xref: /kernel/linux/linux-6.6/fs/direct-io.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/direct-io.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * O_DIRECT
8 *
9 * 04Jul2002	Andrew Morton
10 *		Initial version
11 * 11Sep2002	janetinc@us.ibm.com
12 * 		added readv/writev support.
13 * 29Oct2002	Andrew Morton
14 *		rewrote bio_add_page() support.
15 * 30Oct2002	pbadari@us.ibm.com
16 *		added support for non-aligned IO.
17 * 06Nov2002	pbadari@us.ibm.com
18 *		added asynchronous IO support.
19 * 21Jul2003	nathans@sgi.com
20 *		added IO completion notifier.
21 */
22
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/types.h>
26#include <linux/fs.h>
27#include <linux/mm.h>
28#include <linux/slab.h>
29#include <linux/highmem.h>
30#include <linux/pagemap.h>
31#include <linux/task_io_accounting_ops.h>
32#include <linux/bio.h>
33#include <linux/wait.h>
34#include <linux/err.h>
35#include <linux/blkdev.h>
36#include <linux/buffer_head.h>
37#include <linux/rwsem.h>
38#include <linux/uio.h>
39#include <linux/atomic.h>
40#include <linux/prefetch.h>
41
42#include "internal.h"
43
44/*
45 * How many user pages to map in one call to iov_iter_extract_pages().  This
46 * determines the size of a structure in the slab cache
47 */
48#define DIO_PAGES	64
49
50/*
51 * Flags for dio_complete()
52 */
53#define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
54#define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
55
56/*
57 * This code generally works in units of "dio_blocks".  A dio_block is
58 * somewhere between the hard sector size and the filesystem block size.  it
59 * is determined on a per-invocation basis.   When talking to the filesystem
60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
61 * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
62 * to bio_block quantities by shifting left by blkfactor.
63 *
64 * If blkfactor is zero then the user's request was aligned to the filesystem's
65 * blocksize.
66 */
67
68/* dio_state only used in the submission path */
69
70struct dio_submit {
71	struct bio *bio;		/* bio under assembly */
72	unsigned blkbits;		/* doesn't change */
73	unsigned blkfactor;		/* When we're using an alignment which
74					   is finer than the filesystem's soft
75					   blocksize, this specifies how much
76					   finer.  blkfactor=2 means 1/4-block
77					   alignment.  Does not change */
78	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
79					   been performed at the start of a
80					   write */
81	int pages_in_io;		/* approximate total IO pages */
82	sector_t block_in_file;		/* Current offset into the underlying
83					   file in dio_block units. */
84	unsigned blocks_available;	/* At block_in_file.  changes */
85	int reap_counter;		/* rate limit reaping */
86	sector_t final_block_in_request;/* doesn't change */
87	int boundary;			/* prev block is at a boundary */
88	get_block_t *get_block;		/* block mapping function */
89
90	loff_t logical_offset_in_bio;	/* current first logical block in bio */
91	sector_t final_block_in_bio;	/* current final block in bio + 1 */
92	sector_t next_block_for_io;	/* next block to be put under IO,
93					   in dio_blocks units */
94
95	/*
96	 * Deferred addition of a page to the dio.  These variables are
97	 * private to dio_send_cur_page(), submit_page_section() and
98	 * dio_bio_add_page().
99	 */
100	struct page *cur_page;		/* The page */
101	unsigned cur_page_offset;	/* Offset into it, in bytes */
102	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
103	sector_t cur_page_block;	/* Where it starts */
104	loff_t cur_page_fs_offset;	/* Offset in file */
105
106	struct iov_iter *iter;
107	/*
108	 * Page queue.  These variables belong to dio_refill_pages() and
109	 * dio_get_page().
110	 */
111	unsigned head;			/* next page to process */
112	unsigned tail;			/* last valid page + 1 */
113	size_t from, to;
114};
115
116/* dio_state communicated between submission path and end_io */
117struct dio {
118	int flags;			/* doesn't change */
119	blk_opf_t opf;			/* request operation type and flags */
120	struct gendisk *bio_disk;
121	struct inode *inode;
122	loff_t i_size;			/* i_size when submitted */
123	dio_iodone_t *end_io;		/* IO completion function */
124	bool is_pinned;			/* T if we have pins on the pages */
125
126	void *private;			/* copy from map_bh.b_private */
127
128	/* BIO completion state */
129	spinlock_t bio_lock;		/* protects BIO fields below */
130	int page_errors;		/* err from iov_iter_extract_pages() */
131	int is_async;			/* is IO async ? */
132	bool defer_completion;		/* defer AIO completion to workqueue? */
133	bool should_dirty;		/* if pages should be dirtied */
134	int io_error;			/* IO error in completion path */
135	unsigned long refcount;		/* direct_io_worker() and bios */
136	struct bio *bio_list;		/* singly linked via bi_private */
137	struct task_struct *waiter;	/* waiting task (NULL if none) */
138
139	/* AIO related stuff */
140	struct kiocb *iocb;		/* kiocb */
141	ssize_t result;                 /* IO result */
142
143	/*
144	 * pages[] (and any fields placed after it) are not zeroed out at
145	 * allocation time.  Don't add new fields after pages[] unless you
146	 * wish that they not be zeroed.
147	 */
148	union {
149		struct page *pages[DIO_PAGES];	/* page buffer */
150		struct work_struct complete_work;/* deferred AIO completion */
151	};
152} ____cacheline_aligned_in_smp;
153
154static struct kmem_cache *dio_cache __read_mostly;
155
156/*
157 * How many pages are in the queue?
158 */
159static inline unsigned dio_pages_present(struct dio_submit *sdio)
160{
161	return sdio->tail - sdio->head;
162}
163
164/*
165 * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
166 */
167static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
168{
169	struct page **pages = dio->pages;
170	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
171	ssize_t ret;
172
173	ret = iov_iter_extract_pages(sdio->iter, &pages, LONG_MAX,
174				     DIO_PAGES, 0, &sdio->from);
175
176	if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) {
177		/*
178		 * A memory fault, but the filesystem has some outstanding
179		 * mapped blocks.  We need to use those blocks up to avoid
180		 * leaking stale data in the file.
181		 */
182		if (dio->page_errors == 0)
183			dio->page_errors = ret;
184		dio->pages[0] = ZERO_PAGE(0);
185		sdio->head = 0;
186		sdio->tail = 1;
187		sdio->from = 0;
188		sdio->to = PAGE_SIZE;
189		return 0;
190	}
191
192	if (ret >= 0) {
193		ret += sdio->from;
194		sdio->head = 0;
195		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
196		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
197		return 0;
198	}
199	return ret;
200}
201
202/*
203 * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
204 * buffered inside the dio so that we can call iov_iter_extract_pages()
205 * against a decent number of pages, less frequently.  To provide nicer use of
206 * the L1 cache.
207 */
208static inline struct page *dio_get_page(struct dio *dio,
209					struct dio_submit *sdio)
210{
211	if (dio_pages_present(sdio) == 0) {
212		int ret;
213
214		ret = dio_refill_pages(dio, sdio);
215		if (ret)
216			return ERR_PTR(ret);
217		BUG_ON(dio_pages_present(sdio) == 0);
218	}
219	return dio->pages[sdio->head];
220}
221
222static void dio_pin_page(struct dio *dio, struct page *page)
223{
224	if (dio->is_pinned)
225		folio_add_pin(page_folio(page));
226}
227
228static void dio_unpin_page(struct dio *dio, struct page *page)
229{
230	if (dio->is_pinned)
231		unpin_user_page(page);
232}
233
234/*
235 * dio_complete() - called when all DIO BIO I/O has been completed
236 *
237 * This drops i_dio_count, lets interested parties know that a DIO operation
238 * has completed, and calculates the resulting return code for the operation.
239 *
240 * It lets the filesystem know if it registered an interest earlier via
241 * get_block.  Pass the private field of the map buffer_head so that
242 * filesystems can use it to hold additional state between get_block calls and
243 * dio_complete.
244 */
245static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
246{
247	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
248	loff_t offset = dio->iocb->ki_pos;
249	ssize_t transferred = 0;
250	int err;
251
252	/*
253	 * AIO submission can race with bio completion to get here while
254	 * expecting to have the last io completed by bio completion.
255	 * In that case -EIOCBQUEUED is in fact not an error we want
256	 * to preserve through this call.
257	 */
258	if (ret == -EIOCBQUEUED)
259		ret = 0;
260
261	if (dio->result) {
262		transferred = dio->result;
263
264		/* Check for short read case */
265		if (dio_op == REQ_OP_READ &&
266		    ((offset + transferred) > dio->i_size))
267			transferred = dio->i_size - offset;
268		/* ignore EFAULT if some IO has been done */
269		if (unlikely(ret == -EFAULT) && transferred)
270			ret = 0;
271	}
272
273	if (ret == 0)
274		ret = dio->page_errors;
275	if (ret == 0)
276		ret = dio->io_error;
277	if (ret == 0)
278		ret = transferred;
279
280	if (dio->end_io) {
281		// XXX: ki_pos??
282		err = dio->end_io(dio->iocb, offset, ret, dio->private);
283		if (err)
284			ret = err;
285	}
286
287	/*
288	 * Try again to invalidate clean pages which might have been cached by
289	 * non-direct readahead, or faulted in by get_user_pages() if the source
290	 * of the write was an mmap'ed region of the file we're writing.  Either
291	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
292	 * this invalidation fails, tough, the write still worked...
293	 *
294	 * And this page cache invalidation has to be after dio->end_io(), as
295	 * some filesystems convert unwritten extents to real allocations in
296	 * end_io() when necessary, otherwise a racing buffer read would cache
297	 * zeros from unwritten extents.
298	 */
299	if (flags & DIO_COMPLETE_INVALIDATE &&
300	    ret > 0 && dio_op == REQ_OP_WRITE)
301		kiocb_invalidate_post_direct_write(dio->iocb, ret);
302
303	inode_dio_end(dio->inode);
304
305	if (flags & DIO_COMPLETE_ASYNC) {
306		/*
307		 * generic_write_sync expects ki_pos to have been updated
308		 * already, but the submission path only does this for
309		 * synchronous I/O.
310		 */
311		dio->iocb->ki_pos += transferred;
312
313		if (ret > 0 && dio_op == REQ_OP_WRITE)
314			ret = generic_write_sync(dio->iocb, ret);
315		dio->iocb->ki_complete(dio->iocb, ret);
316	}
317
318	kmem_cache_free(dio_cache, dio);
319	return ret;
320}
321
322static void dio_aio_complete_work(struct work_struct *work)
323{
324	struct dio *dio = container_of(work, struct dio, complete_work);
325
326	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
327}
328
329static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
330
331/*
332 * Asynchronous IO callback.
333 */
334static void dio_bio_end_aio(struct bio *bio)
335{
336	struct dio *dio = bio->bi_private;
337	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
338	unsigned long remaining;
339	unsigned long flags;
340	bool defer_completion = false;
341
342	/* cleanup the bio */
343	dio_bio_complete(dio, bio);
344
345	spin_lock_irqsave(&dio->bio_lock, flags);
346	remaining = --dio->refcount;
347	if (remaining == 1 && dio->waiter)
348		wake_up_process(dio->waiter);
349	spin_unlock_irqrestore(&dio->bio_lock, flags);
350
351	if (remaining == 0) {
352		/*
353		 * Defer completion when defer_completion is set or
354		 * when the inode has pages mapped and this is AIO write.
355		 * We need to invalidate those pages because there is a
356		 * chance they contain stale data in the case buffered IO
357		 * went in between AIO submission and completion into the
358		 * same region.
359		 */
360		if (dio->result)
361			defer_completion = dio->defer_completion ||
362					   (dio_op == REQ_OP_WRITE &&
363					    dio->inode->i_mapping->nrpages);
364		if (defer_completion) {
365			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
366			queue_work(dio->inode->i_sb->s_dio_done_wq,
367				   &dio->complete_work);
368		} else {
369			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
370		}
371	}
372}
373
374/*
375 * The BIO completion handler simply queues the BIO up for the process-context
376 * handler.
377 *
378 * During I/O bi_private points at the dio.  After I/O, bi_private is used to
379 * implement a singly-linked list of completed BIOs, at dio->bio_list.
380 */
381static void dio_bio_end_io(struct bio *bio)
382{
383	struct dio *dio = bio->bi_private;
384	unsigned long flags;
385
386	spin_lock_irqsave(&dio->bio_lock, flags);
387	bio->bi_private = dio->bio_list;
388	dio->bio_list = bio;
389	if (--dio->refcount == 1 && dio->waiter)
390		wake_up_process(dio->waiter);
391	spin_unlock_irqrestore(&dio->bio_lock, flags);
392}
393
394static inline void
395dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
396	      struct block_device *bdev,
397	      sector_t first_sector, int nr_vecs)
398{
399	struct bio *bio;
400
401	/*
402	 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
403	 * we request a valid number of vectors.
404	 */
405	bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL);
406	bio->bi_iter.bi_sector = first_sector;
407	if (dio->is_async)
408		bio->bi_end_io = dio_bio_end_aio;
409	else
410		bio->bi_end_io = dio_bio_end_io;
411	if (dio->is_pinned)
412		bio_set_flag(bio, BIO_PAGE_PINNED);
413	sdio->bio = bio;
414	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
415}
416
417/*
418 * In the AIO read case we speculatively dirty the pages before starting IO.
419 * During IO completion, any of these pages which happen to have been written
420 * back will be redirtied by bio_check_pages_dirty().
421 *
422 * bios hold a dio reference between submit_bio and ->end_io.
423 */
424static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
425{
426	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
427	struct bio *bio = sdio->bio;
428	unsigned long flags;
429
430	bio->bi_private = dio;
431
432	spin_lock_irqsave(&dio->bio_lock, flags);
433	dio->refcount++;
434	spin_unlock_irqrestore(&dio->bio_lock, flags);
435
436	if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty)
437		bio_set_pages_dirty(bio);
438
439	dio->bio_disk = bio->bi_bdev->bd_disk;
440
441	submit_bio(bio);
442
443	sdio->bio = NULL;
444	sdio->boundary = 0;
445	sdio->logical_offset_in_bio = 0;
446}
447
448/*
449 * Release any resources in case of a failure
450 */
451static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
452{
453	if (dio->is_pinned)
454		unpin_user_pages(dio->pages + sdio->head,
455				 sdio->tail - sdio->head);
456	sdio->head = sdio->tail;
457}
458
459/*
460 * Wait for the next BIO to complete.  Remove it and return it.  NULL is
461 * returned once all BIOs have been completed.  This must only be called once
462 * all bios have been issued so that dio->refcount can only decrease.  This
463 * requires that the caller hold a reference on the dio.
464 */
465static struct bio *dio_await_one(struct dio *dio)
466{
467	unsigned long flags;
468	struct bio *bio = NULL;
469
470	spin_lock_irqsave(&dio->bio_lock, flags);
471
472	/*
473	 * Wait as long as the list is empty and there are bios in flight.  bio
474	 * completion drops the count, maybe adds to the list, and wakes while
475	 * holding the bio_lock so we don't need set_current_state()'s barrier
476	 * and can call it after testing our condition.
477	 */
478	while (dio->refcount > 1 && dio->bio_list == NULL) {
479		__set_current_state(TASK_UNINTERRUPTIBLE);
480		dio->waiter = current;
481		spin_unlock_irqrestore(&dio->bio_lock, flags);
482		blk_io_schedule();
483		/* wake up sets us TASK_RUNNING */
484		spin_lock_irqsave(&dio->bio_lock, flags);
485		dio->waiter = NULL;
486	}
487	if (dio->bio_list) {
488		bio = dio->bio_list;
489		dio->bio_list = bio->bi_private;
490	}
491	spin_unlock_irqrestore(&dio->bio_lock, flags);
492	return bio;
493}
494
495/*
496 * Process one completed BIO.  No locks are held.
497 */
498static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
499{
500	blk_status_t err = bio->bi_status;
501	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
502	bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty;
503
504	if (err) {
505		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
506			dio->io_error = -EAGAIN;
507		else
508			dio->io_error = -EIO;
509	}
510
511	if (dio->is_async && should_dirty) {
512		bio_check_pages_dirty(bio);	/* transfers ownership */
513	} else {
514		bio_release_pages(bio, should_dirty);
515		bio_put(bio);
516	}
517	return err;
518}
519
520/*
521 * Wait on and process all in-flight BIOs.  This must only be called once
522 * all bios have been issued so that the refcount can only decrease.
523 * This just waits for all bios to make it through dio_bio_complete.  IO
524 * errors are propagated through dio->io_error and should be propagated via
525 * dio_complete().
526 */
527static void dio_await_completion(struct dio *dio)
528{
529	struct bio *bio;
530	do {
531		bio = dio_await_one(dio);
532		if (bio)
533			dio_bio_complete(dio, bio);
534	} while (bio);
535}
536
537/*
538 * A really large O_DIRECT read or write can generate a lot of BIOs.  So
539 * to keep the memory consumption sane we periodically reap any completed BIOs
540 * during the BIO generation phase.
541 *
542 * This also helps to limit the peak amount of pinned userspace memory.
543 */
544static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
545{
546	int ret = 0;
547
548	if (sdio->reap_counter++ >= 64) {
549		while (dio->bio_list) {
550			unsigned long flags;
551			struct bio *bio;
552			int ret2;
553
554			spin_lock_irqsave(&dio->bio_lock, flags);
555			bio = dio->bio_list;
556			dio->bio_list = bio->bi_private;
557			spin_unlock_irqrestore(&dio->bio_lock, flags);
558			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
559			if (ret == 0)
560				ret = ret2;
561		}
562		sdio->reap_counter = 0;
563	}
564	return ret;
565}
566
567static int dio_set_defer_completion(struct dio *dio)
568{
569	struct super_block *sb = dio->inode->i_sb;
570
571	if (dio->defer_completion)
572		return 0;
573	dio->defer_completion = true;
574	if (!sb->s_dio_done_wq)
575		return sb_init_dio_done_wq(sb);
576	return 0;
577}
578
579/*
580 * Call into the fs to map some more disk blocks.  We record the current number
581 * of available blocks at sdio->blocks_available.  These are in units of the
582 * fs blocksize, i_blocksize(inode).
583 *
584 * The fs is allowed to map lots of blocks at once.  If it wants to do that,
585 * it uses the passed inode-relative block number as the file offset, as usual.
586 *
587 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
588 * has remaining to do.  The fs should not map more than this number of blocks.
589 *
590 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
591 * indicate how much contiguous disk space has been made available at
592 * bh->b_blocknr.
593 *
594 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
595 * This isn't very efficient...
596 *
597 * In the case of filesystem holes: the fs may return an arbitrarily-large
598 * hole by returning an appropriate value in b_size and by clearing
599 * buffer_mapped().  However the direct-io code will only process holes one
600 * block at a time - it will repeatedly call get_block() as it walks the hole.
601 */
602static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
603			   struct buffer_head *map_bh)
604{
605	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
606	int ret;
607	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
608	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
609	unsigned long fs_count;	/* Number of filesystem-sized blocks */
610	int create;
611	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
612	loff_t i_size;
613
614	/*
615	 * If there was a memory error and we've overwritten all the
616	 * mapped blocks then we can now return that memory error
617	 */
618	ret = dio->page_errors;
619	if (ret == 0) {
620		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
621		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
622		fs_endblk = (sdio->final_block_in_request - 1) >>
623					sdio->blkfactor;
624		fs_count = fs_endblk - fs_startblk + 1;
625
626		map_bh->b_state = 0;
627		map_bh->b_size = fs_count << i_blkbits;
628
629		/*
630		 * For writes that could fill holes inside i_size on a
631		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
632		 * overwrites are permitted. We will return early to the caller
633		 * once we see an unmapped buffer head returned, and the caller
634		 * will fall back to buffered I/O.
635		 *
636		 * Otherwise the decision is left to the get_blocks method,
637		 * which may decide to handle it or also return an unmapped
638		 * buffer head.
639		 */
640		create = dio_op == REQ_OP_WRITE;
641		if (dio->flags & DIO_SKIP_HOLES) {
642			i_size = i_size_read(dio->inode);
643			if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
644				create = 0;
645		}
646
647		ret = (*sdio->get_block)(dio->inode, fs_startblk,
648						map_bh, create);
649
650		/* Store for completion */
651		dio->private = map_bh->b_private;
652
653		if (ret == 0 && buffer_defer_completion(map_bh))
654			ret = dio_set_defer_completion(dio);
655	}
656	return ret;
657}
658
659/*
660 * There is no bio.  Make one now.
661 */
662static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
663		sector_t start_sector, struct buffer_head *map_bh)
664{
665	sector_t sector;
666	int ret, nr_pages;
667
668	ret = dio_bio_reap(dio, sdio);
669	if (ret)
670		goto out;
671	sector = start_sector << (sdio->blkbits - 9);
672	nr_pages = bio_max_segs(sdio->pages_in_io);
673	BUG_ON(nr_pages <= 0);
674	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
675	sdio->boundary = 0;
676out:
677	return ret;
678}
679
680/*
681 * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
682 * that was successful then update final_block_in_bio and take a ref against
683 * the just-added page.
684 *
685 * Return zero on success.  Non-zero means the caller needs to start a new BIO.
686 */
687static inline int dio_bio_add_page(struct dio *dio, struct dio_submit *sdio)
688{
689	int ret;
690
691	ret = bio_add_page(sdio->bio, sdio->cur_page,
692			sdio->cur_page_len, sdio->cur_page_offset);
693	if (ret == sdio->cur_page_len) {
694		/*
695		 * Decrement count only, if we are done with this page
696		 */
697		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
698			sdio->pages_in_io--;
699		dio_pin_page(dio, sdio->cur_page);
700		sdio->final_block_in_bio = sdio->cur_page_block +
701			(sdio->cur_page_len >> sdio->blkbits);
702		ret = 0;
703	} else {
704		ret = 1;
705	}
706	return ret;
707}
708
709/*
710 * Put cur_page under IO.  The section of cur_page which is described by
711 * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
712 * starts on-disk at cur_page_block.
713 *
714 * We take a ref against the page here (on behalf of its presence in the bio).
715 *
716 * The caller of this function is responsible for removing cur_page from the
717 * dio, and for dropping the refcount which came from that presence.
718 */
719static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
720		struct buffer_head *map_bh)
721{
722	int ret = 0;
723
724	if (sdio->bio) {
725		loff_t cur_offset = sdio->cur_page_fs_offset;
726		loff_t bio_next_offset = sdio->logical_offset_in_bio +
727			sdio->bio->bi_iter.bi_size;
728
729		/*
730		 * See whether this new request is contiguous with the old.
731		 *
732		 * Btrfs cannot handle having logically non-contiguous requests
733		 * submitted.  For example if you have
734		 *
735		 * Logical:  [0-4095][HOLE][8192-12287]
736		 * Physical: [0-4095]      [4096-8191]
737		 *
738		 * We cannot submit those pages together as one BIO.  So if our
739		 * current logical offset in the file does not equal what would
740		 * be the next logical offset in the bio, submit the bio we
741		 * have.
742		 */
743		if (sdio->final_block_in_bio != sdio->cur_page_block ||
744		    cur_offset != bio_next_offset)
745			dio_bio_submit(dio, sdio);
746	}
747
748	if (sdio->bio == NULL) {
749		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
750		if (ret)
751			goto out;
752	}
753
754	if (dio_bio_add_page(dio, sdio) != 0) {
755		dio_bio_submit(dio, sdio);
756		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
757		if (ret == 0) {
758			ret = dio_bio_add_page(dio, sdio);
759			BUG_ON(ret != 0);
760		}
761	}
762out:
763	return ret;
764}
765
766/*
767 * An autonomous function to put a chunk of a page under deferred IO.
768 *
769 * The caller doesn't actually know (or care) whether this piece of page is in
770 * a BIO, or is under IO or whatever.  We just take care of all possible
771 * situations here.  The separation between the logic of do_direct_IO() and
772 * that of submit_page_section() is important for clarity.  Please don't break.
773 *
774 * The chunk of page starts on-disk at blocknr.
775 *
776 * We perform deferred IO, by recording the last-submitted page inside our
777 * private part of the dio structure.  If possible, we just expand the IO
778 * across that page here.
779 *
780 * If that doesn't work out then we put the old page into the bio and add this
781 * page to the dio instead.
782 */
783static inline int
784submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
785		    unsigned offset, unsigned len, sector_t blocknr,
786		    struct buffer_head *map_bh)
787{
788	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
789	int ret = 0;
790	int boundary = sdio->boundary;	/* dio_send_cur_page may clear it */
791
792	if (dio_op == REQ_OP_WRITE) {
793		/*
794		 * Read accounting is performed in submit_bio()
795		 */
796		task_io_account_write(len);
797	}
798
799	/*
800	 * Can we just grow the current page's presence in the dio?
801	 */
802	if (sdio->cur_page == page &&
803	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
804	    sdio->cur_page_block +
805	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
806		sdio->cur_page_len += len;
807		goto out;
808	}
809
810	/*
811	 * If there's a deferred page already there then send it.
812	 */
813	if (sdio->cur_page) {
814		ret = dio_send_cur_page(dio, sdio, map_bh);
815		dio_unpin_page(dio, sdio->cur_page);
816		sdio->cur_page = NULL;
817		if (ret)
818			return ret;
819	}
820
821	dio_pin_page(dio, page);		/* It is in dio */
822	sdio->cur_page = page;
823	sdio->cur_page_offset = offset;
824	sdio->cur_page_len = len;
825	sdio->cur_page_block = blocknr;
826	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
827out:
828	/*
829	 * If boundary then we want to schedule the IO now to
830	 * avoid metadata seeks.
831	 */
832	if (boundary) {
833		ret = dio_send_cur_page(dio, sdio, map_bh);
834		if (sdio->bio)
835			dio_bio_submit(dio, sdio);
836		dio_unpin_page(dio, sdio->cur_page);
837		sdio->cur_page = NULL;
838	}
839	return ret;
840}
841
842/*
843 * If we are not writing the entire block and get_block() allocated
844 * the block for us, we need to fill-in the unused portion of the
845 * block with zeros. This happens only if user-buffer, fileoffset or
846 * io length is not filesystem block-size multiple.
847 *
848 * `end' is zero if we're doing the start of the IO, 1 at the end of the
849 * IO.
850 */
851static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
852		int end, struct buffer_head *map_bh)
853{
854	unsigned dio_blocks_per_fs_block;
855	unsigned this_chunk_blocks;	/* In dio_blocks */
856	unsigned this_chunk_bytes;
857	struct page *page;
858
859	sdio->start_zero_done = 1;
860	if (!sdio->blkfactor || !buffer_new(map_bh))
861		return;
862
863	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
864	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
865
866	if (!this_chunk_blocks)
867		return;
868
869	/*
870	 * We need to zero out part of an fs block.  It is either at the
871	 * beginning or the end of the fs block.
872	 */
873	if (end)
874		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
875
876	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
877
878	page = ZERO_PAGE(0);
879	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
880				sdio->next_block_for_io, map_bh))
881		return;
882
883	sdio->next_block_for_io += this_chunk_blocks;
884}
885
886/*
887 * Walk the user pages, and the file, mapping blocks to disk and generating
888 * a sequence of (page,offset,len,block) mappings.  These mappings are injected
889 * into submit_page_section(), which takes care of the next stage of submission
890 *
891 * Direct IO against a blockdev is different from a file.  Because we can
892 * happily perform page-sized but 512-byte aligned IOs.  It is important that
893 * blockdev IO be able to have fine alignment and large sizes.
894 *
895 * So what we do is to permit the ->get_block function to populate bh.b_size
896 * with the size of IO which is permitted at this offset and this i_blkbits.
897 *
898 * For best results, the blockdev should be set up with 512-byte i_blkbits and
899 * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
900 * fine alignment but still allows this function to work in PAGE_SIZE units.
901 */
902static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
903			struct buffer_head *map_bh)
904{
905	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
906	const unsigned blkbits = sdio->blkbits;
907	const unsigned i_blkbits = blkbits + sdio->blkfactor;
908	int ret = 0;
909
910	while (sdio->block_in_file < sdio->final_block_in_request) {
911		struct page *page;
912		size_t from, to;
913
914		page = dio_get_page(dio, sdio);
915		if (IS_ERR(page)) {
916			ret = PTR_ERR(page);
917			goto out;
918		}
919		from = sdio->head ? 0 : sdio->from;
920		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
921		sdio->head++;
922
923		while (from < to) {
924			unsigned this_chunk_bytes;	/* # of bytes mapped */
925			unsigned this_chunk_blocks;	/* # of blocks */
926			unsigned u;
927
928			if (sdio->blocks_available == 0) {
929				/*
930				 * Need to go and map some more disk
931				 */
932				unsigned long blkmask;
933				unsigned long dio_remainder;
934
935				ret = get_more_blocks(dio, sdio, map_bh);
936				if (ret) {
937					dio_unpin_page(dio, page);
938					goto out;
939				}
940				if (!buffer_mapped(map_bh))
941					goto do_holes;
942
943				sdio->blocks_available =
944						map_bh->b_size >> blkbits;
945				sdio->next_block_for_io =
946					map_bh->b_blocknr << sdio->blkfactor;
947				if (buffer_new(map_bh)) {
948					clean_bdev_aliases(
949						map_bh->b_bdev,
950						map_bh->b_blocknr,
951						map_bh->b_size >> i_blkbits);
952				}
953
954				if (!sdio->blkfactor)
955					goto do_holes;
956
957				blkmask = (1 << sdio->blkfactor) - 1;
958				dio_remainder = (sdio->block_in_file & blkmask);
959
960				/*
961				 * If we are at the start of IO and that IO
962				 * starts partway into a fs-block,
963				 * dio_remainder will be non-zero.  If the IO
964				 * is a read then we can simply advance the IO
965				 * cursor to the first block which is to be
966				 * read.  But if the IO is a write and the
967				 * block was newly allocated we cannot do that;
968				 * the start of the fs block must be zeroed out
969				 * on-disk
970				 */
971				if (!buffer_new(map_bh))
972					sdio->next_block_for_io += dio_remainder;
973				sdio->blocks_available -= dio_remainder;
974			}
975do_holes:
976			/* Handle holes */
977			if (!buffer_mapped(map_bh)) {
978				loff_t i_size_aligned;
979
980				/* AKPM: eargh, -ENOTBLK is a hack */
981				if (dio_op == REQ_OP_WRITE) {
982					dio_unpin_page(dio, page);
983					return -ENOTBLK;
984				}
985
986				/*
987				 * Be sure to account for a partial block as the
988				 * last block in the file
989				 */
990				i_size_aligned = ALIGN(i_size_read(dio->inode),
991							1 << blkbits);
992				if (sdio->block_in_file >=
993						i_size_aligned >> blkbits) {
994					/* We hit eof */
995					dio_unpin_page(dio, page);
996					goto out;
997				}
998				zero_user(page, from, 1 << blkbits);
999				sdio->block_in_file++;
1000				from += 1 << blkbits;
1001				dio->result += 1 << blkbits;
1002				goto next_block;
1003			}
1004
1005			/*
1006			 * If we're performing IO which has an alignment which
1007			 * is finer than the underlying fs, go check to see if
1008			 * we must zero out the start of this block.
1009			 */
1010			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1011				dio_zero_block(dio, sdio, 0, map_bh);
1012
1013			/*
1014			 * Work out, in this_chunk_blocks, how much disk we
1015			 * can add to this page
1016			 */
1017			this_chunk_blocks = sdio->blocks_available;
1018			u = (to - from) >> blkbits;
1019			if (this_chunk_blocks > u)
1020				this_chunk_blocks = u;
1021			u = sdio->final_block_in_request - sdio->block_in_file;
1022			if (this_chunk_blocks > u)
1023				this_chunk_blocks = u;
1024			this_chunk_bytes = this_chunk_blocks << blkbits;
1025			BUG_ON(this_chunk_bytes == 0);
1026
1027			if (this_chunk_blocks == sdio->blocks_available)
1028				sdio->boundary = buffer_boundary(map_bh);
1029			ret = submit_page_section(dio, sdio, page,
1030						  from,
1031						  this_chunk_bytes,
1032						  sdio->next_block_for_io,
1033						  map_bh);
1034			if (ret) {
1035				dio_unpin_page(dio, page);
1036				goto out;
1037			}
1038			sdio->next_block_for_io += this_chunk_blocks;
1039
1040			sdio->block_in_file += this_chunk_blocks;
1041			from += this_chunk_bytes;
1042			dio->result += this_chunk_bytes;
1043			sdio->blocks_available -= this_chunk_blocks;
1044next_block:
1045			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1046			if (sdio->block_in_file == sdio->final_block_in_request)
1047				break;
1048		}
1049
1050		/* Drop the pin which was taken in get_user_pages() */
1051		dio_unpin_page(dio, page);
1052	}
1053out:
1054	return ret;
1055}
1056
1057static inline int drop_refcount(struct dio *dio)
1058{
1059	int ret2;
1060	unsigned long flags;
1061
1062	/*
1063	 * Sync will always be dropping the final ref and completing the
1064	 * operation.  AIO can if it was a broken operation described above or
1065	 * in fact if all the bios race to complete before we get here.  In
1066	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1067	 * return code that the caller will hand to ->complete().
1068	 *
1069	 * This is managed by the bio_lock instead of being an atomic_t so that
1070	 * completion paths can drop their ref and use the remaining count to
1071	 * decide to wake the submission path atomically.
1072	 */
1073	spin_lock_irqsave(&dio->bio_lock, flags);
1074	ret2 = --dio->refcount;
1075	spin_unlock_irqrestore(&dio->bio_lock, flags);
1076	return ret2;
1077}
1078
1079/*
1080 * This is a library function for use by filesystem drivers.
1081 *
1082 * The locking rules are governed by the flags parameter:
1083 *  - if the flags value contains DIO_LOCKING we use a fancy locking
1084 *    scheme for dumb filesystems.
1085 *    For writes this function is called under i_mutex and returns with
1086 *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1087 *    taken and dropped again before returning.
1088 *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1089 *    internal locking but rather rely on the filesystem to synchronize
1090 *    direct I/O reads/writes versus each other and truncate.
1091 *
1092 * To help with locking against truncate we incremented the i_dio_count
1093 * counter before starting direct I/O, and decrement it once we are done.
1094 * Truncate can wait for it to reach zero to provide exclusion.  It is
1095 * expected that filesystem provide exclusion between new direct I/O
1096 * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1097 * but other filesystems need to take care of this on their own.
1098 *
1099 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1100 * is always inlined. Otherwise gcc is unable to split the structure into
1101 * individual fields and will generate much worse code. This is important
1102 * for the whole file.
1103 */
1104ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1105		struct block_device *bdev, struct iov_iter *iter,
1106		get_block_t get_block, dio_iodone_t end_io,
1107		int flags)
1108{
1109	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1110	unsigned blkbits = i_blkbits;
1111	unsigned blocksize_mask = (1 << blkbits) - 1;
1112	ssize_t retval = -EINVAL;
1113	const size_t count = iov_iter_count(iter);
1114	loff_t offset = iocb->ki_pos;
1115	const loff_t end = offset + count;
1116	struct dio *dio;
1117	struct dio_submit sdio = { 0, };
1118	struct buffer_head map_bh = { 0, };
1119	struct blk_plug plug;
1120	unsigned long align = offset | iov_iter_alignment(iter);
1121
1122	/*
1123	 * Avoid references to bdev if not absolutely needed to give
1124	 * the early prefetch in the caller enough time.
1125	 */
1126
1127	/* watch out for a 0 len io from a tricksy fs */
1128	if (iov_iter_rw(iter) == READ && !count)
1129		return 0;
1130
1131	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1132	if (!dio)
1133		return -ENOMEM;
1134	/*
1135	 * Believe it or not, zeroing out the page array caused a .5%
1136	 * performance regression in a database benchmark.  So, we take
1137	 * care to only zero out what's needed.
1138	 */
1139	memset(dio, 0, offsetof(struct dio, pages));
1140
1141	dio->flags = flags;
1142	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1143		/* will be released by direct_io_worker */
1144		inode_lock(inode);
1145	}
1146	dio->is_pinned = iov_iter_extract_will_pin(iter);
1147
1148	/* Once we sampled i_size check for reads beyond EOF */
1149	dio->i_size = i_size_read(inode);
1150	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1151		retval = 0;
1152		goto fail_dio;
1153	}
1154
1155	if (align & blocksize_mask) {
1156		if (bdev)
1157			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1158		blocksize_mask = (1 << blkbits) - 1;
1159		if (align & blocksize_mask)
1160			goto fail_dio;
1161	}
1162
1163	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1164		struct address_space *mapping = iocb->ki_filp->f_mapping;
1165
1166		retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1167		if (retval)
1168			goto fail_dio;
1169	}
1170
1171	/*
1172	 * For file extending writes updating i_size before data writeouts
1173	 * complete can expose uninitialized blocks in dumb filesystems.
1174	 * In that case we need to wait for I/O completion even if asked
1175	 * for an asynchronous write.
1176	 */
1177	if (is_sync_kiocb(iocb))
1178		dio->is_async = false;
1179	else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1180		dio->is_async = false;
1181	else
1182		dio->is_async = true;
1183
1184	dio->inode = inode;
1185	if (iov_iter_rw(iter) == WRITE) {
1186		dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1187		if (iocb->ki_flags & IOCB_NOWAIT)
1188			dio->opf |= REQ_NOWAIT;
1189	} else {
1190		dio->opf = REQ_OP_READ;
1191	}
1192
1193	/*
1194	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1195	 * so that we can call ->fsync.
1196	 */
1197	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1198		retval = 0;
1199		if (iocb_is_dsync(iocb))
1200			retval = dio_set_defer_completion(dio);
1201		else if (!dio->inode->i_sb->s_dio_done_wq) {
1202			/*
1203			 * In case of AIO write racing with buffered read we
1204			 * need to defer completion. We can't decide this now,
1205			 * however the workqueue needs to be initialized here.
1206			 */
1207			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1208		}
1209		if (retval)
1210			goto fail_dio;
1211	}
1212
1213	/*
1214	 * Will be decremented at I/O completion time.
1215	 */
1216	inode_dio_begin(inode);
1217
1218	retval = 0;
1219	sdio.blkbits = blkbits;
1220	sdio.blkfactor = i_blkbits - blkbits;
1221	sdio.block_in_file = offset >> blkbits;
1222
1223	sdio.get_block = get_block;
1224	dio->end_io = end_io;
1225	sdio.final_block_in_bio = -1;
1226	sdio.next_block_for_io = -1;
1227
1228	dio->iocb = iocb;
1229
1230	spin_lock_init(&dio->bio_lock);
1231	dio->refcount = 1;
1232
1233	dio->should_dirty = user_backed_iter(iter) && iov_iter_rw(iter) == READ;
1234	sdio.iter = iter;
1235	sdio.final_block_in_request = end >> blkbits;
1236
1237	/*
1238	 * In case of non-aligned buffers, we may need 2 more
1239	 * pages since we need to zero out first and last block.
1240	 */
1241	if (unlikely(sdio.blkfactor))
1242		sdio.pages_in_io = 2;
1243
1244	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1245
1246	blk_start_plug(&plug);
1247
1248	retval = do_direct_IO(dio, &sdio, &map_bh);
1249	if (retval)
1250		dio_cleanup(dio, &sdio);
1251
1252	if (retval == -ENOTBLK) {
1253		/*
1254		 * The remaining part of the request will be
1255		 * handled by buffered I/O when we return
1256		 */
1257		retval = 0;
1258	}
1259	/*
1260	 * There may be some unwritten disk at the end of a part-written
1261	 * fs-block-sized block.  Go zero that now.
1262	 */
1263	dio_zero_block(dio, &sdio, 1, &map_bh);
1264
1265	if (sdio.cur_page) {
1266		ssize_t ret2;
1267
1268		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1269		if (retval == 0)
1270			retval = ret2;
1271		dio_unpin_page(dio, sdio.cur_page);
1272		sdio.cur_page = NULL;
1273	}
1274	if (sdio.bio)
1275		dio_bio_submit(dio, &sdio);
1276
1277	blk_finish_plug(&plug);
1278
1279	/*
1280	 * It is possible that, we return short IO due to end of file.
1281	 * In that case, we need to release all the pages we got hold on.
1282	 */
1283	dio_cleanup(dio, &sdio);
1284
1285	/*
1286	 * All block lookups have been performed. For READ requests
1287	 * we can let i_mutex go now that its achieved its purpose
1288	 * of protecting us from looking up uninitialized blocks.
1289	 */
1290	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1291		inode_unlock(dio->inode);
1292
1293	/*
1294	 * The only time we want to leave bios in flight is when a successful
1295	 * partial aio read or full aio write have been setup.  In that case
1296	 * bio completion will call aio_complete.  The only time it's safe to
1297	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1298	 * This had *better* be the only place that raises -EIOCBQUEUED.
1299	 */
1300	BUG_ON(retval == -EIOCBQUEUED);
1301	if (dio->is_async && retval == 0 && dio->result &&
1302	    (iov_iter_rw(iter) == READ || dio->result == count))
1303		retval = -EIOCBQUEUED;
1304	else
1305		dio_await_completion(dio);
1306
1307	if (drop_refcount(dio) == 0) {
1308		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1309	} else
1310		BUG_ON(retval != -EIOCBQUEUED);
1311
1312	return retval;
1313
1314fail_dio:
1315	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1316		inode_unlock(inode);
1317
1318	kmem_cache_free(dio_cache, dio);
1319	return retval;
1320}
1321EXPORT_SYMBOL(__blockdev_direct_IO);
1322
1323static __init int dio_init(void)
1324{
1325	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1326	return 0;
1327}
1328module_init(dio_init)
1329