1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  fs/ext4/extents_status.c
4 *
5 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
6 * Modified by
7 *	Allison Henderson <achender@linux.vnet.ibm.com>
8 *	Hugh Dickins <hughd@google.com>
9 *	Zheng Liu <wenqing.lz@taobao.com>
10 *
11 * Ext4 extents status tree core functions.
12 */
13#include <linux/list_sort.h>
14#include <linux/proc_fs.h>
15#include <linux/seq_file.h>
16#include "ext4.h"
17
18#include <trace/events/ext4.h>
19
20/*
21 * According to previous discussion in Ext4 Developer Workshop, we
22 * will introduce a new structure called io tree to track all extent
23 * status in order to solve some problems that we have met
24 * (e.g. Reservation space warning), and provide extent-level locking.
25 * Delay extent tree is the first step to achieve this goal.  It is
26 * original built by Yongqiang Yang.  At that time it is called delay
27 * extent tree, whose goal is only track delayed extents in memory to
28 * simplify the implementation of fiemap and bigalloc, and introduce
29 * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
30 * delay extent tree at the first commit.  But for better understand
31 * what it does, it has been rename to extent status tree.
32 *
33 * Step1:
34 * Currently the first step has been done.  All delayed extents are
35 * tracked in the tree.  It maintains the delayed extent when a delayed
36 * allocation is issued, and the delayed extent is written out or
37 * invalidated.  Therefore the implementation of fiemap and bigalloc
38 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39 *
40 * The following comment describes the implemenmtation of extent
41 * status tree and future works.
42 *
43 * Step2:
44 * In this step all extent status are tracked by extent status tree.
45 * Thus, we can first try to lookup a block mapping in this tree before
46 * finding it in extent tree.  Hence, single extent cache can be removed
47 * because extent status tree can do a better job.  Extents in status
48 * tree are loaded on-demand.  Therefore, the extent status tree may not
49 * contain all of the extents in a file.  Meanwhile we define a shrinker
50 * to reclaim memory from extent status tree because fragmented extent
51 * tree will make status tree cost too much memory.  written/unwritten/-
52 * hole extents in the tree will be reclaimed by this shrinker when we
53 * are under high memory pressure.  Delayed extents will not be
54 * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55 */
56
57/*
58 * Extent status tree implementation for ext4.
59 *
60 *
61 * ==========================================================================
62 * Extent status tree tracks all extent status.
63 *
64 * 1. Why we need to implement extent status tree?
65 *
66 * Without extent status tree, ext4 identifies a delayed extent by looking
67 * up page cache, this has several deficiencies - complicated, buggy,
68 * and inefficient code.
69 *
70 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71 * block or a range of blocks are belonged to a delayed extent.
72 *
73 * Let us have a look at how they do without extent status tree.
74 *   --	FIEMAP
75 *	FIEMAP looks up page cache to identify delayed allocations from holes.
76 *
77 *   --	SEEK_HOLE/DATA
78 *	SEEK_HOLE/DATA has the same problem as FIEMAP.
79 *
80 *   --	bigalloc
81 *	bigalloc looks up page cache to figure out if a block is
82 *	already under delayed allocation or not to determine whether
83 *	quota reserving is needed for the cluster.
84 *
85 *   --	writeout
86 *	Writeout looks up whole page cache to see if a buffer is
87 *	mapped, If there are not very many delayed buffers, then it is
88 *	time consuming.
89 *
90 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91 * bigalloc and writeout can figure out if a block or a range of
92 * blocks is under delayed allocation(belonged to a delayed extent) or
93 * not by searching the extent tree.
94 *
95 *
96 * ==========================================================================
97 * 2. Ext4 extent status tree impelmentation
98 *
99 *   --	extent
100 *	A extent is a range of blocks which are contiguous logically and
101 *	physically.  Unlike extent in extent tree, this extent in ext4 is
102 *	a in-memory struct, there is no corresponding on-disk data.  There
103 *	is no limit on length of extent, so an extent can contain as many
104 *	blocks as they are contiguous logically and physically.
105 *
106 *   --	extent status tree
107 *	Every inode has an extent status tree and all allocation blocks
108 *	are added to the tree with different status.  The extent in the
109 *	tree are ordered by logical block no.
110 *
111 *   --	operations on a extent status tree
112 *	There are three important operations on a delayed extent tree: find
113 *	next extent, adding a extent(a range of blocks) and removing a extent.
114 *
115 *   --	race on a extent status tree
116 *	Extent status tree is protected by inode->i_es_lock.
117 *
118 *   --	memory consumption
119 *      Fragmented extent tree will make extent status tree cost too much
120 *      memory.  Hence, we will reclaim written/unwritten/hole extents from
121 *      the tree under a heavy memory pressure.
122 *
123 *
124 * ==========================================================================
125 * 3. Performance analysis
126 *
127 *   --	overhead
128 *	1. There is a cache extent for write access, so if writes are
129 *	not very random, adding space operaions are in O(1) time.
130 *
131 *   --	gain
132 *	2. Code is much simpler, more readable, more maintainable and
133 *	more efficient.
134 *
135 *
136 * ==========================================================================
137 * 4. TODO list
138 *
139 *   -- Refactor delayed space reservation
140 *
141 *   -- Extent-level locking
142 */
143
144static struct kmem_cache *ext4_es_cachep;
145static struct kmem_cache *ext4_pending_cachep;
146
147static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
148			      struct extent_status *prealloc);
149static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
150			      ext4_lblk_t end, int *reserved,
151			      struct extent_status *prealloc);
152static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
153static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
154		       struct ext4_inode_info *locked_ei);
155static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
156			    ext4_lblk_t len,
157			    struct pending_reservation **prealloc);
158
159int __init ext4_init_es(void)
160{
161	ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT);
162	if (ext4_es_cachep == NULL)
163		return -ENOMEM;
164	return 0;
165}
166
167void ext4_exit_es(void)
168{
169	kmem_cache_destroy(ext4_es_cachep);
170}
171
172void ext4_es_init_tree(struct ext4_es_tree *tree)
173{
174	tree->root = RB_ROOT;
175	tree->cache_es = NULL;
176}
177
178#ifdef ES_DEBUG__
179static void ext4_es_print_tree(struct inode *inode)
180{
181	struct ext4_es_tree *tree;
182	struct rb_node *node;
183
184	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
185	tree = &EXT4_I(inode)->i_es_tree;
186	node = rb_first(&tree->root);
187	while (node) {
188		struct extent_status *es;
189		es = rb_entry(node, struct extent_status, rb_node);
190		printk(KERN_DEBUG " [%u/%u) %llu %x",
191		       es->es_lblk, es->es_len,
192		       ext4_es_pblock(es), ext4_es_status(es));
193		node = rb_next(node);
194	}
195	printk(KERN_DEBUG "\n");
196}
197#else
198#define ext4_es_print_tree(inode)
199#endif
200
201static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
202{
203	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
204	return es->es_lblk + es->es_len - 1;
205}
206
207/*
208 * search through the tree for an delayed extent with a given offset.  If
209 * it can't be found, try to find next extent.
210 */
211static struct extent_status *__es_tree_search(struct rb_root *root,
212					      ext4_lblk_t lblk)
213{
214	struct rb_node *node = root->rb_node;
215	struct extent_status *es = NULL;
216
217	while (node) {
218		es = rb_entry(node, struct extent_status, rb_node);
219		if (lblk < es->es_lblk)
220			node = node->rb_left;
221		else if (lblk > ext4_es_end(es))
222			node = node->rb_right;
223		else
224			return es;
225	}
226
227	if (es && lblk < es->es_lblk)
228		return es;
229
230	if (es && lblk > ext4_es_end(es)) {
231		node = rb_next(&es->rb_node);
232		return node ? rb_entry(node, struct extent_status, rb_node) :
233			      NULL;
234	}
235
236	return NULL;
237}
238
239/*
240 * ext4_es_find_extent_range - find extent with specified status within block
241 *                             range or next extent following block range in
242 *                             extents status tree
243 *
244 * @inode - file containing the range
245 * @matching_fn - pointer to function that matches extents with desired status
246 * @lblk - logical block defining start of range
247 * @end - logical block defining end of range
248 * @es - extent found, if any
249 *
250 * Find the first extent within the block range specified by @lblk and @end
251 * in the extents status tree that satisfies @matching_fn.  If a match
252 * is found, it's returned in @es.  If not, and a matching extent is found
253 * beyond the block range, it's returned in @es.  If no match is found, an
254 * extent is returned in @es whose es_lblk, es_len, and es_pblk components
255 * are 0.
256 */
257static void __es_find_extent_range(struct inode *inode,
258				   int (*matching_fn)(struct extent_status *es),
259				   ext4_lblk_t lblk, ext4_lblk_t end,
260				   struct extent_status *es)
261{
262	struct ext4_es_tree *tree = NULL;
263	struct extent_status *es1 = NULL;
264	struct rb_node *node;
265
266	WARN_ON(es == NULL);
267	WARN_ON(end < lblk);
268
269	tree = &EXT4_I(inode)->i_es_tree;
270
271	/* see if the extent has been cached */
272	es->es_lblk = es->es_len = es->es_pblk = 0;
273	es1 = READ_ONCE(tree->cache_es);
274	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
275		es_debug("%u cached by [%u/%u) %llu %x\n",
276			 lblk, es1->es_lblk, es1->es_len,
277			 ext4_es_pblock(es1), ext4_es_status(es1));
278		goto out;
279	}
280
281	es1 = __es_tree_search(&tree->root, lblk);
282
283out:
284	if (es1 && !matching_fn(es1)) {
285		while ((node = rb_next(&es1->rb_node)) != NULL) {
286			es1 = rb_entry(node, struct extent_status, rb_node);
287			if (es1->es_lblk > end) {
288				es1 = NULL;
289				break;
290			}
291			if (matching_fn(es1))
292				break;
293		}
294	}
295
296	if (es1 && matching_fn(es1)) {
297		WRITE_ONCE(tree->cache_es, es1);
298		es->es_lblk = es1->es_lblk;
299		es->es_len = es1->es_len;
300		es->es_pblk = es1->es_pblk;
301	}
302
303}
304
305/*
306 * Locking for __es_find_extent_range() for external use
307 */
308void ext4_es_find_extent_range(struct inode *inode,
309			       int (*matching_fn)(struct extent_status *es),
310			       ext4_lblk_t lblk, ext4_lblk_t end,
311			       struct extent_status *es)
312{
313	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
314		return;
315
316	trace_ext4_es_find_extent_range_enter(inode, lblk);
317
318	read_lock(&EXT4_I(inode)->i_es_lock);
319	__es_find_extent_range(inode, matching_fn, lblk, end, es);
320	read_unlock(&EXT4_I(inode)->i_es_lock);
321
322	trace_ext4_es_find_extent_range_exit(inode, es);
323}
324
325/*
326 * __es_scan_range - search block range for block with specified status
327 *                   in extents status tree
328 *
329 * @inode - file containing the range
330 * @matching_fn - pointer to function that matches extents with desired status
331 * @lblk - logical block defining start of range
332 * @end - logical block defining end of range
333 *
334 * Returns true if at least one block in the specified block range satisfies
335 * the criterion specified by @matching_fn, and false if not.  If at least
336 * one extent has the specified status, then there is at least one block
337 * in the cluster with that status.  Should only be called by code that has
338 * taken i_es_lock.
339 */
340static bool __es_scan_range(struct inode *inode,
341			    int (*matching_fn)(struct extent_status *es),
342			    ext4_lblk_t start, ext4_lblk_t end)
343{
344	struct extent_status es;
345
346	__es_find_extent_range(inode, matching_fn, start, end, &es);
347	if (es.es_len == 0)
348		return false;   /* no matching extent in the tree */
349	else if (es.es_lblk <= start &&
350		 start < es.es_lblk + es.es_len)
351		return true;
352	else if (start <= es.es_lblk && es.es_lblk <= end)
353		return true;
354	else
355		return false;
356}
357/*
358 * Locking for __es_scan_range() for external use
359 */
360bool ext4_es_scan_range(struct inode *inode,
361			int (*matching_fn)(struct extent_status *es),
362			ext4_lblk_t lblk, ext4_lblk_t end)
363{
364	bool ret;
365
366	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
367		return false;
368
369	read_lock(&EXT4_I(inode)->i_es_lock);
370	ret = __es_scan_range(inode, matching_fn, lblk, end);
371	read_unlock(&EXT4_I(inode)->i_es_lock);
372
373	return ret;
374}
375
376/*
377 * __es_scan_clu - search cluster for block with specified status in
378 *                 extents status tree
379 *
380 * @inode - file containing the cluster
381 * @matching_fn - pointer to function that matches extents with desired status
382 * @lblk - logical block in cluster to be searched
383 *
384 * Returns true if at least one extent in the cluster containing @lblk
385 * satisfies the criterion specified by @matching_fn, and false if not.  If at
386 * least one extent has the specified status, then there is at least one block
387 * in the cluster with that status.  Should only be called by code that has
388 * taken i_es_lock.
389 */
390static bool __es_scan_clu(struct inode *inode,
391			  int (*matching_fn)(struct extent_status *es),
392			  ext4_lblk_t lblk)
393{
394	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
395	ext4_lblk_t lblk_start, lblk_end;
396
397	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
398	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
399
400	return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
401}
402
403/*
404 * Locking for __es_scan_clu() for external use
405 */
406bool ext4_es_scan_clu(struct inode *inode,
407		      int (*matching_fn)(struct extent_status *es),
408		      ext4_lblk_t lblk)
409{
410	bool ret;
411
412	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
413		return false;
414
415	read_lock(&EXT4_I(inode)->i_es_lock);
416	ret = __es_scan_clu(inode, matching_fn, lblk);
417	read_unlock(&EXT4_I(inode)->i_es_lock);
418
419	return ret;
420}
421
422static void ext4_es_list_add(struct inode *inode)
423{
424	struct ext4_inode_info *ei = EXT4_I(inode);
425	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
426
427	if (!list_empty(&ei->i_es_list))
428		return;
429
430	spin_lock(&sbi->s_es_lock);
431	if (list_empty(&ei->i_es_list)) {
432		list_add_tail(&ei->i_es_list, &sbi->s_es_list);
433		sbi->s_es_nr_inode++;
434	}
435	spin_unlock(&sbi->s_es_lock);
436}
437
438static void ext4_es_list_del(struct inode *inode)
439{
440	struct ext4_inode_info *ei = EXT4_I(inode);
441	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
442
443	spin_lock(&sbi->s_es_lock);
444	if (!list_empty(&ei->i_es_list)) {
445		list_del_init(&ei->i_es_list);
446		sbi->s_es_nr_inode--;
447		WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
448	}
449	spin_unlock(&sbi->s_es_lock);
450}
451
452static inline struct pending_reservation *__alloc_pending(bool nofail)
453{
454	if (!nofail)
455		return kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
456
457	return kmem_cache_zalloc(ext4_pending_cachep, GFP_KERNEL | __GFP_NOFAIL);
458}
459
460static inline void __free_pending(struct pending_reservation *pr)
461{
462	kmem_cache_free(ext4_pending_cachep, pr);
463}
464
465/*
466 * Returns true if we cannot fail to allocate memory for this extent_status
467 * entry and cannot reclaim it until its status changes.
468 */
469static inline bool ext4_es_must_keep(struct extent_status *es)
470{
471	/* fiemap, bigalloc, and seek_data/hole need to use it. */
472	if (ext4_es_is_delayed(es))
473		return true;
474
475	return false;
476}
477
478static inline struct extent_status *__es_alloc_extent(bool nofail)
479{
480	if (!nofail)
481		return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
482
483	return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL);
484}
485
486static void ext4_es_init_extent(struct inode *inode, struct extent_status *es,
487		ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk)
488{
489	es->es_lblk = lblk;
490	es->es_len = len;
491	es->es_pblk = pblk;
492
493	/* We never try to reclaim a must kept extent, so we don't count it. */
494	if (!ext4_es_must_keep(es)) {
495		if (!EXT4_I(inode)->i_es_shk_nr++)
496			ext4_es_list_add(inode);
497		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
498					s_es_stats.es_stats_shk_cnt);
499	}
500
501	EXT4_I(inode)->i_es_all_nr++;
502	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
503}
504
505static inline void __es_free_extent(struct extent_status *es)
506{
507	kmem_cache_free(ext4_es_cachep, es);
508}
509
510static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
511{
512	EXT4_I(inode)->i_es_all_nr--;
513	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
514
515	/* Decrease the shrink counter when we can reclaim the extent. */
516	if (!ext4_es_must_keep(es)) {
517		BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
518		if (!--EXT4_I(inode)->i_es_shk_nr)
519			ext4_es_list_del(inode);
520		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
521					s_es_stats.es_stats_shk_cnt);
522	}
523
524	__es_free_extent(es);
525}
526
527/*
528 * Check whether or not two extents can be merged
529 * Condition:
530 *  - logical block number is contiguous
531 *  - physical block number is contiguous
532 *  - status is equal
533 */
534static int ext4_es_can_be_merged(struct extent_status *es1,
535				 struct extent_status *es2)
536{
537	if (ext4_es_type(es1) != ext4_es_type(es2))
538		return 0;
539
540	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
541		pr_warn("ES assertion failed when merging extents. "
542			"The sum of lengths of es1 (%d) and es2 (%d) "
543			"is bigger than allowed file size (%d)\n",
544			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
545		WARN_ON(1);
546		return 0;
547	}
548
549	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
550		return 0;
551
552	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
553	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
554		return 1;
555
556	if (ext4_es_is_hole(es1))
557		return 1;
558
559	/* we need to check delayed extent is without unwritten status */
560	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
561		return 1;
562
563	return 0;
564}
565
566static struct extent_status *
567ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
568{
569	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
570	struct extent_status *es1;
571	struct rb_node *node;
572
573	node = rb_prev(&es->rb_node);
574	if (!node)
575		return es;
576
577	es1 = rb_entry(node, struct extent_status, rb_node);
578	if (ext4_es_can_be_merged(es1, es)) {
579		es1->es_len += es->es_len;
580		if (ext4_es_is_referenced(es))
581			ext4_es_set_referenced(es1);
582		rb_erase(&es->rb_node, &tree->root);
583		ext4_es_free_extent(inode, es);
584		es = es1;
585	}
586
587	return es;
588}
589
590static struct extent_status *
591ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
592{
593	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
594	struct extent_status *es1;
595	struct rb_node *node;
596
597	node = rb_next(&es->rb_node);
598	if (!node)
599		return es;
600
601	es1 = rb_entry(node, struct extent_status, rb_node);
602	if (ext4_es_can_be_merged(es, es1)) {
603		es->es_len += es1->es_len;
604		if (ext4_es_is_referenced(es1))
605			ext4_es_set_referenced(es);
606		rb_erase(node, &tree->root);
607		ext4_es_free_extent(inode, es1);
608	}
609
610	return es;
611}
612
613#ifdef ES_AGGRESSIVE_TEST
614#include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
615
616static void ext4_es_insert_extent_ext_check(struct inode *inode,
617					    struct extent_status *es)
618{
619	struct ext4_ext_path *path = NULL;
620	struct ext4_extent *ex;
621	ext4_lblk_t ee_block;
622	ext4_fsblk_t ee_start;
623	unsigned short ee_len;
624	int depth, ee_status, es_status;
625
626	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
627	if (IS_ERR(path))
628		return;
629
630	depth = ext_depth(inode);
631	ex = path[depth].p_ext;
632
633	if (ex) {
634
635		ee_block = le32_to_cpu(ex->ee_block);
636		ee_start = ext4_ext_pblock(ex);
637		ee_len = ext4_ext_get_actual_len(ex);
638
639		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
640		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
641
642		/*
643		 * Make sure ex and es are not overlap when we try to insert
644		 * a delayed/hole extent.
645		 */
646		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
647			if (in_range(es->es_lblk, ee_block, ee_len)) {
648				pr_warn("ES insert assertion failed for "
649					"inode: %lu we can find an extent "
650					"at block [%d/%d/%llu/%c], but we "
651					"want to add a delayed/hole extent "
652					"[%d/%d/%llu/%x]\n",
653					inode->i_ino, ee_block, ee_len,
654					ee_start, ee_status ? 'u' : 'w',
655					es->es_lblk, es->es_len,
656					ext4_es_pblock(es), ext4_es_status(es));
657			}
658			goto out;
659		}
660
661		/*
662		 * We don't check ee_block == es->es_lblk, etc. because es
663		 * might be a part of whole extent, vice versa.
664		 */
665		if (es->es_lblk < ee_block ||
666		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
667			pr_warn("ES insert assertion failed for inode: %lu "
668				"ex_status [%d/%d/%llu/%c] != "
669				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
670				ee_block, ee_len, ee_start,
671				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
672				ext4_es_pblock(es), es_status ? 'u' : 'w');
673			goto out;
674		}
675
676		if (ee_status ^ es_status) {
677			pr_warn("ES insert assertion failed for inode: %lu "
678				"ex_status [%d/%d/%llu/%c] != "
679				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
680				ee_block, ee_len, ee_start,
681				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
682				ext4_es_pblock(es), es_status ? 'u' : 'w');
683		}
684	} else {
685		/*
686		 * We can't find an extent on disk.  So we need to make sure
687		 * that we don't want to add an written/unwritten extent.
688		 */
689		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
690			pr_warn("ES insert assertion failed for inode: %lu "
691				"can't find an extent at block %d but we want "
692				"to add a written/unwritten extent "
693				"[%d/%d/%llu/%x]\n", inode->i_ino,
694				es->es_lblk, es->es_lblk, es->es_len,
695				ext4_es_pblock(es), ext4_es_status(es));
696		}
697	}
698out:
699	ext4_free_ext_path(path);
700}
701
702static void ext4_es_insert_extent_ind_check(struct inode *inode,
703					    struct extent_status *es)
704{
705	struct ext4_map_blocks map;
706	int retval;
707
708	/*
709	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
710	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
711	 * access direct/indirect tree from outside.  It is too dirty to define
712	 * this function in indirect.c file.
713	 */
714
715	map.m_lblk = es->es_lblk;
716	map.m_len = es->es_len;
717
718	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
719	if (retval > 0) {
720		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
721			/*
722			 * We want to add a delayed/hole extent but this
723			 * block has been allocated.
724			 */
725			pr_warn("ES insert assertion failed for inode: %lu "
726				"We can find blocks but we want to add a "
727				"delayed/hole extent [%d/%d/%llu/%x]\n",
728				inode->i_ino, es->es_lblk, es->es_len,
729				ext4_es_pblock(es), ext4_es_status(es));
730			return;
731		} else if (ext4_es_is_written(es)) {
732			if (retval != es->es_len) {
733				pr_warn("ES insert assertion failed for "
734					"inode: %lu retval %d != es_len %d\n",
735					inode->i_ino, retval, es->es_len);
736				return;
737			}
738			if (map.m_pblk != ext4_es_pblock(es)) {
739				pr_warn("ES insert assertion failed for "
740					"inode: %lu m_pblk %llu != "
741					"es_pblk %llu\n",
742					inode->i_ino, map.m_pblk,
743					ext4_es_pblock(es));
744				return;
745			}
746		} else {
747			/*
748			 * We don't need to check unwritten extent because
749			 * indirect-based file doesn't have it.
750			 */
751			BUG();
752		}
753	} else if (retval == 0) {
754		if (ext4_es_is_written(es)) {
755			pr_warn("ES insert assertion failed for inode: %lu "
756				"We can't find the block but we want to add "
757				"a written extent [%d/%d/%llu/%x]\n",
758				inode->i_ino, es->es_lblk, es->es_len,
759				ext4_es_pblock(es), ext4_es_status(es));
760			return;
761		}
762	}
763}
764
765static inline void ext4_es_insert_extent_check(struct inode *inode,
766					       struct extent_status *es)
767{
768	/*
769	 * We don't need to worry about the race condition because
770	 * caller takes i_data_sem locking.
771	 */
772	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
773	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
774		ext4_es_insert_extent_ext_check(inode, es);
775	else
776		ext4_es_insert_extent_ind_check(inode, es);
777}
778#else
779static inline void ext4_es_insert_extent_check(struct inode *inode,
780					       struct extent_status *es)
781{
782}
783#endif
784
785static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
786			      struct extent_status *prealloc)
787{
788	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
789	struct rb_node **p = &tree->root.rb_node;
790	struct rb_node *parent = NULL;
791	struct extent_status *es;
792
793	while (*p) {
794		parent = *p;
795		es = rb_entry(parent, struct extent_status, rb_node);
796
797		if (newes->es_lblk < es->es_lblk) {
798			if (ext4_es_can_be_merged(newes, es)) {
799				/*
800				 * Here we can modify es_lblk directly
801				 * because it isn't overlapped.
802				 */
803				es->es_lblk = newes->es_lblk;
804				es->es_len += newes->es_len;
805				if (ext4_es_is_written(es) ||
806				    ext4_es_is_unwritten(es))
807					ext4_es_store_pblock(es,
808							     newes->es_pblk);
809				es = ext4_es_try_to_merge_left(inode, es);
810				goto out;
811			}
812			p = &(*p)->rb_left;
813		} else if (newes->es_lblk > ext4_es_end(es)) {
814			if (ext4_es_can_be_merged(es, newes)) {
815				es->es_len += newes->es_len;
816				es = ext4_es_try_to_merge_right(inode, es);
817				goto out;
818			}
819			p = &(*p)->rb_right;
820		} else {
821			BUG();
822			return -EINVAL;
823		}
824	}
825
826	if (prealloc)
827		es = prealloc;
828	else
829		es = __es_alloc_extent(false);
830	if (!es)
831		return -ENOMEM;
832	ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len,
833			    newes->es_pblk);
834
835	rb_link_node(&es->rb_node, parent, p);
836	rb_insert_color(&es->rb_node, &tree->root);
837
838out:
839	tree->cache_es = es;
840	return 0;
841}
842
843/*
844 * ext4_es_insert_extent() adds information to an inode's extent
845 * status tree.
846 */
847void ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
848			   ext4_lblk_t len, ext4_fsblk_t pblk,
849			   unsigned int status)
850{
851	struct extent_status newes;
852	ext4_lblk_t end = lblk + len - 1;
853	int err1 = 0, err2 = 0, err3 = 0;
854	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
855	struct extent_status *es1 = NULL;
856	struct extent_status *es2 = NULL;
857	struct pending_reservation *pr = NULL;
858	bool revise_pending = false;
859
860	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
861		return;
862
863	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
864		 lblk, len, pblk, status, inode->i_ino);
865
866	if (!len)
867		return;
868
869	BUG_ON(end < lblk);
870
871	if ((status & EXTENT_STATUS_DELAYED) &&
872	    (status & EXTENT_STATUS_WRITTEN)) {
873		ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
874				" delayed and written which can potentially "
875				" cause data loss.", lblk, len);
876		WARN_ON(1);
877	}
878
879	newes.es_lblk = lblk;
880	newes.es_len = len;
881	ext4_es_store_pblock_status(&newes, pblk, status);
882	trace_ext4_es_insert_extent(inode, &newes);
883
884	ext4_es_insert_extent_check(inode, &newes);
885
886	revise_pending = sbi->s_cluster_ratio > 1 &&
887			 test_opt(inode->i_sb, DELALLOC) &&
888			 (status & (EXTENT_STATUS_WRITTEN |
889				    EXTENT_STATUS_UNWRITTEN));
890retry:
891	if (err1 && !es1)
892		es1 = __es_alloc_extent(true);
893	if ((err1 || err2) && !es2)
894		es2 = __es_alloc_extent(true);
895	if ((err1 || err2 || err3) && revise_pending && !pr)
896		pr = __alloc_pending(true);
897	write_lock(&EXT4_I(inode)->i_es_lock);
898
899	err1 = __es_remove_extent(inode, lblk, end, NULL, es1);
900	if (err1 != 0)
901		goto error;
902	/* Free preallocated extent if it didn't get used. */
903	if (es1) {
904		if (!es1->es_len)
905			__es_free_extent(es1);
906		es1 = NULL;
907	}
908
909	err2 = __es_insert_extent(inode, &newes, es2);
910	if (err2 == -ENOMEM && !ext4_es_must_keep(&newes))
911		err2 = 0;
912	if (err2 != 0)
913		goto error;
914	/* Free preallocated extent if it didn't get used. */
915	if (es2) {
916		if (!es2->es_len)
917			__es_free_extent(es2);
918		es2 = NULL;
919	}
920
921	if (revise_pending) {
922		err3 = __revise_pending(inode, lblk, len, &pr);
923		if (err3 != 0)
924			goto error;
925		if (pr) {
926			__free_pending(pr);
927			pr = NULL;
928		}
929	}
930error:
931	write_unlock(&EXT4_I(inode)->i_es_lock);
932	if (err1 || err2 || err3)
933		goto retry;
934
935	ext4_es_print_tree(inode);
936	return;
937}
938
939/*
940 * ext4_es_cache_extent() inserts information into the extent status
941 * tree if and only if there isn't information about the range in
942 * question already.
943 */
944void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
945			  ext4_lblk_t len, ext4_fsblk_t pblk,
946			  unsigned int status)
947{
948	struct extent_status *es;
949	struct extent_status newes;
950	ext4_lblk_t end = lblk + len - 1;
951
952	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
953		return;
954
955	newes.es_lblk = lblk;
956	newes.es_len = len;
957	ext4_es_store_pblock_status(&newes, pblk, status);
958	trace_ext4_es_cache_extent(inode, &newes);
959
960	if (!len)
961		return;
962
963	BUG_ON(end < lblk);
964
965	write_lock(&EXT4_I(inode)->i_es_lock);
966
967	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
968	if (!es || es->es_lblk > end)
969		__es_insert_extent(inode, &newes, NULL);
970	write_unlock(&EXT4_I(inode)->i_es_lock);
971}
972
973/*
974 * ext4_es_lookup_extent() looks up an extent in extent status tree.
975 *
976 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
977 *
978 * Return: 1 on found, 0 on not
979 */
980int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
981			  ext4_lblk_t *next_lblk,
982			  struct extent_status *es)
983{
984	struct ext4_es_tree *tree;
985	struct ext4_es_stats *stats;
986	struct extent_status *es1 = NULL;
987	struct rb_node *node;
988	int found = 0;
989
990	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
991		return 0;
992
993	trace_ext4_es_lookup_extent_enter(inode, lblk);
994	es_debug("lookup extent in block %u\n", lblk);
995
996	tree = &EXT4_I(inode)->i_es_tree;
997	read_lock(&EXT4_I(inode)->i_es_lock);
998
999	/* find extent in cache firstly */
1000	es->es_lblk = es->es_len = es->es_pblk = 0;
1001	es1 = READ_ONCE(tree->cache_es);
1002	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
1003		es_debug("%u cached by [%u/%u)\n",
1004			 lblk, es1->es_lblk, es1->es_len);
1005		found = 1;
1006		goto out;
1007	}
1008
1009	node = tree->root.rb_node;
1010	while (node) {
1011		es1 = rb_entry(node, struct extent_status, rb_node);
1012		if (lblk < es1->es_lblk)
1013			node = node->rb_left;
1014		else if (lblk > ext4_es_end(es1))
1015			node = node->rb_right;
1016		else {
1017			found = 1;
1018			break;
1019		}
1020	}
1021
1022out:
1023	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
1024	if (found) {
1025		BUG_ON(!es1);
1026		es->es_lblk = es1->es_lblk;
1027		es->es_len = es1->es_len;
1028		es->es_pblk = es1->es_pblk;
1029		if (!ext4_es_is_referenced(es1))
1030			ext4_es_set_referenced(es1);
1031		percpu_counter_inc(&stats->es_stats_cache_hits);
1032		if (next_lblk) {
1033			node = rb_next(&es1->rb_node);
1034			if (node) {
1035				es1 = rb_entry(node, struct extent_status,
1036					       rb_node);
1037				*next_lblk = es1->es_lblk;
1038			} else
1039				*next_lblk = 0;
1040		}
1041	} else {
1042		percpu_counter_inc(&stats->es_stats_cache_misses);
1043	}
1044
1045	read_unlock(&EXT4_I(inode)->i_es_lock);
1046
1047	trace_ext4_es_lookup_extent_exit(inode, es, found);
1048	return found;
1049}
1050
1051struct rsvd_count {
1052	int ndelonly;
1053	bool first_do_lblk_found;
1054	ext4_lblk_t first_do_lblk;
1055	ext4_lblk_t last_do_lblk;
1056	struct extent_status *left_es;
1057	bool partial;
1058	ext4_lblk_t lclu;
1059};
1060
1061/*
1062 * init_rsvd - initialize reserved count data before removing block range
1063 *	       in file from extent status tree
1064 *
1065 * @inode - file containing range
1066 * @lblk - first block in range
1067 * @es - pointer to first extent in range
1068 * @rc - pointer to reserved count data
1069 *
1070 * Assumes es is not NULL
1071 */
1072static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
1073		      struct extent_status *es, struct rsvd_count *rc)
1074{
1075	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1076	struct rb_node *node;
1077
1078	rc->ndelonly = 0;
1079
1080	/*
1081	 * for bigalloc, note the first delonly block in the range has not
1082	 * been found, record the extent containing the block to the left of
1083	 * the region to be removed, if any, and note that there's no partial
1084	 * cluster to track
1085	 */
1086	if (sbi->s_cluster_ratio > 1) {
1087		rc->first_do_lblk_found = false;
1088		if (lblk > es->es_lblk) {
1089			rc->left_es = es;
1090		} else {
1091			node = rb_prev(&es->rb_node);
1092			rc->left_es = node ? rb_entry(node,
1093						      struct extent_status,
1094						      rb_node) : NULL;
1095		}
1096		rc->partial = false;
1097	}
1098}
1099
1100/*
1101 * count_rsvd - count the clusters containing delayed and not unwritten
1102 *		(delonly) blocks in a range within an extent and add to
1103 *	        the running tally in rsvd_count
1104 *
1105 * @inode - file containing extent
1106 * @lblk - first block in range
1107 * @len - length of range in blocks
1108 * @es - pointer to extent containing clusters to be counted
1109 * @rc - pointer to reserved count data
1110 *
1111 * Tracks partial clusters found at the beginning and end of extents so
1112 * they aren't overcounted when they span adjacent extents
1113 */
1114static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
1115		       struct extent_status *es, struct rsvd_count *rc)
1116{
1117	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1118	ext4_lblk_t i, end, nclu;
1119
1120	if (!ext4_es_is_delonly(es))
1121		return;
1122
1123	WARN_ON(len <= 0);
1124
1125	if (sbi->s_cluster_ratio == 1) {
1126		rc->ndelonly += (int) len;
1127		return;
1128	}
1129
1130	/* bigalloc */
1131
1132	i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
1133	end = lblk + (ext4_lblk_t) len - 1;
1134	end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
1135
1136	/* record the first block of the first delonly extent seen */
1137	if (!rc->first_do_lblk_found) {
1138		rc->first_do_lblk = i;
1139		rc->first_do_lblk_found = true;
1140	}
1141
1142	/* update the last lblk in the region seen so far */
1143	rc->last_do_lblk = end;
1144
1145	/*
1146	 * if we're tracking a partial cluster and the current extent
1147	 * doesn't start with it, count it and stop tracking
1148	 */
1149	if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
1150		rc->ndelonly++;
1151		rc->partial = false;
1152	}
1153
1154	/*
1155	 * if the first cluster doesn't start on a cluster boundary but
1156	 * ends on one, count it
1157	 */
1158	if (EXT4_LBLK_COFF(sbi, i) != 0) {
1159		if (end >= EXT4_LBLK_CFILL(sbi, i)) {
1160			rc->ndelonly++;
1161			rc->partial = false;
1162			i = EXT4_LBLK_CFILL(sbi, i) + 1;
1163		}
1164	}
1165
1166	/*
1167	 * if the current cluster starts on a cluster boundary, count the
1168	 * number of whole delonly clusters in the extent
1169	 */
1170	if ((i + sbi->s_cluster_ratio - 1) <= end) {
1171		nclu = (end - i + 1) >> sbi->s_cluster_bits;
1172		rc->ndelonly += nclu;
1173		i += nclu << sbi->s_cluster_bits;
1174	}
1175
1176	/*
1177	 * start tracking a partial cluster if there's a partial at the end
1178	 * of the current extent and we're not already tracking one
1179	 */
1180	if (!rc->partial && i <= end) {
1181		rc->partial = true;
1182		rc->lclu = EXT4_B2C(sbi, i);
1183	}
1184}
1185
1186/*
1187 * __pr_tree_search - search for a pending cluster reservation
1188 *
1189 * @root - root of pending reservation tree
1190 * @lclu - logical cluster to search for
1191 *
1192 * Returns the pending reservation for the cluster identified by @lclu
1193 * if found.  If not, returns a reservation for the next cluster if any,
1194 * and if not, returns NULL.
1195 */
1196static struct pending_reservation *__pr_tree_search(struct rb_root *root,
1197						    ext4_lblk_t lclu)
1198{
1199	struct rb_node *node = root->rb_node;
1200	struct pending_reservation *pr = NULL;
1201
1202	while (node) {
1203		pr = rb_entry(node, struct pending_reservation, rb_node);
1204		if (lclu < pr->lclu)
1205			node = node->rb_left;
1206		else if (lclu > pr->lclu)
1207			node = node->rb_right;
1208		else
1209			return pr;
1210	}
1211	if (pr && lclu < pr->lclu)
1212		return pr;
1213	if (pr && lclu > pr->lclu) {
1214		node = rb_next(&pr->rb_node);
1215		return node ? rb_entry(node, struct pending_reservation,
1216				       rb_node) : NULL;
1217	}
1218	return NULL;
1219}
1220
1221/*
1222 * get_rsvd - calculates and returns the number of cluster reservations to be
1223 *	      released when removing a block range from the extent status tree
1224 *	      and releases any pending reservations within the range
1225 *
1226 * @inode - file containing block range
1227 * @end - last block in range
1228 * @right_es - pointer to extent containing next block beyond end or NULL
1229 * @rc - pointer to reserved count data
1230 *
1231 * The number of reservations to be released is equal to the number of
1232 * clusters containing delayed and not unwritten (delonly) blocks within
1233 * the range, minus the number of clusters still containing delonly blocks
1234 * at the ends of the range, and minus the number of pending reservations
1235 * within the range.
1236 */
1237static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
1238			     struct extent_status *right_es,
1239			     struct rsvd_count *rc)
1240{
1241	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1242	struct pending_reservation *pr;
1243	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1244	struct rb_node *node;
1245	ext4_lblk_t first_lclu, last_lclu;
1246	bool left_delonly, right_delonly, count_pending;
1247	struct extent_status *es;
1248
1249	if (sbi->s_cluster_ratio > 1) {
1250		/* count any remaining partial cluster */
1251		if (rc->partial)
1252			rc->ndelonly++;
1253
1254		if (rc->ndelonly == 0)
1255			return 0;
1256
1257		first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
1258		last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
1259
1260		/*
1261		 * decrease the delonly count by the number of clusters at the
1262		 * ends of the range that still contain delonly blocks -
1263		 * these clusters still need to be reserved
1264		 */
1265		left_delonly = right_delonly = false;
1266
1267		es = rc->left_es;
1268		while (es && ext4_es_end(es) >=
1269		       EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
1270			if (ext4_es_is_delonly(es)) {
1271				rc->ndelonly--;
1272				left_delonly = true;
1273				break;
1274			}
1275			node = rb_prev(&es->rb_node);
1276			if (!node)
1277				break;
1278			es = rb_entry(node, struct extent_status, rb_node);
1279		}
1280		if (right_es && (!left_delonly || first_lclu != last_lclu)) {
1281			if (end < ext4_es_end(right_es)) {
1282				es = right_es;
1283			} else {
1284				node = rb_next(&right_es->rb_node);
1285				es = node ? rb_entry(node, struct extent_status,
1286						     rb_node) : NULL;
1287			}
1288			while (es && es->es_lblk <=
1289			       EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
1290				if (ext4_es_is_delonly(es)) {
1291					rc->ndelonly--;
1292					right_delonly = true;
1293					break;
1294				}
1295				node = rb_next(&es->rb_node);
1296				if (!node)
1297					break;
1298				es = rb_entry(node, struct extent_status,
1299					      rb_node);
1300			}
1301		}
1302
1303		/*
1304		 * Determine the block range that should be searched for
1305		 * pending reservations, if any.  Clusters on the ends of the
1306		 * original removed range containing delonly blocks are
1307		 * excluded.  They've already been accounted for and it's not
1308		 * possible to determine if an associated pending reservation
1309		 * should be released with the information available in the
1310		 * extents status tree.
1311		 */
1312		if (first_lclu == last_lclu) {
1313			if (left_delonly | right_delonly)
1314				count_pending = false;
1315			else
1316				count_pending = true;
1317		} else {
1318			if (left_delonly)
1319				first_lclu++;
1320			if (right_delonly)
1321				last_lclu--;
1322			if (first_lclu <= last_lclu)
1323				count_pending = true;
1324			else
1325				count_pending = false;
1326		}
1327
1328		/*
1329		 * a pending reservation found between first_lclu and last_lclu
1330		 * represents an allocated cluster that contained at least one
1331		 * delonly block, so the delonly total must be reduced by one
1332		 * for each pending reservation found and released
1333		 */
1334		if (count_pending) {
1335			pr = __pr_tree_search(&tree->root, first_lclu);
1336			while (pr && pr->lclu <= last_lclu) {
1337				rc->ndelonly--;
1338				node = rb_next(&pr->rb_node);
1339				rb_erase(&pr->rb_node, &tree->root);
1340				__free_pending(pr);
1341				if (!node)
1342					break;
1343				pr = rb_entry(node, struct pending_reservation,
1344					      rb_node);
1345			}
1346		}
1347	}
1348	return rc->ndelonly;
1349}
1350
1351
1352/*
1353 * __es_remove_extent - removes block range from extent status tree
1354 *
1355 * @inode - file containing range
1356 * @lblk - first block in range
1357 * @end - last block in range
1358 * @reserved - number of cluster reservations released
1359 * @prealloc - pre-allocated es to avoid memory allocation failures
1360 *
1361 * If @reserved is not NULL and delayed allocation is enabled, counts
1362 * block/cluster reservations freed by removing range and if bigalloc
1363 * enabled cancels pending reservations as needed. Returns 0 on success,
1364 * error code on failure.
1365 */
1366static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1367			      ext4_lblk_t end, int *reserved,
1368			      struct extent_status *prealloc)
1369{
1370	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1371	struct rb_node *node;
1372	struct extent_status *es;
1373	struct extent_status orig_es;
1374	ext4_lblk_t len1, len2;
1375	ext4_fsblk_t block;
1376	int err = 0;
1377	bool count_reserved = true;
1378	struct rsvd_count rc;
1379
1380	if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
1381		count_reserved = false;
1382
1383	es = __es_tree_search(&tree->root, lblk);
1384	if (!es)
1385		goto out;
1386	if (es->es_lblk > end)
1387		goto out;
1388
1389	/* Simply invalidate cache_es. */
1390	tree->cache_es = NULL;
1391	if (count_reserved)
1392		init_rsvd(inode, lblk, es, &rc);
1393
1394	orig_es.es_lblk = es->es_lblk;
1395	orig_es.es_len = es->es_len;
1396	orig_es.es_pblk = es->es_pblk;
1397
1398	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
1399	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
1400	if (len1 > 0)
1401		es->es_len = len1;
1402	if (len2 > 0) {
1403		if (len1 > 0) {
1404			struct extent_status newes;
1405
1406			newes.es_lblk = end + 1;
1407			newes.es_len = len2;
1408			block = 0x7FDEADBEEFULL;
1409			if (ext4_es_is_written(&orig_es) ||
1410			    ext4_es_is_unwritten(&orig_es))
1411				block = ext4_es_pblock(&orig_es) +
1412					orig_es.es_len - len2;
1413			ext4_es_store_pblock_status(&newes, block,
1414						    ext4_es_status(&orig_es));
1415			err = __es_insert_extent(inode, &newes, prealloc);
1416			if (err) {
1417				if (!ext4_es_must_keep(&newes))
1418					return 0;
1419
1420				es->es_lblk = orig_es.es_lblk;
1421				es->es_len = orig_es.es_len;
1422				goto out;
1423			}
1424		} else {
1425			es->es_lblk = end + 1;
1426			es->es_len = len2;
1427			if (ext4_es_is_written(es) ||
1428			    ext4_es_is_unwritten(es)) {
1429				block = orig_es.es_pblk + orig_es.es_len - len2;
1430				ext4_es_store_pblock(es, block);
1431			}
1432		}
1433		if (count_reserved)
1434			count_rsvd(inode, orig_es.es_lblk + len1,
1435				   orig_es.es_len - len1 - len2, &orig_es, &rc);
1436		goto out_get_reserved;
1437	}
1438
1439	if (len1 > 0) {
1440		if (count_reserved)
1441			count_rsvd(inode, lblk, orig_es.es_len - len1,
1442				   &orig_es, &rc);
1443		node = rb_next(&es->rb_node);
1444		if (node)
1445			es = rb_entry(node, struct extent_status, rb_node);
1446		else
1447			es = NULL;
1448	}
1449
1450	while (es && ext4_es_end(es) <= end) {
1451		if (count_reserved)
1452			count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
1453		node = rb_next(&es->rb_node);
1454		rb_erase(&es->rb_node, &tree->root);
1455		ext4_es_free_extent(inode, es);
1456		if (!node) {
1457			es = NULL;
1458			break;
1459		}
1460		es = rb_entry(node, struct extent_status, rb_node);
1461	}
1462
1463	if (es && es->es_lblk < end + 1) {
1464		ext4_lblk_t orig_len = es->es_len;
1465
1466		len1 = ext4_es_end(es) - end;
1467		if (count_reserved)
1468			count_rsvd(inode, es->es_lblk, orig_len - len1,
1469				   es, &rc);
1470		es->es_lblk = end + 1;
1471		es->es_len = len1;
1472		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1473			block = es->es_pblk + orig_len - len1;
1474			ext4_es_store_pblock(es, block);
1475		}
1476	}
1477
1478out_get_reserved:
1479	if (count_reserved)
1480		*reserved = get_rsvd(inode, end, es, &rc);
1481out:
1482	return err;
1483}
1484
1485/*
1486 * ext4_es_remove_extent - removes block range from extent status tree
1487 *
1488 * @inode - file containing range
1489 * @lblk - first block in range
1490 * @len - number of blocks to remove
1491 *
1492 * Reduces block/cluster reservation count and for bigalloc cancels pending
1493 * reservations as needed.
1494 */
1495void ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1496			   ext4_lblk_t len)
1497{
1498	ext4_lblk_t end;
1499	int err = 0;
1500	int reserved = 0;
1501	struct extent_status *es = NULL;
1502
1503	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1504		return;
1505
1506	trace_ext4_es_remove_extent(inode, lblk, len);
1507	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1508		 lblk, len, inode->i_ino);
1509
1510	if (!len)
1511		return;
1512
1513	end = lblk + len - 1;
1514	BUG_ON(end < lblk);
1515
1516retry:
1517	if (err && !es)
1518		es = __es_alloc_extent(true);
1519	/*
1520	 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1521	 * so that we are sure __es_shrink() is done with the inode before it
1522	 * is reclaimed.
1523	 */
1524	write_lock(&EXT4_I(inode)->i_es_lock);
1525	err = __es_remove_extent(inode, lblk, end, &reserved, es);
1526	/* Free preallocated extent if it didn't get used. */
1527	if (es) {
1528		if (!es->es_len)
1529			__es_free_extent(es);
1530		es = NULL;
1531	}
1532	write_unlock(&EXT4_I(inode)->i_es_lock);
1533	if (err)
1534		goto retry;
1535
1536	ext4_es_print_tree(inode);
1537	ext4_da_release_space(inode, reserved);
1538	return;
1539}
1540
1541static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1542		       struct ext4_inode_info *locked_ei)
1543{
1544	struct ext4_inode_info *ei;
1545	struct ext4_es_stats *es_stats;
1546	ktime_t start_time;
1547	u64 scan_time;
1548	int nr_to_walk;
1549	int nr_shrunk = 0;
1550	int retried = 0, nr_skipped = 0;
1551
1552	es_stats = &sbi->s_es_stats;
1553	start_time = ktime_get();
1554
1555retry:
1556	spin_lock(&sbi->s_es_lock);
1557	nr_to_walk = sbi->s_es_nr_inode;
1558	while (nr_to_walk-- > 0) {
1559		if (list_empty(&sbi->s_es_list)) {
1560			spin_unlock(&sbi->s_es_lock);
1561			goto out;
1562		}
1563		ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1564				      i_es_list);
1565		/* Move the inode to the tail */
1566		list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1567
1568		/*
1569		 * Normally we try hard to avoid shrinking precached inodes,
1570		 * but we will as a last resort.
1571		 */
1572		if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1573						EXT4_STATE_EXT_PRECACHED)) {
1574			nr_skipped++;
1575			continue;
1576		}
1577
1578		if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1579			nr_skipped++;
1580			continue;
1581		}
1582		/*
1583		 * Now we hold i_es_lock which protects us from inode reclaim
1584		 * freeing inode under us
1585		 */
1586		spin_unlock(&sbi->s_es_lock);
1587
1588		nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1589		write_unlock(&ei->i_es_lock);
1590
1591		if (nr_to_scan <= 0)
1592			goto out;
1593		spin_lock(&sbi->s_es_lock);
1594	}
1595	spin_unlock(&sbi->s_es_lock);
1596
1597	/*
1598	 * If we skipped any inodes, and we weren't able to make any
1599	 * forward progress, try again to scan precached inodes.
1600	 */
1601	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1602		retried++;
1603		goto retry;
1604	}
1605
1606	if (locked_ei && nr_shrunk == 0)
1607		nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1608
1609out:
1610	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1611	if (likely(es_stats->es_stats_scan_time))
1612		es_stats->es_stats_scan_time = (scan_time +
1613				es_stats->es_stats_scan_time*3) / 4;
1614	else
1615		es_stats->es_stats_scan_time = scan_time;
1616	if (scan_time > es_stats->es_stats_max_scan_time)
1617		es_stats->es_stats_max_scan_time = scan_time;
1618	if (likely(es_stats->es_stats_shrunk))
1619		es_stats->es_stats_shrunk = (nr_shrunk +
1620				es_stats->es_stats_shrunk*3) / 4;
1621	else
1622		es_stats->es_stats_shrunk = nr_shrunk;
1623
1624	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1625			     nr_skipped, retried);
1626	return nr_shrunk;
1627}
1628
1629static unsigned long ext4_es_count(struct shrinker *shrink,
1630				   struct shrink_control *sc)
1631{
1632	unsigned long nr;
1633	struct ext4_sb_info *sbi;
1634
1635	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1636	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1637	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1638	return nr;
1639}
1640
1641static unsigned long ext4_es_scan(struct shrinker *shrink,
1642				  struct shrink_control *sc)
1643{
1644	struct ext4_sb_info *sbi = container_of(shrink,
1645					struct ext4_sb_info, s_es_shrinker);
1646	int nr_to_scan = sc->nr_to_scan;
1647	int ret, nr_shrunk;
1648
1649	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1650	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1651
1652	nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1653
1654	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1655	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1656	return nr_shrunk;
1657}
1658
1659int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1660{
1661	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1662	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1663	struct ext4_inode_info *ei, *max = NULL;
1664	unsigned int inode_cnt = 0;
1665
1666	if (v != SEQ_START_TOKEN)
1667		return 0;
1668
1669	/* here we just find an inode that has the max nr. of objects */
1670	spin_lock(&sbi->s_es_lock);
1671	list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1672		inode_cnt++;
1673		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1674			max = ei;
1675		else if (!max)
1676			max = ei;
1677	}
1678	spin_unlock(&sbi->s_es_lock);
1679
1680	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1681		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1682		   percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1683	seq_printf(seq, "  %lld/%lld cache hits/misses\n",
1684		   percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
1685		   percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
1686	if (inode_cnt)
1687		seq_printf(seq, "  %d inodes on list\n", inode_cnt);
1688
1689	seq_printf(seq, "average:\n  %llu us scan time\n",
1690	    div_u64(es_stats->es_stats_scan_time, 1000));
1691	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1692	if (inode_cnt)
1693		seq_printf(seq,
1694		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1695		    "  %llu us max scan time\n",
1696		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1697		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1698
1699	return 0;
1700}
1701
1702int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1703{
1704	int err;
1705
1706	/* Make sure we have enough bits for physical block number */
1707	BUILD_BUG_ON(ES_SHIFT < 48);
1708	INIT_LIST_HEAD(&sbi->s_es_list);
1709	sbi->s_es_nr_inode = 0;
1710	spin_lock_init(&sbi->s_es_lock);
1711	sbi->s_es_stats.es_stats_shrunk = 0;
1712	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
1713				  GFP_KERNEL);
1714	if (err)
1715		return err;
1716	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
1717				  GFP_KERNEL);
1718	if (err)
1719		goto err1;
1720	sbi->s_es_stats.es_stats_scan_time = 0;
1721	sbi->s_es_stats.es_stats_max_scan_time = 0;
1722	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1723	if (err)
1724		goto err2;
1725	err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1726	if (err)
1727		goto err3;
1728
1729	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1730	sbi->s_es_shrinker.count_objects = ext4_es_count;
1731	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1732	err = register_shrinker(&sbi->s_es_shrinker, "ext4-es:%s",
1733				sbi->s_sb->s_id);
1734	if (err)
1735		goto err4;
1736
1737	return 0;
1738err4:
1739	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1740err3:
1741	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1742err2:
1743	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1744err1:
1745	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1746	return err;
1747}
1748
1749void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1750{
1751	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1752	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1753	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1754	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1755	unregister_shrinker(&sbi->s_es_shrinker);
1756}
1757
1758/*
1759 * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1760 * most *nr_to_scan extents, update *nr_to_scan accordingly.
1761 *
1762 * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1763 * Increment *nr_shrunk by the number of reclaimed extents. Also update
1764 * ei->i_es_shrink_lblk to where we should continue scanning.
1765 */
1766static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1767				 int *nr_to_scan, int *nr_shrunk)
1768{
1769	struct inode *inode = &ei->vfs_inode;
1770	struct ext4_es_tree *tree = &ei->i_es_tree;
1771	struct extent_status *es;
1772	struct rb_node *node;
1773
1774	es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1775	if (!es)
1776		goto out_wrap;
1777
1778	while (*nr_to_scan > 0) {
1779		if (es->es_lblk > end) {
1780			ei->i_es_shrink_lblk = end + 1;
1781			return 0;
1782		}
1783
1784		(*nr_to_scan)--;
1785		node = rb_next(&es->rb_node);
1786
1787		if (ext4_es_must_keep(es))
1788			goto next;
1789		if (ext4_es_is_referenced(es)) {
1790			ext4_es_clear_referenced(es);
1791			goto next;
1792		}
1793
1794		rb_erase(&es->rb_node, &tree->root);
1795		ext4_es_free_extent(inode, es);
1796		(*nr_shrunk)++;
1797next:
1798		if (!node)
1799			goto out_wrap;
1800		es = rb_entry(node, struct extent_status, rb_node);
1801	}
1802	ei->i_es_shrink_lblk = es->es_lblk;
1803	return 1;
1804out_wrap:
1805	ei->i_es_shrink_lblk = 0;
1806	return 0;
1807}
1808
1809static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1810{
1811	struct inode *inode = &ei->vfs_inode;
1812	int nr_shrunk = 0;
1813	ext4_lblk_t start = ei->i_es_shrink_lblk;
1814	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1815				      DEFAULT_RATELIMIT_BURST);
1816
1817	if (ei->i_es_shk_nr == 0)
1818		return 0;
1819
1820	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1821	    __ratelimit(&_rs))
1822		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1823
1824	if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1825	    start != 0)
1826		es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1827
1828	ei->i_es_tree.cache_es = NULL;
1829	return nr_shrunk;
1830}
1831
1832/*
1833 * Called to support EXT4_IOC_CLEAR_ES_CACHE.  We can only remove
1834 * discretionary entries from the extent status cache.  (Some entries
1835 * must be present for proper operations.)
1836 */
1837void ext4_clear_inode_es(struct inode *inode)
1838{
1839	struct ext4_inode_info *ei = EXT4_I(inode);
1840	struct extent_status *es;
1841	struct ext4_es_tree *tree;
1842	struct rb_node *node;
1843
1844	write_lock(&ei->i_es_lock);
1845	tree = &EXT4_I(inode)->i_es_tree;
1846	tree->cache_es = NULL;
1847	node = rb_first(&tree->root);
1848	while (node) {
1849		es = rb_entry(node, struct extent_status, rb_node);
1850		node = rb_next(node);
1851		if (!ext4_es_must_keep(es)) {
1852			rb_erase(&es->rb_node, &tree->root);
1853			ext4_es_free_extent(inode, es);
1854		}
1855	}
1856	ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
1857	write_unlock(&ei->i_es_lock);
1858}
1859
1860#ifdef ES_DEBUG__
1861static void ext4_print_pending_tree(struct inode *inode)
1862{
1863	struct ext4_pending_tree *tree;
1864	struct rb_node *node;
1865	struct pending_reservation *pr;
1866
1867	printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1868	tree = &EXT4_I(inode)->i_pending_tree;
1869	node = rb_first(&tree->root);
1870	while (node) {
1871		pr = rb_entry(node, struct pending_reservation, rb_node);
1872		printk(KERN_DEBUG " %u", pr->lclu);
1873		node = rb_next(node);
1874	}
1875	printk(KERN_DEBUG "\n");
1876}
1877#else
1878#define ext4_print_pending_tree(inode)
1879#endif
1880
1881int __init ext4_init_pending(void)
1882{
1883	ext4_pending_cachep = KMEM_CACHE(pending_reservation, SLAB_RECLAIM_ACCOUNT);
1884	if (ext4_pending_cachep == NULL)
1885		return -ENOMEM;
1886	return 0;
1887}
1888
1889void ext4_exit_pending(void)
1890{
1891	kmem_cache_destroy(ext4_pending_cachep);
1892}
1893
1894void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1895{
1896	tree->root = RB_ROOT;
1897}
1898
1899/*
1900 * __get_pending - retrieve a pointer to a pending reservation
1901 *
1902 * @inode - file containing the pending cluster reservation
1903 * @lclu - logical cluster of interest
1904 *
1905 * Returns a pointer to a pending reservation if it's a member of
1906 * the set, and NULL if not.  Must be called holding i_es_lock.
1907 */
1908static struct pending_reservation *__get_pending(struct inode *inode,
1909						 ext4_lblk_t lclu)
1910{
1911	struct ext4_pending_tree *tree;
1912	struct rb_node *node;
1913	struct pending_reservation *pr = NULL;
1914
1915	tree = &EXT4_I(inode)->i_pending_tree;
1916	node = (&tree->root)->rb_node;
1917
1918	while (node) {
1919		pr = rb_entry(node, struct pending_reservation, rb_node);
1920		if (lclu < pr->lclu)
1921			node = node->rb_left;
1922		else if (lclu > pr->lclu)
1923			node = node->rb_right;
1924		else if (lclu == pr->lclu)
1925			return pr;
1926	}
1927	return NULL;
1928}
1929
1930/*
1931 * __insert_pending - adds a pending cluster reservation to the set of
1932 *                    pending reservations
1933 *
1934 * @inode - file containing the cluster
1935 * @lblk - logical block in the cluster to be added
1936 * @prealloc - preallocated pending entry
1937 *
1938 * Returns 0 on successful insertion and -ENOMEM on failure.  If the
1939 * pending reservation is already in the set, returns successfully.
1940 */
1941static int __insert_pending(struct inode *inode, ext4_lblk_t lblk,
1942			    struct pending_reservation **prealloc)
1943{
1944	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1945	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1946	struct rb_node **p = &tree->root.rb_node;
1947	struct rb_node *parent = NULL;
1948	struct pending_reservation *pr;
1949	ext4_lblk_t lclu;
1950	int ret = 0;
1951
1952	lclu = EXT4_B2C(sbi, lblk);
1953	/* search to find parent for insertion */
1954	while (*p) {
1955		parent = *p;
1956		pr = rb_entry(parent, struct pending_reservation, rb_node);
1957
1958		if (lclu < pr->lclu) {
1959			p = &(*p)->rb_left;
1960		} else if (lclu > pr->lclu) {
1961			p = &(*p)->rb_right;
1962		} else {
1963			/* pending reservation already inserted */
1964			goto out;
1965		}
1966	}
1967
1968	if (likely(*prealloc == NULL)) {
1969		pr = __alloc_pending(false);
1970		if (!pr) {
1971			ret = -ENOMEM;
1972			goto out;
1973		}
1974	} else {
1975		pr = *prealloc;
1976		*prealloc = NULL;
1977	}
1978	pr->lclu = lclu;
1979
1980	rb_link_node(&pr->rb_node, parent, p);
1981	rb_insert_color(&pr->rb_node, &tree->root);
1982
1983out:
1984	return ret;
1985}
1986
1987/*
1988 * __remove_pending - removes a pending cluster reservation from the set
1989 *                    of pending reservations
1990 *
1991 * @inode - file containing the cluster
1992 * @lblk - logical block in the pending cluster reservation to be removed
1993 *
1994 * Returns successfully if pending reservation is not a member of the set.
1995 */
1996static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
1997{
1998	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1999	struct pending_reservation *pr;
2000	struct ext4_pending_tree *tree;
2001
2002	pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
2003	if (pr != NULL) {
2004		tree = &EXT4_I(inode)->i_pending_tree;
2005		rb_erase(&pr->rb_node, &tree->root);
2006		__free_pending(pr);
2007	}
2008}
2009
2010/*
2011 * ext4_remove_pending - removes a pending cluster reservation from the set
2012 *                       of pending reservations
2013 *
2014 * @inode - file containing the cluster
2015 * @lblk - logical block in the pending cluster reservation to be removed
2016 *
2017 * Locking for external use of __remove_pending.
2018 */
2019void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
2020{
2021	struct ext4_inode_info *ei = EXT4_I(inode);
2022
2023	write_lock(&ei->i_es_lock);
2024	__remove_pending(inode, lblk);
2025	write_unlock(&ei->i_es_lock);
2026}
2027
2028/*
2029 * ext4_is_pending - determine whether a cluster has a pending reservation
2030 *                   on it
2031 *
2032 * @inode - file containing the cluster
2033 * @lblk - logical block in the cluster
2034 *
2035 * Returns true if there's a pending reservation for the cluster in the
2036 * set of pending reservations, and false if not.
2037 */
2038bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
2039{
2040	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2041	struct ext4_inode_info *ei = EXT4_I(inode);
2042	bool ret;
2043
2044	read_lock(&ei->i_es_lock);
2045	ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
2046	read_unlock(&ei->i_es_lock);
2047
2048	return ret;
2049}
2050
2051/*
2052 * ext4_es_insert_delayed_block - adds a delayed block to the extents status
2053 *                                tree, adding a pending reservation where
2054 *                                needed
2055 *
2056 * @inode - file containing the newly added block
2057 * @lblk - logical block to be added
2058 * @allocated - indicates whether a physical cluster has been allocated for
2059 *              the logical cluster that contains the block
2060 */
2061void ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
2062				  bool allocated)
2063{
2064	struct extent_status newes;
2065	int err1 = 0, err2 = 0, err3 = 0;
2066	struct extent_status *es1 = NULL;
2067	struct extent_status *es2 = NULL;
2068	struct pending_reservation *pr = NULL;
2069
2070	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
2071		return;
2072
2073	es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
2074		 lblk, inode->i_ino);
2075
2076	newes.es_lblk = lblk;
2077	newes.es_len = 1;
2078	ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
2079	trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
2080
2081	ext4_es_insert_extent_check(inode, &newes);
2082
2083retry:
2084	if (err1 && !es1)
2085		es1 = __es_alloc_extent(true);
2086	if ((err1 || err2) && !es2)
2087		es2 = __es_alloc_extent(true);
2088	if ((err1 || err2 || err3) && allocated && !pr)
2089		pr = __alloc_pending(true);
2090	write_lock(&EXT4_I(inode)->i_es_lock);
2091
2092	err1 = __es_remove_extent(inode, lblk, lblk, NULL, es1);
2093	if (err1 != 0)
2094		goto error;
2095	/* Free preallocated extent if it didn't get used. */
2096	if (es1) {
2097		if (!es1->es_len)
2098			__es_free_extent(es1);
2099		es1 = NULL;
2100	}
2101
2102	err2 = __es_insert_extent(inode, &newes, es2);
2103	if (err2 != 0)
2104		goto error;
2105	/* Free preallocated extent if it didn't get used. */
2106	if (es2) {
2107		if (!es2->es_len)
2108			__es_free_extent(es2);
2109		es2 = NULL;
2110	}
2111
2112	if (allocated) {
2113		err3 = __insert_pending(inode, lblk, &pr);
2114		if (err3 != 0)
2115			goto error;
2116		if (pr) {
2117			__free_pending(pr);
2118			pr = NULL;
2119		}
2120	}
2121error:
2122	write_unlock(&EXT4_I(inode)->i_es_lock);
2123	if (err1 || err2 || err3)
2124		goto retry;
2125
2126	ext4_es_print_tree(inode);
2127	ext4_print_pending_tree(inode);
2128	return;
2129}
2130
2131/*
2132 * __es_delayed_clu - count number of clusters containing blocks that
2133 *                    are delayed only
2134 *
2135 * @inode - file containing block range
2136 * @start - logical block defining start of range
2137 * @end - logical block defining end of range
2138 *
2139 * Returns the number of clusters containing only delayed (not delayed
2140 * and unwritten) blocks in the range specified by @start and @end.  Any
2141 * cluster or part of a cluster within the range and containing a delayed
2142 * and not unwritten block within the range is counted as a whole cluster.
2143 */
2144static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
2145				     ext4_lblk_t end)
2146{
2147	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
2148	struct extent_status *es;
2149	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2150	struct rb_node *node;
2151	ext4_lblk_t first_lclu, last_lclu;
2152	unsigned long long last_counted_lclu;
2153	unsigned int n = 0;
2154
2155	/* guaranteed to be unequal to any ext4_lblk_t value */
2156	last_counted_lclu = ~0ULL;
2157
2158	es = __es_tree_search(&tree->root, start);
2159
2160	while (es && (es->es_lblk <= end)) {
2161		if (ext4_es_is_delonly(es)) {
2162			if (es->es_lblk <= start)
2163				first_lclu = EXT4_B2C(sbi, start);
2164			else
2165				first_lclu = EXT4_B2C(sbi, es->es_lblk);
2166
2167			if (ext4_es_end(es) >= end)
2168				last_lclu = EXT4_B2C(sbi, end);
2169			else
2170				last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
2171
2172			if (first_lclu == last_counted_lclu)
2173				n += last_lclu - first_lclu;
2174			else
2175				n += last_lclu - first_lclu + 1;
2176			last_counted_lclu = last_lclu;
2177		}
2178		node = rb_next(&es->rb_node);
2179		if (!node)
2180			break;
2181		es = rb_entry(node, struct extent_status, rb_node);
2182	}
2183
2184	return n;
2185}
2186
2187/*
2188 * ext4_es_delayed_clu - count number of clusters containing blocks that
2189 *                       are both delayed and unwritten
2190 *
2191 * @inode - file containing block range
2192 * @lblk - logical block defining start of range
2193 * @len - number of blocks in range
2194 *
2195 * Locking for external use of __es_delayed_clu().
2196 */
2197unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
2198				 ext4_lblk_t len)
2199{
2200	struct ext4_inode_info *ei = EXT4_I(inode);
2201	ext4_lblk_t end;
2202	unsigned int n;
2203
2204	if (len == 0)
2205		return 0;
2206
2207	end = lblk + len - 1;
2208	WARN_ON(end < lblk);
2209
2210	read_lock(&ei->i_es_lock);
2211
2212	n = __es_delayed_clu(inode, lblk, end);
2213
2214	read_unlock(&ei->i_es_lock);
2215
2216	return n;
2217}
2218
2219/*
2220 * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2221 *                    reservations for a specified block range depending
2222 *                    upon the presence or absence of delayed blocks
2223 *                    outside the range within clusters at the ends of the
2224 *                    range
2225 *
2226 * @inode - file containing the range
2227 * @lblk - logical block defining the start of range
2228 * @len  - length of range in blocks
2229 * @prealloc - preallocated pending entry
2230 *
2231 * Used after a newly allocated extent is added to the extents status tree.
2232 * Requires that the extents in the range have either written or unwritten
2233 * status.  Must be called while holding i_es_lock.
2234 */
2235static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
2236			    ext4_lblk_t len,
2237			    struct pending_reservation **prealloc)
2238{
2239	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2240	ext4_lblk_t end = lblk + len - 1;
2241	ext4_lblk_t first, last;
2242	bool f_del = false, l_del = false;
2243	int ret = 0;
2244
2245	if (len == 0)
2246		return 0;
2247
2248	/*
2249	 * Two cases - block range within single cluster and block range
2250	 * spanning two or more clusters.  Note that a cluster belonging
2251	 * to a range starting and/or ending on a cluster boundary is treated
2252	 * as if it does not contain a delayed extent.  The new range may
2253	 * have allocated space for previously delayed blocks out to the
2254	 * cluster boundary, requiring that any pre-existing pending
2255	 * reservation be canceled.  Because this code only looks at blocks
2256	 * outside the range, it should revise pending reservations
2257	 * correctly even if the extent represented by the range can't be
2258	 * inserted in the extents status tree due to ENOSPC.
2259	 */
2260
2261	if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
2262		first = EXT4_LBLK_CMASK(sbi, lblk);
2263		if (first != lblk)
2264			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2265						first, lblk - 1);
2266		if (f_del) {
2267			ret = __insert_pending(inode, first, prealloc);
2268			if (ret < 0)
2269				goto out;
2270		} else {
2271			last = EXT4_LBLK_CMASK(sbi, end) +
2272			       sbi->s_cluster_ratio - 1;
2273			if (last != end)
2274				l_del = __es_scan_range(inode,
2275							&ext4_es_is_delonly,
2276							end + 1, last);
2277			if (l_del) {
2278				ret = __insert_pending(inode, last, prealloc);
2279				if (ret < 0)
2280					goto out;
2281			} else
2282				__remove_pending(inode, last);
2283		}
2284	} else {
2285		first = EXT4_LBLK_CMASK(sbi, lblk);
2286		if (first != lblk)
2287			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2288						first, lblk - 1);
2289		if (f_del) {
2290			ret = __insert_pending(inode, first, prealloc);
2291			if (ret < 0)
2292				goto out;
2293		} else
2294			__remove_pending(inode, first);
2295
2296		last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
2297		if (last != end)
2298			l_del = __es_scan_range(inode, &ext4_es_is_delonly,
2299						end + 1, last);
2300		if (l_del) {
2301			ret = __insert_pending(inode, last, prealloc);
2302			if (ret < 0)
2303				goto out;
2304		} else
2305			__remove_pending(inode, last);
2306	}
2307out:
2308	return ret;
2309}
2310