xref: /kernel/linux/linux-6.6/fs/crypto/keyring.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Filesystem-level keyring for fscrypt
4 *
5 * Copyright 2019 Google LLC
6 */
7
8/*
9 * This file implements management of fscrypt master keys in the
10 * filesystem-level keyring, including the ioctls:
11 *
12 * - FS_IOC_ADD_ENCRYPTION_KEY
13 * - FS_IOC_REMOVE_ENCRYPTION_KEY
14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16 *
17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18 * information about these ioctls.
19 */
20
21#include <asm/unaligned.h>
22#include <crypto/skcipher.h>
23#include <linux/key-type.h>
24#include <linux/random.h>
25#include <linux/seq_file.h>
26
27#include "fscrypt_private.h"
28
29/* The master encryption keys for a filesystem (->s_master_keys) */
30struct fscrypt_keyring {
31	/*
32	 * Lock that protects ->key_hashtable.  It does *not* protect the
33	 * fscrypt_master_key structs themselves.
34	 */
35	spinlock_t lock;
36
37	/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
38	struct hlist_head key_hashtable[128];
39};
40
41static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
42{
43	fscrypt_destroy_hkdf(&secret->hkdf);
44	memzero_explicit(secret, sizeof(*secret));
45}
46
47static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
48				   struct fscrypt_master_key_secret *src)
49{
50	memcpy(dst, src, sizeof(*dst));
51	memzero_explicit(src, sizeof(*src));
52}
53
54static void fscrypt_free_master_key(struct rcu_head *head)
55{
56	struct fscrypt_master_key *mk =
57		container_of(head, struct fscrypt_master_key, mk_rcu_head);
58	/*
59	 * The master key secret and any embedded subkeys should have already
60	 * been wiped when the last active reference to the fscrypt_master_key
61	 * struct was dropped; doing it here would be unnecessarily late.
62	 * Nevertheless, use kfree_sensitive() in case anything was missed.
63	 */
64	kfree_sensitive(mk);
65}
66
67void fscrypt_put_master_key(struct fscrypt_master_key *mk)
68{
69	if (!refcount_dec_and_test(&mk->mk_struct_refs))
70		return;
71	/*
72	 * No structural references left, so free ->mk_users, and also free the
73	 * fscrypt_master_key struct itself after an RCU grace period ensures
74	 * that concurrent keyring lookups can no longer find it.
75	 */
76	WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0);
77	key_put(mk->mk_users);
78	mk->mk_users = NULL;
79	call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
80}
81
82void fscrypt_put_master_key_activeref(struct super_block *sb,
83				      struct fscrypt_master_key *mk)
84{
85	size_t i;
86
87	if (!refcount_dec_and_test(&mk->mk_active_refs))
88		return;
89	/*
90	 * No active references left, so complete the full removal of this
91	 * fscrypt_master_key struct by removing it from the keyring and
92	 * destroying any subkeys embedded in it.
93	 */
94
95	if (WARN_ON_ONCE(!sb->s_master_keys))
96		return;
97	spin_lock(&sb->s_master_keys->lock);
98	hlist_del_rcu(&mk->mk_node);
99	spin_unlock(&sb->s_master_keys->lock);
100
101	/*
102	 * ->mk_active_refs == 0 implies that ->mk_secret is not present and
103	 * that ->mk_decrypted_inodes is empty.
104	 */
105	WARN_ON_ONCE(is_master_key_secret_present(&mk->mk_secret));
106	WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes));
107
108	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
109		fscrypt_destroy_prepared_key(
110				sb, &mk->mk_direct_keys[i]);
111		fscrypt_destroy_prepared_key(
112				sb, &mk->mk_iv_ino_lblk_64_keys[i]);
113		fscrypt_destroy_prepared_key(
114				sb, &mk->mk_iv_ino_lblk_32_keys[i]);
115	}
116	memzero_explicit(&mk->mk_ino_hash_key,
117			 sizeof(mk->mk_ino_hash_key));
118	mk->mk_ino_hash_key_initialized = false;
119
120	/* Drop the structural ref associated with the active refs. */
121	fscrypt_put_master_key(mk);
122}
123
124static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
125{
126	if (spec->__reserved)
127		return false;
128	return master_key_spec_len(spec) != 0;
129}
130
131static int fscrypt_user_key_instantiate(struct key *key,
132					struct key_preparsed_payload *prep)
133{
134	/*
135	 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
136	 * each key, regardless of the exact key size.  The amount of memory
137	 * actually used is greater than the size of the raw key anyway.
138	 */
139	return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
140}
141
142static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
143{
144	seq_puts(m, key->description);
145}
146
147/*
148 * Type of key in ->mk_users.  Each key of this type represents a particular
149 * user who has added a particular master key.
150 *
151 * Note that the name of this key type really should be something like
152 * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
153 * mainly for simplicity of presentation in /proc/keys when read by a non-root
154 * user.  And it is expected to be rare that a key is actually added by multiple
155 * users, since users should keep their encryption keys confidential.
156 */
157static struct key_type key_type_fscrypt_user = {
158	.name			= ".fscrypt",
159	.instantiate		= fscrypt_user_key_instantiate,
160	.describe		= fscrypt_user_key_describe,
161};
162
163#define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
164	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
165	 CONST_STRLEN("-users") + 1)
166
167#define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
168	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
169
170static void format_mk_users_keyring_description(
171			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
172			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
173{
174	sprintf(description, "fscrypt-%*phN-users",
175		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
176}
177
178static void format_mk_user_description(
179			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
180			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
181{
182
183	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
184		mk_identifier, __kuid_val(current_fsuid()));
185}
186
187/* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
188static int allocate_filesystem_keyring(struct super_block *sb)
189{
190	struct fscrypt_keyring *keyring;
191
192	if (sb->s_master_keys)
193		return 0;
194
195	keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
196	if (!keyring)
197		return -ENOMEM;
198	spin_lock_init(&keyring->lock);
199	/*
200	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
201	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
202	 * concurrent tasks can ACQUIRE it.
203	 */
204	smp_store_release(&sb->s_master_keys, keyring);
205	return 0;
206}
207
208/*
209 * Release all encryption keys that have been added to the filesystem, along
210 * with the keyring that contains them.
211 *
212 * This is called at unmount time, after all potentially-encrypted inodes have
213 * been evicted.  The filesystem's underlying block device(s) are still
214 * available at this time; this is important because after user file accesses
215 * have been allowed, this function may need to evict keys from the keyslots of
216 * an inline crypto engine, which requires the block device(s).
217 */
218void fscrypt_destroy_keyring(struct super_block *sb)
219{
220	struct fscrypt_keyring *keyring = sb->s_master_keys;
221	size_t i;
222
223	if (!keyring)
224		return;
225
226	for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
227		struct hlist_head *bucket = &keyring->key_hashtable[i];
228		struct fscrypt_master_key *mk;
229		struct hlist_node *tmp;
230
231		hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
232			/*
233			 * Since all potentially-encrypted inodes were already
234			 * evicted, every key remaining in the keyring should
235			 * have an empty inode list, and should only still be in
236			 * the keyring due to the single active ref associated
237			 * with ->mk_secret.  There should be no structural refs
238			 * beyond the one associated with the active ref.
239			 */
240			WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1);
241			WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1);
242			WARN_ON_ONCE(!is_master_key_secret_present(&mk->mk_secret));
243			wipe_master_key_secret(&mk->mk_secret);
244			fscrypt_put_master_key_activeref(sb, mk);
245		}
246	}
247	kfree_sensitive(keyring);
248	sb->s_master_keys = NULL;
249}
250
251static struct hlist_head *
252fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
253		       const struct fscrypt_key_specifier *mk_spec)
254{
255	/*
256	 * Since key specifiers should be "random" values, it is sufficient to
257	 * use a trivial hash function that just takes the first several bits of
258	 * the key specifier.
259	 */
260	unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
261
262	return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
263}
264
265/*
266 * Find the specified master key struct in ->s_master_keys and take a structural
267 * ref to it.  The structural ref guarantees that the key struct continues to
268 * exist, but it does *not* guarantee that ->s_master_keys continues to contain
269 * the key struct.  The structural ref needs to be dropped by
270 * fscrypt_put_master_key().  Returns NULL if the key struct is not found.
271 */
272struct fscrypt_master_key *
273fscrypt_find_master_key(struct super_block *sb,
274			const struct fscrypt_key_specifier *mk_spec)
275{
276	struct fscrypt_keyring *keyring;
277	struct hlist_head *bucket;
278	struct fscrypt_master_key *mk;
279
280	/*
281	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
282	 * I.e., another task can publish ->s_master_keys concurrently,
283	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
284	 * to safely ACQUIRE the memory the other task published.
285	 */
286	keyring = smp_load_acquire(&sb->s_master_keys);
287	if (keyring == NULL)
288		return NULL; /* No keyring yet, so no keys yet. */
289
290	bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
291	rcu_read_lock();
292	switch (mk_spec->type) {
293	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
294		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
295			if (mk->mk_spec.type ==
296				FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
297			    memcmp(mk->mk_spec.u.descriptor,
298				   mk_spec->u.descriptor,
299				   FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
300			    refcount_inc_not_zero(&mk->mk_struct_refs))
301				goto out;
302		}
303		break;
304	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
305		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
306			if (mk->mk_spec.type ==
307				FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
308			    memcmp(mk->mk_spec.u.identifier,
309				   mk_spec->u.identifier,
310				   FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
311			    refcount_inc_not_zero(&mk->mk_struct_refs))
312				goto out;
313		}
314		break;
315	}
316	mk = NULL;
317out:
318	rcu_read_unlock();
319	return mk;
320}
321
322static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
323{
324	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
325	struct key *keyring;
326
327	format_mk_users_keyring_description(description,
328					    mk->mk_spec.u.identifier);
329	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
330				current_cred(), KEY_POS_SEARCH |
331				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
332				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
333	if (IS_ERR(keyring))
334		return PTR_ERR(keyring);
335
336	mk->mk_users = keyring;
337	return 0;
338}
339
340/*
341 * Find the current user's "key" in the master key's ->mk_users.
342 * Returns ERR_PTR(-ENOKEY) if not found.
343 */
344static struct key *find_master_key_user(struct fscrypt_master_key *mk)
345{
346	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
347	key_ref_t keyref;
348
349	format_mk_user_description(description, mk->mk_spec.u.identifier);
350
351	/*
352	 * We need to mark the keyring reference as "possessed" so that we
353	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
354	 */
355	keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
356				&key_type_fscrypt_user, description, false);
357	if (IS_ERR(keyref)) {
358		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
359		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
360			keyref = ERR_PTR(-ENOKEY);
361		return ERR_CAST(keyref);
362	}
363	return key_ref_to_ptr(keyref);
364}
365
366/*
367 * Give the current user a "key" in ->mk_users.  This charges the user's quota
368 * and marks the master key as added by the current user, so that it cannot be
369 * removed by another user with the key.  Either ->mk_sem must be held for
370 * write, or the master key must be still undergoing initialization.
371 */
372static int add_master_key_user(struct fscrypt_master_key *mk)
373{
374	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
375	struct key *mk_user;
376	int err;
377
378	format_mk_user_description(description, mk->mk_spec.u.identifier);
379	mk_user = key_alloc(&key_type_fscrypt_user, description,
380			    current_fsuid(), current_gid(), current_cred(),
381			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
382	if (IS_ERR(mk_user))
383		return PTR_ERR(mk_user);
384
385	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
386	key_put(mk_user);
387	return err;
388}
389
390/*
391 * Remove the current user's "key" from ->mk_users.
392 * ->mk_sem must be held for write.
393 *
394 * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
395 */
396static int remove_master_key_user(struct fscrypt_master_key *mk)
397{
398	struct key *mk_user;
399	int err;
400
401	mk_user = find_master_key_user(mk);
402	if (IS_ERR(mk_user))
403		return PTR_ERR(mk_user);
404	err = key_unlink(mk->mk_users, mk_user);
405	key_put(mk_user);
406	return err;
407}
408
409/*
410 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
411 * insert it into sb->s_master_keys.
412 */
413static int add_new_master_key(struct super_block *sb,
414			      struct fscrypt_master_key_secret *secret,
415			      const struct fscrypt_key_specifier *mk_spec)
416{
417	struct fscrypt_keyring *keyring = sb->s_master_keys;
418	struct fscrypt_master_key *mk;
419	int err;
420
421	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
422	if (!mk)
423		return -ENOMEM;
424
425	init_rwsem(&mk->mk_sem);
426	refcount_set(&mk->mk_struct_refs, 1);
427	mk->mk_spec = *mk_spec;
428
429	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
430	spin_lock_init(&mk->mk_decrypted_inodes_lock);
431
432	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
433		err = allocate_master_key_users_keyring(mk);
434		if (err)
435			goto out_put;
436		err = add_master_key_user(mk);
437		if (err)
438			goto out_put;
439	}
440
441	move_master_key_secret(&mk->mk_secret, secret);
442	refcount_set(&mk->mk_active_refs, 1); /* ->mk_secret is present */
443
444	spin_lock(&keyring->lock);
445	hlist_add_head_rcu(&mk->mk_node,
446			   fscrypt_mk_hash_bucket(keyring, mk_spec));
447	spin_unlock(&keyring->lock);
448	return 0;
449
450out_put:
451	fscrypt_put_master_key(mk);
452	return err;
453}
454
455#define KEY_DEAD	1
456
457static int add_existing_master_key(struct fscrypt_master_key *mk,
458				   struct fscrypt_master_key_secret *secret)
459{
460	int err;
461
462	/*
463	 * If the current user is already in ->mk_users, then there's nothing to
464	 * do.  Otherwise, we need to add the user to ->mk_users.  (Neither is
465	 * applicable for v1 policy keys, which have NULL ->mk_users.)
466	 */
467	if (mk->mk_users) {
468		struct key *mk_user = find_master_key_user(mk);
469
470		if (mk_user != ERR_PTR(-ENOKEY)) {
471			if (IS_ERR(mk_user))
472				return PTR_ERR(mk_user);
473			key_put(mk_user);
474			return 0;
475		}
476		err = add_master_key_user(mk);
477		if (err)
478			return err;
479	}
480
481	/* Re-add the secret if needed. */
482	if (!is_master_key_secret_present(&mk->mk_secret)) {
483		if (!refcount_inc_not_zero(&mk->mk_active_refs))
484			return KEY_DEAD;
485		move_master_key_secret(&mk->mk_secret, secret);
486	}
487
488	return 0;
489}
490
491static int do_add_master_key(struct super_block *sb,
492			     struct fscrypt_master_key_secret *secret,
493			     const struct fscrypt_key_specifier *mk_spec)
494{
495	static DEFINE_MUTEX(fscrypt_add_key_mutex);
496	struct fscrypt_master_key *mk;
497	int err;
498
499	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
500
501	mk = fscrypt_find_master_key(sb, mk_spec);
502	if (!mk) {
503		/* Didn't find the key in ->s_master_keys.  Add it. */
504		err = allocate_filesystem_keyring(sb);
505		if (!err)
506			err = add_new_master_key(sb, secret, mk_spec);
507	} else {
508		/*
509		 * Found the key in ->s_master_keys.  Re-add the secret if
510		 * needed, and add the user to ->mk_users if needed.
511		 */
512		down_write(&mk->mk_sem);
513		err = add_existing_master_key(mk, secret);
514		up_write(&mk->mk_sem);
515		if (err == KEY_DEAD) {
516			/*
517			 * We found a key struct, but it's already been fully
518			 * removed.  Ignore the old struct and add a new one.
519			 * fscrypt_add_key_mutex means we don't need to worry
520			 * about concurrent adds.
521			 */
522			err = add_new_master_key(sb, secret, mk_spec);
523		}
524		fscrypt_put_master_key(mk);
525	}
526	mutex_unlock(&fscrypt_add_key_mutex);
527	return err;
528}
529
530static int add_master_key(struct super_block *sb,
531			  struct fscrypt_master_key_secret *secret,
532			  struct fscrypt_key_specifier *key_spec)
533{
534	int err;
535
536	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
537		err = fscrypt_init_hkdf(&secret->hkdf, secret->raw,
538					secret->size);
539		if (err)
540			return err;
541
542		/*
543		 * Now that the HKDF context is initialized, the raw key is no
544		 * longer needed.
545		 */
546		memzero_explicit(secret->raw, secret->size);
547
548		/* Calculate the key identifier */
549		err = fscrypt_hkdf_expand(&secret->hkdf,
550					  HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
551					  key_spec->u.identifier,
552					  FSCRYPT_KEY_IDENTIFIER_SIZE);
553		if (err)
554			return err;
555	}
556	return do_add_master_key(sb, secret, key_spec);
557}
558
559static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
560{
561	const struct fscrypt_provisioning_key_payload *payload = prep->data;
562
563	if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
564	    prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
565		return -EINVAL;
566
567	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
568	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
569		return -EINVAL;
570
571	if (payload->__reserved)
572		return -EINVAL;
573
574	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
575	if (!prep->payload.data[0])
576		return -ENOMEM;
577
578	prep->quotalen = prep->datalen;
579	return 0;
580}
581
582static void fscrypt_provisioning_key_free_preparse(
583					struct key_preparsed_payload *prep)
584{
585	kfree_sensitive(prep->payload.data[0]);
586}
587
588static void fscrypt_provisioning_key_describe(const struct key *key,
589					      struct seq_file *m)
590{
591	seq_puts(m, key->description);
592	if (key_is_positive(key)) {
593		const struct fscrypt_provisioning_key_payload *payload =
594			key->payload.data[0];
595
596		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
597	}
598}
599
600static void fscrypt_provisioning_key_destroy(struct key *key)
601{
602	kfree_sensitive(key->payload.data[0]);
603}
604
605static struct key_type key_type_fscrypt_provisioning = {
606	.name			= "fscrypt-provisioning",
607	.preparse		= fscrypt_provisioning_key_preparse,
608	.free_preparse		= fscrypt_provisioning_key_free_preparse,
609	.instantiate		= generic_key_instantiate,
610	.describe		= fscrypt_provisioning_key_describe,
611	.destroy		= fscrypt_provisioning_key_destroy,
612};
613
614/*
615 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
616 * store it into 'secret'.
617 *
618 * The key must be of type "fscrypt-provisioning" and must have the field
619 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
620 * only usable with fscrypt with the particular KDF version identified by
621 * 'type'.  We don't use the "logon" key type because there's no way to
622 * completely restrict the use of such keys; they can be used by any kernel API
623 * that accepts "logon" keys and doesn't require a specific service prefix.
624 *
625 * The ability to specify the key via Linux keyring key is intended for cases
626 * where userspace needs to re-add keys after the filesystem is unmounted and
627 * re-mounted.  Most users should just provide the raw key directly instead.
628 */
629static int get_keyring_key(u32 key_id, u32 type,
630			   struct fscrypt_master_key_secret *secret)
631{
632	key_ref_t ref;
633	struct key *key;
634	const struct fscrypt_provisioning_key_payload *payload;
635	int err;
636
637	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
638	if (IS_ERR(ref))
639		return PTR_ERR(ref);
640	key = key_ref_to_ptr(ref);
641
642	if (key->type != &key_type_fscrypt_provisioning)
643		goto bad_key;
644	payload = key->payload.data[0];
645
646	/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
647	if (payload->type != type)
648		goto bad_key;
649
650	secret->size = key->datalen - sizeof(*payload);
651	memcpy(secret->raw, payload->raw, secret->size);
652	err = 0;
653	goto out_put;
654
655bad_key:
656	err = -EKEYREJECTED;
657out_put:
658	key_ref_put(ref);
659	return err;
660}
661
662/*
663 * Add a master encryption key to the filesystem, causing all files which were
664 * encrypted with it to appear "unlocked" (decrypted) when accessed.
665 *
666 * When adding a key for use by v1 encryption policies, this ioctl is
667 * privileged, and userspace must provide the 'key_descriptor'.
668 *
669 * When adding a key for use by v2+ encryption policies, this ioctl is
670 * unprivileged.  This is needed, in general, to allow non-root users to use
671 * encryption without encountering the visibility problems of process-subscribed
672 * keyrings and the inability to properly remove keys.  This works by having
673 * each key identified by its cryptographically secure hash --- the
674 * 'key_identifier'.  The cryptographic hash ensures that a malicious user
675 * cannot add the wrong key for a given identifier.  Furthermore, each added key
676 * is charged to the appropriate user's quota for the keyrings service, which
677 * prevents a malicious user from adding too many keys.  Finally, we forbid a
678 * user from removing a key while other users have added it too, which prevents
679 * a user who knows another user's key from causing a denial-of-service by
680 * removing it at an inopportune time.  (We tolerate that a user who knows a key
681 * can prevent other users from removing it.)
682 *
683 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
684 * Documentation/filesystems/fscrypt.rst.
685 */
686int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
687{
688	struct super_block *sb = file_inode(filp)->i_sb;
689	struct fscrypt_add_key_arg __user *uarg = _uarg;
690	struct fscrypt_add_key_arg arg;
691	struct fscrypt_master_key_secret secret;
692	int err;
693
694	if (copy_from_user(&arg, uarg, sizeof(arg)))
695		return -EFAULT;
696
697	if (!valid_key_spec(&arg.key_spec))
698		return -EINVAL;
699
700	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
701		return -EINVAL;
702
703	/*
704	 * Only root can add keys that are identified by an arbitrary descriptor
705	 * rather than by a cryptographic hash --- since otherwise a malicious
706	 * user could add the wrong key.
707	 */
708	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
709	    !capable(CAP_SYS_ADMIN))
710		return -EACCES;
711
712	memset(&secret, 0, sizeof(secret));
713	if (arg.key_id) {
714		if (arg.raw_size != 0)
715			return -EINVAL;
716		err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
717		if (err)
718			goto out_wipe_secret;
719	} else {
720		if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
721		    arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
722			return -EINVAL;
723		secret.size = arg.raw_size;
724		err = -EFAULT;
725		if (copy_from_user(secret.raw, uarg->raw, secret.size))
726			goto out_wipe_secret;
727	}
728
729	err = add_master_key(sb, &secret, &arg.key_spec);
730	if (err)
731		goto out_wipe_secret;
732
733	/* Return the key identifier to userspace, if applicable */
734	err = -EFAULT;
735	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
736	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
737			 FSCRYPT_KEY_IDENTIFIER_SIZE))
738		goto out_wipe_secret;
739	err = 0;
740out_wipe_secret:
741	wipe_master_key_secret(&secret);
742	return err;
743}
744EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
745
746static void
747fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
748{
749	static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
750
751	get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
752
753	memset(secret, 0, sizeof(*secret));
754	secret->size = FSCRYPT_MAX_KEY_SIZE;
755	memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE);
756}
757
758int fscrypt_get_test_dummy_key_identifier(
759				u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
760{
761	struct fscrypt_master_key_secret secret;
762	int err;
763
764	fscrypt_get_test_dummy_secret(&secret);
765
766	err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
767	if (err)
768		goto out;
769	err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER,
770				  NULL, 0, key_identifier,
771				  FSCRYPT_KEY_IDENTIFIER_SIZE);
772out:
773	wipe_master_key_secret(&secret);
774	return err;
775}
776
777/**
778 * fscrypt_add_test_dummy_key() - add the test dummy encryption key
779 * @sb: the filesystem instance to add the key to
780 * @key_spec: the key specifier of the test dummy encryption key
781 *
782 * Add the key for the test_dummy_encryption mount option to the filesystem.  To
783 * prevent misuse of this mount option, a per-boot random key is used instead of
784 * a hardcoded one.  This makes it so that any encrypted files created using
785 * this option won't be accessible after a reboot.
786 *
787 * Return: 0 on success, -errno on failure
788 */
789int fscrypt_add_test_dummy_key(struct super_block *sb,
790			       struct fscrypt_key_specifier *key_spec)
791{
792	struct fscrypt_master_key_secret secret;
793	int err;
794
795	fscrypt_get_test_dummy_secret(&secret);
796	err = add_master_key(sb, &secret, key_spec);
797	wipe_master_key_secret(&secret);
798	return err;
799}
800
801/*
802 * Verify that the current user has added a master key with the given identifier
803 * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
804 * their files using some other user's key which they don't actually know.
805 * Cryptographically this isn't much of a problem, but the semantics of this
806 * would be a bit weird, so it's best to just forbid it.
807 *
808 * The system administrator (CAP_FOWNER) can override this, which should be
809 * enough for any use cases where encryption policies are being set using keys
810 * that were chosen ahead of time but aren't available at the moment.
811 *
812 * Note that the key may have already removed by the time this returns, but
813 * that's okay; we just care whether the key was there at some point.
814 *
815 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
816 */
817int fscrypt_verify_key_added(struct super_block *sb,
818			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
819{
820	struct fscrypt_key_specifier mk_spec;
821	struct fscrypt_master_key *mk;
822	struct key *mk_user;
823	int err;
824
825	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
826	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
827
828	mk = fscrypt_find_master_key(sb, &mk_spec);
829	if (!mk) {
830		err = -ENOKEY;
831		goto out;
832	}
833	down_read(&mk->mk_sem);
834	mk_user = find_master_key_user(mk);
835	if (IS_ERR(mk_user)) {
836		err = PTR_ERR(mk_user);
837	} else {
838		key_put(mk_user);
839		err = 0;
840	}
841	up_read(&mk->mk_sem);
842	fscrypt_put_master_key(mk);
843out:
844	if (err == -ENOKEY && capable(CAP_FOWNER))
845		err = 0;
846	return err;
847}
848
849/*
850 * Try to evict the inode's dentries from the dentry cache.  If the inode is a
851 * directory, then it can have at most one dentry; however, that dentry may be
852 * pinned by child dentries, so first try to evict the children too.
853 */
854static void shrink_dcache_inode(struct inode *inode)
855{
856	struct dentry *dentry;
857
858	if (S_ISDIR(inode->i_mode)) {
859		dentry = d_find_any_alias(inode);
860		if (dentry) {
861			shrink_dcache_parent(dentry);
862			dput(dentry);
863		}
864	}
865	d_prune_aliases(inode);
866}
867
868static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
869{
870	struct fscrypt_info *ci;
871	struct inode *inode;
872	struct inode *toput_inode = NULL;
873
874	spin_lock(&mk->mk_decrypted_inodes_lock);
875
876	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
877		inode = ci->ci_inode;
878		spin_lock(&inode->i_lock);
879		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
880			spin_unlock(&inode->i_lock);
881			continue;
882		}
883		__iget(inode);
884		spin_unlock(&inode->i_lock);
885		spin_unlock(&mk->mk_decrypted_inodes_lock);
886
887		shrink_dcache_inode(inode);
888		iput(toput_inode);
889		toput_inode = inode;
890
891		spin_lock(&mk->mk_decrypted_inodes_lock);
892	}
893
894	spin_unlock(&mk->mk_decrypted_inodes_lock);
895	iput(toput_inode);
896}
897
898static int check_for_busy_inodes(struct super_block *sb,
899				 struct fscrypt_master_key *mk)
900{
901	struct list_head *pos;
902	size_t busy_count = 0;
903	unsigned long ino;
904	char ino_str[50] = "";
905
906	spin_lock(&mk->mk_decrypted_inodes_lock);
907
908	list_for_each(pos, &mk->mk_decrypted_inodes)
909		busy_count++;
910
911	if (busy_count == 0) {
912		spin_unlock(&mk->mk_decrypted_inodes_lock);
913		return 0;
914	}
915
916	{
917		/* select an example file to show for debugging purposes */
918		struct inode *inode =
919			list_first_entry(&mk->mk_decrypted_inodes,
920					 struct fscrypt_info,
921					 ci_master_key_link)->ci_inode;
922		ino = inode->i_ino;
923	}
924	spin_unlock(&mk->mk_decrypted_inodes_lock);
925
926	/* If the inode is currently being created, ino may still be 0. */
927	if (ino)
928		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
929
930	fscrypt_warn(NULL,
931		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
932		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
933		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
934		     ino_str);
935	return -EBUSY;
936}
937
938static int try_to_lock_encrypted_files(struct super_block *sb,
939				       struct fscrypt_master_key *mk)
940{
941	int err1;
942	int err2;
943
944	/*
945	 * An inode can't be evicted while it is dirty or has dirty pages.
946	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
947	 *
948	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
949	 * it works, and it's more important to minimize the amount of caches we
950	 * drop than the amount of data we sync.  Also, unprivileged users can
951	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
952	 */
953	down_read(&sb->s_umount);
954	err1 = sync_filesystem(sb);
955	up_read(&sb->s_umount);
956	/* If a sync error occurs, still try to evict as much as possible. */
957
958	/*
959	 * Inodes are pinned by their dentries, so we have to evict their
960	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
961	 * and inappropriate for use by unprivileged users.  So instead go
962	 * through the inodes' alias lists and try to evict each dentry.
963	 */
964	evict_dentries_for_decrypted_inodes(mk);
965
966	/*
967	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
968	 * the list; any inodes for which that dropped the last reference will
969	 * have been evicted due to fscrypt_drop_inode() detecting the key
970	 * removal and telling the VFS to evict the inode.  So to finish, we
971	 * just need to check whether any inodes couldn't be evicted.
972	 */
973	err2 = check_for_busy_inodes(sb, mk);
974
975	return err1 ?: err2;
976}
977
978/*
979 * Try to remove an fscrypt master encryption key.
980 *
981 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
982 * claim to the key, then removes the key itself if no other users have claims.
983 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
984 * key itself.
985 *
986 * To "remove the key itself", first we wipe the actual master key secret, so
987 * that no more inodes can be unlocked with it.  Then we try to evict all cached
988 * inodes that had been unlocked with the key.
989 *
990 * If all inodes were evicted, then we unlink the fscrypt_master_key from the
991 * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
992 * state (without the actual secret key) where it tracks the list of remaining
993 * inodes.  Userspace can execute the ioctl again later to retry eviction, or
994 * alternatively can re-add the secret key again.
995 *
996 * For more details, see the "Removing keys" section of
997 * Documentation/filesystems/fscrypt.rst.
998 */
999static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
1000{
1001	struct super_block *sb = file_inode(filp)->i_sb;
1002	struct fscrypt_remove_key_arg __user *uarg = _uarg;
1003	struct fscrypt_remove_key_arg arg;
1004	struct fscrypt_master_key *mk;
1005	u32 status_flags = 0;
1006	int err;
1007	bool inodes_remain;
1008
1009	if (copy_from_user(&arg, uarg, sizeof(arg)))
1010		return -EFAULT;
1011
1012	if (!valid_key_spec(&arg.key_spec))
1013		return -EINVAL;
1014
1015	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1016		return -EINVAL;
1017
1018	/*
1019	 * Only root can add and remove keys that are identified by an arbitrary
1020	 * descriptor rather than by a cryptographic hash.
1021	 */
1022	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1023	    !capable(CAP_SYS_ADMIN))
1024		return -EACCES;
1025
1026	/* Find the key being removed. */
1027	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1028	if (!mk)
1029		return -ENOKEY;
1030	down_write(&mk->mk_sem);
1031
1032	/* If relevant, remove current user's (or all users) claim to the key */
1033	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1034		if (all_users)
1035			err = keyring_clear(mk->mk_users);
1036		else
1037			err = remove_master_key_user(mk);
1038		if (err) {
1039			up_write(&mk->mk_sem);
1040			goto out_put_key;
1041		}
1042		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1043			/*
1044			 * Other users have still added the key too.  We removed
1045			 * the current user's claim to the key, but we still
1046			 * can't remove the key itself.
1047			 */
1048			status_flags |=
1049				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1050			err = 0;
1051			up_write(&mk->mk_sem);
1052			goto out_put_key;
1053		}
1054	}
1055
1056	/* No user claims remaining.  Go ahead and wipe the secret. */
1057	err = -ENOKEY;
1058	if (is_master_key_secret_present(&mk->mk_secret)) {
1059		wipe_master_key_secret(&mk->mk_secret);
1060		fscrypt_put_master_key_activeref(sb, mk);
1061		err = 0;
1062	}
1063	inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1064	up_write(&mk->mk_sem);
1065
1066	if (inodes_remain) {
1067		/* Some inodes still reference this key; try to evict them. */
1068		err = try_to_lock_encrypted_files(sb, mk);
1069		if (err == -EBUSY) {
1070			status_flags |=
1071				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1072			err = 0;
1073		}
1074	}
1075	/*
1076	 * We return 0 if we successfully did something: removed a claim to the
1077	 * key, wiped the secret, or tried locking the files again.  Users need
1078	 * to check the informational status flags if they care whether the key
1079	 * has been fully removed including all files locked.
1080	 */
1081out_put_key:
1082	fscrypt_put_master_key(mk);
1083	if (err == 0)
1084		err = put_user(status_flags, &uarg->removal_status_flags);
1085	return err;
1086}
1087
1088int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1089{
1090	return do_remove_key(filp, uarg, false);
1091}
1092EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1093
1094int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1095{
1096	if (!capable(CAP_SYS_ADMIN))
1097		return -EACCES;
1098	return do_remove_key(filp, uarg, true);
1099}
1100EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1101
1102/*
1103 * Retrieve the status of an fscrypt master encryption key.
1104 *
1105 * We set ->status to indicate whether the key is absent, present, or
1106 * incompletely removed.  "Incompletely removed" means that the master key
1107 * secret has been removed, but some files which had been unlocked with it are
1108 * still in use.  This field allows applications to easily determine the state
1109 * of an encrypted directory without using a hack such as trying to open a
1110 * regular file in it (which can confuse the "incompletely removed" state with
1111 * absent or present).
1112 *
1113 * In addition, for v2 policy keys we allow applications to determine, via
1114 * ->status_flags and ->user_count, whether the key has been added by the
1115 * current user, by other users, or by both.  Most applications should not need
1116 * this, since ordinarily only one user should know a given key.  However, if a
1117 * secret key is shared by multiple users, applications may wish to add an
1118 * already-present key to prevent other users from removing it.  This ioctl can
1119 * be used to check whether that really is the case before the work is done to
1120 * add the key --- which might e.g. require prompting the user for a passphrase.
1121 *
1122 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1123 * Documentation/filesystems/fscrypt.rst.
1124 */
1125int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1126{
1127	struct super_block *sb = file_inode(filp)->i_sb;
1128	struct fscrypt_get_key_status_arg arg;
1129	struct fscrypt_master_key *mk;
1130	int err;
1131
1132	if (copy_from_user(&arg, uarg, sizeof(arg)))
1133		return -EFAULT;
1134
1135	if (!valid_key_spec(&arg.key_spec))
1136		return -EINVAL;
1137
1138	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1139		return -EINVAL;
1140
1141	arg.status_flags = 0;
1142	arg.user_count = 0;
1143	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1144
1145	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1146	if (!mk) {
1147		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1148		err = 0;
1149		goto out;
1150	}
1151	down_read(&mk->mk_sem);
1152
1153	if (!is_master_key_secret_present(&mk->mk_secret)) {
1154		arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1155			FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1156			FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1157		err = 0;
1158		goto out_release_key;
1159	}
1160
1161	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1162	if (mk->mk_users) {
1163		struct key *mk_user;
1164
1165		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1166		mk_user = find_master_key_user(mk);
1167		if (!IS_ERR(mk_user)) {
1168			arg.status_flags |=
1169				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1170			key_put(mk_user);
1171		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1172			err = PTR_ERR(mk_user);
1173			goto out_release_key;
1174		}
1175	}
1176	err = 0;
1177out_release_key:
1178	up_read(&mk->mk_sem);
1179	fscrypt_put_master_key(mk);
1180out:
1181	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1182		err = -EFAULT;
1183	return err;
1184}
1185EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1186
1187int __init fscrypt_init_keyring(void)
1188{
1189	int err;
1190
1191	err = register_key_type(&key_type_fscrypt_user);
1192	if (err)
1193		return err;
1194
1195	err = register_key_type(&key_type_fscrypt_provisioning);
1196	if (err)
1197		goto err_unregister_fscrypt_user;
1198
1199	return 0;
1200
1201err_unregister_fscrypt_user:
1202	unregister_key_type(&key_type_fscrypt_user);
1203	return err;
1204}
1205