xref: /kernel/linux/linux-6.6/fs/crypto/keysetup.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Key setup facility for FS encryption support.
4 *
5 * Copyright (C) 2015, Google, Inc.
6 *
7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8 * Heavily modified since then.
9 */
10
11#include <crypto/skcipher.h>
12#include <linux/random.h>
13
14#include "fscrypt_private.h"
15
16struct fscrypt_mode fscrypt_modes[] = {
17	[FSCRYPT_MODE_AES_256_XTS] = {
18		.friendly_name = "AES-256-XTS",
19		.cipher_str = "xts(aes)",
20		.keysize = 64,
21		.security_strength = 32,
22		.ivsize = 16,
23		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS,
24	},
25	[FSCRYPT_MODE_AES_256_CTS] = {
26		.friendly_name = "AES-256-CTS-CBC",
27		.cipher_str = "cts(cbc(aes))",
28		.keysize = 32,
29		.security_strength = 32,
30		.ivsize = 16,
31	},
32	[FSCRYPT_MODE_AES_128_CBC] = {
33		.friendly_name = "AES-128-CBC-ESSIV",
34		.cipher_str = "essiv(cbc(aes),sha256)",
35		.keysize = 16,
36		.security_strength = 16,
37		.ivsize = 16,
38		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV,
39	},
40	[FSCRYPT_MODE_AES_128_CTS] = {
41		.friendly_name = "AES-128-CTS-CBC",
42		.cipher_str = "cts(cbc(aes))",
43		.keysize = 16,
44		.security_strength = 16,
45		.ivsize = 16,
46	},
47	[FSCRYPT_MODE_SM4_XTS] = {
48		.friendly_name = "SM4-XTS",
49		.cipher_str = "xts(sm4)",
50		.keysize = 32,
51		.security_strength = 16,
52		.ivsize = 16,
53		.blk_crypto_mode = BLK_ENCRYPTION_MODE_SM4_XTS,
54	},
55	[FSCRYPT_MODE_SM4_CTS] = {
56		.friendly_name = "SM4-CTS-CBC",
57		.cipher_str = "cts(cbc(sm4))",
58		.keysize = 16,
59		.security_strength = 16,
60		.ivsize = 16,
61	},
62	[FSCRYPT_MODE_ADIANTUM] = {
63		.friendly_name = "Adiantum",
64		.cipher_str = "adiantum(xchacha12,aes)",
65		.keysize = 32,
66		.security_strength = 32,
67		.ivsize = 32,
68		.blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM,
69	},
70	[FSCRYPT_MODE_AES_256_HCTR2] = {
71		.friendly_name = "AES-256-HCTR2",
72		.cipher_str = "hctr2(aes)",
73		.keysize = 32,
74		.security_strength = 32,
75		.ivsize = 32,
76	},
77};
78
79static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex);
80
81static struct fscrypt_mode *
82select_encryption_mode(const union fscrypt_policy *policy,
83		       const struct inode *inode)
84{
85	BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1);
86
87	if (S_ISREG(inode->i_mode))
88		return &fscrypt_modes[fscrypt_policy_contents_mode(policy)];
89
90	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
91		return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)];
92
93	WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
94		  inode->i_ino, (inode->i_mode & S_IFMT));
95	return ERR_PTR(-EINVAL);
96}
97
98/* Create a symmetric cipher object for the given encryption mode and key */
99static struct crypto_skcipher *
100fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
101			  const struct inode *inode)
102{
103	struct crypto_skcipher *tfm;
104	int err;
105
106	tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
107	if (IS_ERR(tfm)) {
108		if (PTR_ERR(tfm) == -ENOENT) {
109			fscrypt_warn(inode,
110				     "Missing crypto API support for %s (API name: \"%s\")",
111				     mode->friendly_name, mode->cipher_str);
112			return ERR_PTR(-ENOPKG);
113		}
114		fscrypt_err(inode, "Error allocating '%s' transform: %ld",
115			    mode->cipher_str, PTR_ERR(tfm));
116		return tfm;
117	}
118	if (!xchg(&mode->logged_cryptoapi_impl, 1)) {
119		/*
120		 * fscrypt performance can vary greatly depending on which
121		 * crypto algorithm implementation is used.  Help people debug
122		 * performance problems by logging the ->cra_driver_name the
123		 * first time a mode is used.
124		 */
125		pr_info("fscrypt: %s using implementation \"%s\"\n",
126			mode->friendly_name, crypto_skcipher_driver_name(tfm));
127	}
128	if (WARN_ON_ONCE(crypto_skcipher_ivsize(tfm) != mode->ivsize)) {
129		err = -EINVAL;
130		goto err_free_tfm;
131	}
132	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
133	err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
134	if (err)
135		goto err_free_tfm;
136
137	return tfm;
138
139err_free_tfm:
140	crypto_free_skcipher(tfm);
141	return ERR_PTR(err);
142}
143
144/*
145 * Prepare the crypto transform object or blk-crypto key in @prep_key, given the
146 * raw key, encryption mode (@ci->ci_mode), flag indicating which encryption
147 * implementation (fs-layer or blk-crypto) will be used (@ci->ci_inlinecrypt),
148 * and IV generation method (@ci->ci_policy.flags).
149 */
150int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
151			const u8 *raw_key, const struct fscrypt_info *ci)
152{
153	struct crypto_skcipher *tfm;
154
155	if (fscrypt_using_inline_encryption(ci))
156		return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci);
157
158	tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
159	if (IS_ERR(tfm))
160		return PTR_ERR(tfm);
161	/*
162	 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
163	 * I.e., here we publish ->tfm with a RELEASE barrier so that
164	 * concurrent tasks can ACQUIRE it.  Note that this concurrency is only
165	 * possible for per-mode keys, not for per-file keys.
166	 */
167	smp_store_release(&prep_key->tfm, tfm);
168	return 0;
169}
170
171/* Destroy a crypto transform object and/or blk-crypto key. */
172void fscrypt_destroy_prepared_key(struct super_block *sb,
173				  struct fscrypt_prepared_key *prep_key)
174{
175	crypto_free_skcipher(prep_key->tfm);
176	fscrypt_destroy_inline_crypt_key(sb, prep_key);
177	memzero_explicit(prep_key, sizeof(*prep_key));
178}
179
180/* Given a per-file encryption key, set up the file's crypto transform object */
181int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key)
182{
183	ci->ci_owns_key = true;
184	return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci);
185}
186
187static int setup_per_mode_enc_key(struct fscrypt_info *ci,
188				  struct fscrypt_master_key *mk,
189				  struct fscrypt_prepared_key *keys,
190				  u8 hkdf_context, bool include_fs_uuid)
191{
192	const struct inode *inode = ci->ci_inode;
193	const struct super_block *sb = inode->i_sb;
194	struct fscrypt_mode *mode = ci->ci_mode;
195	const u8 mode_num = mode - fscrypt_modes;
196	struct fscrypt_prepared_key *prep_key;
197	u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
198	u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
199	unsigned int hkdf_infolen = 0;
200	int err;
201
202	if (WARN_ON_ONCE(mode_num > FSCRYPT_MODE_MAX))
203		return -EINVAL;
204
205	prep_key = &keys[mode_num];
206	if (fscrypt_is_key_prepared(prep_key, ci)) {
207		ci->ci_enc_key = *prep_key;
208		return 0;
209	}
210
211	mutex_lock(&fscrypt_mode_key_setup_mutex);
212
213	if (fscrypt_is_key_prepared(prep_key, ci))
214		goto done_unlock;
215
216	BUILD_BUG_ON(sizeof(mode_num) != 1);
217	BUILD_BUG_ON(sizeof(sb->s_uuid) != 16);
218	BUILD_BUG_ON(sizeof(hkdf_info) != 17);
219	hkdf_info[hkdf_infolen++] = mode_num;
220	if (include_fs_uuid) {
221		memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid,
222		       sizeof(sb->s_uuid));
223		hkdf_infolen += sizeof(sb->s_uuid);
224	}
225	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
226				  hkdf_context, hkdf_info, hkdf_infolen,
227				  mode_key, mode->keysize);
228	if (err)
229		goto out_unlock;
230	err = fscrypt_prepare_key(prep_key, mode_key, ci);
231	memzero_explicit(mode_key, mode->keysize);
232	if (err)
233		goto out_unlock;
234done_unlock:
235	ci->ci_enc_key = *prep_key;
236	err = 0;
237out_unlock:
238	mutex_unlock(&fscrypt_mode_key_setup_mutex);
239	return err;
240}
241
242/*
243 * Derive a SipHash key from the given fscrypt master key and the given
244 * application-specific information string.
245 *
246 * Note that the KDF produces a byte array, but the SipHash APIs expect the key
247 * as a pair of 64-bit words.  Therefore, on big endian CPUs we have to do an
248 * endianness swap in order to get the same results as on little endian CPUs.
249 */
250static int fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk,
251				      u8 context, const u8 *info,
252				      unsigned int infolen, siphash_key_t *key)
253{
254	int err;
255
256	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen,
257				  (u8 *)key, sizeof(*key));
258	if (err)
259		return err;
260
261	BUILD_BUG_ON(sizeof(*key) != 16);
262	BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2);
263	le64_to_cpus(&key->key[0]);
264	le64_to_cpus(&key->key[1]);
265	return 0;
266}
267
268int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
269			       const struct fscrypt_master_key *mk)
270{
271	int err;
272
273	err = fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY,
274					 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
275					 &ci->ci_dirhash_key);
276	if (err)
277		return err;
278	ci->ci_dirhash_key_initialized = true;
279	return 0;
280}
281
282void fscrypt_hash_inode_number(struct fscrypt_info *ci,
283			       const struct fscrypt_master_key *mk)
284{
285	WARN_ON_ONCE(ci->ci_inode->i_ino == 0);
286	WARN_ON_ONCE(!mk->mk_ino_hash_key_initialized);
287
288	ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino,
289					      &mk->mk_ino_hash_key);
290}
291
292static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci,
293					    struct fscrypt_master_key *mk)
294{
295	int err;
296
297	err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys,
298				     HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true);
299	if (err)
300		return err;
301
302	/* pairs with smp_store_release() below */
303	if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) {
304
305		mutex_lock(&fscrypt_mode_key_setup_mutex);
306
307		if (mk->mk_ino_hash_key_initialized)
308			goto unlock;
309
310		err = fscrypt_derive_siphash_key(mk,
311						 HKDF_CONTEXT_INODE_HASH_KEY,
312						 NULL, 0, &mk->mk_ino_hash_key);
313		if (err)
314			goto unlock;
315		/* pairs with smp_load_acquire() above */
316		smp_store_release(&mk->mk_ino_hash_key_initialized, true);
317unlock:
318		mutex_unlock(&fscrypt_mode_key_setup_mutex);
319		if (err)
320			return err;
321	}
322
323	/*
324	 * New inodes may not have an inode number assigned yet.
325	 * Hashing their inode number is delayed until later.
326	 */
327	if (ci->ci_inode->i_ino)
328		fscrypt_hash_inode_number(ci, mk);
329	return 0;
330}
331
332static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
333				     struct fscrypt_master_key *mk,
334				     bool need_dirhash_key)
335{
336	int err;
337
338	if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
339		/*
340		 * DIRECT_KEY: instead of deriving per-file encryption keys, the
341		 * per-file nonce will be included in all the IVs.  But unlike
342		 * v1 policies, for v2 policies in this case we don't encrypt
343		 * with the master key directly but rather derive a per-mode
344		 * encryption key.  This ensures that the master key is
345		 * consistently used only for HKDF, avoiding key reuse issues.
346		 */
347		err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys,
348					     HKDF_CONTEXT_DIRECT_KEY, false);
349	} else if (ci->ci_policy.v2.flags &
350		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
351		/*
352		 * IV_INO_LBLK_64: encryption keys are derived from (master_key,
353		 * mode_num, filesystem_uuid), and inode number is included in
354		 * the IVs.  This format is optimized for use with inline
355		 * encryption hardware compliant with the UFS standard.
356		 */
357		err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys,
358					     HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
359					     true);
360	} else if (ci->ci_policy.v2.flags &
361		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
362		err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk);
363	} else {
364		u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
365
366		err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
367					  HKDF_CONTEXT_PER_FILE_ENC_KEY,
368					  ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
369					  derived_key, ci->ci_mode->keysize);
370		if (err)
371			return err;
372
373		err = fscrypt_set_per_file_enc_key(ci, derived_key);
374		memzero_explicit(derived_key, ci->ci_mode->keysize);
375	}
376	if (err)
377		return err;
378
379	/* Derive a secret dirhash key for directories that need it. */
380	if (need_dirhash_key) {
381		err = fscrypt_derive_dirhash_key(ci, mk);
382		if (err)
383			return err;
384	}
385
386	return 0;
387}
388
389/*
390 * Check whether the size of the given master key (@mk) is appropriate for the
391 * encryption settings which a particular file will use (@ci).
392 *
393 * If the file uses a v1 encryption policy, then the master key must be at least
394 * as long as the derived key, as this is a requirement of the v1 KDF.
395 *
396 * Otherwise, the KDF can accept any size key, so we enforce a slightly looser
397 * requirement: we require that the size of the master key be at least the
398 * maximum security strength of any algorithm whose key will be derived from it
399 * (but in practice we only need to consider @ci->ci_mode, since any other
400 * possible subkeys such as DIRHASH and INODE_HASH will never increase the
401 * required key size over @ci->ci_mode).  This allows AES-256-XTS keys to be
402 * derived from a 256-bit master key, which is cryptographically sufficient,
403 * rather than requiring a 512-bit master key which is unnecessarily long.  (We
404 * still allow 512-bit master keys if the user chooses to use them, though.)
405 */
406static bool fscrypt_valid_master_key_size(const struct fscrypt_master_key *mk,
407					  const struct fscrypt_info *ci)
408{
409	unsigned int min_keysize;
410
411	if (ci->ci_policy.version == FSCRYPT_POLICY_V1)
412		min_keysize = ci->ci_mode->keysize;
413	else
414		min_keysize = ci->ci_mode->security_strength;
415
416	if (mk->mk_secret.size < min_keysize) {
417		fscrypt_warn(NULL,
418			     "key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
419			     master_key_spec_type(&mk->mk_spec),
420			     master_key_spec_len(&mk->mk_spec),
421			     (u8 *)&mk->mk_spec.u,
422			     mk->mk_secret.size, min_keysize);
423		return false;
424	}
425	return true;
426}
427
428/*
429 * Find the master key, then set up the inode's actual encryption key.
430 *
431 * If the master key is found in the filesystem-level keyring, then it is
432 * returned in *mk_ret with its semaphore read-locked.  This is needed to ensure
433 * that only one task links the fscrypt_info into ->mk_decrypted_inodes (as
434 * multiple tasks may race to create an fscrypt_info for the same inode), and to
435 * synchronize the master key being removed with a new inode starting to use it.
436 */
437static int setup_file_encryption_key(struct fscrypt_info *ci,
438				     bool need_dirhash_key,
439				     struct fscrypt_master_key **mk_ret)
440{
441	struct super_block *sb = ci->ci_inode->i_sb;
442	struct fscrypt_key_specifier mk_spec;
443	struct fscrypt_master_key *mk;
444	int err;
445
446	err = fscrypt_select_encryption_impl(ci);
447	if (err)
448		return err;
449
450	err = fscrypt_policy_to_key_spec(&ci->ci_policy, &mk_spec);
451	if (err)
452		return err;
453
454	mk = fscrypt_find_master_key(sb, &mk_spec);
455	if (unlikely(!mk)) {
456		const union fscrypt_policy *dummy_policy =
457			fscrypt_get_dummy_policy(sb);
458
459		/*
460		 * Add the test_dummy_encryption key on-demand.  In principle,
461		 * it should be added at mount time.  Do it here instead so that
462		 * the individual filesystems don't need to worry about adding
463		 * this key at mount time and cleaning up on mount failure.
464		 */
465		if (dummy_policy &&
466		    fscrypt_policies_equal(dummy_policy, &ci->ci_policy)) {
467			err = fscrypt_add_test_dummy_key(sb, &mk_spec);
468			if (err)
469				return err;
470			mk = fscrypt_find_master_key(sb, &mk_spec);
471		}
472	}
473	if (unlikely(!mk)) {
474		if (ci->ci_policy.version != FSCRYPT_POLICY_V1)
475			return -ENOKEY;
476
477		/*
478		 * As a legacy fallback for v1 policies, search for the key in
479		 * the current task's subscribed keyrings too.  Don't move this
480		 * to before the search of ->s_master_keys, since users
481		 * shouldn't be able to override filesystem-level keys.
482		 */
483		return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
484	}
485	down_read(&mk->mk_sem);
486
487	/* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
488	if (!is_master_key_secret_present(&mk->mk_secret)) {
489		err = -ENOKEY;
490		goto out_release_key;
491	}
492
493	if (!fscrypt_valid_master_key_size(mk, ci)) {
494		err = -ENOKEY;
495		goto out_release_key;
496	}
497
498	switch (ci->ci_policy.version) {
499	case FSCRYPT_POLICY_V1:
500		err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
501		break;
502	case FSCRYPT_POLICY_V2:
503		err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key);
504		break;
505	default:
506		WARN_ON_ONCE(1);
507		err = -EINVAL;
508		break;
509	}
510	if (err)
511		goto out_release_key;
512
513	*mk_ret = mk;
514	return 0;
515
516out_release_key:
517	up_read(&mk->mk_sem);
518	fscrypt_put_master_key(mk);
519	return err;
520}
521
522static void put_crypt_info(struct fscrypt_info *ci)
523{
524	struct fscrypt_master_key *mk;
525
526	if (!ci)
527		return;
528
529	if (ci->ci_direct_key)
530		fscrypt_put_direct_key(ci->ci_direct_key);
531	else if (ci->ci_owns_key)
532		fscrypt_destroy_prepared_key(ci->ci_inode->i_sb,
533					     &ci->ci_enc_key);
534
535	mk = ci->ci_master_key;
536	if (mk) {
537		/*
538		 * Remove this inode from the list of inodes that were unlocked
539		 * with the master key.  In addition, if we're removing the last
540		 * inode from a master key struct that already had its secret
541		 * removed, then complete the full removal of the struct.
542		 */
543		spin_lock(&mk->mk_decrypted_inodes_lock);
544		list_del(&ci->ci_master_key_link);
545		spin_unlock(&mk->mk_decrypted_inodes_lock);
546		fscrypt_put_master_key_activeref(ci->ci_inode->i_sb, mk);
547	}
548	memzero_explicit(ci, sizeof(*ci));
549	kmem_cache_free(fscrypt_info_cachep, ci);
550}
551
552static int
553fscrypt_setup_encryption_info(struct inode *inode,
554			      const union fscrypt_policy *policy,
555			      const u8 nonce[FSCRYPT_FILE_NONCE_SIZE],
556			      bool need_dirhash_key)
557{
558	struct fscrypt_info *crypt_info;
559	struct fscrypt_mode *mode;
560	struct fscrypt_master_key *mk = NULL;
561	int res;
562
563	res = fscrypt_initialize(inode->i_sb);
564	if (res)
565		return res;
566
567	crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL);
568	if (!crypt_info)
569		return -ENOMEM;
570
571	crypt_info->ci_inode = inode;
572	crypt_info->ci_policy = *policy;
573	memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE);
574
575	mode = select_encryption_mode(&crypt_info->ci_policy, inode);
576	if (IS_ERR(mode)) {
577		res = PTR_ERR(mode);
578		goto out;
579	}
580	WARN_ON_ONCE(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
581	crypt_info->ci_mode = mode;
582
583	res = setup_file_encryption_key(crypt_info, need_dirhash_key, &mk);
584	if (res)
585		goto out;
586
587	/*
588	 * For existing inodes, multiple tasks may race to set ->i_crypt_info.
589	 * So use cmpxchg_release().  This pairs with the smp_load_acquire() in
590	 * fscrypt_get_info().  I.e., here we publish ->i_crypt_info with a
591	 * RELEASE barrier so that other tasks can ACQUIRE it.
592	 */
593	if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
594		/*
595		 * We won the race and set ->i_crypt_info to our crypt_info.
596		 * Now link it into the master key's inode list.
597		 */
598		if (mk) {
599			crypt_info->ci_master_key = mk;
600			refcount_inc(&mk->mk_active_refs);
601			spin_lock(&mk->mk_decrypted_inodes_lock);
602			list_add(&crypt_info->ci_master_key_link,
603				 &mk->mk_decrypted_inodes);
604			spin_unlock(&mk->mk_decrypted_inodes_lock);
605		}
606		crypt_info = NULL;
607	}
608	res = 0;
609out:
610	if (mk) {
611		up_read(&mk->mk_sem);
612		fscrypt_put_master_key(mk);
613	}
614	put_crypt_info(crypt_info);
615	return res;
616}
617
618/**
619 * fscrypt_get_encryption_info() - set up an inode's encryption key
620 * @inode: the inode to set up the key for.  Must be encrypted.
621 * @allow_unsupported: if %true, treat an unsupported encryption policy (or
622 *		       unrecognized encryption context) the same way as the key
623 *		       being unavailable, instead of returning an error.  Use
624 *		       %false unless the operation being performed is needed in
625 *		       order for files (or directories) to be deleted.
626 *
627 * Set up ->i_crypt_info, if it hasn't already been done.
628 *
629 * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe.  So
630 * generally this shouldn't be called from within a filesystem transaction.
631 *
632 * Return: 0 if ->i_crypt_info was set or was already set, *or* if the
633 *	   encryption key is unavailable.  (Use fscrypt_has_encryption_key() to
634 *	   distinguish these cases.)  Also can return another -errno code.
635 */
636int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported)
637{
638	int res;
639	union fscrypt_context ctx;
640	union fscrypt_policy policy;
641
642	if (fscrypt_has_encryption_key(inode))
643		return 0;
644
645	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
646	if (res < 0) {
647		if (res == -ERANGE && allow_unsupported)
648			return 0;
649		fscrypt_warn(inode, "Error %d getting encryption context", res);
650		return res;
651	}
652
653	res = fscrypt_policy_from_context(&policy, &ctx, res);
654	if (res) {
655		if (allow_unsupported)
656			return 0;
657		fscrypt_warn(inode,
658			     "Unrecognized or corrupt encryption context");
659		return res;
660	}
661
662	if (!fscrypt_supported_policy(&policy, inode)) {
663		if (allow_unsupported)
664			return 0;
665		return -EINVAL;
666	}
667
668	res = fscrypt_setup_encryption_info(inode, &policy,
669					    fscrypt_context_nonce(&ctx),
670					    IS_CASEFOLDED(inode) &&
671					    S_ISDIR(inode->i_mode));
672
673	if (res == -ENOPKG && allow_unsupported) /* Algorithm unavailable? */
674		res = 0;
675	if (res == -ENOKEY)
676		res = 0;
677	return res;
678}
679
680/**
681 * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory
682 * @dir: a possibly-encrypted directory
683 * @inode: the new inode.  ->i_mode must be set already.
684 *	   ->i_ino doesn't need to be set yet.
685 * @encrypt_ret: (output) set to %true if the new inode will be encrypted
686 *
687 * If the directory is encrypted, set up its ->i_crypt_info in preparation for
688 * encrypting the name of the new file.  Also, if the new inode will be
689 * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true.
690 *
691 * This isn't %GFP_NOFS-safe, and therefore it should be called before starting
692 * any filesystem transaction to create the inode.  For this reason, ->i_ino
693 * isn't required to be set yet, as the filesystem may not have set it yet.
694 *
695 * This doesn't persist the new inode's encryption context.  That still needs to
696 * be done later by calling fscrypt_set_context().
697 *
698 * Return: 0 on success, -ENOKEY if the encryption key is missing, or another
699 *	   -errno code
700 */
701int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
702			      bool *encrypt_ret)
703{
704	const union fscrypt_policy *policy;
705	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
706
707	policy = fscrypt_policy_to_inherit(dir);
708	if (policy == NULL)
709		return 0;
710	if (IS_ERR(policy))
711		return PTR_ERR(policy);
712
713	if (WARN_ON_ONCE(inode->i_mode == 0))
714		return -EINVAL;
715
716	/*
717	 * Only regular files, directories, and symlinks are encrypted.
718	 * Special files like device nodes and named pipes aren't.
719	 */
720	if (!S_ISREG(inode->i_mode) &&
721	    !S_ISDIR(inode->i_mode) &&
722	    !S_ISLNK(inode->i_mode))
723		return 0;
724
725	*encrypt_ret = true;
726
727	get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE);
728	return fscrypt_setup_encryption_info(inode, policy, nonce,
729					     IS_CASEFOLDED(dir) &&
730					     S_ISDIR(inode->i_mode));
731}
732EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode);
733
734/**
735 * fscrypt_put_encryption_info() - free most of an inode's fscrypt data
736 * @inode: an inode being evicted
737 *
738 * Free the inode's fscrypt_info.  Filesystems must call this when the inode is
739 * being evicted.  An RCU grace period need not have elapsed yet.
740 */
741void fscrypt_put_encryption_info(struct inode *inode)
742{
743	put_crypt_info(inode->i_crypt_info);
744	inode->i_crypt_info = NULL;
745}
746EXPORT_SYMBOL(fscrypt_put_encryption_info);
747
748/**
749 * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay
750 * @inode: an inode being freed
751 *
752 * Free the inode's cached decrypted symlink target, if any.  Filesystems must
753 * call this after an RCU grace period, just before they free the inode.
754 */
755void fscrypt_free_inode(struct inode *inode)
756{
757	if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
758		kfree(inode->i_link);
759		inode->i_link = NULL;
760	}
761}
762EXPORT_SYMBOL(fscrypt_free_inode);
763
764/**
765 * fscrypt_drop_inode() - check whether the inode's master key has been removed
766 * @inode: an inode being considered for eviction
767 *
768 * Filesystems supporting fscrypt must call this from their ->drop_inode()
769 * method so that encrypted inodes are evicted as soon as they're no longer in
770 * use and their master key has been removed.
771 *
772 * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
773 */
774int fscrypt_drop_inode(struct inode *inode)
775{
776	const struct fscrypt_info *ci = fscrypt_get_info(inode);
777
778	/*
779	 * If ci is NULL, then the inode doesn't have an encryption key set up
780	 * so it's irrelevant.  If ci_master_key is NULL, then the master key
781	 * was provided via the legacy mechanism of the process-subscribed
782	 * keyrings, so we don't know whether it's been removed or not.
783	 */
784	if (!ci || !ci->ci_master_key)
785		return 0;
786
787	/*
788	 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
789	 * protected by the key were cleaned by sync_filesystem().  But if
790	 * userspace is still using the files, inodes can be dirtied between
791	 * then and now.  We mustn't lose any writes, so skip dirty inodes here.
792	 */
793	if (inode->i_state & I_DIRTY_ALL)
794		return 0;
795
796	/*
797	 * Note: since we aren't holding the key semaphore, the result here can
798	 * immediately become outdated.  But there's no correctness problem with
799	 * unnecessarily evicting.  Nor is there a correctness problem with not
800	 * evicting while iput() is racing with the key being removed, since
801	 * then the thread removing the key will either evict the inode itself
802	 * or will correctly detect that it wasn't evicted due to the race.
803	 */
804	return !is_master_key_secret_present(&ci->ci_master_key->mk_secret);
805}
806EXPORT_SYMBOL_GPL(fscrypt_drop_inode);
807