xref: /kernel/linux/linux-6.6/fs/ceph/snap.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/ceph/ceph_debug.h>
3
4#include <linux/fs.h>
5#include <linux/sort.h>
6#include <linux/slab.h>
7#include <linux/iversion.h>
8#include "super.h"
9#include "mds_client.h"
10#include <linux/ceph/decode.h>
11
12/* unused map expires after 5 minutes */
13#define CEPH_SNAPID_MAP_TIMEOUT	(5 * 60 * HZ)
14
15/*
16 * Snapshots in ceph are driven in large part by cooperation from the
17 * client.  In contrast to local file systems or file servers that
18 * implement snapshots at a single point in the system, ceph's
19 * distributed access to storage requires clients to help decide
20 * whether a write logically occurs before or after a recently created
21 * snapshot.
22 *
23 * This provides a perfect instantanous client-wide snapshot.  Between
24 * clients, however, snapshots may appear to be applied at slightly
25 * different points in time, depending on delays in delivering the
26 * snapshot notification.
27 *
28 * Snapshots are _not_ file system-wide.  Instead, each snapshot
29 * applies to the subdirectory nested beneath some directory.  This
30 * effectively divides the hierarchy into multiple "realms," where all
31 * of the files contained by each realm share the same set of
32 * snapshots.  An individual realm's snap set contains snapshots
33 * explicitly created on that realm, as well as any snaps in its
34 * parent's snap set _after_ the point at which the parent became it's
35 * parent (due to, say, a rename).  Similarly, snaps from prior parents
36 * during the time intervals during which they were the parent are included.
37 *
38 * The client is spared most of this detail, fortunately... it must only
39 * maintains a hierarchy of realms reflecting the current parent/child
40 * realm relationship, and for each realm has an explicit list of snaps
41 * inherited from prior parents.
42 *
43 * A snap_realm struct is maintained for realms containing every inode
44 * with an open cap in the system.  (The needed snap realm information is
45 * provided by the MDS whenever a cap is issued, i.e., on open.)  A 'seq'
46 * version number is used to ensure that as realm parameters change (new
47 * snapshot, new parent, etc.) the client's realm hierarchy is updated.
48 *
49 * The realm hierarchy drives the generation of a 'snap context' for each
50 * realm, which simply lists the resulting set of snaps for the realm.  This
51 * is attached to any writes sent to OSDs.
52 */
53/*
54 * Unfortunately error handling is a bit mixed here.  If we get a snap
55 * update, but don't have enough memory to update our realm hierarchy,
56 * it's not clear what we can do about it (besides complaining to the
57 * console).
58 */
59
60
61/*
62 * increase ref count for the realm
63 *
64 * caller must hold snap_rwsem.
65 */
66void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
67			 struct ceph_snap_realm *realm)
68{
69	lockdep_assert_held(&mdsc->snap_rwsem);
70
71	/*
72	 * The 0->1 and 1->0 transitions must take the snap_empty_lock
73	 * atomically with the refcount change. Go ahead and bump the
74	 * nref here, unless it's 0, in which case we take the spinlock
75	 * and then do the increment and remove it from the list.
76	 */
77	if (atomic_inc_not_zero(&realm->nref))
78		return;
79
80	spin_lock(&mdsc->snap_empty_lock);
81	if (atomic_inc_return(&realm->nref) == 1)
82		list_del_init(&realm->empty_item);
83	spin_unlock(&mdsc->snap_empty_lock);
84}
85
86static void __insert_snap_realm(struct rb_root *root,
87				struct ceph_snap_realm *new)
88{
89	struct rb_node **p = &root->rb_node;
90	struct rb_node *parent = NULL;
91	struct ceph_snap_realm *r = NULL;
92
93	while (*p) {
94		parent = *p;
95		r = rb_entry(parent, struct ceph_snap_realm, node);
96		if (new->ino < r->ino)
97			p = &(*p)->rb_left;
98		else if (new->ino > r->ino)
99			p = &(*p)->rb_right;
100		else
101			BUG();
102	}
103
104	rb_link_node(&new->node, parent, p);
105	rb_insert_color(&new->node, root);
106}
107
108/*
109 * create and get the realm rooted at @ino and bump its ref count.
110 *
111 * caller must hold snap_rwsem for write.
112 */
113static struct ceph_snap_realm *ceph_create_snap_realm(
114	struct ceph_mds_client *mdsc,
115	u64 ino)
116{
117	struct ceph_snap_realm *realm;
118
119	lockdep_assert_held_write(&mdsc->snap_rwsem);
120
121	realm = kzalloc(sizeof(*realm), GFP_NOFS);
122	if (!realm)
123		return ERR_PTR(-ENOMEM);
124
125	/* Do not release the global dummy snaprealm until unmouting */
126	if (ino == CEPH_INO_GLOBAL_SNAPREALM)
127		atomic_set(&realm->nref, 2);
128	else
129		atomic_set(&realm->nref, 1);
130	realm->ino = ino;
131	INIT_LIST_HEAD(&realm->children);
132	INIT_LIST_HEAD(&realm->child_item);
133	INIT_LIST_HEAD(&realm->empty_item);
134	INIT_LIST_HEAD(&realm->dirty_item);
135	INIT_LIST_HEAD(&realm->rebuild_item);
136	INIT_LIST_HEAD(&realm->inodes_with_caps);
137	spin_lock_init(&realm->inodes_with_caps_lock);
138	__insert_snap_realm(&mdsc->snap_realms, realm);
139	mdsc->num_snap_realms++;
140
141	dout("%s %llx %p\n", __func__, realm->ino, realm);
142	return realm;
143}
144
145/*
146 * lookup the realm rooted at @ino.
147 *
148 * caller must hold snap_rwsem.
149 */
150static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc,
151						   u64 ino)
152{
153	struct rb_node *n = mdsc->snap_realms.rb_node;
154	struct ceph_snap_realm *r;
155
156	lockdep_assert_held(&mdsc->snap_rwsem);
157
158	while (n) {
159		r = rb_entry(n, struct ceph_snap_realm, node);
160		if (ino < r->ino)
161			n = n->rb_left;
162		else if (ino > r->ino)
163			n = n->rb_right;
164		else {
165			dout("%s %llx %p\n", __func__, r->ino, r);
166			return r;
167		}
168	}
169	return NULL;
170}
171
172struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
173					       u64 ino)
174{
175	struct ceph_snap_realm *r;
176	r = __lookup_snap_realm(mdsc, ino);
177	if (r)
178		ceph_get_snap_realm(mdsc, r);
179	return r;
180}
181
182static void __put_snap_realm(struct ceph_mds_client *mdsc,
183			     struct ceph_snap_realm *realm);
184
185/*
186 * called with snap_rwsem (write)
187 */
188static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
189				 struct ceph_snap_realm *realm)
190{
191	lockdep_assert_held_write(&mdsc->snap_rwsem);
192
193	dout("%s %p %llx\n", __func__, realm, realm->ino);
194
195	rb_erase(&realm->node, &mdsc->snap_realms);
196	mdsc->num_snap_realms--;
197
198	if (realm->parent) {
199		list_del_init(&realm->child_item);
200		__put_snap_realm(mdsc, realm->parent);
201	}
202
203	kfree(realm->prior_parent_snaps);
204	kfree(realm->snaps);
205	ceph_put_snap_context(realm->cached_context);
206	kfree(realm);
207}
208
209/*
210 * caller holds snap_rwsem (write)
211 */
212static void __put_snap_realm(struct ceph_mds_client *mdsc,
213			     struct ceph_snap_realm *realm)
214{
215	lockdep_assert_held_write(&mdsc->snap_rwsem);
216
217	/*
218	 * We do not require the snap_empty_lock here, as any caller that
219	 * increments the value must hold the snap_rwsem.
220	 */
221	if (atomic_dec_and_test(&realm->nref))
222		__destroy_snap_realm(mdsc, realm);
223}
224
225/*
226 * See comments in ceph_get_snap_realm. Caller needn't hold any locks.
227 */
228void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
229			 struct ceph_snap_realm *realm)
230{
231	if (!atomic_dec_and_lock(&realm->nref, &mdsc->snap_empty_lock))
232		return;
233
234	if (down_write_trylock(&mdsc->snap_rwsem)) {
235		spin_unlock(&mdsc->snap_empty_lock);
236		__destroy_snap_realm(mdsc, realm);
237		up_write(&mdsc->snap_rwsem);
238	} else {
239		list_add(&realm->empty_item, &mdsc->snap_empty);
240		spin_unlock(&mdsc->snap_empty_lock);
241	}
242}
243
244/*
245 * Clean up any realms whose ref counts have dropped to zero.  Note
246 * that this does not include realms who were created but not yet
247 * used.
248 *
249 * Called under snap_rwsem (write)
250 */
251static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
252{
253	struct ceph_snap_realm *realm;
254
255	lockdep_assert_held_write(&mdsc->snap_rwsem);
256
257	spin_lock(&mdsc->snap_empty_lock);
258	while (!list_empty(&mdsc->snap_empty)) {
259		realm = list_first_entry(&mdsc->snap_empty,
260				   struct ceph_snap_realm, empty_item);
261		list_del(&realm->empty_item);
262		spin_unlock(&mdsc->snap_empty_lock);
263		__destroy_snap_realm(mdsc, realm);
264		spin_lock(&mdsc->snap_empty_lock);
265	}
266	spin_unlock(&mdsc->snap_empty_lock);
267}
268
269void ceph_cleanup_global_and_empty_realms(struct ceph_mds_client *mdsc)
270{
271	struct ceph_snap_realm *global_realm;
272
273	down_write(&mdsc->snap_rwsem);
274	global_realm = __lookup_snap_realm(mdsc, CEPH_INO_GLOBAL_SNAPREALM);
275	if (global_realm)
276		ceph_put_snap_realm(mdsc, global_realm);
277	__cleanup_empty_realms(mdsc);
278	up_write(&mdsc->snap_rwsem);
279}
280
281/*
282 * adjust the parent realm of a given @realm.  adjust child list, and parent
283 * pointers, and ref counts appropriately.
284 *
285 * return true if parent was changed, 0 if unchanged, <0 on error.
286 *
287 * caller must hold snap_rwsem for write.
288 */
289static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
290				    struct ceph_snap_realm *realm,
291				    u64 parentino)
292{
293	struct ceph_snap_realm *parent;
294
295	lockdep_assert_held_write(&mdsc->snap_rwsem);
296
297	if (realm->parent_ino == parentino)
298		return 0;
299
300	parent = ceph_lookup_snap_realm(mdsc, parentino);
301	if (!parent) {
302		parent = ceph_create_snap_realm(mdsc, parentino);
303		if (IS_ERR(parent))
304			return PTR_ERR(parent);
305	}
306	dout("%s %llx %p: %llx %p -> %llx %p\n", __func__, realm->ino,
307	     realm, realm->parent_ino, realm->parent, parentino, parent);
308	if (realm->parent) {
309		list_del_init(&realm->child_item);
310		ceph_put_snap_realm(mdsc, realm->parent);
311	}
312	realm->parent_ino = parentino;
313	realm->parent = parent;
314	list_add(&realm->child_item, &parent->children);
315	return 1;
316}
317
318
319static int cmpu64_rev(const void *a, const void *b)
320{
321	if (*(u64 *)a < *(u64 *)b)
322		return 1;
323	if (*(u64 *)a > *(u64 *)b)
324		return -1;
325	return 0;
326}
327
328
329/*
330 * build the snap context for a given realm.
331 */
332static int build_snap_context(struct ceph_snap_realm *realm,
333			      struct list_head *realm_queue,
334			      struct list_head *dirty_realms)
335{
336	struct ceph_snap_realm *parent = realm->parent;
337	struct ceph_snap_context *snapc;
338	int err = 0;
339	u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
340
341	/*
342	 * build parent context, if it hasn't been built.
343	 * conservatively estimate that all parent snaps might be
344	 * included by us.
345	 */
346	if (parent) {
347		if (!parent->cached_context) {
348			/* add to the queue head */
349			list_add(&parent->rebuild_item, realm_queue);
350			return 1;
351		}
352		num += parent->cached_context->num_snaps;
353	}
354
355	/* do i actually need to update?  not if my context seq
356	   matches realm seq, and my parents' does to.  (this works
357	   because we rebuild_snap_realms() works _downward_ in
358	   hierarchy after each update.) */
359	if (realm->cached_context &&
360	    realm->cached_context->seq == realm->seq &&
361	    (!parent ||
362	     realm->cached_context->seq >= parent->cached_context->seq)) {
363		dout("%s %llx %p: %p seq %lld (%u snaps) (unchanged)\n",
364		     __func__, realm->ino, realm, realm->cached_context,
365		     realm->cached_context->seq,
366		     (unsigned int)realm->cached_context->num_snaps);
367		return 0;
368	}
369
370	/* alloc new snap context */
371	err = -ENOMEM;
372	if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
373		goto fail;
374	snapc = ceph_create_snap_context(num, GFP_NOFS);
375	if (!snapc)
376		goto fail;
377
378	/* build (reverse sorted) snap vector */
379	num = 0;
380	snapc->seq = realm->seq;
381	if (parent) {
382		u32 i;
383
384		/* include any of parent's snaps occurring _after_ my
385		   parent became my parent */
386		for (i = 0; i < parent->cached_context->num_snaps; i++)
387			if (parent->cached_context->snaps[i] >=
388			    realm->parent_since)
389				snapc->snaps[num++] =
390					parent->cached_context->snaps[i];
391		if (parent->cached_context->seq > snapc->seq)
392			snapc->seq = parent->cached_context->seq;
393	}
394	memcpy(snapc->snaps + num, realm->snaps,
395	       sizeof(u64)*realm->num_snaps);
396	num += realm->num_snaps;
397	memcpy(snapc->snaps + num, realm->prior_parent_snaps,
398	       sizeof(u64)*realm->num_prior_parent_snaps);
399	num += realm->num_prior_parent_snaps;
400
401	sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
402	snapc->num_snaps = num;
403	dout("%s %llx %p: %p seq %lld (%u snaps)\n", __func__, realm->ino,
404	     realm, snapc, snapc->seq, (unsigned int) snapc->num_snaps);
405
406	ceph_put_snap_context(realm->cached_context);
407	realm->cached_context = snapc;
408	/* queue realm for cap_snap creation */
409	list_add_tail(&realm->dirty_item, dirty_realms);
410	return 0;
411
412fail:
413	/*
414	 * if we fail, clear old (incorrect) cached_context... hopefully
415	 * we'll have better luck building it later
416	 */
417	if (realm->cached_context) {
418		ceph_put_snap_context(realm->cached_context);
419		realm->cached_context = NULL;
420	}
421	pr_err("%s %llx %p fail %d\n", __func__, realm->ino, realm, err);
422	return err;
423}
424
425/*
426 * rebuild snap context for the given realm and all of its children.
427 */
428static void rebuild_snap_realms(struct ceph_snap_realm *realm,
429				struct list_head *dirty_realms)
430{
431	LIST_HEAD(realm_queue);
432	int last = 0;
433	bool skip = false;
434
435	list_add_tail(&realm->rebuild_item, &realm_queue);
436
437	while (!list_empty(&realm_queue)) {
438		struct ceph_snap_realm *_realm, *child;
439
440		_realm = list_first_entry(&realm_queue,
441					  struct ceph_snap_realm,
442					  rebuild_item);
443
444		/*
445		 * If the last building failed dues to memory
446		 * issue, just empty the realm_queue and return
447		 * to avoid infinite loop.
448		 */
449		if (last < 0) {
450			list_del_init(&_realm->rebuild_item);
451			continue;
452		}
453
454		last = build_snap_context(_realm, &realm_queue, dirty_realms);
455		dout("%s %llx %p, %s\n", __func__, _realm->ino, _realm,
456		     last > 0 ? "is deferred" : !last ? "succeeded" : "failed");
457
458		/* is any child in the list ? */
459		list_for_each_entry(child, &_realm->children, child_item) {
460			if (!list_empty(&child->rebuild_item)) {
461				skip = true;
462				break;
463			}
464		}
465
466		if (!skip) {
467			list_for_each_entry(child, &_realm->children, child_item)
468				list_add_tail(&child->rebuild_item, &realm_queue);
469		}
470
471		/* last == 1 means need to build parent first */
472		if (last <= 0)
473			list_del_init(&_realm->rebuild_item);
474	}
475}
476
477
478/*
479 * helper to allocate and decode an array of snapids.  free prior
480 * instance, if any.
481 */
482static int dup_array(u64 **dst, __le64 *src, u32 num)
483{
484	u32 i;
485
486	kfree(*dst);
487	if (num) {
488		*dst = kcalloc(num, sizeof(u64), GFP_NOFS);
489		if (!*dst)
490			return -ENOMEM;
491		for (i = 0; i < num; i++)
492			(*dst)[i] = get_unaligned_le64(src + i);
493	} else {
494		*dst = NULL;
495	}
496	return 0;
497}
498
499static bool has_new_snaps(struct ceph_snap_context *o,
500			  struct ceph_snap_context *n)
501{
502	if (n->num_snaps == 0)
503		return false;
504	/* snaps are in descending order */
505	return n->snaps[0] > o->seq;
506}
507
508/*
509 * When a snapshot is applied, the size/mtime inode metadata is queued
510 * in a ceph_cap_snap (one for each snapshot) until writeback
511 * completes and the metadata can be flushed back to the MDS.
512 *
513 * However, if a (sync) write is currently in-progress when we apply
514 * the snapshot, we have to wait until the write succeeds or fails
515 * (and a final size/mtime is known).  In this case the
516 * cap_snap->writing = 1, and is said to be "pending."  When the write
517 * finishes, we __ceph_finish_cap_snap().
518 *
519 * Caller must hold snap_rwsem for read (i.e., the realm topology won't
520 * change).
521 */
522static void ceph_queue_cap_snap(struct ceph_inode_info *ci,
523				struct ceph_cap_snap **pcapsnap)
524{
525	struct inode *inode = &ci->netfs.inode;
526	struct ceph_snap_context *old_snapc, *new_snapc;
527	struct ceph_cap_snap *capsnap = *pcapsnap;
528	struct ceph_buffer *old_blob = NULL;
529	int used, dirty;
530
531	spin_lock(&ci->i_ceph_lock);
532	used = __ceph_caps_used(ci);
533	dirty = __ceph_caps_dirty(ci);
534
535	old_snapc = ci->i_head_snapc;
536	new_snapc = ci->i_snap_realm->cached_context;
537
538	/*
539	 * If there is a write in progress, treat that as a dirty Fw,
540	 * even though it hasn't completed yet; by the time we finish
541	 * up this capsnap it will be.
542	 */
543	if (used & CEPH_CAP_FILE_WR)
544		dirty |= CEPH_CAP_FILE_WR;
545
546	if (__ceph_have_pending_cap_snap(ci)) {
547		/* there is no point in queuing multiple "pending" cap_snaps,
548		   as no new writes are allowed to start when pending, so any
549		   writes in progress now were started before the previous
550		   cap_snap.  lucky us. */
551		dout("%s %p %llx.%llx already pending\n",
552		     __func__, inode, ceph_vinop(inode));
553		goto update_snapc;
554	}
555	if (ci->i_wrbuffer_ref_head == 0 &&
556	    !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) {
557		dout("%s %p %llx.%llx nothing dirty|writing\n",
558		     __func__, inode, ceph_vinop(inode));
559		goto update_snapc;
560	}
561
562	BUG_ON(!old_snapc);
563
564	/*
565	 * There is no need to send FLUSHSNAP message to MDS if there is
566	 * no new snapshot. But when there is dirty pages or on-going
567	 * writes, we still need to create cap_snap. cap_snap is needed
568	 * by the write path and page writeback path.
569	 *
570	 * also see ceph_try_drop_cap_snap()
571	 */
572	if (has_new_snaps(old_snapc, new_snapc)) {
573		if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))
574			capsnap->need_flush = true;
575	} else {
576		if (!(used & CEPH_CAP_FILE_WR) &&
577		    ci->i_wrbuffer_ref_head == 0) {
578			dout("%s %p %llx.%llx no new_snap|dirty_page|writing\n",
579			     __func__, inode, ceph_vinop(inode));
580			goto update_snapc;
581		}
582	}
583
584	dout("%s %p %llx.%llx cap_snap %p queuing under %p %s %s\n",
585	     __func__, inode, ceph_vinop(inode), capsnap, old_snapc,
586	     ceph_cap_string(dirty), capsnap->need_flush ? "" : "no_flush");
587	ihold(inode);
588
589	capsnap->follows = old_snapc->seq;
590	capsnap->issued = __ceph_caps_issued(ci, NULL);
591	capsnap->dirty = dirty;
592
593	capsnap->mode = inode->i_mode;
594	capsnap->uid = inode->i_uid;
595	capsnap->gid = inode->i_gid;
596
597	if (dirty & CEPH_CAP_XATTR_EXCL) {
598		old_blob = __ceph_build_xattrs_blob(ci);
599		capsnap->xattr_blob =
600			ceph_buffer_get(ci->i_xattrs.blob);
601		capsnap->xattr_version = ci->i_xattrs.version;
602	} else {
603		capsnap->xattr_blob = NULL;
604		capsnap->xattr_version = 0;
605	}
606
607	capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
608
609	/* dirty page count moved from _head to this cap_snap;
610	   all subsequent writes page dirties occur _after_ this
611	   snapshot. */
612	capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
613	ci->i_wrbuffer_ref_head = 0;
614	capsnap->context = old_snapc;
615	list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
616
617	if (used & CEPH_CAP_FILE_WR) {
618		dout("%s %p %llx.%llx cap_snap %p snapc %p seq %llu used WR,"
619		     " now pending\n", __func__, inode, ceph_vinop(inode),
620		     capsnap, old_snapc, old_snapc->seq);
621		capsnap->writing = 1;
622	} else {
623		/* note mtime, size NOW. */
624		__ceph_finish_cap_snap(ci, capsnap);
625	}
626	*pcapsnap = NULL;
627	old_snapc = NULL;
628
629update_snapc:
630	if (ci->i_wrbuffer_ref_head == 0 &&
631	    ci->i_wr_ref == 0 &&
632	    ci->i_dirty_caps == 0 &&
633	    ci->i_flushing_caps == 0) {
634		ci->i_head_snapc = NULL;
635	} else {
636		ci->i_head_snapc = ceph_get_snap_context(new_snapc);
637		dout(" new snapc is %p\n", new_snapc);
638	}
639	spin_unlock(&ci->i_ceph_lock);
640
641	ceph_buffer_put(old_blob);
642	ceph_put_snap_context(old_snapc);
643}
644
645/*
646 * Finalize the size, mtime for a cap_snap.. that is, settle on final values
647 * to be used for the snapshot, to be flushed back to the mds.
648 *
649 * If capsnap can now be flushed, add to snap_flush list, and return 1.
650 *
651 * Caller must hold i_ceph_lock.
652 */
653int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
654			    struct ceph_cap_snap *capsnap)
655{
656	struct inode *inode = &ci->netfs.inode;
657	struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
658
659	BUG_ON(capsnap->writing);
660	capsnap->size = i_size_read(inode);
661	capsnap->mtime = inode->i_mtime;
662	capsnap->atime = inode->i_atime;
663	capsnap->ctime = inode_get_ctime(inode);
664	capsnap->btime = ci->i_btime;
665	capsnap->change_attr = inode_peek_iversion_raw(inode);
666	capsnap->time_warp_seq = ci->i_time_warp_seq;
667	capsnap->truncate_size = ci->i_truncate_size;
668	capsnap->truncate_seq = ci->i_truncate_seq;
669	if (capsnap->dirty_pages) {
670		dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu "
671		     "still has %d dirty pages\n", __func__, inode,
672		     ceph_vinop(inode), capsnap, capsnap->context,
673		     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
674		     capsnap->size, capsnap->dirty_pages);
675		return 0;
676	}
677
678	/*
679	 * Defer flushing the capsnap if the dirty buffer not flushed yet.
680	 * And trigger to flush the buffer immediately.
681	 */
682	if (ci->i_wrbuffer_ref) {
683		dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu "
684		     "used WRBUFFER, delaying\n", __func__, inode,
685		     ceph_vinop(inode), capsnap, capsnap->context,
686		     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
687		     capsnap->size);
688		ceph_queue_writeback(inode);
689		return 0;
690	}
691
692	ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS;
693	dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu\n",
694	     __func__, inode, ceph_vinop(inode), capsnap, capsnap->context,
695	     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
696	     capsnap->size);
697
698	spin_lock(&mdsc->snap_flush_lock);
699	if (list_empty(&ci->i_snap_flush_item)) {
700		ihold(inode);
701		list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
702	}
703	spin_unlock(&mdsc->snap_flush_lock);
704	return 1;  /* caller may want to ceph_flush_snaps */
705}
706
707/*
708 * Queue cap_snaps for snap writeback for this realm and its children.
709 * Called under snap_rwsem, so realm topology won't change.
710 */
711static void queue_realm_cap_snaps(struct ceph_snap_realm *realm)
712{
713	struct ceph_inode_info *ci;
714	struct inode *lastinode = NULL;
715	struct ceph_cap_snap *capsnap = NULL;
716
717	dout("%s %p %llx inode\n", __func__, realm, realm->ino);
718
719	spin_lock(&realm->inodes_with_caps_lock);
720	list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) {
721		struct inode *inode = igrab(&ci->netfs.inode);
722		if (!inode)
723			continue;
724		spin_unlock(&realm->inodes_with_caps_lock);
725		iput(lastinode);
726		lastinode = inode;
727
728		/*
729		 * Allocate the capsnap memory outside of ceph_queue_cap_snap()
730		 * to reduce very possible but unnecessary frequently memory
731		 * allocate/free in this loop.
732		 */
733		if (!capsnap) {
734			capsnap = kmem_cache_zalloc(ceph_cap_snap_cachep, GFP_NOFS);
735			if (!capsnap) {
736				pr_err("ENOMEM allocating ceph_cap_snap on %p\n",
737				       inode);
738				return;
739			}
740		}
741		capsnap->cap_flush.is_capsnap = true;
742		refcount_set(&capsnap->nref, 1);
743		INIT_LIST_HEAD(&capsnap->cap_flush.i_list);
744		INIT_LIST_HEAD(&capsnap->cap_flush.g_list);
745		INIT_LIST_HEAD(&capsnap->ci_item);
746
747		ceph_queue_cap_snap(ci, &capsnap);
748		spin_lock(&realm->inodes_with_caps_lock);
749	}
750	spin_unlock(&realm->inodes_with_caps_lock);
751	iput(lastinode);
752
753	if (capsnap)
754		kmem_cache_free(ceph_cap_snap_cachep, capsnap);
755	dout("%s %p %llx done\n", __func__, realm, realm->ino);
756}
757
758/*
759 * Parse and apply a snapblob "snap trace" from the MDS.  This specifies
760 * the snap realm parameters from a given realm and all of its ancestors,
761 * up to the root.
762 *
763 * Caller must hold snap_rwsem for write.
764 */
765int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
766			   void *p, void *e, bool deletion,
767			   struct ceph_snap_realm **realm_ret)
768{
769	struct ceph_mds_snap_realm *ri;    /* encoded */
770	__le64 *snaps;                     /* encoded */
771	__le64 *prior_parent_snaps;        /* encoded */
772	struct ceph_snap_realm *realm;
773	struct ceph_snap_realm *first_realm = NULL;
774	struct ceph_snap_realm *realm_to_rebuild = NULL;
775	struct ceph_client *client = mdsc->fsc->client;
776	int rebuild_snapcs;
777	int err = -ENOMEM;
778	int ret;
779	LIST_HEAD(dirty_realms);
780
781	lockdep_assert_held_write(&mdsc->snap_rwsem);
782
783	dout("%s deletion=%d\n", __func__, deletion);
784more:
785	realm = NULL;
786	rebuild_snapcs = 0;
787	ceph_decode_need(&p, e, sizeof(*ri), bad);
788	ri = p;
789	p += sizeof(*ri);
790	ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
791			    le32_to_cpu(ri->num_prior_parent_snaps)), bad);
792	snaps = p;
793	p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
794	prior_parent_snaps = p;
795	p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
796
797	realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
798	if (!realm) {
799		realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
800		if (IS_ERR(realm)) {
801			err = PTR_ERR(realm);
802			goto fail;
803		}
804	}
805
806	/* ensure the parent is correct */
807	err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
808	if (err < 0)
809		goto fail;
810	rebuild_snapcs += err;
811
812	if (le64_to_cpu(ri->seq) > realm->seq) {
813		dout("%s updating %llx %p %lld -> %lld\n", __func__,
814		     realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
815		/* update realm parameters, snap lists */
816		realm->seq = le64_to_cpu(ri->seq);
817		realm->created = le64_to_cpu(ri->created);
818		realm->parent_since = le64_to_cpu(ri->parent_since);
819
820		realm->num_snaps = le32_to_cpu(ri->num_snaps);
821		err = dup_array(&realm->snaps, snaps, realm->num_snaps);
822		if (err < 0)
823			goto fail;
824
825		realm->num_prior_parent_snaps =
826			le32_to_cpu(ri->num_prior_parent_snaps);
827		err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
828				realm->num_prior_parent_snaps);
829		if (err < 0)
830			goto fail;
831
832		if (realm->seq > mdsc->last_snap_seq)
833			mdsc->last_snap_seq = realm->seq;
834
835		rebuild_snapcs = 1;
836	} else if (!realm->cached_context) {
837		dout("%s %llx %p seq %lld new\n", __func__,
838		     realm->ino, realm, realm->seq);
839		rebuild_snapcs = 1;
840	} else {
841		dout("%s %llx %p seq %lld unchanged\n", __func__,
842		     realm->ino, realm, realm->seq);
843	}
844
845	dout("done with %llx %p, rebuild_snapcs=%d, %p %p\n", realm->ino,
846	     realm, rebuild_snapcs, p, e);
847
848	/*
849	 * this will always track the uppest parent realm from which
850	 * we need to rebuild the snapshot contexts _downward_ in
851	 * hierarchy.
852	 */
853	if (rebuild_snapcs)
854		realm_to_rebuild = realm;
855
856	/* rebuild_snapcs when we reach the _end_ (root) of the trace */
857	if (realm_to_rebuild && p >= e)
858		rebuild_snap_realms(realm_to_rebuild, &dirty_realms);
859
860	if (!first_realm)
861		first_realm = realm;
862	else
863		ceph_put_snap_realm(mdsc, realm);
864
865	if (p < e)
866		goto more;
867
868	/*
869	 * queue cap snaps _after_ we've built the new snap contexts,
870	 * so that i_head_snapc can be set appropriately.
871	 */
872	while (!list_empty(&dirty_realms)) {
873		realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
874					 dirty_item);
875		list_del_init(&realm->dirty_item);
876		queue_realm_cap_snaps(realm);
877	}
878
879	if (realm_ret)
880		*realm_ret = first_realm;
881	else
882		ceph_put_snap_realm(mdsc, first_realm);
883
884	__cleanup_empty_realms(mdsc);
885	return 0;
886
887bad:
888	err = -EIO;
889fail:
890	if (realm && !IS_ERR(realm))
891		ceph_put_snap_realm(mdsc, realm);
892	if (first_realm)
893		ceph_put_snap_realm(mdsc, first_realm);
894	pr_err("%s error %d\n", __func__, err);
895
896	/*
897	 * When receiving a corrupted snap trace we don't know what
898	 * exactly has happened in MDS side. And we shouldn't continue
899	 * writing to OSD, which may corrupt the snapshot contents.
900	 *
901	 * Just try to blocklist this kclient and then this kclient
902	 * must be remounted to continue after the corrupted metadata
903	 * fixed in the MDS side.
904	 */
905	WRITE_ONCE(mdsc->fsc->mount_state, CEPH_MOUNT_FENCE_IO);
906	ret = ceph_monc_blocklist_add(&client->monc, &client->msgr.inst.addr);
907	if (ret)
908		pr_err("%s failed to blocklist %s: %d\n", __func__,
909		       ceph_pr_addr(&client->msgr.inst.addr), ret);
910
911	WARN(1, "%s: %s%sdo remount to continue%s",
912	     __func__, ret ? "" : ceph_pr_addr(&client->msgr.inst.addr),
913	     ret ? "" : " was blocklisted, ",
914	     err == -EIO ? " after corrupted snaptrace is fixed" : "");
915
916	return err;
917}
918
919
920/*
921 * Send any cap_snaps that are queued for flush.  Try to carry
922 * s_mutex across multiple snap flushes to avoid locking overhead.
923 *
924 * Caller holds no locks.
925 */
926static void flush_snaps(struct ceph_mds_client *mdsc)
927{
928	struct ceph_inode_info *ci;
929	struct inode *inode;
930	struct ceph_mds_session *session = NULL;
931
932	dout("%s\n", __func__);
933	spin_lock(&mdsc->snap_flush_lock);
934	while (!list_empty(&mdsc->snap_flush_list)) {
935		ci = list_first_entry(&mdsc->snap_flush_list,
936				struct ceph_inode_info, i_snap_flush_item);
937		inode = &ci->netfs.inode;
938		ihold(inode);
939		spin_unlock(&mdsc->snap_flush_lock);
940		ceph_flush_snaps(ci, &session);
941		iput(inode);
942		spin_lock(&mdsc->snap_flush_lock);
943	}
944	spin_unlock(&mdsc->snap_flush_lock);
945
946	ceph_put_mds_session(session);
947	dout("%s done\n", __func__);
948}
949
950/**
951 * ceph_change_snap_realm - change the snap_realm for an inode
952 * @inode: inode to move to new snap realm
953 * @realm: new realm to move inode into (may be NULL)
954 *
955 * Detach an inode from its old snaprealm (if any) and attach it to
956 * the new snaprealm (if any). The old snap realm reference held by
957 * the inode is put. If realm is non-NULL, then the caller's reference
958 * to it is taken over by the inode.
959 */
960void ceph_change_snap_realm(struct inode *inode, struct ceph_snap_realm *realm)
961{
962	struct ceph_inode_info *ci = ceph_inode(inode);
963	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
964	struct ceph_snap_realm *oldrealm = ci->i_snap_realm;
965
966	lockdep_assert_held(&ci->i_ceph_lock);
967
968	if (oldrealm) {
969		spin_lock(&oldrealm->inodes_with_caps_lock);
970		list_del_init(&ci->i_snap_realm_item);
971		if (oldrealm->ino == ci->i_vino.ino)
972			oldrealm->inode = NULL;
973		spin_unlock(&oldrealm->inodes_with_caps_lock);
974		ceph_put_snap_realm(mdsc, oldrealm);
975	}
976
977	ci->i_snap_realm = realm;
978
979	if (realm) {
980		spin_lock(&realm->inodes_with_caps_lock);
981		list_add(&ci->i_snap_realm_item, &realm->inodes_with_caps);
982		if (realm->ino == ci->i_vino.ino)
983			realm->inode = inode;
984		spin_unlock(&realm->inodes_with_caps_lock);
985	}
986}
987
988/*
989 * Handle a snap notification from the MDS.
990 *
991 * This can take two basic forms: the simplest is just a snap creation
992 * or deletion notification on an existing realm.  This should update the
993 * realm and its children.
994 *
995 * The more difficult case is realm creation, due to snap creation at a
996 * new point in the file hierarchy, or due to a rename that moves a file or
997 * directory into another realm.
998 */
999void ceph_handle_snap(struct ceph_mds_client *mdsc,
1000		      struct ceph_mds_session *session,
1001		      struct ceph_msg *msg)
1002{
1003	struct super_block *sb = mdsc->fsc->sb;
1004	int mds = session->s_mds;
1005	u64 split;
1006	int op;
1007	int trace_len;
1008	struct ceph_snap_realm *realm = NULL;
1009	void *p = msg->front.iov_base;
1010	void *e = p + msg->front.iov_len;
1011	struct ceph_mds_snap_head *h;
1012	int num_split_inos, num_split_realms;
1013	__le64 *split_inos = NULL, *split_realms = NULL;
1014	int i;
1015	int locked_rwsem = 0;
1016	bool close_sessions = false;
1017
1018	if (!ceph_inc_mds_stopping_blocker(mdsc, session))
1019		return;
1020
1021	/* decode */
1022	if (msg->front.iov_len < sizeof(*h))
1023		goto bad;
1024	h = p;
1025	op = le32_to_cpu(h->op);
1026	split = le64_to_cpu(h->split);   /* non-zero if we are splitting an
1027					  * existing realm */
1028	num_split_inos = le32_to_cpu(h->num_split_inos);
1029	num_split_realms = le32_to_cpu(h->num_split_realms);
1030	trace_len = le32_to_cpu(h->trace_len);
1031	p += sizeof(*h);
1032
1033	dout("%s from mds%d op %s split %llx tracelen %d\n", __func__,
1034	     mds, ceph_snap_op_name(op), split, trace_len);
1035
1036	down_write(&mdsc->snap_rwsem);
1037	locked_rwsem = 1;
1038
1039	if (op == CEPH_SNAP_OP_SPLIT) {
1040		struct ceph_mds_snap_realm *ri;
1041
1042		/*
1043		 * A "split" breaks part of an existing realm off into
1044		 * a new realm.  The MDS provides a list of inodes
1045		 * (with caps) and child realms that belong to the new
1046		 * child.
1047		 */
1048		split_inos = p;
1049		p += sizeof(u64) * num_split_inos;
1050		split_realms = p;
1051		p += sizeof(u64) * num_split_realms;
1052		ceph_decode_need(&p, e, sizeof(*ri), bad);
1053		/* we will peek at realm info here, but will _not_
1054		 * advance p, as the realm update will occur below in
1055		 * ceph_update_snap_trace. */
1056		ri = p;
1057
1058		realm = ceph_lookup_snap_realm(mdsc, split);
1059		if (!realm) {
1060			realm = ceph_create_snap_realm(mdsc, split);
1061			if (IS_ERR(realm))
1062				goto out;
1063		}
1064
1065		dout("splitting snap_realm %llx %p\n", realm->ino, realm);
1066		for (i = 0; i < num_split_inos; i++) {
1067			struct ceph_vino vino = {
1068				.ino = le64_to_cpu(split_inos[i]),
1069				.snap = CEPH_NOSNAP,
1070			};
1071			struct inode *inode = ceph_find_inode(sb, vino);
1072			struct ceph_inode_info *ci;
1073
1074			if (!inode)
1075				continue;
1076			ci = ceph_inode(inode);
1077
1078			spin_lock(&ci->i_ceph_lock);
1079			if (!ci->i_snap_realm)
1080				goto skip_inode;
1081			/*
1082			 * If this inode belongs to a realm that was
1083			 * created after our new realm, we experienced
1084			 * a race (due to another split notifications
1085			 * arriving from a different MDS).  So skip
1086			 * this inode.
1087			 */
1088			if (ci->i_snap_realm->created >
1089			    le64_to_cpu(ri->created)) {
1090				dout(" leaving %p %llx.%llx in newer realm %llx %p\n",
1091				     inode, ceph_vinop(inode), ci->i_snap_realm->ino,
1092				     ci->i_snap_realm);
1093				goto skip_inode;
1094			}
1095			dout(" will move %p %llx.%llx to split realm %llx %p\n",
1096			     inode, ceph_vinop(inode), realm->ino, realm);
1097
1098			ceph_get_snap_realm(mdsc, realm);
1099			ceph_change_snap_realm(inode, realm);
1100			spin_unlock(&ci->i_ceph_lock);
1101			iput(inode);
1102			continue;
1103
1104skip_inode:
1105			spin_unlock(&ci->i_ceph_lock);
1106			iput(inode);
1107		}
1108
1109		/* we may have taken some of the old realm's children. */
1110		for (i = 0; i < num_split_realms; i++) {
1111			struct ceph_snap_realm *child =
1112				__lookup_snap_realm(mdsc,
1113					   le64_to_cpu(split_realms[i]));
1114			if (!child)
1115				continue;
1116			adjust_snap_realm_parent(mdsc, child, realm->ino);
1117		}
1118	} else {
1119		/*
1120		 * In the non-split case both 'num_split_inos' and
1121		 * 'num_split_realms' should be 0, making this a no-op.
1122		 * However the MDS happens to populate 'split_realms' list
1123		 * in one of the UPDATE op cases by mistake.
1124		 *
1125		 * Skip both lists just in case to ensure that 'p' is
1126		 * positioned at the start of realm info, as expected by
1127		 * ceph_update_snap_trace().
1128		 */
1129		p += sizeof(u64) * num_split_inos;
1130		p += sizeof(u64) * num_split_realms;
1131	}
1132
1133	/*
1134	 * update using the provided snap trace. if we are deleting a
1135	 * snap, we can avoid queueing cap_snaps.
1136	 */
1137	if (ceph_update_snap_trace(mdsc, p, e,
1138				   op == CEPH_SNAP_OP_DESTROY,
1139				   NULL)) {
1140		close_sessions = true;
1141		goto bad;
1142	}
1143
1144	if (op == CEPH_SNAP_OP_SPLIT)
1145		/* we took a reference when we created the realm, above */
1146		ceph_put_snap_realm(mdsc, realm);
1147
1148	__cleanup_empty_realms(mdsc);
1149
1150	up_write(&mdsc->snap_rwsem);
1151
1152	flush_snaps(mdsc);
1153	ceph_dec_mds_stopping_blocker(mdsc);
1154	return;
1155
1156bad:
1157	pr_err("%s corrupt snap message from mds%d\n", __func__, mds);
1158	ceph_msg_dump(msg);
1159out:
1160	if (locked_rwsem)
1161		up_write(&mdsc->snap_rwsem);
1162
1163	ceph_dec_mds_stopping_blocker(mdsc);
1164
1165	if (close_sessions)
1166		ceph_mdsc_close_sessions(mdsc);
1167	return;
1168}
1169
1170struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc,
1171					    u64 snap)
1172{
1173	struct ceph_snapid_map *sm, *exist;
1174	struct rb_node **p, *parent;
1175	int ret;
1176
1177	exist = NULL;
1178	spin_lock(&mdsc->snapid_map_lock);
1179	p = &mdsc->snapid_map_tree.rb_node;
1180	while (*p) {
1181		exist = rb_entry(*p, struct ceph_snapid_map, node);
1182		if (snap > exist->snap) {
1183			p = &(*p)->rb_left;
1184		} else if (snap < exist->snap) {
1185			p = &(*p)->rb_right;
1186		} else {
1187			if (atomic_inc_return(&exist->ref) == 1)
1188				list_del_init(&exist->lru);
1189			break;
1190		}
1191		exist = NULL;
1192	}
1193	spin_unlock(&mdsc->snapid_map_lock);
1194	if (exist) {
1195		dout("%s found snapid map %llx -> %x\n", __func__,
1196		     exist->snap, exist->dev);
1197		return exist;
1198	}
1199
1200	sm = kmalloc(sizeof(*sm), GFP_NOFS);
1201	if (!sm)
1202		return NULL;
1203
1204	ret = get_anon_bdev(&sm->dev);
1205	if (ret < 0) {
1206		kfree(sm);
1207		return NULL;
1208	}
1209
1210	INIT_LIST_HEAD(&sm->lru);
1211	atomic_set(&sm->ref, 1);
1212	sm->snap = snap;
1213
1214	exist = NULL;
1215	parent = NULL;
1216	p = &mdsc->snapid_map_tree.rb_node;
1217	spin_lock(&mdsc->snapid_map_lock);
1218	while (*p) {
1219		parent = *p;
1220		exist = rb_entry(*p, struct ceph_snapid_map, node);
1221		if (snap > exist->snap)
1222			p = &(*p)->rb_left;
1223		else if (snap < exist->snap)
1224			p = &(*p)->rb_right;
1225		else
1226			break;
1227		exist = NULL;
1228	}
1229	if (exist) {
1230		if (atomic_inc_return(&exist->ref) == 1)
1231			list_del_init(&exist->lru);
1232	} else {
1233		rb_link_node(&sm->node, parent, p);
1234		rb_insert_color(&sm->node, &mdsc->snapid_map_tree);
1235	}
1236	spin_unlock(&mdsc->snapid_map_lock);
1237	if (exist) {
1238		free_anon_bdev(sm->dev);
1239		kfree(sm);
1240		dout("%s found snapid map %llx -> %x\n", __func__,
1241		     exist->snap, exist->dev);
1242		return exist;
1243	}
1244
1245	dout("%s create snapid map %llx -> %x\n", __func__,
1246	     sm->snap, sm->dev);
1247	return sm;
1248}
1249
1250void ceph_put_snapid_map(struct ceph_mds_client* mdsc,
1251			 struct ceph_snapid_map *sm)
1252{
1253	if (!sm)
1254		return;
1255	if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) {
1256		if (!RB_EMPTY_NODE(&sm->node)) {
1257			sm->last_used = jiffies;
1258			list_add_tail(&sm->lru, &mdsc->snapid_map_lru);
1259			spin_unlock(&mdsc->snapid_map_lock);
1260		} else {
1261			/* already cleaned up by
1262			 * ceph_cleanup_snapid_map() */
1263			spin_unlock(&mdsc->snapid_map_lock);
1264			kfree(sm);
1265		}
1266	}
1267}
1268
1269void ceph_trim_snapid_map(struct ceph_mds_client *mdsc)
1270{
1271	struct ceph_snapid_map *sm;
1272	unsigned long now;
1273	LIST_HEAD(to_free);
1274
1275	spin_lock(&mdsc->snapid_map_lock);
1276	now = jiffies;
1277
1278	while (!list_empty(&mdsc->snapid_map_lru)) {
1279		sm = list_first_entry(&mdsc->snapid_map_lru,
1280				      struct ceph_snapid_map, lru);
1281		if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now))
1282			break;
1283
1284		rb_erase(&sm->node, &mdsc->snapid_map_tree);
1285		list_move(&sm->lru, &to_free);
1286	}
1287	spin_unlock(&mdsc->snapid_map_lock);
1288
1289	while (!list_empty(&to_free)) {
1290		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1291		list_del(&sm->lru);
1292		dout("trim snapid map %llx -> %x\n", sm->snap, sm->dev);
1293		free_anon_bdev(sm->dev);
1294		kfree(sm);
1295	}
1296}
1297
1298void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc)
1299{
1300	struct ceph_snapid_map *sm;
1301	struct rb_node *p;
1302	LIST_HEAD(to_free);
1303
1304	spin_lock(&mdsc->snapid_map_lock);
1305	while ((p = rb_first(&mdsc->snapid_map_tree))) {
1306		sm = rb_entry(p, struct ceph_snapid_map, node);
1307		rb_erase(p, &mdsc->snapid_map_tree);
1308		RB_CLEAR_NODE(p);
1309		list_move(&sm->lru, &to_free);
1310	}
1311	spin_unlock(&mdsc->snapid_map_lock);
1312
1313	while (!list_empty(&to_free)) {
1314		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1315		list_del(&sm->lru);
1316		free_anon_bdev(sm->dev);
1317		if (WARN_ON_ONCE(atomic_read(&sm->ref))) {
1318			pr_err("snapid map %llx -> %x still in use\n",
1319			       sm->snap, sm->dev);
1320		}
1321		kfree(sm);
1322	}
1323}
1324