared(mapping);
6192	sb_end_pagefault(inode->i_sb);
6193	return ret;
6194out_error:
6195	folio_unlock(folio);
6196	ext4_journal_stop(handle);
6197	goto out;
6198}
6199