xref: /kernel/linux/linux-6.6/fs/btrfs/volumes.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/mm.h>
8#include <linux/slab.h>
9#include <linux/ratelimit.h>
10#include <linux/kthread.h>
11#include <linux/semaphore.h>
12#include <linux/uuid.h>
13#include <linux/list_sort.h>
14#include <linux/namei.h>
15#include "misc.h"
16#include "ctree.h"
17#include "extent_map.h"
18#include "disk-io.h"
19#include "transaction.h"
20#include "print-tree.h"
21#include "volumes.h"
22#include "raid56.h"
23#include "rcu-string.h"
24#include "dev-replace.h"
25#include "sysfs.h"
26#include "tree-checker.h"
27#include "space-info.h"
28#include "block-group.h"
29#include "discard.h"
30#include "zoned.h"
31#include "fs.h"
32#include "accessors.h"
33#include "uuid-tree.h"
34#include "ioctl.h"
35#include "relocation.h"
36#include "scrub.h"
37#include "super.h"
38
39#define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
40					 BTRFS_BLOCK_GROUP_RAID10 | \
41					 BTRFS_BLOCK_GROUP_RAID56_MASK)
42
43const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44	[BTRFS_RAID_RAID10] = {
45		.sub_stripes	= 2,
46		.dev_stripes	= 1,
47		.devs_max	= 0,	/* 0 == as many as possible */
48		.devs_min	= 2,
49		.tolerated_failures = 1,
50		.devs_increment	= 2,
51		.ncopies	= 2,
52		.nparity        = 0,
53		.raid_name	= "raid10",
54		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
55		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
56	},
57	[BTRFS_RAID_RAID1] = {
58		.sub_stripes	= 1,
59		.dev_stripes	= 1,
60		.devs_max	= 2,
61		.devs_min	= 2,
62		.tolerated_failures = 1,
63		.devs_increment	= 2,
64		.ncopies	= 2,
65		.nparity        = 0,
66		.raid_name	= "raid1",
67		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
68		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
69	},
70	[BTRFS_RAID_RAID1C3] = {
71		.sub_stripes	= 1,
72		.dev_stripes	= 1,
73		.devs_max	= 3,
74		.devs_min	= 3,
75		.tolerated_failures = 2,
76		.devs_increment	= 3,
77		.ncopies	= 3,
78		.nparity        = 0,
79		.raid_name	= "raid1c3",
80		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
81		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82	},
83	[BTRFS_RAID_RAID1C4] = {
84		.sub_stripes	= 1,
85		.dev_stripes	= 1,
86		.devs_max	= 4,
87		.devs_min	= 4,
88		.tolerated_failures = 3,
89		.devs_increment	= 4,
90		.ncopies	= 4,
91		.nparity        = 0,
92		.raid_name	= "raid1c4",
93		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
94		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95	},
96	[BTRFS_RAID_DUP] = {
97		.sub_stripes	= 1,
98		.dev_stripes	= 2,
99		.devs_max	= 1,
100		.devs_min	= 1,
101		.tolerated_failures = 0,
102		.devs_increment	= 1,
103		.ncopies	= 2,
104		.nparity        = 0,
105		.raid_name	= "dup",
106		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
107		.mindev_error	= 0,
108	},
109	[BTRFS_RAID_RAID0] = {
110		.sub_stripes	= 1,
111		.dev_stripes	= 1,
112		.devs_max	= 0,
113		.devs_min	= 1,
114		.tolerated_failures = 0,
115		.devs_increment	= 1,
116		.ncopies	= 1,
117		.nparity        = 0,
118		.raid_name	= "raid0",
119		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
120		.mindev_error	= 0,
121	},
122	[BTRFS_RAID_SINGLE] = {
123		.sub_stripes	= 1,
124		.dev_stripes	= 1,
125		.devs_max	= 1,
126		.devs_min	= 1,
127		.tolerated_failures = 0,
128		.devs_increment	= 1,
129		.ncopies	= 1,
130		.nparity        = 0,
131		.raid_name	= "single",
132		.bg_flag	= 0,
133		.mindev_error	= 0,
134	},
135	[BTRFS_RAID_RAID5] = {
136		.sub_stripes	= 1,
137		.dev_stripes	= 1,
138		.devs_max	= 0,
139		.devs_min	= 2,
140		.tolerated_failures = 1,
141		.devs_increment	= 1,
142		.ncopies	= 1,
143		.nparity        = 1,
144		.raid_name	= "raid5",
145		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
146		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
147	},
148	[BTRFS_RAID_RAID6] = {
149		.sub_stripes	= 1,
150		.dev_stripes	= 1,
151		.devs_max	= 0,
152		.devs_min	= 3,
153		.tolerated_failures = 2,
154		.devs_increment	= 1,
155		.ncopies	= 1,
156		.nparity        = 2,
157		.raid_name	= "raid6",
158		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
159		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
160	},
161};
162
163/*
164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165 * can be used as index to access btrfs_raid_array[].
166 */
167enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168{
169	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
170
171	if (!profile)
172		return BTRFS_RAID_SINGLE;
173
174	return BTRFS_BG_FLAG_TO_INDEX(profile);
175}
176
177const char *btrfs_bg_type_to_raid_name(u64 flags)
178{
179	const int index = btrfs_bg_flags_to_raid_index(flags);
180
181	if (index >= BTRFS_NR_RAID_TYPES)
182		return NULL;
183
184	return btrfs_raid_array[index].raid_name;
185}
186
187int btrfs_nr_parity_stripes(u64 type)
188{
189	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190
191	return btrfs_raid_array[index].nparity;
192}
193
194/*
195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
196 * bytes including terminating null byte.
197 */
198void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199{
200	int i;
201	int ret;
202	char *bp = buf;
203	u64 flags = bg_flags;
204	u32 size_bp = size_buf;
205
206	if (!flags) {
207		strcpy(bp, "NONE");
208		return;
209	}
210
211#define DESCRIBE_FLAG(flag, desc)						\
212	do {								\
213		if (flags & (flag)) {					\
214			ret = snprintf(bp, size_bp, "%s|", (desc));	\
215			if (ret < 0 || ret >= size_bp)			\
216				goto out_overflow;			\
217			size_bp -= ret;					\
218			bp += ret;					\
219			flags &= ~(flag);				\
220		}							\
221	} while (0)
222
223	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226
227	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230			      btrfs_raid_array[i].raid_name);
231#undef DESCRIBE_FLAG
232
233	if (flags) {
234		ret = snprintf(bp, size_bp, "0x%llx|", flags);
235		size_bp -= ret;
236	}
237
238	if (size_bp < size_buf)
239		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240
241	/*
242	 * The text is trimmed, it's up to the caller to provide sufficiently
243	 * large buffer
244	 */
245out_overflow:;
246}
247
248static int init_first_rw_device(struct btrfs_trans_handle *trans);
249static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251
252/*
253 * Device locking
254 * ==============
255 *
256 * There are several mutexes that protect manipulation of devices and low-level
257 * structures like chunks but not block groups, extents or files
258 *
259 * uuid_mutex (global lock)
260 * ------------------------
261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263 * device) or requested by the device= mount option
264 *
265 * the mutex can be very coarse and can cover long-running operations
266 *
267 * protects: updates to fs_devices counters like missing devices, rw devices,
268 * seeding, structure cloning, opening/closing devices at mount/umount time
269 *
270 * global::fs_devs - add, remove, updates to the global list
271 *
272 * does not protect: manipulation of the fs_devices::devices list in general
273 * but in mount context it could be used to exclude list modifications by eg.
274 * scan ioctl
275 *
276 * btrfs_device::name - renames (write side), read is RCU
277 *
278 * fs_devices::device_list_mutex (per-fs, with RCU)
279 * ------------------------------------------------
280 * protects updates to fs_devices::devices, ie. adding and deleting
281 *
282 * simple list traversal with read-only actions can be done with RCU protection
283 *
284 * may be used to exclude some operations from running concurrently without any
285 * modifications to the list (see write_all_supers)
286 *
287 * Is not required at mount and close times, because our device list is
288 * protected by the uuid_mutex at that point.
289 *
290 * balance_mutex
291 * -------------
292 * protects balance structures (status, state) and context accessed from
293 * several places (internally, ioctl)
294 *
295 * chunk_mutex
296 * -----------
297 * protects chunks, adding or removing during allocation, trim or when a new
298 * device is added/removed. Additionally it also protects post_commit_list of
299 * individual devices, since they can be added to the transaction's
300 * post_commit_list only with chunk_mutex held.
301 *
302 * cleaner_mutex
303 * -------------
304 * a big lock that is held by the cleaner thread and prevents running subvolume
305 * cleaning together with relocation or delayed iputs
306 *
307 *
308 * Lock nesting
309 * ============
310 *
311 * uuid_mutex
312 *   device_list_mutex
313 *     chunk_mutex
314 *   balance_mutex
315 *
316 *
317 * Exclusive operations
318 * ====================
319 *
320 * Maintains the exclusivity of the following operations that apply to the
321 * whole filesystem and cannot run in parallel.
322 *
323 * - Balance (*)
324 * - Device add
325 * - Device remove
326 * - Device replace (*)
327 * - Resize
328 *
329 * The device operations (as above) can be in one of the following states:
330 *
331 * - Running state
332 * - Paused state
333 * - Completed state
334 *
335 * Only device operations marked with (*) can go into the Paused state for the
336 * following reasons:
337 *
338 * - ioctl (only Balance can be Paused through ioctl)
339 * - filesystem remounted as read-only
340 * - filesystem unmounted and mounted as read-only
341 * - system power-cycle and filesystem mounted as read-only
342 * - filesystem or device errors leading to forced read-only
343 *
344 * The status of exclusive operation is set and cleared atomically.
345 * During the course of Paused state, fs_info::exclusive_operation remains set.
346 * A device operation in Paused or Running state can be canceled or resumed
347 * either by ioctl (Balance only) or when remounted as read-write.
348 * The exclusive status is cleared when the device operation is canceled or
349 * completed.
350 */
351
352DEFINE_MUTEX(uuid_mutex);
353static LIST_HEAD(fs_uuids);
354struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
355{
356	return &fs_uuids;
357}
358
359/*
360 * alloc_fs_devices - allocate struct btrfs_fs_devices
361 * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
362 * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
363 *
364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365 * The returned struct is not linked onto any lists and can be destroyed with
366 * kfree() right away.
367 */
368static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369						 const u8 *metadata_fsid)
370{
371	struct btrfs_fs_devices *fs_devs;
372
373	ASSERT(fsid || !metadata_fsid);
374
375	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
376	if (!fs_devs)
377		return ERR_PTR(-ENOMEM);
378
379	mutex_init(&fs_devs->device_list_mutex);
380
381	INIT_LIST_HEAD(&fs_devs->devices);
382	INIT_LIST_HEAD(&fs_devs->alloc_list);
383	INIT_LIST_HEAD(&fs_devs->fs_list);
384	INIT_LIST_HEAD(&fs_devs->seed_list);
385
386	if (fsid) {
387		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
388		memcpy(fs_devs->metadata_uuid,
389		       metadata_fsid ?: fsid, BTRFS_FSID_SIZE);
390	}
391
392	return fs_devs;
393}
394
395static void btrfs_free_device(struct btrfs_device *device)
396{
397	WARN_ON(!list_empty(&device->post_commit_list));
398	rcu_string_free(device->name);
399	extent_io_tree_release(&device->alloc_state);
400	btrfs_destroy_dev_zone_info(device);
401	kfree(device);
402}
403
404static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
405{
406	struct btrfs_device *device;
407
408	WARN_ON(fs_devices->opened);
409	while (!list_empty(&fs_devices->devices)) {
410		device = list_entry(fs_devices->devices.next,
411				    struct btrfs_device, dev_list);
412		list_del(&device->dev_list);
413		btrfs_free_device(device);
414	}
415	kfree(fs_devices);
416}
417
418void __exit btrfs_cleanup_fs_uuids(void)
419{
420	struct btrfs_fs_devices *fs_devices;
421
422	while (!list_empty(&fs_uuids)) {
423		fs_devices = list_entry(fs_uuids.next,
424					struct btrfs_fs_devices, fs_list);
425		list_del(&fs_devices->fs_list);
426		free_fs_devices(fs_devices);
427	}
428}
429
430static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
431				  const u8 *fsid, const u8 *metadata_fsid)
432{
433	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
434		return false;
435
436	if (!metadata_fsid)
437		return true;
438
439	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
440		return false;
441
442	return true;
443}
444
445static noinline struct btrfs_fs_devices *find_fsid(
446		const u8 *fsid, const u8 *metadata_fsid)
447{
448	struct btrfs_fs_devices *fs_devices;
449
450	ASSERT(fsid);
451
452	/* Handle non-split brain cases */
453	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
455			return fs_devices;
456	}
457	return NULL;
458}
459
460/*
461 * First check if the metadata_uuid is different from the fsid in the given
462 * fs_devices. Then check if the given fsid is the same as the metadata_uuid
463 * in the fs_devices. If it is, return true; otherwise, return false.
464 */
465static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices,
466				      const u8 *fsid)
467{
468	return memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
469		      BTRFS_FSID_SIZE) != 0 &&
470	       memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0;
471}
472
473static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
474				struct btrfs_super_block *disk_super)
475{
476
477	struct btrfs_fs_devices *fs_devices;
478
479	/*
480	 * Handle scanned device having completed its fsid change but
481	 * belonging to a fs_devices that was created by first scanning
482	 * a device which didn't have its fsid/metadata_uuid changed
483	 * at all and the CHANGING_FSID_V2 flag set.
484	 */
485	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
486		if (!fs_devices->fsid_change)
487			continue;
488
489		if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid,
490					  fs_devices->fsid))
491			return fs_devices;
492	}
493
494	/*
495	 * Handle scanned device having completed its fsid change but
496	 * belonging to a fs_devices that was created by a device that
497	 * has an outdated pair of fsid/metadata_uuid and
498	 * CHANGING_FSID_V2 flag set.
499	 */
500	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
501		if (!fs_devices->fsid_change)
502			continue;
503
504		if (check_fsid_changed(fs_devices, disk_super->metadata_uuid))
505			return fs_devices;
506	}
507
508	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
509}
510
511
512static int
513btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
514		      int flush, struct block_device **bdev,
515		      struct btrfs_super_block **disk_super)
516{
517	int ret;
518
519	*bdev = blkdev_get_by_path(device_path, flags, holder, NULL);
520
521	if (IS_ERR(*bdev)) {
522		ret = PTR_ERR(*bdev);
523		goto error;
524	}
525
526	if (flush)
527		sync_blockdev(*bdev);
528	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
529	if (ret) {
530		blkdev_put(*bdev, holder);
531		goto error;
532	}
533	invalidate_bdev(*bdev);
534	*disk_super = btrfs_read_dev_super(*bdev);
535	if (IS_ERR(*disk_super)) {
536		ret = PTR_ERR(*disk_super);
537		blkdev_put(*bdev, holder);
538		goto error;
539	}
540
541	return 0;
542
543error:
544	*bdev = NULL;
545	return ret;
546}
547
548/*
549 *  Search and remove all stale devices (which are not mounted).  When both
550 *  inputs are NULL, it will search and release all stale devices.
551 *
552 *  @devt:         Optional. When provided will it release all unmounted devices
553 *                 matching this devt only.
554 *  @skip_device:  Optional. Will skip this device when searching for the stale
555 *                 devices.
556 *
557 *  Return:	0 for success or if @devt is 0.
558 *		-EBUSY if @devt is a mounted device.
559 *		-ENOENT if @devt does not match any device in the list.
560 */
561static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
562{
563	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
564	struct btrfs_device *device, *tmp_device;
565	int ret = 0;
566
567	lockdep_assert_held(&uuid_mutex);
568
569	if (devt)
570		ret = -ENOENT;
571
572	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
573
574		mutex_lock(&fs_devices->device_list_mutex);
575		list_for_each_entry_safe(device, tmp_device,
576					 &fs_devices->devices, dev_list) {
577			if (skip_device && skip_device == device)
578				continue;
579			if (devt && devt != device->devt)
580				continue;
581			if (fs_devices->opened) {
582				/* for an already deleted device return 0 */
583				if (devt && ret != 0)
584					ret = -EBUSY;
585				break;
586			}
587
588			/* delete the stale device */
589			fs_devices->num_devices--;
590			list_del(&device->dev_list);
591			btrfs_free_device(device);
592
593			ret = 0;
594		}
595		mutex_unlock(&fs_devices->device_list_mutex);
596
597		if (fs_devices->num_devices == 0) {
598			btrfs_sysfs_remove_fsid(fs_devices);
599			list_del(&fs_devices->fs_list);
600			free_fs_devices(fs_devices);
601		}
602	}
603
604	return ret;
605}
606
607/*
608 * This is only used on mount, and we are protected from competing things
609 * messing with our fs_devices by the uuid_mutex, thus we do not need the
610 * fs_devices->device_list_mutex here.
611 */
612static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
613			struct btrfs_device *device, blk_mode_t flags,
614			void *holder)
615{
616	struct block_device *bdev;
617	struct btrfs_super_block *disk_super;
618	u64 devid;
619	int ret;
620
621	if (device->bdev)
622		return -EINVAL;
623	if (!device->name)
624		return -EINVAL;
625
626	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
627				    &bdev, &disk_super);
628	if (ret)
629		return ret;
630
631	devid = btrfs_stack_device_id(&disk_super->dev_item);
632	if (devid != device->devid)
633		goto error_free_page;
634
635	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
636		goto error_free_page;
637
638	device->generation = btrfs_super_generation(disk_super);
639
640	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
641		if (btrfs_super_incompat_flags(disk_super) &
642		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
643			pr_err(
644		"BTRFS: Invalid seeding and uuid-changed device detected\n");
645			goto error_free_page;
646		}
647
648		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
649		fs_devices->seeding = true;
650	} else {
651		if (bdev_read_only(bdev))
652			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
653		else
654			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
655	}
656
657	if (!bdev_nonrot(bdev))
658		fs_devices->rotating = true;
659
660	if (bdev_max_discard_sectors(bdev))
661		fs_devices->discardable = true;
662
663	device->bdev = bdev;
664	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
665	device->holder = holder;
666
667	fs_devices->open_devices++;
668	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
669	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
670		fs_devices->rw_devices++;
671		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
672	}
673	btrfs_release_disk_super(disk_super);
674
675	return 0;
676
677error_free_page:
678	btrfs_release_disk_super(disk_super);
679	blkdev_put(bdev, holder);
680
681	return -EINVAL;
682}
683
684u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
685{
686	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
687				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
688
689	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
690}
691
692/*
693 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
694 * being created with a disk that has already completed its fsid change. Such
695 * disk can belong to an fs which has its FSID changed or to one which doesn't.
696 * Handle both cases here.
697 */
698static struct btrfs_fs_devices *find_fsid_inprogress(
699					struct btrfs_super_block *disk_super)
700{
701	struct btrfs_fs_devices *fs_devices;
702
703	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
704		if (fs_devices->fsid_change)
705			continue;
706
707		if (check_fsid_changed(fs_devices,  disk_super->fsid))
708			return fs_devices;
709	}
710
711	return find_fsid(disk_super->fsid, NULL);
712}
713
714static struct btrfs_fs_devices *find_fsid_changed(
715					struct btrfs_super_block *disk_super)
716{
717	struct btrfs_fs_devices *fs_devices;
718
719	/*
720	 * Handles the case where scanned device is part of an fs that had
721	 * multiple successful changes of FSID but currently device didn't
722	 * observe it. Meaning our fsid will be different than theirs. We need
723	 * to handle two subcases :
724	 *  1 - The fs still continues to have different METADATA/FSID uuids.
725	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
726	 *  are equal).
727	 */
728	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
729		/* Changed UUIDs */
730		if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) &&
731		    memcmp(fs_devices->fsid, disk_super->fsid,
732			   BTRFS_FSID_SIZE) != 0)
733			return fs_devices;
734
735		/* Unchanged UUIDs */
736		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
737			   BTRFS_FSID_SIZE) == 0 &&
738		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
739			   BTRFS_FSID_SIZE) == 0)
740			return fs_devices;
741	}
742
743	return NULL;
744}
745
746static struct btrfs_fs_devices *find_fsid_reverted_metadata(
747				struct btrfs_super_block *disk_super)
748{
749	struct btrfs_fs_devices *fs_devices;
750
751	/*
752	 * Handle the case where the scanned device is part of an fs whose last
753	 * metadata UUID change reverted it to the original FSID. At the same
754	 * time fs_devices was first created by another constituent device
755	 * which didn't fully observe the operation. This results in an
756	 * btrfs_fs_devices created with metadata/fsid different AND
757	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
758	 * fs_devices equal to the FSID of the disk.
759	 */
760	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
761		if (!fs_devices->fsid_change)
762			continue;
763
764		if (check_fsid_changed(fs_devices, disk_super->fsid))
765			return fs_devices;
766	}
767
768	return NULL;
769}
770/*
771 * Add new device to list of registered devices
772 *
773 * Returns:
774 * device pointer which was just added or updated when successful
775 * error pointer when failed
776 */
777static noinline struct btrfs_device *device_list_add(const char *path,
778			   struct btrfs_super_block *disk_super,
779			   bool *new_device_added)
780{
781	struct btrfs_device *device;
782	struct btrfs_fs_devices *fs_devices = NULL;
783	struct rcu_string *name;
784	u64 found_transid = btrfs_super_generation(disk_super);
785	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
786	dev_t path_devt;
787	int error;
788	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
789		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
790	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
791					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
792
793	error = lookup_bdev(path, &path_devt);
794	if (error) {
795		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
796			  path, error);
797		return ERR_PTR(error);
798	}
799
800	if (fsid_change_in_progress) {
801		if (!has_metadata_uuid)
802			fs_devices = find_fsid_inprogress(disk_super);
803		else
804			fs_devices = find_fsid_changed(disk_super);
805	} else if (has_metadata_uuid) {
806		fs_devices = find_fsid_with_metadata_uuid(disk_super);
807	} else {
808		fs_devices = find_fsid_reverted_metadata(disk_super);
809		if (!fs_devices)
810			fs_devices = find_fsid(disk_super->fsid, NULL);
811	}
812
813
814	if (!fs_devices) {
815		fs_devices = alloc_fs_devices(disk_super->fsid,
816				has_metadata_uuid ? disk_super->metadata_uuid : NULL);
817		if (IS_ERR(fs_devices))
818			return ERR_CAST(fs_devices);
819
820		fs_devices->fsid_change = fsid_change_in_progress;
821
822		mutex_lock(&fs_devices->device_list_mutex);
823		list_add(&fs_devices->fs_list, &fs_uuids);
824
825		device = NULL;
826	} else {
827		struct btrfs_dev_lookup_args args = {
828			.devid = devid,
829			.uuid = disk_super->dev_item.uuid,
830		};
831
832		mutex_lock(&fs_devices->device_list_mutex);
833		device = btrfs_find_device(fs_devices, &args);
834
835		/*
836		 * If this disk has been pulled into an fs devices created by
837		 * a device which had the CHANGING_FSID_V2 flag then replace the
838		 * metadata_uuid/fsid values of the fs_devices.
839		 */
840		if (fs_devices->fsid_change &&
841		    found_transid > fs_devices->latest_generation) {
842			memcpy(fs_devices->fsid, disk_super->fsid,
843					BTRFS_FSID_SIZE);
844			memcpy(fs_devices->metadata_uuid,
845			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
846			fs_devices->fsid_change = false;
847		}
848	}
849
850	if (!device) {
851		unsigned int nofs_flag;
852
853		if (fs_devices->opened) {
854			btrfs_err(NULL,
855"device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
856				  path, fs_devices->fsid, current->comm,
857				  task_pid_nr(current));
858			mutex_unlock(&fs_devices->device_list_mutex);
859			return ERR_PTR(-EBUSY);
860		}
861
862		nofs_flag = memalloc_nofs_save();
863		device = btrfs_alloc_device(NULL, &devid,
864					    disk_super->dev_item.uuid, path);
865		memalloc_nofs_restore(nofs_flag);
866		if (IS_ERR(device)) {
867			mutex_unlock(&fs_devices->device_list_mutex);
868			/* we can safely leave the fs_devices entry around */
869			return device;
870		}
871
872		device->devt = path_devt;
873
874		list_add_rcu(&device->dev_list, &fs_devices->devices);
875		fs_devices->num_devices++;
876
877		device->fs_devices = fs_devices;
878		*new_device_added = true;
879
880		if (disk_super->label[0])
881			pr_info(
882	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
883				disk_super->label, devid, found_transid, path,
884				current->comm, task_pid_nr(current));
885		else
886			pr_info(
887	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
888				disk_super->fsid, devid, found_transid, path,
889				current->comm, task_pid_nr(current));
890
891	} else if (!device->name || strcmp(device->name->str, path)) {
892		/*
893		 * When FS is already mounted.
894		 * 1. If you are here and if the device->name is NULL that
895		 *    means this device was missing at time of FS mount.
896		 * 2. If you are here and if the device->name is different
897		 *    from 'path' that means either
898		 *      a. The same device disappeared and reappeared with
899		 *         different name. or
900		 *      b. The missing-disk-which-was-replaced, has
901		 *         reappeared now.
902		 *
903		 * We must allow 1 and 2a above. But 2b would be a spurious
904		 * and unintentional.
905		 *
906		 * Further in case of 1 and 2a above, the disk at 'path'
907		 * would have missed some transaction when it was away and
908		 * in case of 2a the stale bdev has to be updated as well.
909		 * 2b must not be allowed at all time.
910		 */
911
912		/*
913		 * For now, we do allow update to btrfs_fs_device through the
914		 * btrfs dev scan cli after FS has been mounted.  We're still
915		 * tracking a problem where systems fail mount by subvolume id
916		 * when we reject replacement on a mounted FS.
917		 */
918		if (!fs_devices->opened && found_transid < device->generation) {
919			/*
920			 * That is if the FS is _not_ mounted and if you
921			 * are here, that means there is more than one
922			 * disk with same uuid and devid.We keep the one
923			 * with larger generation number or the last-in if
924			 * generation are equal.
925			 */
926			mutex_unlock(&fs_devices->device_list_mutex);
927			btrfs_err(NULL,
928"device %s already registered with a higher generation, found %llu expect %llu",
929				  path, found_transid, device->generation);
930			return ERR_PTR(-EEXIST);
931		}
932
933		/*
934		 * We are going to replace the device path for a given devid,
935		 * make sure it's the same device if the device is mounted
936		 *
937		 * NOTE: the device->fs_info may not be reliable here so pass
938		 * in a NULL to message helpers instead. This avoids a possible
939		 * use-after-free when the fs_info and fs_info->sb are already
940		 * torn down.
941		 */
942		if (device->bdev) {
943			if (device->devt != path_devt) {
944				mutex_unlock(&fs_devices->device_list_mutex);
945				btrfs_warn_in_rcu(NULL,
946	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
947						  path, devid, found_transid,
948						  current->comm,
949						  task_pid_nr(current));
950				return ERR_PTR(-EEXIST);
951			}
952			btrfs_info_in_rcu(NULL,
953	"devid %llu device path %s changed to %s scanned by %s (%d)",
954					  devid, btrfs_dev_name(device),
955					  path, current->comm,
956					  task_pid_nr(current));
957		}
958
959		name = rcu_string_strdup(path, GFP_NOFS);
960		if (!name) {
961			mutex_unlock(&fs_devices->device_list_mutex);
962			return ERR_PTR(-ENOMEM);
963		}
964		rcu_string_free(device->name);
965		rcu_assign_pointer(device->name, name);
966		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
967			fs_devices->missing_devices--;
968			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
969		}
970		device->devt = path_devt;
971	}
972
973	/*
974	 * Unmount does not free the btrfs_device struct but would zero
975	 * generation along with most of the other members. So just update
976	 * it back. We need it to pick the disk with largest generation
977	 * (as above).
978	 */
979	if (!fs_devices->opened) {
980		device->generation = found_transid;
981		fs_devices->latest_generation = max_t(u64, found_transid,
982						fs_devices->latest_generation);
983	}
984
985	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
986
987	mutex_unlock(&fs_devices->device_list_mutex);
988	return device;
989}
990
991static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
992{
993	struct btrfs_fs_devices *fs_devices;
994	struct btrfs_device *device;
995	struct btrfs_device *orig_dev;
996	int ret = 0;
997
998	lockdep_assert_held(&uuid_mutex);
999
1000	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1001	if (IS_ERR(fs_devices))
1002		return fs_devices;
1003
1004	fs_devices->total_devices = orig->total_devices;
1005
1006	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1007		const char *dev_path = NULL;
1008
1009		/*
1010		 * This is ok to do without RCU read locked because we hold the
1011		 * uuid mutex so nothing we touch in here is going to disappear.
1012		 */
1013		if (orig_dev->name)
1014			dev_path = orig_dev->name->str;
1015
1016		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1017					    orig_dev->uuid, dev_path);
1018		if (IS_ERR(device)) {
1019			ret = PTR_ERR(device);
1020			goto error;
1021		}
1022
1023		if (orig_dev->zone_info) {
1024			struct btrfs_zoned_device_info *zone_info;
1025
1026			zone_info = btrfs_clone_dev_zone_info(orig_dev);
1027			if (!zone_info) {
1028				btrfs_free_device(device);
1029				ret = -ENOMEM;
1030				goto error;
1031			}
1032			device->zone_info = zone_info;
1033		}
1034
1035		list_add(&device->dev_list, &fs_devices->devices);
1036		device->fs_devices = fs_devices;
1037		fs_devices->num_devices++;
1038	}
1039	return fs_devices;
1040error:
1041	free_fs_devices(fs_devices);
1042	return ERR_PTR(ret);
1043}
1044
1045static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1046				      struct btrfs_device **latest_dev)
1047{
1048	struct btrfs_device *device, *next;
1049
1050	/* This is the initialized path, it is safe to release the devices. */
1051	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1052		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1053			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1054				      &device->dev_state) &&
1055			    !test_bit(BTRFS_DEV_STATE_MISSING,
1056				      &device->dev_state) &&
1057			    (!*latest_dev ||
1058			     device->generation > (*latest_dev)->generation)) {
1059				*latest_dev = device;
1060			}
1061			continue;
1062		}
1063
1064		/*
1065		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1066		 * in btrfs_init_dev_replace() so just continue.
1067		 */
1068		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1069			continue;
1070
1071		if (device->bdev) {
1072			blkdev_put(device->bdev, device->holder);
1073			device->bdev = NULL;
1074			fs_devices->open_devices--;
1075		}
1076		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1077			list_del_init(&device->dev_alloc_list);
1078			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1079			fs_devices->rw_devices--;
1080		}
1081		list_del_init(&device->dev_list);
1082		fs_devices->num_devices--;
1083		btrfs_free_device(device);
1084	}
1085
1086}
1087
1088/*
1089 * After we have read the system tree and know devids belonging to this
1090 * filesystem, remove the device which does not belong there.
1091 */
1092void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1093{
1094	struct btrfs_device *latest_dev = NULL;
1095	struct btrfs_fs_devices *seed_dev;
1096
1097	mutex_lock(&uuid_mutex);
1098	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1099
1100	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1101		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1102
1103	fs_devices->latest_dev = latest_dev;
1104
1105	mutex_unlock(&uuid_mutex);
1106}
1107
1108static void btrfs_close_bdev(struct btrfs_device *device)
1109{
1110	if (!device->bdev)
1111		return;
1112
1113	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1114		sync_blockdev(device->bdev);
1115		invalidate_bdev(device->bdev);
1116	}
1117
1118	blkdev_put(device->bdev, device->holder);
1119}
1120
1121static void btrfs_close_one_device(struct btrfs_device *device)
1122{
1123	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1124
1125	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1126	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1127		list_del_init(&device->dev_alloc_list);
1128		fs_devices->rw_devices--;
1129	}
1130
1131	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1132		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1133
1134	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1135		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1136		fs_devices->missing_devices--;
1137	}
1138
1139	btrfs_close_bdev(device);
1140	if (device->bdev) {
1141		fs_devices->open_devices--;
1142		device->bdev = NULL;
1143	}
1144	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1145	btrfs_destroy_dev_zone_info(device);
1146
1147	device->fs_info = NULL;
1148	atomic_set(&device->dev_stats_ccnt, 0);
1149	extent_io_tree_release(&device->alloc_state);
1150
1151	/*
1152	 * Reset the flush error record. We might have a transient flush error
1153	 * in this mount, and if so we aborted the current transaction and set
1154	 * the fs to an error state, guaranteeing no super blocks can be further
1155	 * committed. However that error might be transient and if we unmount the
1156	 * filesystem and mount it again, we should allow the mount to succeed
1157	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1158	 * filesystem again we still get flush errors, then we will again abort
1159	 * any transaction and set the error state, guaranteeing no commits of
1160	 * unsafe super blocks.
1161	 */
1162	device->last_flush_error = 0;
1163
1164	/* Verify the device is back in a pristine state  */
1165	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1166	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1167	WARN_ON(!list_empty(&device->dev_alloc_list));
1168	WARN_ON(!list_empty(&device->post_commit_list));
1169}
1170
1171static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1172{
1173	struct btrfs_device *device, *tmp;
1174
1175	lockdep_assert_held(&uuid_mutex);
1176
1177	if (--fs_devices->opened > 0)
1178		return;
1179
1180	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1181		btrfs_close_one_device(device);
1182
1183	WARN_ON(fs_devices->open_devices);
1184	WARN_ON(fs_devices->rw_devices);
1185	fs_devices->opened = 0;
1186	fs_devices->seeding = false;
1187	fs_devices->fs_info = NULL;
1188}
1189
1190void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1191{
1192	LIST_HEAD(list);
1193	struct btrfs_fs_devices *tmp;
1194
1195	mutex_lock(&uuid_mutex);
1196	close_fs_devices(fs_devices);
1197	if (!fs_devices->opened) {
1198		list_splice_init(&fs_devices->seed_list, &list);
1199
1200		/*
1201		 * If the struct btrfs_fs_devices is not assembled with any
1202		 * other device, it can be re-initialized during the next mount
1203		 * without the needing device-scan step. Therefore, it can be
1204		 * fully freed.
1205		 */
1206		if (fs_devices->num_devices == 1) {
1207			list_del(&fs_devices->fs_list);
1208			free_fs_devices(fs_devices);
1209		}
1210	}
1211
1212
1213	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1214		close_fs_devices(fs_devices);
1215		list_del(&fs_devices->seed_list);
1216		free_fs_devices(fs_devices);
1217	}
1218	mutex_unlock(&uuid_mutex);
1219}
1220
1221static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1222				blk_mode_t flags, void *holder)
1223{
1224	struct btrfs_device *device;
1225	struct btrfs_device *latest_dev = NULL;
1226	struct btrfs_device *tmp_device;
1227
1228	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1229				 dev_list) {
1230		int ret;
1231
1232		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1233		if (ret == 0 &&
1234		    (!latest_dev || device->generation > latest_dev->generation)) {
1235			latest_dev = device;
1236		} else if (ret == -ENODATA) {
1237			fs_devices->num_devices--;
1238			list_del(&device->dev_list);
1239			btrfs_free_device(device);
1240		}
1241	}
1242	if (fs_devices->open_devices == 0)
1243		return -EINVAL;
1244
1245	fs_devices->opened = 1;
1246	fs_devices->latest_dev = latest_dev;
1247	fs_devices->total_rw_bytes = 0;
1248	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1249	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1250
1251	return 0;
1252}
1253
1254static int devid_cmp(void *priv, const struct list_head *a,
1255		     const struct list_head *b)
1256{
1257	const struct btrfs_device *dev1, *dev2;
1258
1259	dev1 = list_entry(a, struct btrfs_device, dev_list);
1260	dev2 = list_entry(b, struct btrfs_device, dev_list);
1261
1262	if (dev1->devid < dev2->devid)
1263		return -1;
1264	else if (dev1->devid > dev2->devid)
1265		return 1;
1266	return 0;
1267}
1268
1269int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1270		       blk_mode_t flags, void *holder)
1271{
1272	int ret;
1273
1274	lockdep_assert_held(&uuid_mutex);
1275	/*
1276	 * The device_list_mutex cannot be taken here in case opening the
1277	 * underlying device takes further locks like open_mutex.
1278	 *
1279	 * We also don't need the lock here as this is called during mount and
1280	 * exclusion is provided by uuid_mutex
1281	 */
1282
1283	if (fs_devices->opened) {
1284		fs_devices->opened++;
1285		ret = 0;
1286	} else {
1287		list_sort(NULL, &fs_devices->devices, devid_cmp);
1288		ret = open_fs_devices(fs_devices, flags, holder);
1289	}
1290
1291	return ret;
1292}
1293
1294void btrfs_release_disk_super(struct btrfs_super_block *super)
1295{
1296	struct page *page = virt_to_page(super);
1297
1298	put_page(page);
1299}
1300
1301static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1302						       u64 bytenr, u64 bytenr_orig)
1303{
1304	struct btrfs_super_block *disk_super;
1305	struct page *page;
1306	void *p;
1307	pgoff_t index;
1308
1309	/* make sure our super fits in the device */
1310	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1311		return ERR_PTR(-EINVAL);
1312
1313	/* make sure our super fits in the page */
1314	if (sizeof(*disk_super) > PAGE_SIZE)
1315		return ERR_PTR(-EINVAL);
1316
1317	/* make sure our super doesn't straddle pages on disk */
1318	index = bytenr >> PAGE_SHIFT;
1319	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1320		return ERR_PTR(-EINVAL);
1321
1322	/* pull in the page with our super */
1323	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1324
1325	if (IS_ERR(page))
1326		return ERR_CAST(page);
1327
1328	p = page_address(page);
1329
1330	/* align our pointer to the offset of the super block */
1331	disk_super = p + offset_in_page(bytenr);
1332
1333	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1334	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1335		btrfs_release_disk_super(p);
1336		return ERR_PTR(-EINVAL);
1337	}
1338
1339	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1340		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1341
1342	return disk_super;
1343}
1344
1345int btrfs_forget_devices(dev_t devt)
1346{
1347	int ret;
1348
1349	mutex_lock(&uuid_mutex);
1350	ret = btrfs_free_stale_devices(devt, NULL);
1351	mutex_unlock(&uuid_mutex);
1352
1353	return ret;
1354}
1355
1356/*
1357 * Look for a btrfs signature on a device. This may be called out of the mount path
1358 * and we are not allowed to call set_blocksize during the scan. The superblock
1359 * is read via pagecache
1360 */
1361struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags)
1362{
1363	struct btrfs_super_block *disk_super;
1364	bool new_device_added = false;
1365	struct btrfs_device *device = NULL;
1366	struct block_device *bdev;
1367	u64 bytenr, bytenr_orig;
1368	int ret;
1369
1370	lockdep_assert_held(&uuid_mutex);
1371
1372	/*
1373	 * we would like to check all the supers, but that would make
1374	 * a btrfs mount succeed after a mkfs from a different FS.
1375	 * So, we need to add a special mount option to scan for
1376	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1377	 */
1378
1379	/*
1380	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1381	 * device scan which may race with the user's mount or mkfs command,
1382	 * resulting in failure.
1383	 * Since the device scan is solely for reading purposes, there is no
1384	 * need for an exclusive open. Additionally, the devices are read again
1385	 * during the mount process. It is ok to get some inconsistent
1386	 * values temporarily, as the device paths of the fsid are the only
1387	 * required information for assembling the volume.
1388	 */
1389	bdev = blkdev_get_by_path(path, flags, NULL, NULL);
1390	if (IS_ERR(bdev))
1391		return ERR_CAST(bdev);
1392
1393	bytenr_orig = btrfs_sb_offset(0);
1394	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1395	if (ret) {
1396		device = ERR_PTR(ret);
1397		goto error_bdev_put;
1398	}
1399
1400	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1401	if (IS_ERR(disk_super)) {
1402		device = ERR_CAST(disk_super);
1403		goto error_bdev_put;
1404	}
1405
1406	device = device_list_add(path, disk_super, &new_device_added);
1407	if (!IS_ERR(device) && new_device_added)
1408		btrfs_free_stale_devices(device->devt, device);
1409
1410	btrfs_release_disk_super(disk_super);
1411
1412error_bdev_put:
1413	blkdev_put(bdev, NULL);
1414
1415	return device;
1416}
1417
1418/*
1419 * Try to find a chunk that intersects [start, start + len] range and when one
1420 * such is found, record the end of it in *start
1421 */
1422static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1423				    u64 len)
1424{
1425	u64 physical_start, physical_end;
1426
1427	lockdep_assert_held(&device->fs_info->chunk_mutex);
1428
1429	if (find_first_extent_bit(&device->alloc_state, *start,
1430				  &physical_start, &physical_end,
1431				  CHUNK_ALLOCATED, NULL)) {
1432
1433		if (in_range(physical_start, *start, len) ||
1434		    in_range(*start, physical_start,
1435			     physical_end + 1 - physical_start)) {
1436			*start = physical_end + 1;
1437			return true;
1438		}
1439	}
1440	return false;
1441}
1442
1443static u64 dev_extent_search_start(struct btrfs_device *device)
1444{
1445	switch (device->fs_devices->chunk_alloc_policy) {
1446	case BTRFS_CHUNK_ALLOC_REGULAR:
1447		return BTRFS_DEVICE_RANGE_RESERVED;
1448	case BTRFS_CHUNK_ALLOC_ZONED:
1449		/*
1450		 * We don't care about the starting region like regular
1451		 * allocator, because we anyway use/reserve the first two zones
1452		 * for superblock logging.
1453		 */
1454		return 0;
1455	default:
1456		BUG();
1457	}
1458}
1459
1460static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1461					u64 *hole_start, u64 *hole_size,
1462					u64 num_bytes)
1463{
1464	u64 zone_size = device->zone_info->zone_size;
1465	u64 pos;
1466	int ret;
1467	bool changed = false;
1468
1469	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1470
1471	while (*hole_size > 0) {
1472		pos = btrfs_find_allocatable_zones(device, *hole_start,
1473						   *hole_start + *hole_size,
1474						   num_bytes);
1475		if (pos != *hole_start) {
1476			*hole_size = *hole_start + *hole_size - pos;
1477			*hole_start = pos;
1478			changed = true;
1479			if (*hole_size < num_bytes)
1480				break;
1481		}
1482
1483		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1484
1485		/* Range is ensured to be empty */
1486		if (!ret)
1487			return changed;
1488
1489		/* Given hole range was invalid (outside of device) */
1490		if (ret == -ERANGE) {
1491			*hole_start += *hole_size;
1492			*hole_size = 0;
1493			return true;
1494		}
1495
1496		*hole_start += zone_size;
1497		*hole_size -= zone_size;
1498		changed = true;
1499	}
1500
1501	return changed;
1502}
1503
1504/*
1505 * Check if specified hole is suitable for allocation.
1506 *
1507 * @device:	the device which we have the hole
1508 * @hole_start: starting position of the hole
1509 * @hole_size:	the size of the hole
1510 * @num_bytes:	the size of the free space that we need
1511 *
1512 * This function may modify @hole_start and @hole_size to reflect the suitable
1513 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1514 */
1515static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1516				  u64 *hole_size, u64 num_bytes)
1517{
1518	bool changed = false;
1519	u64 hole_end = *hole_start + *hole_size;
1520
1521	for (;;) {
1522		/*
1523		 * Check before we set max_hole_start, otherwise we could end up
1524		 * sending back this offset anyway.
1525		 */
1526		if (contains_pending_extent(device, hole_start, *hole_size)) {
1527			if (hole_end >= *hole_start)
1528				*hole_size = hole_end - *hole_start;
1529			else
1530				*hole_size = 0;
1531			changed = true;
1532		}
1533
1534		switch (device->fs_devices->chunk_alloc_policy) {
1535		case BTRFS_CHUNK_ALLOC_REGULAR:
1536			/* No extra check */
1537			break;
1538		case BTRFS_CHUNK_ALLOC_ZONED:
1539			if (dev_extent_hole_check_zoned(device, hole_start,
1540							hole_size, num_bytes)) {
1541				changed = true;
1542				/*
1543				 * The changed hole can contain pending extent.
1544				 * Loop again to check that.
1545				 */
1546				continue;
1547			}
1548			break;
1549		default:
1550			BUG();
1551		}
1552
1553		break;
1554	}
1555
1556	return changed;
1557}
1558
1559/*
1560 * Find free space in the specified device.
1561 *
1562 * @device:	  the device which we search the free space in
1563 * @num_bytes:	  the size of the free space that we need
1564 * @search_start: the position from which to begin the search
1565 * @start:	  store the start of the free space.
1566 * @len:	  the size of the free space. that we find, or the size
1567 *		  of the max free space if we don't find suitable free space
1568 *
1569 * This does a pretty simple search, the expectation is that it is called very
1570 * infrequently and that a given device has a small number of extents.
1571 *
1572 * @start is used to store the start of the free space if we find. But if we
1573 * don't find suitable free space, it will be used to store the start position
1574 * of the max free space.
1575 *
1576 * @len is used to store the size of the free space that we find.
1577 * But if we don't find suitable free space, it is used to store the size of
1578 * the max free space.
1579 *
1580 * NOTE: This function will search *commit* root of device tree, and does extra
1581 * check to ensure dev extents are not double allocated.
1582 * This makes the function safe to allocate dev extents but may not report
1583 * correct usable device space, as device extent freed in current transaction
1584 * is not reported as available.
1585 */
1586static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1587				u64 *start, u64 *len)
1588{
1589	struct btrfs_fs_info *fs_info = device->fs_info;
1590	struct btrfs_root *root = fs_info->dev_root;
1591	struct btrfs_key key;
1592	struct btrfs_dev_extent *dev_extent;
1593	struct btrfs_path *path;
1594	u64 search_start;
1595	u64 hole_size;
1596	u64 max_hole_start;
1597	u64 max_hole_size = 0;
1598	u64 extent_end;
1599	u64 search_end = device->total_bytes;
1600	int ret;
1601	int slot;
1602	struct extent_buffer *l;
1603
1604	search_start = dev_extent_search_start(device);
1605	max_hole_start = search_start;
1606
1607	WARN_ON(device->zone_info &&
1608		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1609
1610	path = btrfs_alloc_path();
1611	if (!path) {
1612		ret = -ENOMEM;
1613		goto out;
1614	}
1615again:
1616	if (search_start >= search_end ||
1617		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1618		ret = -ENOSPC;
1619		goto out;
1620	}
1621
1622	path->reada = READA_FORWARD;
1623	path->search_commit_root = 1;
1624	path->skip_locking = 1;
1625
1626	key.objectid = device->devid;
1627	key.offset = search_start;
1628	key.type = BTRFS_DEV_EXTENT_KEY;
1629
1630	ret = btrfs_search_backwards(root, &key, path);
1631	if (ret < 0)
1632		goto out;
1633
1634	while (search_start < search_end) {
1635		l = path->nodes[0];
1636		slot = path->slots[0];
1637		if (slot >= btrfs_header_nritems(l)) {
1638			ret = btrfs_next_leaf(root, path);
1639			if (ret == 0)
1640				continue;
1641			if (ret < 0)
1642				goto out;
1643
1644			break;
1645		}
1646		btrfs_item_key_to_cpu(l, &key, slot);
1647
1648		if (key.objectid < device->devid)
1649			goto next;
1650
1651		if (key.objectid > device->devid)
1652			break;
1653
1654		if (key.type != BTRFS_DEV_EXTENT_KEY)
1655			goto next;
1656
1657		if (key.offset > search_end)
1658			break;
1659
1660		if (key.offset > search_start) {
1661			hole_size = key.offset - search_start;
1662			dev_extent_hole_check(device, &search_start, &hole_size,
1663					      num_bytes);
1664
1665			if (hole_size > max_hole_size) {
1666				max_hole_start = search_start;
1667				max_hole_size = hole_size;
1668			}
1669
1670			/*
1671			 * If this free space is greater than which we need,
1672			 * it must be the max free space that we have found
1673			 * until now, so max_hole_start must point to the start
1674			 * of this free space and the length of this free space
1675			 * is stored in max_hole_size. Thus, we return
1676			 * max_hole_start and max_hole_size and go back to the
1677			 * caller.
1678			 */
1679			if (hole_size >= num_bytes) {
1680				ret = 0;
1681				goto out;
1682			}
1683		}
1684
1685		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1686		extent_end = key.offset + btrfs_dev_extent_length(l,
1687								  dev_extent);
1688		if (extent_end > search_start)
1689			search_start = extent_end;
1690next:
1691		path->slots[0]++;
1692		cond_resched();
1693	}
1694
1695	/*
1696	 * At this point, search_start should be the end of
1697	 * allocated dev extents, and when shrinking the device,
1698	 * search_end may be smaller than search_start.
1699	 */
1700	if (search_end > search_start) {
1701		hole_size = search_end - search_start;
1702		if (dev_extent_hole_check(device, &search_start, &hole_size,
1703					  num_bytes)) {
1704			btrfs_release_path(path);
1705			goto again;
1706		}
1707
1708		if (hole_size > max_hole_size) {
1709			max_hole_start = search_start;
1710			max_hole_size = hole_size;
1711		}
1712	}
1713
1714	/* See above. */
1715	if (max_hole_size < num_bytes)
1716		ret = -ENOSPC;
1717	else
1718		ret = 0;
1719
1720	ASSERT(max_hole_start + max_hole_size <= search_end);
1721out:
1722	btrfs_free_path(path);
1723	*start = max_hole_start;
1724	if (len)
1725		*len = max_hole_size;
1726	return ret;
1727}
1728
1729static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1730			  struct btrfs_device *device,
1731			  u64 start, u64 *dev_extent_len)
1732{
1733	struct btrfs_fs_info *fs_info = device->fs_info;
1734	struct btrfs_root *root = fs_info->dev_root;
1735	int ret;
1736	struct btrfs_path *path;
1737	struct btrfs_key key;
1738	struct btrfs_key found_key;
1739	struct extent_buffer *leaf = NULL;
1740	struct btrfs_dev_extent *extent = NULL;
1741
1742	path = btrfs_alloc_path();
1743	if (!path)
1744		return -ENOMEM;
1745
1746	key.objectid = device->devid;
1747	key.offset = start;
1748	key.type = BTRFS_DEV_EXTENT_KEY;
1749again:
1750	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1751	if (ret > 0) {
1752		ret = btrfs_previous_item(root, path, key.objectid,
1753					  BTRFS_DEV_EXTENT_KEY);
1754		if (ret)
1755			goto out;
1756		leaf = path->nodes[0];
1757		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1758		extent = btrfs_item_ptr(leaf, path->slots[0],
1759					struct btrfs_dev_extent);
1760		BUG_ON(found_key.offset > start || found_key.offset +
1761		       btrfs_dev_extent_length(leaf, extent) < start);
1762		key = found_key;
1763		btrfs_release_path(path);
1764		goto again;
1765	} else if (ret == 0) {
1766		leaf = path->nodes[0];
1767		extent = btrfs_item_ptr(leaf, path->slots[0],
1768					struct btrfs_dev_extent);
1769	} else {
1770		goto out;
1771	}
1772
1773	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1774
1775	ret = btrfs_del_item(trans, root, path);
1776	if (ret == 0)
1777		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1778out:
1779	btrfs_free_path(path);
1780	return ret;
1781}
1782
1783static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1784{
1785	struct extent_map_tree *em_tree;
1786	struct extent_map *em;
1787	struct rb_node *n;
1788	u64 ret = 0;
1789
1790	em_tree = &fs_info->mapping_tree;
1791	read_lock(&em_tree->lock);
1792	n = rb_last(&em_tree->map.rb_root);
1793	if (n) {
1794		em = rb_entry(n, struct extent_map, rb_node);
1795		ret = em->start + em->len;
1796	}
1797	read_unlock(&em_tree->lock);
1798
1799	return ret;
1800}
1801
1802static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1803				    u64 *devid_ret)
1804{
1805	int ret;
1806	struct btrfs_key key;
1807	struct btrfs_key found_key;
1808	struct btrfs_path *path;
1809
1810	path = btrfs_alloc_path();
1811	if (!path)
1812		return -ENOMEM;
1813
1814	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1815	key.type = BTRFS_DEV_ITEM_KEY;
1816	key.offset = (u64)-1;
1817
1818	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1819	if (ret < 0)
1820		goto error;
1821
1822	if (ret == 0) {
1823		/* Corruption */
1824		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1825		ret = -EUCLEAN;
1826		goto error;
1827	}
1828
1829	ret = btrfs_previous_item(fs_info->chunk_root, path,
1830				  BTRFS_DEV_ITEMS_OBJECTID,
1831				  BTRFS_DEV_ITEM_KEY);
1832	if (ret) {
1833		*devid_ret = 1;
1834	} else {
1835		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1836				      path->slots[0]);
1837		*devid_ret = found_key.offset + 1;
1838	}
1839	ret = 0;
1840error:
1841	btrfs_free_path(path);
1842	return ret;
1843}
1844
1845/*
1846 * the device information is stored in the chunk root
1847 * the btrfs_device struct should be fully filled in
1848 */
1849static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1850			    struct btrfs_device *device)
1851{
1852	int ret;
1853	struct btrfs_path *path;
1854	struct btrfs_dev_item *dev_item;
1855	struct extent_buffer *leaf;
1856	struct btrfs_key key;
1857	unsigned long ptr;
1858
1859	path = btrfs_alloc_path();
1860	if (!path)
1861		return -ENOMEM;
1862
1863	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1864	key.type = BTRFS_DEV_ITEM_KEY;
1865	key.offset = device->devid;
1866
1867	btrfs_reserve_chunk_metadata(trans, true);
1868	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1869				      &key, sizeof(*dev_item));
1870	btrfs_trans_release_chunk_metadata(trans);
1871	if (ret)
1872		goto out;
1873
1874	leaf = path->nodes[0];
1875	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1876
1877	btrfs_set_device_id(leaf, dev_item, device->devid);
1878	btrfs_set_device_generation(leaf, dev_item, 0);
1879	btrfs_set_device_type(leaf, dev_item, device->type);
1880	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1881	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1882	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1883	btrfs_set_device_total_bytes(leaf, dev_item,
1884				     btrfs_device_get_disk_total_bytes(device));
1885	btrfs_set_device_bytes_used(leaf, dev_item,
1886				    btrfs_device_get_bytes_used(device));
1887	btrfs_set_device_group(leaf, dev_item, 0);
1888	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1889	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1890	btrfs_set_device_start_offset(leaf, dev_item, 0);
1891
1892	ptr = btrfs_device_uuid(dev_item);
1893	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1894	ptr = btrfs_device_fsid(dev_item);
1895	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1896			    ptr, BTRFS_FSID_SIZE);
1897	btrfs_mark_buffer_dirty(trans, leaf);
1898
1899	ret = 0;
1900out:
1901	btrfs_free_path(path);
1902	return ret;
1903}
1904
1905/*
1906 * Function to update ctime/mtime for a given device path.
1907 * Mainly used for ctime/mtime based probe like libblkid.
1908 *
1909 * We don't care about errors here, this is just to be kind to userspace.
1910 */
1911static void update_dev_time(const char *device_path)
1912{
1913	struct path path;
1914	int ret;
1915
1916	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1917	if (ret)
1918		return;
1919
1920	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1921	path_put(&path);
1922}
1923
1924static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1925			     struct btrfs_device *device)
1926{
1927	struct btrfs_root *root = device->fs_info->chunk_root;
1928	int ret;
1929	struct btrfs_path *path;
1930	struct btrfs_key key;
1931
1932	path = btrfs_alloc_path();
1933	if (!path)
1934		return -ENOMEM;
1935
1936	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1937	key.type = BTRFS_DEV_ITEM_KEY;
1938	key.offset = device->devid;
1939
1940	btrfs_reserve_chunk_metadata(trans, false);
1941	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1942	btrfs_trans_release_chunk_metadata(trans);
1943	if (ret) {
1944		if (ret > 0)
1945			ret = -ENOENT;
1946		goto out;
1947	}
1948
1949	ret = btrfs_del_item(trans, root, path);
1950out:
1951	btrfs_free_path(path);
1952	return ret;
1953}
1954
1955/*
1956 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1957 * filesystem. It's up to the caller to adjust that number regarding eg. device
1958 * replace.
1959 */
1960static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1961		u64 num_devices)
1962{
1963	u64 all_avail;
1964	unsigned seq;
1965	int i;
1966
1967	do {
1968		seq = read_seqbegin(&fs_info->profiles_lock);
1969
1970		all_avail = fs_info->avail_data_alloc_bits |
1971			    fs_info->avail_system_alloc_bits |
1972			    fs_info->avail_metadata_alloc_bits;
1973	} while (read_seqretry(&fs_info->profiles_lock, seq));
1974
1975	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1976		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1977			continue;
1978
1979		if (num_devices < btrfs_raid_array[i].devs_min)
1980			return btrfs_raid_array[i].mindev_error;
1981	}
1982
1983	return 0;
1984}
1985
1986static struct btrfs_device * btrfs_find_next_active_device(
1987		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1988{
1989	struct btrfs_device *next_device;
1990
1991	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1992		if (next_device != device &&
1993		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1994		    && next_device->bdev)
1995			return next_device;
1996	}
1997
1998	return NULL;
1999}
2000
2001/*
2002 * Helper function to check if the given device is part of s_bdev / latest_dev
2003 * and replace it with the provided or the next active device, in the context
2004 * where this function called, there should be always be another device (or
2005 * this_dev) which is active.
2006 */
2007void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2008					    struct btrfs_device *next_device)
2009{
2010	struct btrfs_fs_info *fs_info = device->fs_info;
2011
2012	if (!next_device)
2013		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2014							    device);
2015	ASSERT(next_device);
2016
2017	if (fs_info->sb->s_bdev &&
2018			(fs_info->sb->s_bdev == device->bdev))
2019		fs_info->sb->s_bdev = next_device->bdev;
2020
2021	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2022		fs_info->fs_devices->latest_dev = next_device;
2023}
2024
2025/*
2026 * Return btrfs_fs_devices::num_devices excluding the device that's being
2027 * currently replaced.
2028 */
2029static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2030{
2031	u64 num_devices = fs_info->fs_devices->num_devices;
2032
2033	down_read(&fs_info->dev_replace.rwsem);
2034	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2035		ASSERT(num_devices > 1);
2036		num_devices--;
2037	}
2038	up_read(&fs_info->dev_replace.rwsem);
2039
2040	return num_devices;
2041}
2042
2043static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2044				     struct block_device *bdev, int copy_num)
2045{
2046	struct btrfs_super_block *disk_super;
2047	const size_t len = sizeof(disk_super->magic);
2048	const u64 bytenr = btrfs_sb_offset(copy_num);
2049	int ret;
2050
2051	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2052	if (IS_ERR(disk_super))
2053		return;
2054
2055	memset(&disk_super->magic, 0, len);
2056	folio_mark_dirty(virt_to_folio(disk_super));
2057	btrfs_release_disk_super(disk_super);
2058
2059	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2060	if (ret)
2061		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2062			copy_num, ret);
2063}
2064
2065void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2066			       struct block_device *bdev,
2067			       const char *device_path)
2068{
2069	int copy_num;
2070
2071	if (!bdev)
2072		return;
2073
2074	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2075		if (bdev_is_zoned(bdev))
2076			btrfs_reset_sb_log_zones(bdev, copy_num);
2077		else
2078			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2079	}
2080
2081	/* Notify udev that device has changed */
2082	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2083
2084	/* Update ctime/mtime for device path for libblkid */
2085	update_dev_time(device_path);
2086}
2087
2088int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2089		    struct btrfs_dev_lookup_args *args,
2090		    struct block_device **bdev, void **holder)
2091{
2092	struct btrfs_trans_handle *trans;
2093	struct btrfs_device *device;
2094	struct btrfs_fs_devices *cur_devices;
2095	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2096	u64 num_devices;
2097	int ret = 0;
2098
2099	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2100		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2101		return -EINVAL;
2102	}
2103
2104	/*
2105	 * The device list in fs_devices is accessed without locks (neither
2106	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2107	 * filesystem and another device rm cannot run.
2108	 */
2109	num_devices = btrfs_num_devices(fs_info);
2110
2111	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2112	if (ret)
2113		return ret;
2114
2115	device = btrfs_find_device(fs_info->fs_devices, args);
2116	if (!device) {
2117		if (args->missing)
2118			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2119		else
2120			ret = -ENOENT;
2121		return ret;
2122	}
2123
2124	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2125		btrfs_warn_in_rcu(fs_info,
2126		  "cannot remove device %s (devid %llu) due to active swapfile",
2127				  btrfs_dev_name(device), device->devid);
2128		return -ETXTBSY;
2129	}
2130
2131	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2132		return BTRFS_ERROR_DEV_TGT_REPLACE;
2133
2134	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2135	    fs_info->fs_devices->rw_devices == 1)
2136		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2137
2138	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2139		mutex_lock(&fs_info->chunk_mutex);
2140		list_del_init(&device->dev_alloc_list);
2141		device->fs_devices->rw_devices--;
2142		mutex_unlock(&fs_info->chunk_mutex);
2143	}
2144
2145	ret = btrfs_shrink_device(device, 0);
2146	if (ret)
2147		goto error_undo;
2148
2149	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2150	if (IS_ERR(trans)) {
2151		ret = PTR_ERR(trans);
2152		goto error_undo;
2153	}
2154
2155	ret = btrfs_rm_dev_item(trans, device);
2156	if (ret) {
2157		/* Any error in dev item removal is critical */
2158		btrfs_crit(fs_info,
2159			   "failed to remove device item for devid %llu: %d",
2160			   device->devid, ret);
2161		btrfs_abort_transaction(trans, ret);
2162		btrfs_end_transaction(trans);
2163		return ret;
2164	}
2165
2166	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2167	btrfs_scrub_cancel_dev(device);
2168
2169	/*
2170	 * the device list mutex makes sure that we don't change
2171	 * the device list while someone else is writing out all
2172	 * the device supers. Whoever is writing all supers, should
2173	 * lock the device list mutex before getting the number of
2174	 * devices in the super block (super_copy). Conversely,
2175	 * whoever updates the number of devices in the super block
2176	 * (super_copy) should hold the device list mutex.
2177	 */
2178
2179	/*
2180	 * In normal cases the cur_devices == fs_devices. But in case
2181	 * of deleting a seed device, the cur_devices should point to
2182	 * its own fs_devices listed under the fs_devices->seed_list.
2183	 */
2184	cur_devices = device->fs_devices;
2185	mutex_lock(&fs_devices->device_list_mutex);
2186	list_del_rcu(&device->dev_list);
2187
2188	cur_devices->num_devices--;
2189	cur_devices->total_devices--;
2190	/* Update total_devices of the parent fs_devices if it's seed */
2191	if (cur_devices != fs_devices)
2192		fs_devices->total_devices--;
2193
2194	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2195		cur_devices->missing_devices--;
2196
2197	btrfs_assign_next_active_device(device, NULL);
2198
2199	if (device->bdev) {
2200		cur_devices->open_devices--;
2201		/* remove sysfs entry */
2202		btrfs_sysfs_remove_device(device);
2203	}
2204
2205	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2206	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2207	mutex_unlock(&fs_devices->device_list_mutex);
2208
2209	/*
2210	 * At this point, the device is zero sized and detached from the
2211	 * devices list.  All that's left is to zero out the old supers and
2212	 * free the device.
2213	 *
2214	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2215	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2216	 * block device and it's dependencies.  Instead just flush the device
2217	 * and let the caller do the final blkdev_put.
2218	 */
2219	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2220		btrfs_scratch_superblocks(fs_info, device->bdev,
2221					  device->name->str);
2222		if (device->bdev) {
2223			sync_blockdev(device->bdev);
2224			invalidate_bdev(device->bdev);
2225		}
2226	}
2227
2228	*bdev = device->bdev;
2229	*holder = device->holder;
2230	synchronize_rcu();
2231	btrfs_free_device(device);
2232
2233	/*
2234	 * This can happen if cur_devices is the private seed devices list.  We
2235	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2236	 * to be held, but in fact we don't need that for the private
2237	 * seed_devices, we can simply decrement cur_devices->opened and then
2238	 * remove it from our list and free the fs_devices.
2239	 */
2240	if (cur_devices->num_devices == 0) {
2241		list_del_init(&cur_devices->seed_list);
2242		ASSERT(cur_devices->opened == 1);
2243		cur_devices->opened--;
2244		free_fs_devices(cur_devices);
2245	}
2246
2247	ret = btrfs_commit_transaction(trans);
2248
2249	return ret;
2250
2251error_undo:
2252	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2253		mutex_lock(&fs_info->chunk_mutex);
2254		list_add(&device->dev_alloc_list,
2255			 &fs_devices->alloc_list);
2256		device->fs_devices->rw_devices++;
2257		mutex_unlock(&fs_info->chunk_mutex);
2258	}
2259	return ret;
2260}
2261
2262void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2263{
2264	struct btrfs_fs_devices *fs_devices;
2265
2266	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2267
2268	/*
2269	 * in case of fs with no seed, srcdev->fs_devices will point
2270	 * to fs_devices of fs_info. However when the dev being replaced is
2271	 * a seed dev it will point to the seed's local fs_devices. In short
2272	 * srcdev will have its correct fs_devices in both the cases.
2273	 */
2274	fs_devices = srcdev->fs_devices;
2275
2276	list_del_rcu(&srcdev->dev_list);
2277	list_del(&srcdev->dev_alloc_list);
2278	fs_devices->num_devices--;
2279	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2280		fs_devices->missing_devices--;
2281
2282	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2283		fs_devices->rw_devices--;
2284
2285	if (srcdev->bdev)
2286		fs_devices->open_devices--;
2287}
2288
2289void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2290{
2291	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2292
2293	mutex_lock(&uuid_mutex);
2294
2295	btrfs_close_bdev(srcdev);
2296	synchronize_rcu();
2297	btrfs_free_device(srcdev);
2298
2299	/* if this is no devs we rather delete the fs_devices */
2300	if (!fs_devices->num_devices) {
2301		/*
2302		 * On a mounted FS, num_devices can't be zero unless it's a
2303		 * seed. In case of a seed device being replaced, the replace
2304		 * target added to the sprout FS, so there will be no more
2305		 * device left under the seed FS.
2306		 */
2307		ASSERT(fs_devices->seeding);
2308
2309		list_del_init(&fs_devices->seed_list);
2310		close_fs_devices(fs_devices);
2311		free_fs_devices(fs_devices);
2312	}
2313	mutex_unlock(&uuid_mutex);
2314}
2315
2316void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2317{
2318	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2319
2320	mutex_lock(&fs_devices->device_list_mutex);
2321
2322	btrfs_sysfs_remove_device(tgtdev);
2323
2324	if (tgtdev->bdev)
2325		fs_devices->open_devices--;
2326
2327	fs_devices->num_devices--;
2328
2329	btrfs_assign_next_active_device(tgtdev, NULL);
2330
2331	list_del_rcu(&tgtdev->dev_list);
2332
2333	mutex_unlock(&fs_devices->device_list_mutex);
2334
2335	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2336				  tgtdev->name->str);
2337
2338	btrfs_close_bdev(tgtdev);
2339	synchronize_rcu();
2340	btrfs_free_device(tgtdev);
2341}
2342
2343/*
2344 * Populate args from device at path.
2345 *
2346 * @fs_info:	the filesystem
2347 * @args:	the args to populate
2348 * @path:	the path to the device
2349 *
2350 * This will read the super block of the device at @path and populate @args with
2351 * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2352 * lookup a device to operate on, but need to do it before we take any locks.
2353 * This properly handles the special case of "missing" that a user may pass in,
2354 * and does some basic sanity checks.  The caller must make sure that @path is
2355 * properly NUL terminated before calling in, and must call
2356 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2357 * uuid buffers.
2358 *
2359 * Return: 0 for success, -errno for failure
2360 */
2361int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2362				 struct btrfs_dev_lookup_args *args,
2363				 const char *path)
2364{
2365	struct btrfs_super_block *disk_super;
2366	struct block_device *bdev;
2367	int ret;
2368
2369	if (!path || !path[0])
2370		return -EINVAL;
2371	if (!strcmp(path, "missing")) {
2372		args->missing = true;
2373		return 0;
2374	}
2375
2376	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2377	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2378	if (!args->uuid || !args->fsid) {
2379		btrfs_put_dev_args_from_path(args);
2380		return -ENOMEM;
2381	}
2382
2383	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2384				    &bdev, &disk_super);
2385	if (ret) {
2386		btrfs_put_dev_args_from_path(args);
2387		return ret;
2388	}
2389
2390	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2391	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2392	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2393		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2394	else
2395		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2396	btrfs_release_disk_super(disk_super);
2397	blkdev_put(bdev, NULL);
2398	return 0;
2399}
2400
2401/*
2402 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2403 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2404 * that don't need to be freed.
2405 */
2406void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2407{
2408	kfree(args->uuid);
2409	kfree(args->fsid);
2410	args->uuid = NULL;
2411	args->fsid = NULL;
2412}
2413
2414struct btrfs_device *btrfs_find_device_by_devspec(
2415		struct btrfs_fs_info *fs_info, u64 devid,
2416		const char *device_path)
2417{
2418	BTRFS_DEV_LOOKUP_ARGS(args);
2419	struct btrfs_device *device;
2420	int ret;
2421
2422	if (devid) {
2423		args.devid = devid;
2424		device = btrfs_find_device(fs_info->fs_devices, &args);
2425		if (!device)
2426			return ERR_PTR(-ENOENT);
2427		return device;
2428	}
2429
2430	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2431	if (ret)
2432		return ERR_PTR(ret);
2433	device = btrfs_find_device(fs_info->fs_devices, &args);
2434	btrfs_put_dev_args_from_path(&args);
2435	if (!device)
2436		return ERR_PTR(-ENOENT);
2437	return device;
2438}
2439
2440static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2441{
2442	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2443	struct btrfs_fs_devices *old_devices;
2444	struct btrfs_fs_devices *seed_devices;
2445
2446	lockdep_assert_held(&uuid_mutex);
2447	if (!fs_devices->seeding)
2448		return ERR_PTR(-EINVAL);
2449
2450	/*
2451	 * Private copy of the seed devices, anchored at
2452	 * fs_info->fs_devices->seed_list
2453	 */
2454	seed_devices = alloc_fs_devices(NULL, NULL);
2455	if (IS_ERR(seed_devices))
2456		return seed_devices;
2457
2458	/*
2459	 * It's necessary to retain a copy of the original seed fs_devices in
2460	 * fs_uuids so that filesystems which have been seeded can successfully
2461	 * reference the seed device from open_seed_devices. This also supports
2462	 * multiple fs seed.
2463	 */
2464	old_devices = clone_fs_devices(fs_devices);
2465	if (IS_ERR(old_devices)) {
2466		kfree(seed_devices);
2467		return old_devices;
2468	}
2469
2470	list_add(&old_devices->fs_list, &fs_uuids);
2471
2472	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2473	seed_devices->opened = 1;
2474	INIT_LIST_HEAD(&seed_devices->devices);
2475	INIT_LIST_HEAD(&seed_devices->alloc_list);
2476	mutex_init(&seed_devices->device_list_mutex);
2477
2478	return seed_devices;
2479}
2480
2481/*
2482 * Splice seed devices into the sprout fs_devices.
2483 * Generate a new fsid for the sprouted read-write filesystem.
2484 */
2485static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2486			       struct btrfs_fs_devices *seed_devices)
2487{
2488	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2489	struct btrfs_super_block *disk_super = fs_info->super_copy;
2490	struct btrfs_device *device;
2491	u64 super_flags;
2492
2493	/*
2494	 * We are updating the fsid, the thread leading to device_list_add()
2495	 * could race, so uuid_mutex is needed.
2496	 */
2497	lockdep_assert_held(&uuid_mutex);
2498
2499	/*
2500	 * The threads listed below may traverse dev_list but can do that without
2501	 * device_list_mutex:
2502	 * - All device ops and balance - as we are in btrfs_exclop_start.
2503	 * - Various dev_list readers - are using RCU.
2504	 * - btrfs_ioctl_fitrim() - is using RCU.
2505	 *
2506	 * For-read threads as below are using device_list_mutex:
2507	 * - Readonly scrub btrfs_scrub_dev()
2508	 * - Readonly scrub btrfs_scrub_progress()
2509	 * - btrfs_get_dev_stats()
2510	 */
2511	lockdep_assert_held(&fs_devices->device_list_mutex);
2512
2513	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2514			      synchronize_rcu);
2515	list_for_each_entry(device, &seed_devices->devices, dev_list)
2516		device->fs_devices = seed_devices;
2517
2518	fs_devices->seeding = false;
2519	fs_devices->num_devices = 0;
2520	fs_devices->open_devices = 0;
2521	fs_devices->missing_devices = 0;
2522	fs_devices->rotating = false;
2523	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2524
2525	generate_random_uuid(fs_devices->fsid);
2526	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2527	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2528
2529	super_flags = btrfs_super_flags(disk_super) &
2530		      ~BTRFS_SUPER_FLAG_SEEDING;
2531	btrfs_set_super_flags(disk_super, super_flags);
2532}
2533
2534/*
2535 * Store the expected generation for seed devices in device items.
2536 */
2537static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2538{
2539	BTRFS_DEV_LOOKUP_ARGS(args);
2540	struct btrfs_fs_info *fs_info = trans->fs_info;
2541	struct btrfs_root *root = fs_info->chunk_root;
2542	struct btrfs_path *path;
2543	struct extent_buffer *leaf;
2544	struct btrfs_dev_item *dev_item;
2545	struct btrfs_device *device;
2546	struct btrfs_key key;
2547	u8 fs_uuid[BTRFS_FSID_SIZE];
2548	u8 dev_uuid[BTRFS_UUID_SIZE];
2549	int ret;
2550
2551	path = btrfs_alloc_path();
2552	if (!path)
2553		return -ENOMEM;
2554
2555	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2556	key.offset = 0;
2557	key.type = BTRFS_DEV_ITEM_KEY;
2558
2559	while (1) {
2560		btrfs_reserve_chunk_metadata(trans, false);
2561		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2562		btrfs_trans_release_chunk_metadata(trans);
2563		if (ret < 0)
2564			goto error;
2565
2566		leaf = path->nodes[0];
2567next_slot:
2568		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2569			ret = btrfs_next_leaf(root, path);
2570			if (ret > 0)
2571				break;
2572			if (ret < 0)
2573				goto error;
2574			leaf = path->nodes[0];
2575			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2576			btrfs_release_path(path);
2577			continue;
2578		}
2579
2580		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2581		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2582		    key.type != BTRFS_DEV_ITEM_KEY)
2583			break;
2584
2585		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2586					  struct btrfs_dev_item);
2587		args.devid = btrfs_device_id(leaf, dev_item);
2588		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2589				   BTRFS_UUID_SIZE);
2590		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2591				   BTRFS_FSID_SIZE);
2592		args.uuid = dev_uuid;
2593		args.fsid = fs_uuid;
2594		device = btrfs_find_device(fs_info->fs_devices, &args);
2595		BUG_ON(!device); /* Logic error */
2596
2597		if (device->fs_devices->seeding) {
2598			btrfs_set_device_generation(leaf, dev_item,
2599						    device->generation);
2600			btrfs_mark_buffer_dirty(trans, leaf);
2601		}
2602
2603		path->slots[0]++;
2604		goto next_slot;
2605	}
2606	ret = 0;
2607error:
2608	btrfs_free_path(path);
2609	return ret;
2610}
2611
2612int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2613{
2614	struct btrfs_root *root = fs_info->dev_root;
2615	struct btrfs_trans_handle *trans;
2616	struct btrfs_device *device;
2617	struct block_device *bdev;
2618	struct super_block *sb = fs_info->sb;
2619	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2620	struct btrfs_fs_devices *seed_devices = NULL;
2621	u64 orig_super_total_bytes;
2622	u64 orig_super_num_devices;
2623	int ret = 0;
2624	bool seeding_dev = false;
2625	bool locked = false;
2626
2627	if (sb_rdonly(sb) && !fs_devices->seeding)
2628		return -EROFS;
2629
2630	bdev = blkdev_get_by_path(device_path, BLK_OPEN_WRITE,
2631				  fs_info->bdev_holder, NULL);
2632	if (IS_ERR(bdev))
2633		return PTR_ERR(bdev);
2634
2635	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2636		ret = -EINVAL;
2637		goto error;
2638	}
2639
2640	if (fs_devices->seeding) {
2641		seeding_dev = true;
2642		down_write(&sb->s_umount);
2643		mutex_lock(&uuid_mutex);
2644		locked = true;
2645	}
2646
2647	sync_blockdev(bdev);
2648
2649	rcu_read_lock();
2650	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2651		if (device->bdev == bdev) {
2652			ret = -EEXIST;
2653			rcu_read_unlock();
2654			goto error;
2655		}
2656	}
2657	rcu_read_unlock();
2658
2659	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2660	if (IS_ERR(device)) {
2661		/* we can safely leave the fs_devices entry around */
2662		ret = PTR_ERR(device);
2663		goto error;
2664	}
2665
2666	device->fs_info = fs_info;
2667	device->bdev = bdev;
2668	ret = lookup_bdev(device_path, &device->devt);
2669	if (ret)
2670		goto error_free_device;
2671
2672	ret = btrfs_get_dev_zone_info(device, false);
2673	if (ret)
2674		goto error_free_device;
2675
2676	trans = btrfs_start_transaction(root, 0);
2677	if (IS_ERR(trans)) {
2678		ret = PTR_ERR(trans);
2679		goto error_free_zone;
2680	}
2681
2682	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2683	device->generation = trans->transid;
2684	device->io_width = fs_info->sectorsize;
2685	device->io_align = fs_info->sectorsize;
2686	device->sector_size = fs_info->sectorsize;
2687	device->total_bytes =
2688		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2689	device->disk_total_bytes = device->total_bytes;
2690	device->commit_total_bytes = device->total_bytes;
2691	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2692	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2693	device->holder = fs_info->bdev_holder;
2694	device->dev_stats_valid = 1;
2695	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2696
2697	if (seeding_dev) {
2698		btrfs_clear_sb_rdonly(sb);
2699
2700		/* GFP_KERNEL allocation must not be under device_list_mutex */
2701		seed_devices = btrfs_init_sprout(fs_info);
2702		if (IS_ERR(seed_devices)) {
2703			ret = PTR_ERR(seed_devices);
2704			btrfs_abort_transaction(trans, ret);
2705			goto error_trans;
2706		}
2707	}
2708
2709	mutex_lock(&fs_devices->device_list_mutex);
2710	if (seeding_dev) {
2711		btrfs_setup_sprout(fs_info, seed_devices);
2712		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2713						device);
2714	}
2715
2716	device->fs_devices = fs_devices;
2717
2718	mutex_lock(&fs_info->chunk_mutex);
2719	list_add_rcu(&device->dev_list, &fs_devices->devices);
2720	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2721	fs_devices->num_devices++;
2722	fs_devices->open_devices++;
2723	fs_devices->rw_devices++;
2724	fs_devices->total_devices++;
2725	fs_devices->total_rw_bytes += device->total_bytes;
2726
2727	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2728
2729	if (!bdev_nonrot(bdev))
2730		fs_devices->rotating = true;
2731
2732	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2733	btrfs_set_super_total_bytes(fs_info->super_copy,
2734		round_down(orig_super_total_bytes + device->total_bytes,
2735			   fs_info->sectorsize));
2736
2737	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2738	btrfs_set_super_num_devices(fs_info->super_copy,
2739				    orig_super_num_devices + 1);
2740
2741	/*
2742	 * we've got more storage, clear any full flags on the space
2743	 * infos
2744	 */
2745	btrfs_clear_space_info_full(fs_info);
2746
2747	mutex_unlock(&fs_info->chunk_mutex);
2748
2749	/* Add sysfs device entry */
2750	btrfs_sysfs_add_device(device);
2751
2752	mutex_unlock(&fs_devices->device_list_mutex);
2753
2754	if (seeding_dev) {
2755		mutex_lock(&fs_info->chunk_mutex);
2756		ret = init_first_rw_device(trans);
2757		mutex_unlock(&fs_info->chunk_mutex);
2758		if (ret) {
2759			btrfs_abort_transaction(trans, ret);
2760			goto error_sysfs;
2761		}
2762	}
2763
2764	ret = btrfs_add_dev_item(trans, device);
2765	if (ret) {
2766		btrfs_abort_transaction(trans, ret);
2767		goto error_sysfs;
2768	}
2769
2770	if (seeding_dev) {
2771		ret = btrfs_finish_sprout(trans);
2772		if (ret) {
2773			btrfs_abort_transaction(trans, ret);
2774			goto error_sysfs;
2775		}
2776
2777		/*
2778		 * fs_devices now represents the newly sprouted filesystem and
2779		 * its fsid has been changed by btrfs_sprout_splice().
2780		 */
2781		btrfs_sysfs_update_sprout_fsid(fs_devices);
2782	}
2783
2784	ret = btrfs_commit_transaction(trans);
2785
2786	if (seeding_dev) {
2787		mutex_unlock(&uuid_mutex);
2788		up_write(&sb->s_umount);
2789		locked = false;
2790
2791		if (ret) /* transaction commit */
2792			return ret;
2793
2794		ret = btrfs_relocate_sys_chunks(fs_info);
2795		if (ret < 0)
2796			btrfs_handle_fs_error(fs_info, ret,
2797				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2798		trans = btrfs_attach_transaction(root);
2799		if (IS_ERR(trans)) {
2800			if (PTR_ERR(trans) == -ENOENT)
2801				return 0;
2802			ret = PTR_ERR(trans);
2803			trans = NULL;
2804			goto error_sysfs;
2805		}
2806		ret = btrfs_commit_transaction(trans);
2807	}
2808
2809	/*
2810	 * Now that we have written a new super block to this device, check all
2811	 * other fs_devices list if device_path alienates any other scanned
2812	 * device.
2813	 * We can ignore the return value as it typically returns -EINVAL and
2814	 * only succeeds if the device was an alien.
2815	 */
2816	btrfs_forget_devices(device->devt);
2817
2818	/* Update ctime/mtime for blkid or udev */
2819	update_dev_time(device_path);
2820
2821	return ret;
2822
2823error_sysfs:
2824	btrfs_sysfs_remove_device(device);
2825	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2826	mutex_lock(&fs_info->chunk_mutex);
2827	list_del_rcu(&device->dev_list);
2828	list_del(&device->dev_alloc_list);
2829	fs_info->fs_devices->num_devices--;
2830	fs_info->fs_devices->open_devices--;
2831	fs_info->fs_devices->rw_devices--;
2832	fs_info->fs_devices->total_devices--;
2833	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2834	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2835	btrfs_set_super_total_bytes(fs_info->super_copy,
2836				    orig_super_total_bytes);
2837	btrfs_set_super_num_devices(fs_info->super_copy,
2838				    orig_super_num_devices);
2839	mutex_unlock(&fs_info->chunk_mutex);
2840	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2841error_trans:
2842	if (seeding_dev)
2843		btrfs_set_sb_rdonly(sb);
2844	if (trans)
2845		btrfs_end_transaction(trans);
2846error_free_zone:
2847	btrfs_destroy_dev_zone_info(device);
2848error_free_device:
2849	btrfs_free_device(device);
2850error:
2851	blkdev_put(bdev, fs_info->bdev_holder);
2852	if (locked) {
2853		mutex_unlock(&uuid_mutex);
2854		up_write(&sb->s_umount);
2855	}
2856	return ret;
2857}
2858
2859static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2860					struct btrfs_device *device)
2861{
2862	int ret;
2863	struct btrfs_path *path;
2864	struct btrfs_root *root = device->fs_info->chunk_root;
2865	struct btrfs_dev_item *dev_item;
2866	struct extent_buffer *leaf;
2867	struct btrfs_key key;
2868
2869	path = btrfs_alloc_path();
2870	if (!path)
2871		return -ENOMEM;
2872
2873	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2874	key.type = BTRFS_DEV_ITEM_KEY;
2875	key.offset = device->devid;
2876
2877	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2878	if (ret < 0)
2879		goto out;
2880
2881	if (ret > 0) {
2882		ret = -ENOENT;
2883		goto out;
2884	}
2885
2886	leaf = path->nodes[0];
2887	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2888
2889	btrfs_set_device_id(leaf, dev_item, device->devid);
2890	btrfs_set_device_type(leaf, dev_item, device->type);
2891	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2892	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2893	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2894	btrfs_set_device_total_bytes(leaf, dev_item,
2895				     btrfs_device_get_disk_total_bytes(device));
2896	btrfs_set_device_bytes_used(leaf, dev_item,
2897				    btrfs_device_get_bytes_used(device));
2898	btrfs_mark_buffer_dirty(trans, leaf);
2899
2900out:
2901	btrfs_free_path(path);
2902	return ret;
2903}
2904
2905int btrfs_grow_device(struct btrfs_trans_handle *trans,
2906		      struct btrfs_device *device, u64 new_size)
2907{
2908	struct btrfs_fs_info *fs_info = device->fs_info;
2909	struct btrfs_super_block *super_copy = fs_info->super_copy;
2910	u64 old_total;
2911	u64 diff;
2912	int ret;
2913
2914	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2915		return -EACCES;
2916
2917	new_size = round_down(new_size, fs_info->sectorsize);
2918
2919	mutex_lock(&fs_info->chunk_mutex);
2920	old_total = btrfs_super_total_bytes(super_copy);
2921	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2922
2923	if (new_size <= device->total_bytes ||
2924	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2925		mutex_unlock(&fs_info->chunk_mutex);
2926		return -EINVAL;
2927	}
2928
2929	btrfs_set_super_total_bytes(super_copy,
2930			round_down(old_total + diff, fs_info->sectorsize));
2931	device->fs_devices->total_rw_bytes += diff;
2932
2933	btrfs_device_set_total_bytes(device, new_size);
2934	btrfs_device_set_disk_total_bytes(device, new_size);
2935	btrfs_clear_space_info_full(device->fs_info);
2936	if (list_empty(&device->post_commit_list))
2937		list_add_tail(&device->post_commit_list,
2938			      &trans->transaction->dev_update_list);
2939	mutex_unlock(&fs_info->chunk_mutex);
2940
2941	btrfs_reserve_chunk_metadata(trans, false);
2942	ret = btrfs_update_device(trans, device);
2943	btrfs_trans_release_chunk_metadata(trans);
2944
2945	return ret;
2946}
2947
2948static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2949{
2950	struct btrfs_fs_info *fs_info = trans->fs_info;
2951	struct btrfs_root *root = fs_info->chunk_root;
2952	int ret;
2953	struct btrfs_path *path;
2954	struct btrfs_key key;
2955
2956	path = btrfs_alloc_path();
2957	if (!path)
2958		return -ENOMEM;
2959
2960	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2961	key.offset = chunk_offset;
2962	key.type = BTRFS_CHUNK_ITEM_KEY;
2963
2964	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2965	if (ret < 0)
2966		goto out;
2967	else if (ret > 0) { /* Logic error or corruption */
2968		btrfs_handle_fs_error(fs_info, -ENOENT,
2969				      "Failed lookup while freeing chunk.");
2970		ret = -ENOENT;
2971		goto out;
2972	}
2973
2974	ret = btrfs_del_item(trans, root, path);
2975	if (ret < 0)
2976		btrfs_handle_fs_error(fs_info, ret,
2977				      "Failed to delete chunk item.");
2978out:
2979	btrfs_free_path(path);
2980	return ret;
2981}
2982
2983static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2984{
2985	struct btrfs_super_block *super_copy = fs_info->super_copy;
2986	struct btrfs_disk_key *disk_key;
2987	struct btrfs_chunk *chunk;
2988	u8 *ptr;
2989	int ret = 0;
2990	u32 num_stripes;
2991	u32 array_size;
2992	u32 len = 0;
2993	u32 cur;
2994	struct btrfs_key key;
2995
2996	lockdep_assert_held(&fs_info->chunk_mutex);
2997	array_size = btrfs_super_sys_array_size(super_copy);
2998
2999	ptr = super_copy->sys_chunk_array;
3000	cur = 0;
3001
3002	while (cur < array_size) {
3003		disk_key = (struct btrfs_disk_key *)ptr;
3004		btrfs_disk_key_to_cpu(&key, disk_key);
3005
3006		len = sizeof(*disk_key);
3007
3008		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3009			chunk = (struct btrfs_chunk *)(ptr + len);
3010			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3011			len += btrfs_chunk_item_size(num_stripes);
3012		} else {
3013			ret = -EIO;
3014			break;
3015		}
3016		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3017		    key.offset == chunk_offset) {
3018			memmove(ptr, ptr + len, array_size - (cur + len));
3019			array_size -= len;
3020			btrfs_set_super_sys_array_size(super_copy, array_size);
3021		} else {
3022			ptr += len;
3023			cur += len;
3024		}
3025	}
3026	return ret;
3027}
3028
3029/*
3030 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3031 * @logical: Logical block offset in bytes.
3032 * @length: Length of extent in bytes.
3033 *
3034 * Return: Chunk mapping or ERR_PTR.
3035 */
3036struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3037				       u64 logical, u64 length)
3038{
3039	struct extent_map_tree *em_tree;
3040	struct extent_map *em;
3041
3042	em_tree = &fs_info->mapping_tree;
3043	read_lock(&em_tree->lock);
3044	em = lookup_extent_mapping(em_tree, logical, length);
3045	read_unlock(&em_tree->lock);
3046
3047	if (!em) {
3048		btrfs_crit(fs_info,
3049			   "unable to find chunk map for logical %llu length %llu",
3050			   logical, length);
3051		return ERR_PTR(-EINVAL);
3052	}
3053
3054	if (em->start > logical || em->start + em->len <= logical) {
3055		btrfs_crit(fs_info,
3056			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3057			   logical, logical + length, em->start, em->start + em->len);
3058		free_extent_map(em);
3059		return ERR_PTR(-EINVAL);
3060	}
3061
3062	/* callers are responsible for dropping em's ref. */
3063	return em;
3064}
3065
3066static int remove_chunk_item(struct btrfs_trans_handle *trans,
3067			     struct map_lookup *map, u64 chunk_offset)
3068{
3069	int i;
3070
3071	/*
3072	 * Removing chunk items and updating the device items in the chunks btree
3073	 * requires holding the chunk_mutex.
3074	 * See the comment at btrfs_chunk_alloc() for the details.
3075	 */
3076	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3077
3078	for (i = 0; i < map->num_stripes; i++) {
3079		int ret;
3080
3081		ret = btrfs_update_device(trans, map->stripes[i].dev);
3082		if (ret)
3083			return ret;
3084	}
3085
3086	return btrfs_free_chunk(trans, chunk_offset);
3087}
3088
3089int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3090{
3091	struct btrfs_fs_info *fs_info = trans->fs_info;
3092	struct extent_map *em;
3093	struct map_lookup *map;
3094	u64 dev_extent_len = 0;
3095	int i, ret = 0;
3096	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3097
3098	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3099	if (IS_ERR(em)) {
3100		/*
3101		 * This is a logic error, but we don't want to just rely on the
3102		 * user having built with ASSERT enabled, so if ASSERT doesn't
3103		 * do anything we still error out.
3104		 */
3105		ASSERT(0);
3106		return PTR_ERR(em);
3107	}
3108	map = em->map_lookup;
3109
3110	/*
3111	 * First delete the device extent items from the devices btree.
3112	 * We take the device_list_mutex to avoid racing with the finishing phase
3113	 * of a device replace operation. See the comment below before acquiring
3114	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3115	 * because that can result in a deadlock when deleting the device extent
3116	 * items from the devices btree - COWing an extent buffer from the btree
3117	 * may result in allocating a new metadata chunk, which would attempt to
3118	 * lock again fs_info->chunk_mutex.
3119	 */
3120	mutex_lock(&fs_devices->device_list_mutex);
3121	for (i = 0; i < map->num_stripes; i++) {
3122		struct btrfs_device *device = map->stripes[i].dev;
3123		ret = btrfs_free_dev_extent(trans, device,
3124					    map->stripes[i].physical,
3125					    &dev_extent_len);
3126		if (ret) {
3127			mutex_unlock(&fs_devices->device_list_mutex);
3128			btrfs_abort_transaction(trans, ret);
3129			goto out;
3130		}
3131
3132		if (device->bytes_used > 0) {
3133			mutex_lock(&fs_info->chunk_mutex);
3134			btrfs_device_set_bytes_used(device,
3135					device->bytes_used - dev_extent_len);
3136			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3137			btrfs_clear_space_info_full(fs_info);
3138			mutex_unlock(&fs_info->chunk_mutex);
3139		}
3140	}
3141	mutex_unlock(&fs_devices->device_list_mutex);
3142
3143	/*
3144	 * We acquire fs_info->chunk_mutex for 2 reasons:
3145	 *
3146	 * 1) Just like with the first phase of the chunk allocation, we must
3147	 *    reserve system space, do all chunk btree updates and deletions, and
3148	 *    update the system chunk array in the superblock while holding this
3149	 *    mutex. This is for similar reasons as explained on the comment at
3150	 *    the top of btrfs_chunk_alloc();
3151	 *
3152	 * 2) Prevent races with the final phase of a device replace operation
3153	 *    that replaces the device object associated with the map's stripes,
3154	 *    because the device object's id can change at any time during that
3155	 *    final phase of the device replace operation
3156	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3157	 *    replaced device and then see it with an ID of
3158	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3159	 *    the device item, which does not exists on the chunk btree.
3160	 *    The finishing phase of device replace acquires both the
3161	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3162	 *    safe by just acquiring the chunk_mutex.
3163	 */
3164	trans->removing_chunk = true;
3165	mutex_lock(&fs_info->chunk_mutex);
3166
3167	check_system_chunk(trans, map->type);
3168
3169	ret = remove_chunk_item(trans, map, chunk_offset);
3170	/*
3171	 * Normally we should not get -ENOSPC since we reserved space before
3172	 * through the call to check_system_chunk().
3173	 *
3174	 * Despite our system space_info having enough free space, we may not
3175	 * be able to allocate extents from its block groups, because all have
3176	 * an incompatible profile, which will force us to allocate a new system
3177	 * block group with the right profile, or right after we called
3178	 * check_system_space() above, a scrub turned the only system block group
3179	 * with enough free space into RO mode.
3180	 * This is explained with more detail at do_chunk_alloc().
3181	 *
3182	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3183	 */
3184	if (ret == -ENOSPC) {
3185		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3186		struct btrfs_block_group *sys_bg;
3187
3188		sys_bg = btrfs_create_chunk(trans, sys_flags);
3189		if (IS_ERR(sys_bg)) {
3190			ret = PTR_ERR(sys_bg);
3191			btrfs_abort_transaction(trans, ret);
3192			goto out;
3193		}
3194
3195		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3196		if (ret) {
3197			btrfs_abort_transaction(trans, ret);
3198			goto out;
3199		}
3200
3201		ret = remove_chunk_item(trans, map, chunk_offset);
3202		if (ret) {
3203			btrfs_abort_transaction(trans, ret);
3204			goto out;
3205		}
3206	} else if (ret) {
3207		btrfs_abort_transaction(trans, ret);
3208		goto out;
3209	}
3210
3211	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3212
3213	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3214		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3215		if (ret) {
3216			btrfs_abort_transaction(trans, ret);
3217			goto out;
3218		}
3219	}
3220
3221	mutex_unlock(&fs_info->chunk_mutex);
3222	trans->removing_chunk = false;
3223
3224	/*
3225	 * We are done with chunk btree updates and deletions, so release the
3226	 * system space we previously reserved (with check_system_chunk()).
3227	 */
3228	btrfs_trans_release_chunk_metadata(trans);
3229
3230	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3231	if (ret) {
3232		btrfs_abort_transaction(trans, ret);
3233		goto out;
3234	}
3235
3236out:
3237	if (trans->removing_chunk) {
3238		mutex_unlock(&fs_info->chunk_mutex);
3239		trans->removing_chunk = false;
3240	}
3241	/* once for us */
3242	free_extent_map(em);
3243	return ret;
3244}
3245
3246int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3247{
3248	struct btrfs_root *root = fs_info->chunk_root;
3249	struct btrfs_trans_handle *trans;
3250	struct btrfs_block_group *block_group;
3251	u64 length;
3252	int ret;
3253
3254	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3255		btrfs_err(fs_info,
3256			  "relocate: not supported on extent tree v2 yet");
3257		return -EINVAL;
3258	}
3259
3260	/*
3261	 * Prevent races with automatic removal of unused block groups.
3262	 * After we relocate and before we remove the chunk with offset
3263	 * chunk_offset, automatic removal of the block group can kick in,
3264	 * resulting in a failure when calling btrfs_remove_chunk() below.
3265	 *
3266	 * Make sure to acquire this mutex before doing a tree search (dev
3267	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3268	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3269	 * we release the path used to search the chunk/dev tree and before
3270	 * the current task acquires this mutex and calls us.
3271	 */
3272	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3273
3274	/* step one, relocate all the extents inside this chunk */
3275	btrfs_scrub_pause(fs_info);
3276	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3277	btrfs_scrub_continue(fs_info);
3278	if (ret) {
3279		/*
3280		 * If we had a transaction abort, stop all running scrubs.
3281		 * See transaction.c:cleanup_transaction() why we do it here.
3282		 */
3283		if (BTRFS_FS_ERROR(fs_info))
3284			btrfs_scrub_cancel(fs_info);
3285		return ret;
3286	}
3287
3288	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3289	if (!block_group)
3290		return -ENOENT;
3291	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3292	length = block_group->length;
3293	btrfs_put_block_group(block_group);
3294
3295	/*
3296	 * On a zoned file system, discard the whole block group, this will
3297	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3298	 * resetting the zone fails, don't treat it as a fatal problem from the
3299	 * filesystem's point of view.
3300	 */
3301	if (btrfs_is_zoned(fs_info)) {
3302		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3303		if (ret)
3304			btrfs_info(fs_info,
3305				"failed to reset zone %llu after relocation",
3306				chunk_offset);
3307	}
3308
3309	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3310						     chunk_offset);
3311	if (IS_ERR(trans)) {
3312		ret = PTR_ERR(trans);
3313		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3314		return ret;
3315	}
3316
3317	/*
3318	 * step two, delete the device extents and the
3319	 * chunk tree entries
3320	 */
3321	ret = btrfs_remove_chunk(trans, chunk_offset);
3322	btrfs_end_transaction(trans);
3323	return ret;
3324}
3325
3326static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3327{
3328	struct btrfs_root *chunk_root = fs_info->chunk_root;
3329	struct btrfs_path *path;
3330	struct extent_buffer *leaf;
3331	struct btrfs_chunk *chunk;
3332	struct btrfs_key key;
3333	struct btrfs_key found_key;
3334	u64 chunk_type;
3335	bool retried = false;
3336	int failed = 0;
3337	int ret;
3338
3339	path = btrfs_alloc_path();
3340	if (!path)
3341		return -ENOMEM;
3342
3343again:
3344	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3345	key.offset = (u64)-1;
3346	key.type = BTRFS_CHUNK_ITEM_KEY;
3347
3348	while (1) {
3349		mutex_lock(&fs_info->reclaim_bgs_lock);
3350		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3351		if (ret < 0) {
3352			mutex_unlock(&fs_info->reclaim_bgs_lock);
3353			goto error;
3354		}
3355		BUG_ON(ret == 0); /* Corruption */
3356
3357		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3358					  key.type);
3359		if (ret)
3360			mutex_unlock(&fs_info->reclaim_bgs_lock);
3361		if (ret < 0)
3362			goto error;
3363		if (ret > 0)
3364			break;
3365
3366		leaf = path->nodes[0];
3367		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3368
3369		chunk = btrfs_item_ptr(leaf, path->slots[0],
3370				       struct btrfs_chunk);
3371		chunk_type = btrfs_chunk_type(leaf, chunk);
3372		btrfs_release_path(path);
3373
3374		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3375			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3376			if (ret == -ENOSPC)
3377				failed++;
3378			else
3379				BUG_ON(ret);
3380		}
3381		mutex_unlock(&fs_info->reclaim_bgs_lock);
3382
3383		if (found_key.offset == 0)
3384			break;
3385		key.offset = found_key.offset - 1;
3386	}
3387	ret = 0;
3388	if (failed && !retried) {
3389		failed = 0;
3390		retried = true;
3391		goto again;
3392	} else if (WARN_ON(failed && retried)) {
3393		ret = -ENOSPC;
3394	}
3395error:
3396	btrfs_free_path(path);
3397	return ret;
3398}
3399
3400/*
3401 * return 1 : allocate a data chunk successfully,
3402 * return <0: errors during allocating a data chunk,
3403 * return 0 : no need to allocate a data chunk.
3404 */
3405static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3406				      u64 chunk_offset)
3407{
3408	struct btrfs_block_group *cache;
3409	u64 bytes_used;
3410	u64 chunk_type;
3411
3412	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3413	ASSERT(cache);
3414	chunk_type = cache->flags;
3415	btrfs_put_block_group(cache);
3416
3417	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3418		return 0;
3419
3420	spin_lock(&fs_info->data_sinfo->lock);
3421	bytes_used = fs_info->data_sinfo->bytes_used;
3422	spin_unlock(&fs_info->data_sinfo->lock);
3423
3424	if (!bytes_used) {
3425		struct btrfs_trans_handle *trans;
3426		int ret;
3427
3428		trans =	btrfs_join_transaction(fs_info->tree_root);
3429		if (IS_ERR(trans))
3430			return PTR_ERR(trans);
3431
3432		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3433		btrfs_end_transaction(trans);
3434		if (ret < 0)
3435			return ret;
3436		return 1;
3437	}
3438
3439	return 0;
3440}
3441
3442static int insert_balance_item(struct btrfs_fs_info *fs_info,
3443			       struct btrfs_balance_control *bctl)
3444{
3445	struct btrfs_root *root = fs_info->tree_root;
3446	struct btrfs_trans_handle *trans;
3447	struct btrfs_balance_item *item;
3448	struct btrfs_disk_balance_args disk_bargs;
3449	struct btrfs_path *path;
3450	struct extent_buffer *leaf;
3451	struct btrfs_key key;
3452	int ret, err;
3453
3454	path = btrfs_alloc_path();
3455	if (!path)
3456		return -ENOMEM;
3457
3458	trans = btrfs_start_transaction(root, 0);
3459	if (IS_ERR(trans)) {
3460		btrfs_free_path(path);
3461		return PTR_ERR(trans);
3462	}
3463
3464	key.objectid = BTRFS_BALANCE_OBJECTID;
3465	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3466	key.offset = 0;
3467
3468	ret = btrfs_insert_empty_item(trans, root, path, &key,
3469				      sizeof(*item));
3470	if (ret)
3471		goto out;
3472
3473	leaf = path->nodes[0];
3474	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3475
3476	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3477
3478	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3479	btrfs_set_balance_data(leaf, item, &disk_bargs);
3480	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3481	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3482	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3483	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3484
3485	btrfs_set_balance_flags(leaf, item, bctl->flags);
3486
3487	btrfs_mark_buffer_dirty(trans, leaf);
3488out:
3489	btrfs_free_path(path);
3490	err = btrfs_commit_transaction(trans);
3491	if (err && !ret)
3492		ret = err;
3493	return ret;
3494}
3495
3496static int del_balance_item(struct btrfs_fs_info *fs_info)
3497{
3498	struct btrfs_root *root = fs_info->tree_root;
3499	struct btrfs_trans_handle *trans;
3500	struct btrfs_path *path;
3501	struct btrfs_key key;
3502	int ret, err;
3503
3504	path = btrfs_alloc_path();
3505	if (!path)
3506		return -ENOMEM;
3507
3508	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3509	if (IS_ERR(trans)) {
3510		btrfs_free_path(path);
3511		return PTR_ERR(trans);
3512	}
3513
3514	key.objectid = BTRFS_BALANCE_OBJECTID;
3515	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3516	key.offset = 0;
3517
3518	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3519	if (ret < 0)
3520		goto out;
3521	if (ret > 0) {
3522		ret = -ENOENT;
3523		goto out;
3524	}
3525
3526	ret = btrfs_del_item(trans, root, path);
3527out:
3528	btrfs_free_path(path);
3529	err = btrfs_commit_transaction(trans);
3530	if (err && !ret)
3531		ret = err;
3532	return ret;
3533}
3534
3535/*
3536 * This is a heuristic used to reduce the number of chunks balanced on
3537 * resume after balance was interrupted.
3538 */
3539static void update_balance_args(struct btrfs_balance_control *bctl)
3540{
3541	/*
3542	 * Turn on soft mode for chunk types that were being converted.
3543	 */
3544	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3545		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3546	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3547		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3548	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3549		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3550
3551	/*
3552	 * Turn on usage filter if is not already used.  The idea is
3553	 * that chunks that we have already balanced should be
3554	 * reasonably full.  Don't do it for chunks that are being
3555	 * converted - that will keep us from relocating unconverted
3556	 * (albeit full) chunks.
3557	 */
3558	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3559	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3560	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3561		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3562		bctl->data.usage = 90;
3563	}
3564	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3565	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3566	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3567		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3568		bctl->sys.usage = 90;
3569	}
3570	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3571	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3572	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3573		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3574		bctl->meta.usage = 90;
3575	}
3576}
3577
3578/*
3579 * Clear the balance status in fs_info and delete the balance item from disk.
3580 */
3581static void reset_balance_state(struct btrfs_fs_info *fs_info)
3582{
3583	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3584	int ret;
3585
3586	BUG_ON(!fs_info->balance_ctl);
3587
3588	spin_lock(&fs_info->balance_lock);
3589	fs_info->balance_ctl = NULL;
3590	spin_unlock(&fs_info->balance_lock);
3591
3592	kfree(bctl);
3593	ret = del_balance_item(fs_info);
3594	if (ret)
3595		btrfs_handle_fs_error(fs_info, ret, NULL);
3596}
3597
3598/*
3599 * Balance filters.  Return 1 if chunk should be filtered out
3600 * (should not be balanced).
3601 */
3602static int chunk_profiles_filter(u64 chunk_type,
3603				 struct btrfs_balance_args *bargs)
3604{
3605	chunk_type = chunk_to_extended(chunk_type) &
3606				BTRFS_EXTENDED_PROFILE_MASK;
3607
3608	if (bargs->profiles & chunk_type)
3609		return 0;
3610
3611	return 1;
3612}
3613
3614static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3615			      struct btrfs_balance_args *bargs)
3616{
3617	struct btrfs_block_group *cache;
3618	u64 chunk_used;
3619	u64 user_thresh_min;
3620	u64 user_thresh_max;
3621	int ret = 1;
3622
3623	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3624	chunk_used = cache->used;
3625
3626	if (bargs->usage_min == 0)
3627		user_thresh_min = 0;
3628	else
3629		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3630
3631	if (bargs->usage_max == 0)
3632		user_thresh_max = 1;
3633	else if (bargs->usage_max > 100)
3634		user_thresh_max = cache->length;
3635	else
3636		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3637
3638	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3639		ret = 0;
3640
3641	btrfs_put_block_group(cache);
3642	return ret;
3643}
3644
3645static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3646		u64 chunk_offset, struct btrfs_balance_args *bargs)
3647{
3648	struct btrfs_block_group *cache;
3649	u64 chunk_used, user_thresh;
3650	int ret = 1;
3651
3652	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3653	chunk_used = cache->used;
3654
3655	if (bargs->usage_min == 0)
3656		user_thresh = 1;
3657	else if (bargs->usage > 100)
3658		user_thresh = cache->length;
3659	else
3660		user_thresh = mult_perc(cache->length, bargs->usage);
3661
3662	if (chunk_used < user_thresh)
3663		ret = 0;
3664
3665	btrfs_put_block_group(cache);
3666	return ret;
3667}
3668
3669static int chunk_devid_filter(struct extent_buffer *leaf,
3670			      struct btrfs_chunk *chunk,
3671			      struct btrfs_balance_args *bargs)
3672{
3673	struct btrfs_stripe *stripe;
3674	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3675	int i;
3676
3677	for (i = 0; i < num_stripes; i++) {
3678		stripe = btrfs_stripe_nr(chunk, i);
3679		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3680			return 0;
3681	}
3682
3683	return 1;
3684}
3685
3686static u64 calc_data_stripes(u64 type, int num_stripes)
3687{
3688	const int index = btrfs_bg_flags_to_raid_index(type);
3689	const int ncopies = btrfs_raid_array[index].ncopies;
3690	const int nparity = btrfs_raid_array[index].nparity;
3691
3692	return (num_stripes - nparity) / ncopies;
3693}
3694
3695/* [pstart, pend) */
3696static int chunk_drange_filter(struct extent_buffer *leaf,
3697			       struct btrfs_chunk *chunk,
3698			       struct btrfs_balance_args *bargs)
3699{
3700	struct btrfs_stripe *stripe;
3701	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3702	u64 stripe_offset;
3703	u64 stripe_length;
3704	u64 type;
3705	int factor;
3706	int i;
3707
3708	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3709		return 0;
3710
3711	type = btrfs_chunk_type(leaf, chunk);
3712	factor = calc_data_stripes(type, num_stripes);
3713
3714	for (i = 0; i < num_stripes; i++) {
3715		stripe = btrfs_stripe_nr(chunk, i);
3716		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3717			continue;
3718
3719		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3720		stripe_length = btrfs_chunk_length(leaf, chunk);
3721		stripe_length = div_u64(stripe_length, factor);
3722
3723		if (stripe_offset < bargs->pend &&
3724		    stripe_offset + stripe_length > bargs->pstart)
3725			return 0;
3726	}
3727
3728	return 1;
3729}
3730
3731/* [vstart, vend) */
3732static int chunk_vrange_filter(struct extent_buffer *leaf,
3733			       struct btrfs_chunk *chunk,
3734			       u64 chunk_offset,
3735			       struct btrfs_balance_args *bargs)
3736{
3737	if (chunk_offset < bargs->vend &&
3738	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3739		/* at least part of the chunk is inside this vrange */
3740		return 0;
3741
3742	return 1;
3743}
3744
3745static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3746			       struct btrfs_chunk *chunk,
3747			       struct btrfs_balance_args *bargs)
3748{
3749	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3750
3751	if (bargs->stripes_min <= num_stripes
3752			&& num_stripes <= bargs->stripes_max)
3753		return 0;
3754
3755	return 1;
3756}
3757
3758static int chunk_soft_convert_filter(u64 chunk_type,
3759				     struct btrfs_balance_args *bargs)
3760{
3761	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3762		return 0;
3763
3764	chunk_type = chunk_to_extended(chunk_type) &
3765				BTRFS_EXTENDED_PROFILE_MASK;
3766
3767	if (bargs->target == chunk_type)
3768		return 1;
3769
3770	return 0;
3771}
3772
3773static int should_balance_chunk(struct extent_buffer *leaf,
3774				struct btrfs_chunk *chunk, u64 chunk_offset)
3775{
3776	struct btrfs_fs_info *fs_info = leaf->fs_info;
3777	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3778	struct btrfs_balance_args *bargs = NULL;
3779	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3780
3781	/* type filter */
3782	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3783	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3784		return 0;
3785	}
3786
3787	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3788		bargs = &bctl->data;
3789	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3790		bargs = &bctl->sys;
3791	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3792		bargs = &bctl->meta;
3793
3794	/* profiles filter */
3795	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3796	    chunk_profiles_filter(chunk_type, bargs)) {
3797		return 0;
3798	}
3799
3800	/* usage filter */
3801	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3802	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3803		return 0;
3804	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3805	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3806		return 0;
3807	}
3808
3809	/* devid filter */
3810	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3811	    chunk_devid_filter(leaf, chunk, bargs)) {
3812		return 0;
3813	}
3814
3815	/* drange filter, makes sense only with devid filter */
3816	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3817	    chunk_drange_filter(leaf, chunk, bargs)) {
3818		return 0;
3819	}
3820
3821	/* vrange filter */
3822	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3823	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3824		return 0;
3825	}
3826
3827	/* stripes filter */
3828	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3829	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3830		return 0;
3831	}
3832
3833	/* soft profile changing mode */
3834	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3835	    chunk_soft_convert_filter(chunk_type, bargs)) {
3836		return 0;
3837	}
3838
3839	/*
3840	 * limited by count, must be the last filter
3841	 */
3842	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3843		if (bargs->limit == 0)
3844			return 0;
3845		else
3846			bargs->limit--;
3847	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3848		/*
3849		 * Same logic as the 'limit' filter; the minimum cannot be
3850		 * determined here because we do not have the global information
3851		 * about the count of all chunks that satisfy the filters.
3852		 */
3853		if (bargs->limit_max == 0)
3854			return 0;
3855		else
3856			bargs->limit_max--;
3857	}
3858
3859	return 1;
3860}
3861
3862static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3863{
3864	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3865	struct btrfs_root *chunk_root = fs_info->chunk_root;
3866	u64 chunk_type;
3867	struct btrfs_chunk *chunk;
3868	struct btrfs_path *path = NULL;
3869	struct btrfs_key key;
3870	struct btrfs_key found_key;
3871	struct extent_buffer *leaf;
3872	int slot;
3873	int ret;
3874	int enospc_errors = 0;
3875	bool counting = true;
3876	/* The single value limit and min/max limits use the same bytes in the */
3877	u64 limit_data = bctl->data.limit;
3878	u64 limit_meta = bctl->meta.limit;
3879	u64 limit_sys = bctl->sys.limit;
3880	u32 count_data = 0;
3881	u32 count_meta = 0;
3882	u32 count_sys = 0;
3883	int chunk_reserved = 0;
3884
3885	path = btrfs_alloc_path();
3886	if (!path) {
3887		ret = -ENOMEM;
3888		goto error;
3889	}
3890
3891	/* zero out stat counters */
3892	spin_lock(&fs_info->balance_lock);
3893	memset(&bctl->stat, 0, sizeof(bctl->stat));
3894	spin_unlock(&fs_info->balance_lock);
3895again:
3896	if (!counting) {
3897		/*
3898		 * The single value limit and min/max limits use the same bytes
3899		 * in the
3900		 */
3901		bctl->data.limit = limit_data;
3902		bctl->meta.limit = limit_meta;
3903		bctl->sys.limit = limit_sys;
3904	}
3905	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3906	key.offset = (u64)-1;
3907	key.type = BTRFS_CHUNK_ITEM_KEY;
3908
3909	while (1) {
3910		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3911		    atomic_read(&fs_info->balance_cancel_req)) {
3912			ret = -ECANCELED;
3913			goto error;
3914		}
3915
3916		mutex_lock(&fs_info->reclaim_bgs_lock);
3917		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3918		if (ret < 0) {
3919			mutex_unlock(&fs_info->reclaim_bgs_lock);
3920			goto error;
3921		}
3922
3923		/*
3924		 * this shouldn't happen, it means the last relocate
3925		 * failed
3926		 */
3927		if (ret == 0)
3928			BUG(); /* FIXME break ? */
3929
3930		ret = btrfs_previous_item(chunk_root, path, 0,
3931					  BTRFS_CHUNK_ITEM_KEY);
3932		if (ret) {
3933			mutex_unlock(&fs_info->reclaim_bgs_lock);
3934			ret = 0;
3935			break;
3936		}
3937
3938		leaf = path->nodes[0];
3939		slot = path->slots[0];
3940		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3941
3942		if (found_key.objectid != key.objectid) {
3943			mutex_unlock(&fs_info->reclaim_bgs_lock);
3944			break;
3945		}
3946
3947		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3948		chunk_type = btrfs_chunk_type(leaf, chunk);
3949
3950		if (!counting) {
3951			spin_lock(&fs_info->balance_lock);
3952			bctl->stat.considered++;
3953			spin_unlock(&fs_info->balance_lock);
3954		}
3955
3956		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3957
3958		btrfs_release_path(path);
3959		if (!ret) {
3960			mutex_unlock(&fs_info->reclaim_bgs_lock);
3961			goto loop;
3962		}
3963
3964		if (counting) {
3965			mutex_unlock(&fs_info->reclaim_bgs_lock);
3966			spin_lock(&fs_info->balance_lock);
3967			bctl->stat.expected++;
3968			spin_unlock(&fs_info->balance_lock);
3969
3970			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3971				count_data++;
3972			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3973				count_sys++;
3974			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3975				count_meta++;
3976
3977			goto loop;
3978		}
3979
3980		/*
3981		 * Apply limit_min filter, no need to check if the LIMITS
3982		 * filter is used, limit_min is 0 by default
3983		 */
3984		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3985					count_data < bctl->data.limit_min)
3986				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3987					count_meta < bctl->meta.limit_min)
3988				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3989					count_sys < bctl->sys.limit_min)) {
3990			mutex_unlock(&fs_info->reclaim_bgs_lock);
3991			goto loop;
3992		}
3993
3994		if (!chunk_reserved) {
3995			/*
3996			 * We may be relocating the only data chunk we have,
3997			 * which could potentially end up with losing data's
3998			 * raid profile, so lets allocate an empty one in
3999			 * advance.
4000			 */
4001			ret = btrfs_may_alloc_data_chunk(fs_info,
4002							 found_key.offset);
4003			if (ret < 0) {
4004				mutex_unlock(&fs_info->reclaim_bgs_lock);
4005				goto error;
4006			} else if (ret == 1) {
4007				chunk_reserved = 1;
4008			}
4009		}
4010
4011		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4012		mutex_unlock(&fs_info->reclaim_bgs_lock);
4013		if (ret == -ENOSPC) {
4014			enospc_errors++;
4015		} else if (ret == -ETXTBSY) {
4016			btrfs_info(fs_info,
4017	   "skipping relocation of block group %llu due to active swapfile",
4018				   found_key.offset);
4019			ret = 0;
4020		} else if (ret) {
4021			goto error;
4022		} else {
4023			spin_lock(&fs_info->balance_lock);
4024			bctl->stat.completed++;
4025			spin_unlock(&fs_info->balance_lock);
4026		}
4027loop:
4028		if (found_key.offset == 0)
4029			break;
4030		key.offset = found_key.offset - 1;
4031	}
4032
4033	if (counting) {
4034		btrfs_release_path(path);
4035		counting = false;
4036		goto again;
4037	}
4038error:
4039	btrfs_free_path(path);
4040	if (enospc_errors) {
4041		btrfs_info(fs_info, "%d enospc errors during balance",
4042			   enospc_errors);
4043		if (!ret)
4044			ret = -ENOSPC;
4045	}
4046
4047	return ret;
4048}
4049
4050/*
4051 * See if a given profile is valid and reduced.
4052 *
4053 * @flags:     profile to validate
4054 * @extended:  if true @flags is treated as an extended profile
4055 */
4056static int alloc_profile_is_valid(u64 flags, int extended)
4057{
4058	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4059			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4060
4061	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4062
4063	/* 1) check that all other bits are zeroed */
4064	if (flags & ~mask)
4065		return 0;
4066
4067	/* 2) see if profile is reduced */
4068	if (flags == 0)
4069		return !extended; /* "0" is valid for usual profiles */
4070
4071	return has_single_bit_set(flags);
4072}
4073
4074/*
4075 * Validate target profile against allowed profiles and return true if it's OK.
4076 * Otherwise print the error message and return false.
4077 */
4078static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4079		const struct btrfs_balance_args *bargs,
4080		u64 allowed, const char *type)
4081{
4082	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4083		return true;
4084
4085	/* Profile is valid and does not have bits outside of the allowed set */
4086	if (alloc_profile_is_valid(bargs->target, 1) &&
4087	    (bargs->target & ~allowed) == 0)
4088		return true;
4089
4090	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4091			type, btrfs_bg_type_to_raid_name(bargs->target));
4092	return false;
4093}
4094
4095/*
4096 * Fill @buf with textual description of balance filter flags @bargs, up to
4097 * @size_buf including the terminating null. The output may be trimmed if it
4098 * does not fit into the provided buffer.
4099 */
4100static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4101				 u32 size_buf)
4102{
4103	int ret;
4104	u32 size_bp = size_buf;
4105	char *bp = buf;
4106	u64 flags = bargs->flags;
4107	char tmp_buf[128] = {'\0'};
4108
4109	if (!flags)
4110		return;
4111
4112#define CHECK_APPEND_NOARG(a)						\
4113	do {								\
4114		ret = snprintf(bp, size_bp, (a));			\
4115		if (ret < 0 || ret >= size_bp)				\
4116			goto out_overflow;				\
4117		size_bp -= ret;						\
4118		bp += ret;						\
4119	} while (0)
4120
4121#define CHECK_APPEND_1ARG(a, v1)					\
4122	do {								\
4123		ret = snprintf(bp, size_bp, (a), (v1));			\
4124		if (ret < 0 || ret >= size_bp)				\
4125			goto out_overflow;				\
4126		size_bp -= ret;						\
4127		bp += ret;						\
4128	} while (0)
4129
4130#define CHECK_APPEND_2ARG(a, v1, v2)					\
4131	do {								\
4132		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4133		if (ret < 0 || ret >= size_bp)				\
4134			goto out_overflow;				\
4135		size_bp -= ret;						\
4136		bp += ret;						\
4137	} while (0)
4138
4139	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4140		CHECK_APPEND_1ARG("convert=%s,",
4141				  btrfs_bg_type_to_raid_name(bargs->target));
4142
4143	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4144		CHECK_APPEND_NOARG("soft,");
4145
4146	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4147		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4148					    sizeof(tmp_buf));
4149		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4150	}
4151
4152	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4153		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4154
4155	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4156		CHECK_APPEND_2ARG("usage=%u..%u,",
4157				  bargs->usage_min, bargs->usage_max);
4158
4159	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4160		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4161
4162	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4163		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4164				  bargs->pstart, bargs->pend);
4165
4166	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4167		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4168				  bargs->vstart, bargs->vend);
4169
4170	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4171		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4172
4173	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4174		CHECK_APPEND_2ARG("limit=%u..%u,",
4175				bargs->limit_min, bargs->limit_max);
4176
4177	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4178		CHECK_APPEND_2ARG("stripes=%u..%u,",
4179				  bargs->stripes_min, bargs->stripes_max);
4180
4181#undef CHECK_APPEND_2ARG
4182#undef CHECK_APPEND_1ARG
4183#undef CHECK_APPEND_NOARG
4184
4185out_overflow:
4186
4187	if (size_bp < size_buf)
4188		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4189	else
4190		buf[0] = '\0';
4191}
4192
4193static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4194{
4195	u32 size_buf = 1024;
4196	char tmp_buf[192] = {'\0'};
4197	char *buf;
4198	char *bp;
4199	u32 size_bp = size_buf;
4200	int ret;
4201	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4202
4203	buf = kzalloc(size_buf, GFP_KERNEL);
4204	if (!buf)
4205		return;
4206
4207	bp = buf;
4208
4209#define CHECK_APPEND_1ARG(a, v1)					\
4210	do {								\
4211		ret = snprintf(bp, size_bp, (a), (v1));			\
4212		if (ret < 0 || ret >= size_bp)				\
4213			goto out_overflow;				\
4214		size_bp -= ret;						\
4215		bp += ret;						\
4216	} while (0)
4217
4218	if (bctl->flags & BTRFS_BALANCE_FORCE)
4219		CHECK_APPEND_1ARG("%s", "-f ");
4220
4221	if (bctl->flags & BTRFS_BALANCE_DATA) {
4222		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4223		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4224	}
4225
4226	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4227		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4228		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4229	}
4230
4231	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4232		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4233		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4234	}
4235
4236#undef CHECK_APPEND_1ARG
4237
4238out_overflow:
4239
4240	if (size_bp < size_buf)
4241		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4242	btrfs_info(fs_info, "balance: %s %s",
4243		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4244		   "resume" : "start", buf);
4245
4246	kfree(buf);
4247}
4248
4249/*
4250 * Should be called with balance mutexe held
4251 */
4252int btrfs_balance(struct btrfs_fs_info *fs_info,
4253		  struct btrfs_balance_control *bctl,
4254		  struct btrfs_ioctl_balance_args *bargs)
4255{
4256	u64 meta_target, data_target;
4257	u64 allowed;
4258	int mixed = 0;
4259	int ret;
4260	u64 num_devices;
4261	unsigned seq;
4262	bool reducing_redundancy;
4263	bool paused = false;
4264	int i;
4265
4266	if (btrfs_fs_closing(fs_info) ||
4267	    atomic_read(&fs_info->balance_pause_req) ||
4268	    btrfs_should_cancel_balance(fs_info)) {
4269		ret = -EINVAL;
4270		goto out;
4271	}
4272
4273	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4274	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4275		mixed = 1;
4276
4277	/*
4278	 * In case of mixed groups both data and meta should be picked,
4279	 * and identical options should be given for both of them.
4280	 */
4281	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4282	if (mixed && (bctl->flags & allowed)) {
4283		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4284		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4285		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4286			btrfs_err(fs_info,
4287	  "balance: mixed groups data and metadata options must be the same");
4288			ret = -EINVAL;
4289			goto out;
4290		}
4291	}
4292
4293	/*
4294	 * rw_devices will not change at the moment, device add/delete/replace
4295	 * are exclusive
4296	 */
4297	num_devices = fs_info->fs_devices->rw_devices;
4298
4299	/*
4300	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4301	 * special bit for it, to make it easier to distinguish.  Thus we need
4302	 * to set it manually, or balance would refuse the profile.
4303	 */
4304	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4305	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4306		if (num_devices >= btrfs_raid_array[i].devs_min)
4307			allowed |= btrfs_raid_array[i].bg_flag;
4308
4309	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4310	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4311	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4312		ret = -EINVAL;
4313		goto out;
4314	}
4315
4316	/*
4317	 * Allow to reduce metadata or system integrity only if force set for
4318	 * profiles with redundancy (copies, parity)
4319	 */
4320	allowed = 0;
4321	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4322		if (btrfs_raid_array[i].ncopies >= 2 ||
4323		    btrfs_raid_array[i].tolerated_failures >= 1)
4324			allowed |= btrfs_raid_array[i].bg_flag;
4325	}
4326	do {
4327		seq = read_seqbegin(&fs_info->profiles_lock);
4328
4329		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4330		     (fs_info->avail_system_alloc_bits & allowed) &&
4331		     !(bctl->sys.target & allowed)) ||
4332		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4333		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4334		     !(bctl->meta.target & allowed)))
4335			reducing_redundancy = true;
4336		else
4337			reducing_redundancy = false;
4338
4339		/* if we're not converting, the target field is uninitialized */
4340		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4341			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4342		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4343			bctl->data.target : fs_info->avail_data_alloc_bits;
4344	} while (read_seqretry(&fs_info->profiles_lock, seq));
4345
4346	if (reducing_redundancy) {
4347		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4348			btrfs_info(fs_info,
4349			   "balance: force reducing metadata redundancy");
4350		} else {
4351			btrfs_err(fs_info,
4352	"balance: reduces metadata redundancy, use --force if you want this");
4353			ret = -EINVAL;
4354			goto out;
4355		}
4356	}
4357
4358	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4359		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4360		btrfs_warn(fs_info,
4361	"balance: metadata profile %s has lower redundancy than data profile %s",
4362				btrfs_bg_type_to_raid_name(meta_target),
4363				btrfs_bg_type_to_raid_name(data_target));
4364	}
4365
4366	ret = insert_balance_item(fs_info, bctl);
4367	if (ret && ret != -EEXIST)
4368		goto out;
4369
4370	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4371		BUG_ON(ret == -EEXIST);
4372		BUG_ON(fs_info->balance_ctl);
4373		spin_lock(&fs_info->balance_lock);
4374		fs_info->balance_ctl = bctl;
4375		spin_unlock(&fs_info->balance_lock);
4376	} else {
4377		BUG_ON(ret != -EEXIST);
4378		spin_lock(&fs_info->balance_lock);
4379		update_balance_args(bctl);
4380		spin_unlock(&fs_info->balance_lock);
4381	}
4382
4383	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4384	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4385	describe_balance_start_or_resume(fs_info);
4386	mutex_unlock(&fs_info->balance_mutex);
4387
4388	ret = __btrfs_balance(fs_info);
4389
4390	mutex_lock(&fs_info->balance_mutex);
4391	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4392		btrfs_info(fs_info, "balance: paused");
4393		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4394		paused = true;
4395	}
4396	/*
4397	 * Balance can be canceled by:
4398	 *
4399	 * - Regular cancel request
4400	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4401	 *
4402	 * - Fatal signal to "btrfs" process
4403	 *   Either the signal caught by wait_reserve_ticket() and callers
4404	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4405	 *   got -ECANCELED.
4406	 *   Either way, in this case balance_cancel_req = 0, and
4407	 *   ret == -EINTR or ret == -ECANCELED.
4408	 *
4409	 * So here we only check the return value to catch canceled balance.
4410	 */
4411	else if (ret == -ECANCELED || ret == -EINTR)
4412		btrfs_info(fs_info, "balance: canceled");
4413	else
4414		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4415
4416	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4417
4418	if (bargs) {
4419		memset(bargs, 0, sizeof(*bargs));
4420		btrfs_update_ioctl_balance_args(fs_info, bargs);
4421	}
4422
4423	/* We didn't pause, we can clean everything up. */
4424	if (!paused) {
4425		reset_balance_state(fs_info);
4426		btrfs_exclop_finish(fs_info);
4427	}
4428
4429	wake_up(&fs_info->balance_wait_q);
4430
4431	return ret;
4432out:
4433	if (bctl->flags & BTRFS_BALANCE_RESUME)
4434		reset_balance_state(fs_info);
4435	else
4436		kfree(bctl);
4437	btrfs_exclop_finish(fs_info);
4438
4439	return ret;
4440}
4441
4442static int balance_kthread(void *data)
4443{
4444	struct btrfs_fs_info *fs_info = data;
4445	int ret = 0;
4446
4447	sb_start_write(fs_info->sb);
4448	mutex_lock(&fs_info->balance_mutex);
4449	if (fs_info->balance_ctl)
4450		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4451	mutex_unlock(&fs_info->balance_mutex);
4452	sb_end_write(fs_info->sb);
4453
4454	return ret;
4455}
4456
4457int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4458{
4459	struct task_struct *tsk;
4460
4461	mutex_lock(&fs_info->balance_mutex);
4462	if (!fs_info->balance_ctl) {
4463		mutex_unlock(&fs_info->balance_mutex);
4464		return 0;
4465	}
4466	mutex_unlock(&fs_info->balance_mutex);
4467
4468	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4469		btrfs_info(fs_info, "balance: resume skipped");
4470		return 0;
4471	}
4472
4473	spin_lock(&fs_info->super_lock);
4474	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4475	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4476	spin_unlock(&fs_info->super_lock);
4477	/*
4478	 * A ro->rw remount sequence should continue with the paused balance
4479	 * regardless of who pauses it, system or the user as of now, so set
4480	 * the resume flag.
4481	 */
4482	spin_lock(&fs_info->balance_lock);
4483	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4484	spin_unlock(&fs_info->balance_lock);
4485
4486	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4487	return PTR_ERR_OR_ZERO(tsk);
4488}
4489
4490int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4491{
4492	struct btrfs_balance_control *bctl;
4493	struct btrfs_balance_item *item;
4494	struct btrfs_disk_balance_args disk_bargs;
4495	struct btrfs_path *path;
4496	struct extent_buffer *leaf;
4497	struct btrfs_key key;
4498	int ret;
4499
4500	path = btrfs_alloc_path();
4501	if (!path)
4502		return -ENOMEM;
4503
4504	key.objectid = BTRFS_BALANCE_OBJECTID;
4505	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4506	key.offset = 0;
4507
4508	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4509	if (ret < 0)
4510		goto out;
4511	if (ret > 0) { /* ret = -ENOENT; */
4512		ret = 0;
4513		goto out;
4514	}
4515
4516	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4517	if (!bctl) {
4518		ret = -ENOMEM;
4519		goto out;
4520	}
4521
4522	leaf = path->nodes[0];
4523	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4524
4525	bctl->flags = btrfs_balance_flags(leaf, item);
4526	bctl->flags |= BTRFS_BALANCE_RESUME;
4527
4528	btrfs_balance_data(leaf, item, &disk_bargs);
4529	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4530	btrfs_balance_meta(leaf, item, &disk_bargs);
4531	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4532	btrfs_balance_sys(leaf, item, &disk_bargs);
4533	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4534
4535	/*
4536	 * This should never happen, as the paused balance state is recovered
4537	 * during mount without any chance of other exclusive ops to collide.
4538	 *
4539	 * This gives the exclusive op status to balance and keeps in paused
4540	 * state until user intervention (cancel or umount). If the ownership
4541	 * cannot be assigned, show a message but do not fail. The balance
4542	 * is in a paused state and must have fs_info::balance_ctl properly
4543	 * set up.
4544	 */
4545	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4546		btrfs_warn(fs_info,
4547	"balance: cannot set exclusive op status, resume manually");
4548
4549	btrfs_release_path(path);
4550
4551	mutex_lock(&fs_info->balance_mutex);
4552	BUG_ON(fs_info->balance_ctl);
4553	spin_lock(&fs_info->balance_lock);
4554	fs_info->balance_ctl = bctl;
4555	spin_unlock(&fs_info->balance_lock);
4556	mutex_unlock(&fs_info->balance_mutex);
4557out:
4558	btrfs_free_path(path);
4559	return ret;
4560}
4561
4562int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4563{
4564	int ret = 0;
4565
4566	mutex_lock(&fs_info->balance_mutex);
4567	if (!fs_info->balance_ctl) {
4568		mutex_unlock(&fs_info->balance_mutex);
4569		return -ENOTCONN;
4570	}
4571
4572	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4573		atomic_inc(&fs_info->balance_pause_req);
4574		mutex_unlock(&fs_info->balance_mutex);
4575
4576		wait_event(fs_info->balance_wait_q,
4577			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4578
4579		mutex_lock(&fs_info->balance_mutex);
4580		/* we are good with balance_ctl ripped off from under us */
4581		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4582		atomic_dec(&fs_info->balance_pause_req);
4583	} else {
4584		ret = -ENOTCONN;
4585	}
4586
4587	mutex_unlock(&fs_info->balance_mutex);
4588	return ret;
4589}
4590
4591int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4592{
4593	mutex_lock(&fs_info->balance_mutex);
4594	if (!fs_info->balance_ctl) {
4595		mutex_unlock(&fs_info->balance_mutex);
4596		return -ENOTCONN;
4597	}
4598
4599	/*
4600	 * A paused balance with the item stored on disk can be resumed at
4601	 * mount time if the mount is read-write. Otherwise it's still paused
4602	 * and we must not allow cancelling as it deletes the item.
4603	 */
4604	if (sb_rdonly(fs_info->sb)) {
4605		mutex_unlock(&fs_info->balance_mutex);
4606		return -EROFS;
4607	}
4608
4609	atomic_inc(&fs_info->balance_cancel_req);
4610	/*
4611	 * if we are running just wait and return, balance item is
4612	 * deleted in btrfs_balance in this case
4613	 */
4614	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4615		mutex_unlock(&fs_info->balance_mutex);
4616		wait_event(fs_info->balance_wait_q,
4617			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4618		mutex_lock(&fs_info->balance_mutex);
4619	} else {
4620		mutex_unlock(&fs_info->balance_mutex);
4621		/*
4622		 * Lock released to allow other waiters to continue, we'll
4623		 * reexamine the status again.
4624		 */
4625		mutex_lock(&fs_info->balance_mutex);
4626
4627		if (fs_info->balance_ctl) {
4628			reset_balance_state(fs_info);
4629			btrfs_exclop_finish(fs_info);
4630			btrfs_info(fs_info, "balance: canceled");
4631		}
4632	}
4633
4634	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4635	atomic_dec(&fs_info->balance_cancel_req);
4636	mutex_unlock(&fs_info->balance_mutex);
4637	return 0;
4638}
4639
4640int btrfs_uuid_scan_kthread(void *data)
4641{
4642	struct btrfs_fs_info *fs_info = data;
4643	struct btrfs_root *root = fs_info->tree_root;
4644	struct btrfs_key key;
4645	struct btrfs_path *path = NULL;
4646	int ret = 0;
4647	struct extent_buffer *eb;
4648	int slot;
4649	struct btrfs_root_item root_item;
4650	u32 item_size;
4651	struct btrfs_trans_handle *trans = NULL;
4652	bool closing = false;
4653
4654	path = btrfs_alloc_path();
4655	if (!path) {
4656		ret = -ENOMEM;
4657		goto out;
4658	}
4659
4660	key.objectid = 0;
4661	key.type = BTRFS_ROOT_ITEM_KEY;
4662	key.offset = 0;
4663
4664	while (1) {
4665		if (btrfs_fs_closing(fs_info)) {
4666			closing = true;
4667			break;
4668		}
4669		ret = btrfs_search_forward(root, &key, path,
4670				BTRFS_OLDEST_GENERATION);
4671		if (ret) {
4672			if (ret > 0)
4673				ret = 0;
4674			break;
4675		}
4676
4677		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4678		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4679		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4680		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4681			goto skip;
4682
4683		eb = path->nodes[0];
4684		slot = path->slots[0];
4685		item_size = btrfs_item_size(eb, slot);
4686		if (item_size < sizeof(root_item))
4687			goto skip;
4688
4689		read_extent_buffer(eb, &root_item,
4690				   btrfs_item_ptr_offset(eb, slot),
4691				   (int)sizeof(root_item));
4692		if (btrfs_root_refs(&root_item) == 0)
4693			goto skip;
4694
4695		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4696		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4697			if (trans)
4698				goto update_tree;
4699
4700			btrfs_release_path(path);
4701			/*
4702			 * 1 - subvol uuid item
4703			 * 1 - received_subvol uuid item
4704			 */
4705			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4706			if (IS_ERR(trans)) {
4707				ret = PTR_ERR(trans);
4708				break;
4709			}
4710			continue;
4711		} else {
4712			goto skip;
4713		}
4714update_tree:
4715		btrfs_release_path(path);
4716		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4717			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4718						  BTRFS_UUID_KEY_SUBVOL,
4719						  key.objectid);
4720			if (ret < 0) {
4721				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4722					ret);
4723				break;
4724			}
4725		}
4726
4727		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4728			ret = btrfs_uuid_tree_add(trans,
4729						  root_item.received_uuid,
4730						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4731						  key.objectid);
4732			if (ret < 0) {
4733				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4734					ret);
4735				break;
4736			}
4737		}
4738
4739skip:
4740		btrfs_release_path(path);
4741		if (trans) {
4742			ret = btrfs_end_transaction(trans);
4743			trans = NULL;
4744			if (ret)
4745				break;
4746		}
4747
4748		if (key.offset < (u64)-1) {
4749			key.offset++;
4750		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4751			key.offset = 0;
4752			key.type = BTRFS_ROOT_ITEM_KEY;
4753		} else if (key.objectid < (u64)-1) {
4754			key.offset = 0;
4755			key.type = BTRFS_ROOT_ITEM_KEY;
4756			key.objectid++;
4757		} else {
4758			break;
4759		}
4760		cond_resched();
4761	}
4762
4763out:
4764	btrfs_free_path(path);
4765	if (trans && !IS_ERR(trans))
4766		btrfs_end_transaction(trans);
4767	if (ret)
4768		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4769	else if (!closing)
4770		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4771	up(&fs_info->uuid_tree_rescan_sem);
4772	return 0;
4773}
4774
4775int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4776{
4777	struct btrfs_trans_handle *trans;
4778	struct btrfs_root *tree_root = fs_info->tree_root;
4779	struct btrfs_root *uuid_root;
4780	struct task_struct *task;
4781	int ret;
4782
4783	/*
4784	 * 1 - root node
4785	 * 1 - root item
4786	 */
4787	trans = btrfs_start_transaction(tree_root, 2);
4788	if (IS_ERR(trans))
4789		return PTR_ERR(trans);
4790
4791	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4792	if (IS_ERR(uuid_root)) {
4793		ret = PTR_ERR(uuid_root);
4794		btrfs_abort_transaction(trans, ret);
4795		btrfs_end_transaction(trans);
4796		return ret;
4797	}
4798
4799	fs_info->uuid_root = uuid_root;
4800
4801	ret = btrfs_commit_transaction(trans);
4802	if (ret)
4803		return ret;
4804
4805	down(&fs_info->uuid_tree_rescan_sem);
4806	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4807	if (IS_ERR(task)) {
4808		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4809		btrfs_warn(fs_info, "failed to start uuid_scan task");
4810		up(&fs_info->uuid_tree_rescan_sem);
4811		return PTR_ERR(task);
4812	}
4813
4814	return 0;
4815}
4816
4817/*
4818 * shrinking a device means finding all of the device extents past
4819 * the new size, and then following the back refs to the chunks.
4820 * The chunk relocation code actually frees the device extent
4821 */
4822int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4823{
4824	struct btrfs_fs_info *fs_info = device->fs_info;
4825	struct btrfs_root *root = fs_info->dev_root;
4826	struct btrfs_trans_handle *trans;
4827	struct btrfs_dev_extent *dev_extent = NULL;
4828	struct btrfs_path *path;
4829	u64 length;
4830	u64 chunk_offset;
4831	int ret;
4832	int slot;
4833	int failed = 0;
4834	bool retried = false;
4835	struct extent_buffer *l;
4836	struct btrfs_key key;
4837	struct btrfs_super_block *super_copy = fs_info->super_copy;
4838	u64 old_total = btrfs_super_total_bytes(super_copy);
4839	u64 old_size = btrfs_device_get_total_bytes(device);
4840	u64 diff;
4841	u64 start;
4842
4843	new_size = round_down(new_size, fs_info->sectorsize);
4844	start = new_size;
4845	diff = round_down(old_size - new_size, fs_info->sectorsize);
4846
4847	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4848		return -EINVAL;
4849
4850	path = btrfs_alloc_path();
4851	if (!path)
4852		return -ENOMEM;
4853
4854	path->reada = READA_BACK;
4855
4856	trans = btrfs_start_transaction(root, 0);
4857	if (IS_ERR(trans)) {
4858		btrfs_free_path(path);
4859		return PTR_ERR(trans);
4860	}
4861
4862	mutex_lock(&fs_info->chunk_mutex);
4863
4864	btrfs_device_set_total_bytes(device, new_size);
4865	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4866		device->fs_devices->total_rw_bytes -= diff;
4867		atomic64_sub(diff, &fs_info->free_chunk_space);
4868	}
4869
4870	/*
4871	 * Once the device's size has been set to the new size, ensure all
4872	 * in-memory chunks are synced to disk so that the loop below sees them
4873	 * and relocates them accordingly.
4874	 */
4875	if (contains_pending_extent(device, &start, diff)) {
4876		mutex_unlock(&fs_info->chunk_mutex);
4877		ret = btrfs_commit_transaction(trans);
4878		if (ret)
4879			goto done;
4880	} else {
4881		mutex_unlock(&fs_info->chunk_mutex);
4882		btrfs_end_transaction(trans);
4883	}
4884
4885again:
4886	key.objectid = device->devid;
4887	key.offset = (u64)-1;
4888	key.type = BTRFS_DEV_EXTENT_KEY;
4889
4890	do {
4891		mutex_lock(&fs_info->reclaim_bgs_lock);
4892		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4893		if (ret < 0) {
4894			mutex_unlock(&fs_info->reclaim_bgs_lock);
4895			goto done;
4896		}
4897
4898		ret = btrfs_previous_item(root, path, 0, key.type);
4899		if (ret) {
4900			mutex_unlock(&fs_info->reclaim_bgs_lock);
4901			if (ret < 0)
4902				goto done;
4903			ret = 0;
4904			btrfs_release_path(path);
4905			break;
4906		}
4907
4908		l = path->nodes[0];
4909		slot = path->slots[0];
4910		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4911
4912		if (key.objectid != device->devid) {
4913			mutex_unlock(&fs_info->reclaim_bgs_lock);
4914			btrfs_release_path(path);
4915			break;
4916		}
4917
4918		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4919		length = btrfs_dev_extent_length(l, dev_extent);
4920
4921		if (key.offset + length <= new_size) {
4922			mutex_unlock(&fs_info->reclaim_bgs_lock);
4923			btrfs_release_path(path);
4924			break;
4925		}
4926
4927		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4928		btrfs_release_path(path);
4929
4930		/*
4931		 * We may be relocating the only data chunk we have,
4932		 * which could potentially end up with losing data's
4933		 * raid profile, so lets allocate an empty one in
4934		 * advance.
4935		 */
4936		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4937		if (ret < 0) {
4938			mutex_unlock(&fs_info->reclaim_bgs_lock);
4939			goto done;
4940		}
4941
4942		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4943		mutex_unlock(&fs_info->reclaim_bgs_lock);
4944		if (ret == -ENOSPC) {
4945			failed++;
4946		} else if (ret) {
4947			if (ret == -ETXTBSY) {
4948				btrfs_warn(fs_info,
4949		   "could not shrink block group %llu due to active swapfile",
4950					   chunk_offset);
4951			}
4952			goto done;
4953		}
4954	} while (key.offset-- > 0);
4955
4956	if (failed && !retried) {
4957		failed = 0;
4958		retried = true;
4959		goto again;
4960	} else if (failed && retried) {
4961		ret = -ENOSPC;
4962		goto done;
4963	}
4964
4965	/* Shrinking succeeded, else we would be at "done". */
4966	trans = btrfs_start_transaction(root, 0);
4967	if (IS_ERR(trans)) {
4968		ret = PTR_ERR(trans);
4969		goto done;
4970	}
4971
4972	mutex_lock(&fs_info->chunk_mutex);
4973	/* Clear all state bits beyond the shrunk device size */
4974	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4975			  CHUNK_STATE_MASK);
4976
4977	btrfs_device_set_disk_total_bytes(device, new_size);
4978	if (list_empty(&device->post_commit_list))
4979		list_add_tail(&device->post_commit_list,
4980			      &trans->transaction->dev_update_list);
4981
4982	WARN_ON(diff > old_total);
4983	btrfs_set_super_total_bytes(super_copy,
4984			round_down(old_total - diff, fs_info->sectorsize));
4985	mutex_unlock(&fs_info->chunk_mutex);
4986
4987	btrfs_reserve_chunk_metadata(trans, false);
4988	/* Now btrfs_update_device() will change the on-disk size. */
4989	ret = btrfs_update_device(trans, device);
4990	btrfs_trans_release_chunk_metadata(trans);
4991	if (ret < 0) {
4992		btrfs_abort_transaction(trans, ret);
4993		btrfs_end_transaction(trans);
4994	} else {
4995		ret = btrfs_commit_transaction(trans);
4996	}
4997done:
4998	btrfs_free_path(path);
4999	if (ret) {
5000		mutex_lock(&fs_info->chunk_mutex);
5001		btrfs_device_set_total_bytes(device, old_size);
5002		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5003			device->fs_devices->total_rw_bytes += diff;
5004		atomic64_add(diff, &fs_info->free_chunk_space);
5005		mutex_unlock(&fs_info->chunk_mutex);
5006	}
5007	return ret;
5008}
5009
5010static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5011			   struct btrfs_key *key,
5012			   struct btrfs_chunk *chunk, int item_size)
5013{
5014	struct btrfs_super_block *super_copy = fs_info->super_copy;
5015	struct btrfs_disk_key disk_key;
5016	u32 array_size;
5017	u8 *ptr;
5018
5019	lockdep_assert_held(&fs_info->chunk_mutex);
5020
5021	array_size = btrfs_super_sys_array_size(super_copy);
5022	if (array_size + item_size + sizeof(disk_key)
5023			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5024		return -EFBIG;
5025
5026	ptr = super_copy->sys_chunk_array + array_size;
5027	btrfs_cpu_key_to_disk(&disk_key, key);
5028	memcpy(ptr, &disk_key, sizeof(disk_key));
5029	ptr += sizeof(disk_key);
5030	memcpy(ptr, chunk, item_size);
5031	item_size += sizeof(disk_key);
5032	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5033
5034	return 0;
5035}
5036
5037/*
5038 * sort the devices in descending order by max_avail, total_avail
5039 */
5040static int btrfs_cmp_device_info(const void *a, const void *b)
5041{
5042	const struct btrfs_device_info *di_a = a;
5043	const struct btrfs_device_info *di_b = b;
5044
5045	if (di_a->max_avail > di_b->max_avail)
5046		return -1;
5047	if (di_a->max_avail < di_b->max_avail)
5048		return 1;
5049	if (di_a->total_avail > di_b->total_avail)
5050		return -1;
5051	if (di_a->total_avail < di_b->total_avail)
5052		return 1;
5053	return 0;
5054}
5055
5056static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5057{
5058	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5059		return;
5060
5061	btrfs_set_fs_incompat(info, RAID56);
5062}
5063
5064static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5065{
5066	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5067		return;
5068
5069	btrfs_set_fs_incompat(info, RAID1C34);
5070}
5071
5072/*
5073 * Structure used internally for btrfs_create_chunk() function.
5074 * Wraps needed parameters.
5075 */
5076struct alloc_chunk_ctl {
5077	u64 start;
5078	u64 type;
5079	/* Total number of stripes to allocate */
5080	int num_stripes;
5081	/* sub_stripes info for map */
5082	int sub_stripes;
5083	/* Stripes per device */
5084	int dev_stripes;
5085	/* Maximum number of devices to use */
5086	int devs_max;
5087	/* Minimum number of devices to use */
5088	int devs_min;
5089	/* ndevs has to be a multiple of this */
5090	int devs_increment;
5091	/* Number of copies */
5092	int ncopies;
5093	/* Number of stripes worth of bytes to store parity information */
5094	int nparity;
5095	u64 max_stripe_size;
5096	u64 max_chunk_size;
5097	u64 dev_extent_min;
5098	u64 stripe_size;
5099	u64 chunk_size;
5100	int ndevs;
5101};
5102
5103static void init_alloc_chunk_ctl_policy_regular(
5104				struct btrfs_fs_devices *fs_devices,
5105				struct alloc_chunk_ctl *ctl)
5106{
5107	struct btrfs_space_info *space_info;
5108
5109	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5110	ASSERT(space_info);
5111
5112	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5113	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5114
5115	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5116		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5117
5118	/* We don't want a chunk larger than 10% of writable space */
5119	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5120				  ctl->max_chunk_size);
5121	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5122}
5123
5124static void init_alloc_chunk_ctl_policy_zoned(
5125				      struct btrfs_fs_devices *fs_devices,
5126				      struct alloc_chunk_ctl *ctl)
5127{
5128	u64 zone_size = fs_devices->fs_info->zone_size;
5129	u64 limit;
5130	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5131	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5132	u64 min_chunk_size = min_data_stripes * zone_size;
5133	u64 type = ctl->type;
5134
5135	ctl->max_stripe_size = zone_size;
5136	if (type & BTRFS_BLOCK_GROUP_DATA) {
5137		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5138						 zone_size);
5139	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5140		ctl->max_chunk_size = ctl->max_stripe_size;
5141	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5142		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5143		ctl->devs_max = min_t(int, ctl->devs_max,
5144				      BTRFS_MAX_DEVS_SYS_CHUNK);
5145	} else {
5146		BUG();
5147	}
5148
5149	/* We don't want a chunk larger than 10% of writable space */
5150	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5151			       zone_size),
5152		    min_chunk_size);
5153	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5154	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5155}
5156
5157static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5158				 struct alloc_chunk_ctl *ctl)
5159{
5160	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5161
5162	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5163	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5164	ctl->devs_max = btrfs_raid_array[index].devs_max;
5165	if (!ctl->devs_max)
5166		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5167	ctl->devs_min = btrfs_raid_array[index].devs_min;
5168	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5169	ctl->ncopies = btrfs_raid_array[index].ncopies;
5170	ctl->nparity = btrfs_raid_array[index].nparity;
5171	ctl->ndevs = 0;
5172
5173	switch (fs_devices->chunk_alloc_policy) {
5174	case BTRFS_CHUNK_ALLOC_REGULAR:
5175		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5176		break;
5177	case BTRFS_CHUNK_ALLOC_ZONED:
5178		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5179		break;
5180	default:
5181		BUG();
5182	}
5183}
5184
5185static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5186			      struct alloc_chunk_ctl *ctl,
5187			      struct btrfs_device_info *devices_info)
5188{
5189	struct btrfs_fs_info *info = fs_devices->fs_info;
5190	struct btrfs_device *device;
5191	u64 total_avail;
5192	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5193	int ret;
5194	int ndevs = 0;
5195	u64 max_avail;
5196	u64 dev_offset;
5197
5198	/*
5199	 * in the first pass through the devices list, we gather information
5200	 * about the available holes on each device.
5201	 */
5202	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5203		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5204			WARN(1, KERN_ERR
5205			       "BTRFS: read-only device in alloc_list\n");
5206			continue;
5207		}
5208
5209		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5210					&device->dev_state) ||
5211		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5212			continue;
5213
5214		if (device->total_bytes > device->bytes_used)
5215			total_avail = device->total_bytes - device->bytes_used;
5216		else
5217			total_avail = 0;
5218
5219		/* If there is no space on this device, skip it. */
5220		if (total_avail < ctl->dev_extent_min)
5221			continue;
5222
5223		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5224					   &max_avail);
5225		if (ret && ret != -ENOSPC)
5226			return ret;
5227
5228		if (ret == 0)
5229			max_avail = dev_extent_want;
5230
5231		if (max_avail < ctl->dev_extent_min) {
5232			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5233				btrfs_debug(info,
5234			"%s: devid %llu has no free space, have=%llu want=%llu",
5235					    __func__, device->devid, max_avail,
5236					    ctl->dev_extent_min);
5237			continue;
5238		}
5239
5240		if (ndevs == fs_devices->rw_devices) {
5241			WARN(1, "%s: found more than %llu devices\n",
5242			     __func__, fs_devices->rw_devices);
5243			break;
5244		}
5245		devices_info[ndevs].dev_offset = dev_offset;
5246		devices_info[ndevs].max_avail = max_avail;
5247		devices_info[ndevs].total_avail = total_avail;
5248		devices_info[ndevs].dev = device;
5249		++ndevs;
5250	}
5251	ctl->ndevs = ndevs;
5252
5253	/*
5254	 * now sort the devices by hole size / available space
5255	 */
5256	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5257	     btrfs_cmp_device_info, NULL);
5258
5259	return 0;
5260}
5261
5262static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5263				      struct btrfs_device_info *devices_info)
5264{
5265	/* Number of stripes that count for block group size */
5266	int data_stripes;
5267
5268	/*
5269	 * The primary goal is to maximize the number of stripes, so use as
5270	 * many devices as possible, even if the stripes are not maximum sized.
5271	 *
5272	 * The DUP profile stores more than one stripe per device, the
5273	 * max_avail is the total size so we have to adjust.
5274	 */
5275	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5276				   ctl->dev_stripes);
5277	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5278
5279	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5280	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5281
5282	/*
5283	 * Use the number of data stripes to figure out how big this chunk is
5284	 * really going to be in terms of logical address space, and compare
5285	 * that answer with the max chunk size. If it's higher, we try to
5286	 * reduce stripe_size.
5287	 */
5288	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5289		/*
5290		 * Reduce stripe_size, round it up to a 16MB boundary again and
5291		 * then use it, unless it ends up being even bigger than the
5292		 * previous value we had already.
5293		 */
5294		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5295							data_stripes), SZ_16M),
5296				       ctl->stripe_size);
5297	}
5298
5299	/* Stripe size should not go beyond 1G. */
5300	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5301
5302	/* Align to BTRFS_STRIPE_LEN */
5303	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5304	ctl->chunk_size = ctl->stripe_size * data_stripes;
5305
5306	return 0;
5307}
5308
5309static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5310				    struct btrfs_device_info *devices_info)
5311{
5312	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5313	/* Number of stripes that count for block group size */
5314	int data_stripes;
5315
5316	/*
5317	 * It should hold because:
5318	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5319	 */
5320	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5321
5322	ctl->stripe_size = zone_size;
5323	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5324	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5325
5326	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5327	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5328		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5329					     ctl->stripe_size) + ctl->nparity,
5330				     ctl->dev_stripes);
5331		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5332		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5333		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5334	}
5335
5336	ctl->chunk_size = ctl->stripe_size * data_stripes;
5337
5338	return 0;
5339}
5340
5341static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5342			      struct alloc_chunk_ctl *ctl,
5343			      struct btrfs_device_info *devices_info)
5344{
5345	struct btrfs_fs_info *info = fs_devices->fs_info;
5346
5347	/*
5348	 * Round down to number of usable stripes, devs_increment can be any
5349	 * number so we can't use round_down() that requires power of 2, while
5350	 * rounddown is safe.
5351	 */
5352	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5353
5354	if (ctl->ndevs < ctl->devs_min) {
5355		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5356			btrfs_debug(info,
5357	"%s: not enough devices with free space: have=%d minimum required=%d",
5358				    __func__, ctl->ndevs, ctl->devs_min);
5359		}
5360		return -ENOSPC;
5361	}
5362
5363	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5364
5365	switch (fs_devices->chunk_alloc_policy) {
5366	case BTRFS_CHUNK_ALLOC_REGULAR:
5367		return decide_stripe_size_regular(ctl, devices_info);
5368	case BTRFS_CHUNK_ALLOC_ZONED:
5369		return decide_stripe_size_zoned(ctl, devices_info);
5370	default:
5371		BUG();
5372	}
5373}
5374
5375static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5376			struct alloc_chunk_ctl *ctl,
5377			struct btrfs_device_info *devices_info)
5378{
5379	struct btrfs_fs_info *info = trans->fs_info;
5380	struct map_lookup *map = NULL;
5381	struct extent_map_tree *em_tree;
5382	struct btrfs_block_group *block_group;
5383	struct extent_map *em;
5384	u64 start = ctl->start;
5385	u64 type = ctl->type;
5386	int ret;
5387	int i;
5388	int j;
5389
5390	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5391	if (!map)
5392		return ERR_PTR(-ENOMEM);
5393	map->num_stripes = ctl->num_stripes;
5394
5395	for (i = 0; i < ctl->ndevs; ++i) {
5396		for (j = 0; j < ctl->dev_stripes; ++j) {
5397			int s = i * ctl->dev_stripes + j;
5398			map->stripes[s].dev = devices_info[i].dev;
5399			map->stripes[s].physical = devices_info[i].dev_offset +
5400						   j * ctl->stripe_size;
5401		}
5402	}
5403	map->io_align = BTRFS_STRIPE_LEN;
5404	map->io_width = BTRFS_STRIPE_LEN;
5405	map->type = type;
5406	map->sub_stripes = ctl->sub_stripes;
5407
5408	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5409
5410	em = alloc_extent_map();
5411	if (!em) {
5412		kfree(map);
5413		return ERR_PTR(-ENOMEM);
5414	}
5415	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5416	em->map_lookup = map;
5417	em->start = start;
5418	em->len = ctl->chunk_size;
5419	em->block_start = 0;
5420	em->block_len = em->len;
5421	em->orig_block_len = ctl->stripe_size;
5422
5423	em_tree = &info->mapping_tree;
5424	write_lock(&em_tree->lock);
5425	ret = add_extent_mapping(em_tree, em, 0);
5426	if (ret) {
5427		write_unlock(&em_tree->lock);
5428		free_extent_map(em);
5429		return ERR_PTR(ret);
5430	}
5431	write_unlock(&em_tree->lock);
5432
5433	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5434	if (IS_ERR(block_group))
5435		goto error_del_extent;
5436
5437	for (i = 0; i < map->num_stripes; i++) {
5438		struct btrfs_device *dev = map->stripes[i].dev;
5439
5440		btrfs_device_set_bytes_used(dev,
5441					    dev->bytes_used + ctl->stripe_size);
5442		if (list_empty(&dev->post_commit_list))
5443			list_add_tail(&dev->post_commit_list,
5444				      &trans->transaction->dev_update_list);
5445	}
5446
5447	atomic64_sub(ctl->stripe_size * map->num_stripes,
5448		     &info->free_chunk_space);
5449
5450	free_extent_map(em);
5451	check_raid56_incompat_flag(info, type);
5452	check_raid1c34_incompat_flag(info, type);
5453
5454	return block_group;
5455
5456error_del_extent:
5457	write_lock(&em_tree->lock);
5458	remove_extent_mapping(em_tree, em);
5459	write_unlock(&em_tree->lock);
5460
5461	/* One for our allocation */
5462	free_extent_map(em);
5463	/* One for the tree reference */
5464	free_extent_map(em);
5465
5466	return block_group;
5467}
5468
5469struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5470					    u64 type)
5471{
5472	struct btrfs_fs_info *info = trans->fs_info;
5473	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5474	struct btrfs_device_info *devices_info = NULL;
5475	struct alloc_chunk_ctl ctl;
5476	struct btrfs_block_group *block_group;
5477	int ret;
5478
5479	lockdep_assert_held(&info->chunk_mutex);
5480
5481	if (!alloc_profile_is_valid(type, 0)) {
5482		ASSERT(0);
5483		return ERR_PTR(-EINVAL);
5484	}
5485
5486	if (list_empty(&fs_devices->alloc_list)) {
5487		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5488			btrfs_debug(info, "%s: no writable device", __func__);
5489		return ERR_PTR(-ENOSPC);
5490	}
5491
5492	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5493		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5494		ASSERT(0);
5495		return ERR_PTR(-EINVAL);
5496	}
5497
5498	ctl.start = find_next_chunk(info);
5499	ctl.type = type;
5500	init_alloc_chunk_ctl(fs_devices, &ctl);
5501
5502	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5503			       GFP_NOFS);
5504	if (!devices_info)
5505		return ERR_PTR(-ENOMEM);
5506
5507	ret = gather_device_info(fs_devices, &ctl, devices_info);
5508	if (ret < 0) {
5509		block_group = ERR_PTR(ret);
5510		goto out;
5511	}
5512
5513	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5514	if (ret < 0) {
5515		block_group = ERR_PTR(ret);
5516		goto out;
5517	}
5518
5519	block_group = create_chunk(trans, &ctl, devices_info);
5520
5521out:
5522	kfree(devices_info);
5523	return block_group;
5524}
5525
5526/*
5527 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5528 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5529 * chunks.
5530 *
5531 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5532 * phases.
5533 */
5534int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5535				     struct btrfs_block_group *bg)
5536{
5537	struct btrfs_fs_info *fs_info = trans->fs_info;
5538	struct btrfs_root *chunk_root = fs_info->chunk_root;
5539	struct btrfs_key key;
5540	struct btrfs_chunk *chunk;
5541	struct btrfs_stripe *stripe;
5542	struct extent_map *em;
5543	struct map_lookup *map;
5544	size_t item_size;
5545	int i;
5546	int ret;
5547
5548	/*
5549	 * We take the chunk_mutex for 2 reasons:
5550	 *
5551	 * 1) Updates and insertions in the chunk btree must be done while holding
5552	 *    the chunk_mutex, as well as updating the system chunk array in the
5553	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5554	 *    details;
5555	 *
5556	 * 2) To prevent races with the final phase of a device replace operation
5557	 *    that replaces the device object associated with the map's stripes,
5558	 *    because the device object's id can change at any time during that
5559	 *    final phase of the device replace operation
5560	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5561	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5562	 *    which would cause a failure when updating the device item, which does
5563	 *    not exists, or persisting a stripe of the chunk item with such ID.
5564	 *    Here we can't use the device_list_mutex because our caller already
5565	 *    has locked the chunk_mutex, and the final phase of device replace
5566	 *    acquires both mutexes - first the device_list_mutex and then the
5567	 *    chunk_mutex. Using any of those two mutexes protects us from a
5568	 *    concurrent device replace.
5569	 */
5570	lockdep_assert_held(&fs_info->chunk_mutex);
5571
5572	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5573	if (IS_ERR(em)) {
5574		ret = PTR_ERR(em);
5575		btrfs_abort_transaction(trans, ret);
5576		return ret;
5577	}
5578
5579	map = em->map_lookup;
5580	item_size = btrfs_chunk_item_size(map->num_stripes);
5581
5582	chunk = kzalloc(item_size, GFP_NOFS);
5583	if (!chunk) {
5584		ret = -ENOMEM;
5585		btrfs_abort_transaction(trans, ret);
5586		goto out;
5587	}
5588
5589	for (i = 0; i < map->num_stripes; i++) {
5590		struct btrfs_device *device = map->stripes[i].dev;
5591
5592		ret = btrfs_update_device(trans, device);
5593		if (ret)
5594			goto out;
5595	}
5596
5597	stripe = &chunk->stripe;
5598	for (i = 0; i < map->num_stripes; i++) {
5599		struct btrfs_device *device = map->stripes[i].dev;
5600		const u64 dev_offset = map->stripes[i].physical;
5601
5602		btrfs_set_stack_stripe_devid(stripe, device->devid);
5603		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5604		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5605		stripe++;
5606	}
5607
5608	btrfs_set_stack_chunk_length(chunk, bg->length);
5609	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5610	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5611	btrfs_set_stack_chunk_type(chunk, map->type);
5612	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5613	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5614	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5615	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5616	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5617
5618	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5619	key.type = BTRFS_CHUNK_ITEM_KEY;
5620	key.offset = bg->start;
5621
5622	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5623	if (ret)
5624		goto out;
5625
5626	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5627
5628	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5629		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5630		if (ret)
5631			goto out;
5632	}
5633
5634out:
5635	kfree(chunk);
5636	free_extent_map(em);
5637	return ret;
5638}
5639
5640static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5641{
5642	struct btrfs_fs_info *fs_info = trans->fs_info;
5643	u64 alloc_profile;
5644	struct btrfs_block_group *meta_bg;
5645	struct btrfs_block_group *sys_bg;
5646
5647	/*
5648	 * When adding a new device for sprouting, the seed device is read-only
5649	 * so we must first allocate a metadata and a system chunk. But before
5650	 * adding the block group items to the extent, device and chunk btrees,
5651	 * we must first:
5652	 *
5653	 * 1) Create both chunks without doing any changes to the btrees, as
5654	 *    otherwise we would get -ENOSPC since the block groups from the
5655	 *    seed device are read-only;
5656	 *
5657	 * 2) Add the device item for the new sprout device - finishing the setup
5658	 *    of a new block group requires updating the device item in the chunk
5659	 *    btree, so it must exist when we attempt to do it. The previous step
5660	 *    ensures this does not fail with -ENOSPC.
5661	 *
5662	 * After that we can add the block group items to their btrees:
5663	 * update existing device item in the chunk btree, add a new block group
5664	 * item to the extent btree, add a new chunk item to the chunk btree and
5665	 * finally add the new device extent items to the devices btree.
5666	 */
5667
5668	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5669	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5670	if (IS_ERR(meta_bg))
5671		return PTR_ERR(meta_bg);
5672
5673	alloc_profile = btrfs_system_alloc_profile(fs_info);
5674	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5675	if (IS_ERR(sys_bg))
5676		return PTR_ERR(sys_bg);
5677
5678	return 0;
5679}
5680
5681static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5682{
5683	const int index = btrfs_bg_flags_to_raid_index(map->type);
5684
5685	return btrfs_raid_array[index].tolerated_failures;
5686}
5687
5688bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5689{
5690	struct extent_map *em;
5691	struct map_lookup *map;
5692	int miss_ndevs = 0;
5693	int i;
5694	bool ret = true;
5695
5696	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5697	if (IS_ERR(em))
5698		return false;
5699
5700	map = em->map_lookup;
5701	for (i = 0; i < map->num_stripes; i++) {
5702		if (test_bit(BTRFS_DEV_STATE_MISSING,
5703					&map->stripes[i].dev->dev_state)) {
5704			miss_ndevs++;
5705			continue;
5706		}
5707		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5708					&map->stripes[i].dev->dev_state)) {
5709			ret = false;
5710			goto end;
5711		}
5712	}
5713
5714	/*
5715	 * If the number of missing devices is larger than max errors, we can
5716	 * not write the data into that chunk successfully.
5717	 */
5718	if (miss_ndevs > btrfs_chunk_max_errors(map))
5719		ret = false;
5720end:
5721	free_extent_map(em);
5722	return ret;
5723}
5724
5725void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5726{
5727	struct extent_map *em;
5728
5729	while (1) {
5730		write_lock(&tree->lock);
5731		em = lookup_extent_mapping(tree, 0, (u64)-1);
5732		if (em)
5733			remove_extent_mapping(tree, em);
5734		write_unlock(&tree->lock);
5735		if (!em)
5736			break;
5737		/* once for us */
5738		free_extent_map(em);
5739		/* once for the tree */
5740		free_extent_map(em);
5741	}
5742}
5743
5744int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5745{
5746	struct extent_map *em;
5747	struct map_lookup *map;
5748	enum btrfs_raid_types index;
5749	int ret = 1;
5750
5751	em = btrfs_get_chunk_map(fs_info, logical, len);
5752	if (IS_ERR(em))
5753		/*
5754		 * We could return errors for these cases, but that could get
5755		 * ugly and we'd probably do the same thing which is just not do
5756		 * anything else and exit, so return 1 so the callers don't try
5757		 * to use other copies.
5758		 */
5759		return 1;
5760
5761	map = em->map_lookup;
5762	index = btrfs_bg_flags_to_raid_index(map->type);
5763
5764	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5765	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5766		ret = btrfs_raid_array[index].ncopies;
5767	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5768		ret = 2;
5769	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5770		/*
5771		 * There could be two corrupted data stripes, we need
5772		 * to loop retry in order to rebuild the correct data.
5773		 *
5774		 * Fail a stripe at a time on every retry except the
5775		 * stripe under reconstruction.
5776		 */
5777		ret = map->num_stripes;
5778	free_extent_map(em);
5779	return ret;
5780}
5781
5782unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5783				    u64 logical)
5784{
5785	struct extent_map *em;
5786	struct map_lookup *map;
5787	unsigned long len = fs_info->sectorsize;
5788
5789	if (!btrfs_fs_incompat(fs_info, RAID56))
5790		return len;
5791
5792	em = btrfs_get_chunk_map(fs_info, logical, len);
5793
5794	if (!WARN_ON(IS_ERR(em))) {
5795		map = em->map_lookup;
5796		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5797			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5798		free_extent_map(em);
5799	}
5800	return len;
5801}
5802
5803int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5804{
5805	struct extent_map *em;
5806	struct map_lookup *map;
5807	int ret = 0;
5808
5809	if (!btrfs_fs_incompat(fs_info, RAID56))
5810		return 0;
5811
5812	em = btrfs_get_chunk_map(fs_info, logical, len);
5813
5814	if(!WARN_ON(IS_ERR(em))) {
5815		map = em->map_lookup;
5816		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5817			ret = 1;
5818		free_extent_map(em);
5819	}
5820	return ret;
5821}
5822
5823static int find_live_mirror(struct btrfs_fs_info *fs_info,
5824			    struct map_lookup *map, int first,
5825			    int dev_replace_is_ongoing)
5826{
5827	int i;
5828	int num_stripes;
5829	int preferred_mirror;
5830	int tolerance;
5831	struct btrfs_device *srcdev;
5832
5833	ASSERT((map->type &
5834		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5835
5836	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5837		num_stripes = map->sub_stripes;
5838	else
5839		num_stripes = map->num_stripes;
5840
5841	switch (fs_info->fs_devices->read_policy) {
5842	default:
5843		/* Shouldn't happen, just warn and use pid instead of failing */
5844		btrfs_warn_rl(fs_info,
5845			      "unknown read_policy type %u, reset to pid",
5846			      fs_info->fs_devices->read_policy);
5847		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5848		fallthrough;
5849	case BTRFS_READ_POLICY_PID:
5850		preferred_mirror = first + (current->pid % num_stripes);
5851		break;
5852	}
5853
5854	if (dev_replace_is_ongoing &&
5855	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5856	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5857		srcdev = fs_info->dev_replace.srcdev;
5858	else
5859		srcdev = NULL;
5860
5861	/*
5862	 * try to avoid the drive that is the source drive for a
5863	 * dev-replace procedure, only choose it if no other non-missing
5864	 * mirror is available
5865	 */
5866	for (tolerance = 0; tolerance < 2; tolerance++) {
5867		if (map->stripes[preferred_mirror].dev->bdev &&
5868		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5869			return preferred_mirror;
5870		for (i = first; i < first + num_stripes; i++) {
5871			if (map->stripes[i].dev->bdev &&
5872			    (tolerance || map->stripes[i].dev != srcdev))
5873				return i;
5874		}
5875	}
5876
5877	/* we couldn't find one that doesn't fail.  Just return something
5878	 * and the io error handling code will clean up eventually
5879	 */
5880	return preferred_mirror;
5881}
5882
5883static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5884						       u16 total_stripes)
5885{
5886	struct btrfs_io_context *bioc;
5887
5888	bioc = kzalloc(
5889		 /* The size of btrfs_io_context */
5890		sizeof(struct btrfs_io_context) +
5891		/* Plus the variable array for the stripes */
5892		sizeof(struct btrfs_io_stripe) * (total_stripes),
5893		GFP_NOFS);
5894
5895	if (!bioc)
5896		return NULL;
5897
5898	refcount_set(&bioc->refs, 1);
5899
5900	bioc->fs_info = fs_info;
5901	bioc->replace_stripe_src = -1;
5902	bioc->full_stripe_logical = (u64)-1;
5903
5904	return bioc;
5905}
5906
5907void btrfs_get_bioc(struct btrfs_io_context *bioc)
5908{
5909	WARN_ON(!refcount_read(&bioc->refs));
5910	refcount_inc(&bioc->refs);
5911}
5912
5913void btrfs_put_bioc(struct btrfs_io_context *bioc)
5914{
5915	if (!bioc)
5916		return;
5917	if (refcount_dec_and_test(&bioc->refs))
5918		kfree(bioc);
5919}
5920
5921/*
5922 * Please note that, discard won't be sent to target device of device
5923 * replace.
5924 */
5925struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5926					       u64 logical, u64 *length_ret,
5927					       u32 *num_stripes)
5928{
5929	struct extent_map *em;
5930	struct map_lookup *map;
5931	struct btrfs_discard_stripe *stripes;
5932	u64 length = *length_ret;
5933	u64 offset;
5934	u32 stripe_nr;
5935	u32 stripe_nr_end;
5936	u32 stripe_cnt;
5937	u64 stripe_end_offset;
5938	u64 stripe_offset;
5939	u32 stripe_index;
5940	u32 factor = 0;
5941	u32 sub_stripes = 0;
5942	u32 stripes_per_dev = 0;
5943	u32 remaining_stripes = 0;
5944	u32 last_stripe = 0;
5945	int ret;
5946	int i;
5947
5948	em = btrfs_get_chunk_map(fs_info, logical, length);
5949	if (IS_ERR(em))
5950		return ERR_CAST(em);
5951
5952	map = em->map_lookup;
5953
5954	/* we don't discard raid56 yet */
5955	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5956		ret = -EOPNOTSUPP;
5957		goto out_free_map;
5958	}
5959
5960	offset = logical - em->start;
5961	length = min_t(u64, em->start + em->len - logical, length);
5962	*length_ret = length;
5963
5964	/*
5965	 * stripe_nr counts the total number of stripes we have to stride
5966	 * to get to this block
5967	 */
5968	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
5969
5970	/* stripe_offset is the offset of this block in its stripe */
5971	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
5972
5973	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
5974			BTRFS_STRIPE_LEN_SHIFT;
5975	stripe_cnt = stripe_nr_end - stripe_nr;
5976	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
5977			    (offset + length);
5978	/*
5979	 * after this, stripe_nr is the number of stripes on this
5980	 * device we have to walk to find the data, and stripe_index is
5981	 * the number of our device in the stripe array
5982	 */
5983	*num_stripes = 1;
5984	stripe_index = 0;
5985	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5986			 BTRFS_BLOCK_GROUP_RAID10)) {
5987		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5988			sub_stripes = 1;
5989		else
5990			sub_stripes = map->sub_stripes;
5991
5992		factor = map->num_stripes / sub_stripes;
5993		*num_stripes = min_t(u64, map->num_stripes,
5994				    sub_stripes * stripe_cnt);
5995		stripe_index = stripe_nr % factor;
5996		stripe_nr /= factor;
5997		stripe_index *= sub_stripes;
5998
5999		remaining_stripes = stripe_cnt % factor;
6000		stripes_per_dev = stripe_cnt / factor;
6001		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6002	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6003				BTRFS_BLOCK_GROUP_DUP)) {
6004		*num_stripes = map->num_stripes;
6005	} else {
6006		stripe_index = stripe_nr % map->num_stripes;
6007		stripe_nr /= map->num_stripes;
6008	}
6009
6010	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6011	if (!stripes) {
6012		ret = -ENOMEM;
6013		goto out_free_map;
6014	}
6015
6016	for (i = 0; i < *num_stripes; i++) {
6017		stripes[i].physical =
6018			map->stripes[stripe_index].physical +
6019			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6020		stripes[i].dev = map->stripes[stripe_index].dev;
6021
6022		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6023				 BTRFS_BLOCK_GROUP_RAID10)) {
6024			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6025
6026			if (i / sub_stripes < remaining_stripes)
6027				stripes[i].length += BTRFS_STRIPE_LEN;
6028
6029			/*
6030			 * Special for the first stripe and
6031			 * the last stripe:
6032			 *
6033			 * |-------|...|-------|
6034			 *     |----------|
6035			 *    off     end_off
6036			 */
6037			if (i < sub_stripes)
6038				stripes[i].length -= stripe_offset;
6039
6040			if (stripe_index >= last_stripe &&
6041			    stripe_index <= (last_stripe +
6042					     sub_stripes - 1))
6043				stripes[i].length -= stripe_end_offset;
6044
6045			if (i == sub_stripes - 1)
6046				stripe_offset = 0;
6047		} else {
6048			stripes[i].length = length;
6049		}
6050
6051		stripe_index++;
6052		if (stripe_index == map->num_stripes) {
6053			stripe_index = 0;
6054			stripe_nr++;
6055		}
6056	}
6057
6058	free_extent_map(em);
6059	return stripes;
6060out_free_map:
6061	free_extent_map(em);
6062	return ERR_PTR(ret);
6063}
6064
6065static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6066{
6067	struct btrfs_block_group *cache;
6068	bool ret;
6069
6070	/* Non zoned filesystem does not use "to_copy" flag */
6071	if (!btrfs_is_zoned(fs_info))
6072		return false;
6073
6074	cache = btrfs_lookup_block_group(fs_info, logical);
6075
6076	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6077
6078	btrfs_put_block_group(cache);
6079	return ret;
6080}
6081
6082static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6083				      struct btrfs_io_context *bioc,
6084				      struct btrfs_dev_replace *dev_replace,
6085				      u64 logical,
6086				      int *num_stripes_ret, int *max_errors_ret)
6087{
6088	u64 srcdev_devid = dev_replace->srcdev->devid;
6089	/*
6090	 * At this stage, num_stripes is still the real number of stripes,
6091	 * excluding the duplicated stripes.
6092	 */
6093	int num_stripes = *num_stripes_ret;
6094	int nr_extra_stripes = 0;
6095	int max_errors = *max_errors_ret;
6096	int i;
6097
6098	/*
6099	 * A block group which has "to_copy" set will eventually be copied by
6100	 * the dev-replace process. We can avoid cloning IO here.
6101	 */
6102	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6103		return;
6104
6105	/*
6106	 * Duplicate the write operations while the dev-replace procedure is
6107	 * running. Since the copying of the old disk to the new disk takes
6108	 * place at run time while the filesystem is mounted writable, the
6109	 * regular write operations to the old disk have to be duplicated to go
6110	 * to the new disk as well.
6111	 *
6112	 * Note that device->missing is handled by the caller, and that the
6113	 * write to the old disk is already set up in the stripes array.
6114	 */
6115	for (i = 0; i < num_stripes; i++) {
6116		struct btrfs_io_stripe *old = &bioc->stripes[i];
6117		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6118
6119		if (old->dev->devid != srcdev_devid)
6120			continue;
6121
6122		new->physical = old->physical;
6123		new->dev = dev_replace->tgtdev;
6124		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6125			bioc->replace_stripe_src = i;
6126		nr_extra_stripes++;
6127	}
6128
6129	/* We can only have at most 2 extra nr_stripes (for DUP). */
6130	ASSERT(nr_extra_stripes <= 2);
6131	/*
6132	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6133	 * replace.
6134	 * If we have 2 extra stripes, only choose the one with smaller physical.
6135	 */
6136	if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6137		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6138		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6139
6140		/* Only DUP can have two extra stripes. */
6141		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6142
6143		/*
6144		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6145		 * The extra stripe would still be there, but won't be accessed.
6146		 */
6147		if (first->physical > second->physical) {
6148			swap(second->physical, first->physical);
6149			swap(second->dev, first->dev);
6150			nr_extra_stripes--;
6151		}
6152	}
6153
6154	*num_stripes_ret = num_stripes + nr_extra_stripes;
6155	*max_errors_ret = max_errors + nr_extra_stripes;
6156	bioc->replace_nr_stripes = nr_extra_stripes;
6157}
6158
6159static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op,
6160			    u64 offset, u32 *stripe_nr, u64 *stripe_offset,
6161			    u64 *full_stripe_start)
6162{
6163	/*
6164	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6165	 * the offset of this block in its stripe.
6166	 */
6167	*stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6168	*stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6169	ASSERT(*stripe_offset < U32_MAX);
6170
6171	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6172		unsigned long full_stripe_len =
6173			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6174
6175		/*
6176		 * For full stripe start, we use previously calculated
6177		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6178		 * STRIPE_LEN.
6179		 *
6180		 * By this we can avoid u64 division completely.  And we have
6181		 * to go rounddown(), not round_down(), as nr_data_stripes is
6182		 * not ensured to be power of 2.
6183		 */
6184		*full_stripe_start =
6185			btrfs_stripe_nr_to_offset(
6186				rounddown(*stripe_nr, nr_data_stripes(map)));
6187
6188		ASSERT(*full_stripe_start + full_stripe_len > offset);
6189		ASSERT(*full_stripe_start <= offset);
6190		/*
6191		 * For writes to RAID56, allow to write a full stripe set, but
6192		 * no straddling of stripe sets.
6193		 */
6194		if (op == BTRFS_MAP_WRITE)
6195			return full_stripe_len - (offset - *full_stripe_start);
6196	}
6197
6198	/*
6199	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6200	 * a single disk).
6201	 */
6202	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6203		return BTRFS_STRIPE_LEN - *stripe_offset;
6204	return U64_MAX;
6205}
6206
6207static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6208			  u32 stripe_index, u64 stripe_offset, u32 stripe_nr)
6209{
6210	dst->dev = map->stripes[stripe_index].dev;
6211	dst->physical = map->stripes[stripe_index].physical +
6212			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6213}
6214
6215/*
6216 * Map one logical range to one or more physical ranges.
6217 *
6218 * @length:		(Mandatory) mapped length of this run.
6219 *			One logical range can be split into different segments
6220 *			due to factors like zones and RAID0/5/6/10 stripe
6221 *			boundaries.
6222 *
6223 * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6224 *			which has one or more physical ranges (btrfs_io_stripe)
6225 *			recorded inside.
6226 *			Caller should call btrfs_put_bioc() to free it after use.
6227 *
6228 * @smap:		(Optional) single physical range optimization.
6229 *			If the map request can be fulfilled by one single
6230 *			physical range, and this is parameter is not NULL,
6231 *			then @bioc_ret would be NULL, and @smap would be
6232 *			updated.
6233 *
6234 * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6235 *			value is 0.
6236 *
6237 *			Mirror number 0 means to choose any live mirrors.
6238 *
6239 *			For non-RAID56 profiles, non-zero mirror_num means
6240 *			the Nth mirror. (e.g. mirror_num 1 means the first
6241 *			copy).
6242 *
6243 *			For RAID56 profile, mirror 1 means rebuild from P and
6244 *			the remaining data stripes.
6245 *
6246 *			For RAID6 profile, mirror > 2 means mark another
6247 *			data/P stripe error and rebuild from the remaining
6248 *			stripes..
6249 *
6250 * @need_raid_map:	(Used only for integrity checker) whether the map wants
6251 *                      a full stripe map (including all data and P/Q stripes)
6252 *                      for RAID56. Should always be 1 except integrity checker.
6253 */
6254int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6255		    u64 logical, u64 *length,
6256		    struct btrfs_io_context **bioc_ret,
6257		    struct btrfs_io_stripe *smap, int *mirror_num_ret,
6258		    int need_raid_map)
6259{
6260	struct extent_map *em;
6261	struct map_lookup *map;
6262	u64 map_offset;
6263	u64 stripe_offset;
6264	u32 stripe_nr;
6265	u32 stripe_index;
6266	int data_stripes;
6267	int i;
6268	int ret = 0;
6269	int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6270	int num_stripes;
6271	int num_copies;
6272	int max_errors = 0;
6273	struct btrfs_io_context *bioc = NULL;
6274	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6275	int dev_replace_is_ongoing = 0;
6276	u16 num_alloc_stripes;
6277	u64 raid56_full_stripe_start = (u64)-1;
6278	u64 max_len;
6279
6280	ASSERT(bioc_ret);
6281
6282	num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6283	if (mirror_num > num_copies)
6284		return -EINVAL;
6285
6286	em = btrfs_get_chunk_map(fs_info, logical, *length);
6287	if (IS_ERR(em))
6288		return PTR_ERR(em);
6289
6290	map = em->map_lookup;
6291	data_stripes = nr_data_stripes(map);
6292
6293	map_offset = logical - em->start;
6294	max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr,
6295				   &stripe_offset, &raid56_full_stripe_start);
6296	*length = min_t(u64, em->len - map_offset, max_len);
6297
6298	down_read(&dev_replace->rwsem);
6299	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6300	/*
6301	 * Hold the semaphore for read during the whole operation, write is
6302	 * requested at commit time but must wait.
6303	 */
6304	if (!dev_replace_is_ongoing)
6305		up_read(&dev_replace->rwsem);
6306
6307	num_stripes = 1;
6308	stripe_index = 0;
6309	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6310		stripe_index = stripe_nr % map->num_stripes;
6311		stripe_nr /= map->num_stripes;
6312		if (op == BTRFS_MAP_READ)
6313			mirror_num = 1;
6314	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6315		if (op != BTRFS_MAP_READ) {
6316			num_stripes = map->num_stripes;
6317		} else if (mirror_num) {
6318			stripe_index = mirror_num - 1;
6319		} else {
6320			stripe_index = find_live_mirror(fs_info, map, 0,
6321					    dev_replace_is_ongoing);
6322			mirror_num = stripe_index + 1;
6323		}
6324
6325	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6326		if (op != BTRFS_MAP_READ) {
6327			num_stripes = map->num_stripes;
6328		} else if (mirror_num) {
6329			stripe_index = mirror_num - 1;
6330		} else {
6331			mirror_num = 1;
6332		}
6333
6334	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6335		u32 factor = map->num_stripes / map->sub_stripes;
6336
6337		stripe_index = (stripe_nr % factor) * map->sub_stripes;
6338		stripe_nr /= factor;
6339
6340		if (op != BTRFS_MAP_READ)
6341			num_stripes = map->sub_stripes;
6342		else if (mirror_num)
6343			stripe_index += mirror_num - 1;
6344		else {
6345			int old_stripe_index = stripe_index;
6346			stripe_index = find_live_mirror(fs_info, map,
6347					      stripe_index,
6348					      dev_replace_is_ongoing);
6349			mirror_num = stripe_index - old_stripe_index + 1;
6350		}
6351
6352	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6353		if (need_raid_map && (op != BTRFS_MAP_READ || mirror_num > 1)) {
6354			/*
6355			 * Push stripe_nr back to the start of the full stripe
6356			 * For those cases needing a full stripe, @stripe_nr
6357			 * is the full stripe number.
6358			 *
6359			 * Originally we go raid56_full_stripe_start / full_stripe_len,
6360			 * but that can be expensive.  Here we just divide
6361			 * @stripe_nr with @data_stripes.
6362			 */
6363			stripe_nr /= data_stripes;
6364
6365			/* RAID[56] write or recovery. Return all stripes */
6366			num_stripes = map->num_stripes;
6367			max_errors = btrfs_chunk_max_errors(map);
6368
6369			/* Return the length to the full stripe end */
6370			*length = min(logical + *length,
6371				      raid56_full_stripe_start + em->start +
6372				      btrfs_stripe_nr_to_offset(data_stripes)) -
6373				  logical;
6374			stripe_index = 0;
6375			stripe_offset = 0;
6376		} else {
6377			/*
6378			 * Mirror #0 or #1 means the original data block.
6379			 * Mirror #2 is RAID5 parity block.
6380			 * Mirror #3 is RAID6 Q block.
6381			 */
6382			stripe_index = stripe_nr % data_stripes;
6383			stripe_nr /= data_stripes;
6384			if (mirror_num > 1)
6385				stripe_index = data_stripes + mirror_num - 2;
6386
6387			/* We distribute the parity blocks across stripes */
6388			stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
6389			if (op == BTRFS_MAP_READ && mirror_num <= 1)
6390				mirror_num = 1;
6391		}
6392	} else {
6393		/*
6394		 * After this, stripe_nr is the number of stripes on this
6395		 * device we have to walk to find the data, and stripe_index is
6396		 * the number of our device in the stripe array
6397		 */
6398		stripe_index = stripe_nr % map->num_stripes;
6399		stripe_nr /= map->num_stripes;
6400		mirror_num = stripe_index + 1;
6401	}
6402	if (stripe_index >= map->num_stripes) {
6403		btrfs_crit(fs_info,
6404			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6405			   stripe_index, map->num_stripes);
6406		ret = -EINVAL;
6407		goto out;
6408	}
6409
6410	num_alloc_stripes = num_stripes;
6411	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6412	    op != BTRFS_MAP_READ)
6413		/*
6414		 * For replace case, we need to add extra stripes for extra
6415		 * duplicated stripes.
6416		 *
6417		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6418		 * 2 more stripes (DUP types, otherwise 1).
6419		 */
6420		num_alloc_stripes += 2;
6421
6422	/*
6423	 * If this I/O maps to a single device, try to return the device and
6424	 * physical block information on the stack instead of allocating an
6425	 * I/O context structure.
6426	 */
6427	if (smap && num_alloc_stripes == 1 &&
6428	    !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)) {
6429		set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr);
6430		if (mirror_num_ret)
6431			*mirror_num_ret = mirror_num;
6432		*bioc_ret = NULL;
6433		ret = 0;
6434		goto out;
6435	}
6436
6437	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes);
6438	if (!bioc) {
6439		ret = -ENOMEM;
6440		goto out;
6441	}
6442	bioc->map_type = map->type;
6443
6444	/*
6445	 * For RAID56 full map, we need to make sure the stripes[] follows the
6446	 * rule that data stripes are all ordered, then followed with P and Q
6447	 * (if we have).
6448	 *
6449	 * It's still mostly the same as other profiles, just with extra rotation.
6450	 */
6451	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6452	    (op != BTRFS_MAP_READ || mirror_num > 1)) {
6453		/*
6454		 * For RAID56 @stripe_nr is already the number of full stripes
6455		 * before us, which is also the rotation value (needs to modulo
6456		 * with num_stripes).
6457		 *
6458		 * In this case, we just add @stripe_nr with @i, then do the
6459		 * modulo, to reduce one modulo call.
6460		 */
6461		bioc->full_stripe_logical = em->start +
6462			btrfs_stripe_nr_to_offset(stripe_nr * data_stripes);
6463		for (i = 0; i < num_stripes; i++)
6464			set_io_stripe(&bioc->stripes[i], map,
6465				      (i + stripe_nr) % num_stripes,
6466				      stripe_offset, stripe_nr);
6467	} else {
6468		/*
6469		 * For all other non-RAID56 profiles, just copy the target
6470		 * stripe into the bioc.
6471		 */
6472		for (i = 0; i < num_stripes; i++) {
6473			set_io_stripe(&bioc->stripes[i], map, stripe_index,
6474				      stripe_offset, stripe_nr);
6475			stripe_index++;
6476		}
6477	}
6478
6479	if (op != BTRFS_MAP_READ)
6480		max_errors = btrfs_chunk_max_errors(map);
6481
6482	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6483	    op != BTRFS_MAP_READ) {
6484		handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6485					  &num_stripes, &max_errors);
6486	}
6487
6488	*bioc_ret = bioc;
6489	bioc->num_stripes = num_stripes;
6490	bioc->max_errors = max_errors;
6491	bioc->mirror_num = mirror_num;
6492
6493out:
6494	if (dev_replace_is_ongoing) {
6495		lockdep_assert_held(&dev_replace->rwsem);
6496		/* Unlock and let waiting writers proceed */
6497		up_read(&dev_replace->rwsem);
6498	}
6499	free_extent_map(em);
6500	return ret;
6501}
6502
6503static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6504				      const struct btrfs_fs_devices *fs_devices)
6505{
6506	if (args->fsid == NULL)
6507		return true;
6508	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6509		return true;
6510	return false;
6511}
6512
6513static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6514				  const struct btrfs_device *device)
6515{
6516	if (args->missing) {
6517		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6518		    !device->bdev)
6519			return true;
6520		return false;
6521	}
6522
6523	if (device->devid != args->devid)
6524		return false;
6525	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6526		return false;
6527	return true;
6528}
6529
6530/*
6531 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6532 * return NULL.
6533 *
6534 * If devid and uuid are both specified, the match must be exact, otherwise
6535 * only devid is used.
6536 */
6537struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6538				       const struct btrfs_dev_lookup_args *args)
6539{
6540	struct btrfs_device *device;
6541	struct btrfs_fs_devices *seed_devs;
6542
6543	if (dev_args_match_fs_devices(args, fs_devices)) {
6544		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6545			if (dev_args_match_device(args, device))
6546				return device;
6547		}
6548	}
6549
6550	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6551		if (!dev_args_match_fs_devices(args, seed_devs))
6552			continue;
6553		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6554			if (dev_args_match_device(args, device))
6555				return device;
6556		}
6557	}
6558
6559	return NULL;
6560}
6561
6562static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6563					    u64 devid, u8 *dev_uuid)
6564{
6565	struct btrfs_device *device;
6566	unsigned int nofs_flag;
6567
6568	/*
6569	 * We call this under the chunk_mutex, so we want to use NOFS for this
6570	 * allocation, however we don't want to change btrfs_alloc_device() to
6571	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6572	 * places.
6573	 */
6574
6575	nofs_flag = memalloc_nofs_save();
6576	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6577	memalloc_nofs_restore(nofs_flag);
6578	if (IS_ERR(device))
6579		return device;
6580
6581	list_add(&device->dev_list, &fs_devices->devices);
6582	device->fs_devices = fs_devices;
6583	fs_devices->num_devices++;
6584
6585	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6586	fs_devices->missing_devices++;
6587
6588	return device;
6589}
6590
6591/*
6592 * Allocate new device struct, set up devid and UUID.
6593 *
6594 * @fs_info:	used only for generating a new devid, can be NULL if
6595 *		devid is provided (i.e. @devid != NULL).
6596 * @devid:	a pointer to devid for this device.  If NULL a new devid
6597 *		is generated.
6598 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6599 *		is generated.
6600 * @path:	a pointer to device path if available, NULL otherwise.
6601 *
6602 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6603 * on error.  Returned struct is not linked onto any lists and must be
6604 * destroyed with btrfs_free_device.
6605 */
6606struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6607					const u64 *devid, const u8 *uuid,
6608					const char *path)
6609{
6610	struct btrfs_device *dev;
6611	u64 tmp;
6612
6613	if (WARN_ON(!devid && !fs_info))
6614		return ERR_PTR(-EINVAL);
6615
6616	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6617	if (!dev)
6618		return ERR_PTR(-ENOMEM);
6619
6620	INIT_LIST_HEAD(&dev->dev_list);
6621	INIT_LIST_HEAD(&dev->dev_alloc_list);
6622	INIT_LIST_HEAD(&dev->post_commit_list);
6623
6624	atomic_set(&dev->dev_stats_ccnt, 0);
6625	btrfs_device_data_ordered_init(dev);
6626	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6627
6628	if (devid)
6629		tmp = *devid;
6630	else {
6631		int ret;
6632
6633		ret = find_next_devid(fs_info, &tmp);
6634		if (ret) {
6635			btrfs_free_device(dev);
6636			return ERR_PTR(ret);
6637		}
6638	}
6639	dev->devid = tmp;
6640
6641	if (uuid)
6642		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6643	else
6644		generate_random_uuid(dev->uuid);
6645
6646	if (path) {
6647		struct rcu_string *name;
6648
6649		name = rcu_string_strdup(path, GFP_KERNEL);
6650		if (!name) {
6651			btrfs_free_device(dev);
6652			return ERR_PTR(-ENOMEM);
6653		}
6654		rcu_assign_pointer(dev->name, name);
6655	}
6656
6657	return dev;
6658}
6659
6660static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6661					u64 devid, u8 *uuid, bool error)
6662{
6663	if (error)
6664		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6665			      devid, uuid);
6666	else
6667		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6668			      devid, uuid);
6669}
6670
6671u64 btrfs_calc_stripe_length(const struct extent_map *em)
6672{
6673	const struct map_lookup *map = em->map_lookup;
6674	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6675
6676	return div_u64(em->len, data_stripes);
6677}
6678
6679#if BITS_PER_LONG == 32
6680/*
6681 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6682 * can't be accessed on 32bit systems.
6683 *
6684 * This function do mount time check to reject the fs if it already has
6685 * metadata chunk beyond that limit.
6686 */
6687static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6688				  u64 logical, u64 length, u64 type)
6689{
6690	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6691		return 0;
6692
6693	if (logical + length < MAX_LFS_FILESIZE)
6694		return 0;
6695
6696	btrfs_err_32bit_limit(fs_info);
6697	return -EOVERFLOW;
6698}
6699
6700/*
6701 * This is to give early warning for any metadata chunk reaching
6702 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6703 * Although we can still access the metadata, it's not going to be possible
6704 * once the limit is reached.
6705 */
6706static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6707				  u64 logical, u64 length, u64 type)
6708{
6709	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6710		return;
6711
6712	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6713		return;
6714
6715	btrfs_warn_32bit_limit(fs_info);
6716}
6717#endif
6718
6719static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6720						  u64 devid, u8 *uuid)
6721{
6722	struct btrfs_device *dev;
6723
6724	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6725		btrfs_report_missing_device(fs_info, devid, uuid, true);
6726		return ERR_PTR(-ENOENT);
6727	}
6728
6729	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6730	if (IS_ERR(dev)) {
6731		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6732			  devid, PTR_ERR(dev));
6733		return dev;
6734	}
6735	btrfs_report_missing_device(fs_info, devid, uuid, false);
6736
6737	return dev;
6738}
6739
6740static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6741			  struct btrfs_chunk *chunk)
6742{
6743	BTRFS_DEV_LOOKUP_ARGS(args);
6744	struct btrfs_fs_info *fs_info = leaf->fs_info;
6745	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6746	struct map_lookup *map;
6747	struct extent_map *em;
6748	u64 logical;
6749	u64 length;
6750	u64 devid;
6751	u64 type;
6752	u8 uuid[BTRFS_UUID_SIZE];
6753	int index;
6754	int num_stripes;
6755	int ret;
6756	int i;
6757
6758	logical = key->offset;
6759	length = btrfs_chunk_length(leaf, chunk);
6760	type = btrfs_chunk_type(leaf, chunk);
6761	index = btrfs_bg_flags_to_raid_index(type);
6762	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6763
6764#if BITS_PER_LONG == 32
6765	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6766	if (ret < 0)
6767		return ret;
6768	warn_32bit_meta_chunk(fs_info, logical, length, type);
6769#endif
6770
6771	/*
6772	 * Only need to verify chunk item if we're reading from sys chunk array,
6773	 * as chunk item in tree block is already verified by tree-checker.
6774	 */
6775	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6776		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6777		if (ret)
6778			return ret;
6779	}
6780
6781	read_lock(&map_tree->lock);
6782	em = lookup_extent_mapping(map_tree, logical, 1);
6783	read_unlock(&map_tree->lock);
6784
6785	/* already mapped? */
6786	if (em && em->start <= logical && em->start + em->len > logical) {
6787		free_extent_map(em);
6788		return 0;
6789	} else if (em) {
6790		free_extent_map(em);
6791	}
6792
6793	em = alloc_extent_map();
6794	if (!em)
6795		return -ENOMEM;
6796	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6797	if (!map) {
6798		free_extent_map(em);
6799		return -ENOMEM;
6800	}
6801
6802	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6803	em->map_lookup = map;
6804	em->start = logical;
6805	em->len = length;
6806	em->orig_start = 0;
6807	em->block_start = 0;
6808	em->block_len = em->len;
6809
6810	map->num_stripes = num_stripes;
6811	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6812	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6813	map->type = type;
6814	/*
6815	 * We can't use the sub_stripes value, as for profiles other than
6816	 * RAID10, they may have 0 as sub_stripes for filesystems created by
6817	 * older mkfs (<v5.4).
6818	 * In that case, it can cause divide-by-zero errors later.
6819	 * Since currently sub_stripes is fixed for each profile, let's
6820	 * use the trusted value instead.
6821	 */
6822	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6823	map->verified_stripes = 0;
6824	em->orig_block_len = btrfs_calc_stripe_length(em);
6825	for (i = 0; i < num_stripes; i++) {
6826		map->stripes[i].physical =
6827			btrfs_stripe_offset_nr(leaf, chunk, i);
6828		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6829		args.devid = devid;
6830		read_extent_buffer(leaf, uuid, (unsigned long)
6831				   btrfs_stripe_dev_uuid_nr(chunk, i),
6832				   BTRFS_UUID_SIZE);
6833		args.uuid = uuid;
6834		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
6835		if (!map->stripes[i].dev) {
6836			map->stripes[i].dev = handle_missing_device(fs_info,
6837								    devid, uuid);
6838			if (IS_ERR(map->stripes[i].dev)) {
6839				ret = PTR_ERR(map->stripes[i].dev);
6840				free_extent_map(em);
6841				return ret;
6842			}
6843		}
6844
6845		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6846				&(map->stripes[i].dev->dev_state));
6847	}
6848
6849	write_lock(&map_tree->lock);
6850	ret = add_extent_mapping(map_tree, em, 0);
6851	write_unlock(&map_tree->lock);
6852	if (ret < 0) {
6853		btrfs_err(fs_info,
6854			  "failed to add chunk map, start=%llu len=%llu: %d",
6855			  em->start, em->len, ret);
6856	}
6857	free_extent_map(em);
6858
6859	return ret;
6860}
6861
6862static void fill_device_from_item(struct extent_buffer *leaf,
6863				 struct btrfs_dev_item *dev_item,
6864				 struct btrfs_device *device)
6865{
6866	unsigned long ptr;
6867
6868	device->devid = btrfs_device_id(leaf, dev_item);
6869	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6870	device->total_bytes = device->disk_total_bytes;
6871	device->commit_total_bytes = device->disk_total_bytes;
6872	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6873	device->commit_bytes_used = device->bytes_used;
6874	device->type = btrfs_device_type(leaf, dev_item);
6875	device->io_align = btrfs_device_io_align(leaf, dev_item);
6876	device->io_width = btrfs_device_io_width(leaf, dev_item);
6877	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6878	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6879	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6880
6881	ptr = btrfs_device_uuid(dev_item);
6882	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6883}
6884
6885static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6886						  u8 *fsid)
6887{
6888	struct btrfs_fs_devices *fs_devices;
6889	int ret;
6890
6891	lockdep_assert_held(&uuid_mutex);
6892	ASSERT(fsid);
6893
6894	/* This will match only for multi-device seed fs */
6895	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6896		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6897			return fs_devices;
6898
6899
6900	fs_devices = find_fsid(fsid, NULL);
6901	if (!fs_devices) {
6902		if (!btrfs_test_opt(fs_info, DEGRADED))
6903			return ERR_PTR(-ENOENT);
6904
6905		fs_devices = alloc_fs_devices(fsid, NULL);
6906		if (IS_ERR(fs_devices))
6907			return fs_devices;
6908
6909		fs_devices->seeding = true;
6910		fs_devices->opened = 1;
6911		return fs_devices;
6912	}
6913
6914	/*
6915	 * Upon first call for a seed fs fsid, just create a private copy of the
6916	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6917	 */
6918	fs_devices = clone_fs_devices(fs_devices);
6919	if (IS_ERR(fs_devices))
6920		return fs_devices;
6921
6922	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
6923	if (ret) {
6924		free_fs_devices(fs_devices);
6925		return ERR_PTR(ret);
6926	}
6927
6928	if (!fs_devices->seeding) {
6929		close_fs_devices(fs_devices);
6930		free_fs_devices(fs_devices);
6931		return ERR_PTR(-EINVAL);
6932	}
6933
6934	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6935
6936	return fs_devices;
6937}
6938
6939static int read_one_dev(struct extent_buffer *leaf,
6940			struct btrfs_dev_item *dev_item)
6941{
6942	BTRFS_DEV_LOOKUP_ARGS(args);
6943	struct btrfs_fs_info *fs_info = leaf->fs_info;
6944	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6945	struct btrfs_device *device;
6946	u64 devid;
6947	int ret;
6948	u8 fs_uuid[BTRFS_FSID_SIZE];
6949	u8 dev_uuid[BTRFS_UUID_SIZE];
6950
6951	devid = btrfs_device_id(leaf, dev_item);
6952	args.devid = devid;
6953	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6954			   BTRFS_UUID_SIZE);
6955	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6956			   BTRFS_FSID_SIZE);
6957	args.uuid = dev_uuid;
6958	args.fsid = fs_uuid;
6959
6960	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6961		fs_devices = open_seed_devices(fs_info, fs_uuid);
6962		if (IS_ERR(fs_devices))
6963			return PTR_ERR(fs_devices);
6964	}
6965
6966	device = btrfs_find_device(fs_info->fs_devices, &args);
6967	if (!device) {
6968		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6969			btrfs_report_missing_device(fs_info, devid,
6970							dev_uuid, true);
6971			return -ENOENT;
6972		}
6973
6974		device = add_missing_dev(fs_devices, devid, dev_uuid);
6975		if (IS_ERR(device)) {
6976			btrfs_err(fs_info,
6977				"failed to add missing dev %llu: %ld",
6978				devid, PTR_ERR(device));
6979			return PTR_ERR(device);
6980		}
6981		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6982	} else {
6983		if (!device->bdev) {
6984			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6985				btrfs_report_missing_device(fs_info,
6986						devid, dev_uuid, true);
6987				return -ENOENT;
6988			}
6989			btrfs_report_missing_device(fs_info, devid,
6990							dev_uuid, false);
6991		}
6992
6993		if (!device->bdev &&
6994		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6995			/*
6996			 * this happens when a device that was properly setup
6997			 * in the device info lists suddenly goes bad.
6998			 * device->bdev is NULL, and so we have to set
6999			 * device->missing to one here
7000			 */
7001			device->fs_devices->missing_devices++;
7002			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7003		}
7004
7005		/* Move the device to its own fs_devices */
7006		if (device->fs_devices != fs_devices) {
7007			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7008							&device->dev_state));
7009
7010			list_move(&device->dev_list, &fs_devices->devices);
7011			device->fs_devices->num_devices--;
7012			fs_devices->num_devices++;
7013
7014			device->fs_devices->missing_devices--;
7015			fs_devices->missing_devices++;
7016
7017			device->fs_devices = fs_devices;
7018		}
7019	}
7020
7021	if (device->fs_devices != fs_info->fs_devices) {
7022		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7023		if (device->generation !=
7024		    btrfs_device_generation(leaf, dev_item))
7025			return -EINVAL;
7026	}
7027
7028	fill_device_from_item(leaf, dev_item, device);
7029	if (device->bdev) {
7030		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7031
7032		if (device->total_bytes > max_total_bytes) {
7033			btrfs_err(fs_info,
7034			"device total_bytes should be at most %llu but found %llu",
7035				  max_total_bytes, device->total_bytes);
7036			return -EINVAL;
7037		}
7038	}
7039	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7040	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7041	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7042		device->fs_devices->total_rw_bytes += device->total_bytes;
7043		atomic64_add(device->total_bytes - device->bytes_used,
7044				&fs_info->free_chunk_space);
7045	}
7046	ret = 0;
7047	return ret;
7048}
7049
7050int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7051{
7052	struct btrfs_super_block *super_copy = fs_info->super_copy;
7053	struct extent_buffer *sb;
7054	struct btrfs_disk_key *disk_key;
7055	struct btrfs_chunk *chunk;
7056	u8 *array_ptr;
7057	unsigned long sb_array_offset;
7058	int ret = 0;
7059	u32 num_stripes;
7060	u32 array_size;
7061	u32 len = 0;
7062	u32 cur_offset;
7063	u64 type;
7064	struct btrfs_key key;
7065
7066	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7067
7068	/*
7069	 * We allocated a dummy extent, just to use extent buffer accessors.
7070	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7071	 * that's fine, we will not go beyond system chunk array anyway.
7072	 */
7073	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7074	if (!sb)
7075		return -ENOMEM;
7076	set_extent_buffer_uptodate(sb);
7077
7078	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7079	array_size = btrfs_super_sys_array_size(super_copy);
7080
7081	array_ptr = super_copy->sys_chunk_array;
7082	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7083	cur_offset = 0;
7084
7085	while (cur_offset < array_size) {
7086		disk_key = (struct btrfs_disk_key *)array_ptr;
7087		len = sizeof(*disk_key);
7088		if (cur_offset + len > array_size)
7089			goto out_short_read;
7090
7091		btrfs_disk_key_to_cpu(&key, disk_key);
7092
7093		array_ptr += len;
7094		sb_array_offset += len;
7095		cur_offset += len;
7096
7097		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7098			btrfs_err(fs_info,
7099			    "unexpected item type %u in sys_array at offset %u",
7100				  (u32)key.type, cur_offset);
7101			ret = -EIO;
7102			break;
7103		}
7104
7105		chunk = (struct btrfs_chunk *)sb_array_offset;
7106		/*
7107		 * At least one btrfs_chunk with one stripe must be present,
7108		 * exact stripe count check comes afterwards
7109		 */
7110		len = btrfs_chunk_item_size(1);
7111		if (cur_offset + len > array_size)
7112			goto out_short_read;
7113
7114		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7115		if (!num_stripes) {
7116			btrfs_err(fs_info,
7117			"invalid number of stripes %u in sys_array at offset %u",
7118				  num_stripes, cur_offset);
7119			ret = -EIO;
7120			break;
7121		}
7122
7123		type = btrfs_chunk_type(sb, chunk);
7124		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7125			btrfs_err(fs_info,
7126			"invalid chunk type %llu in sys_array at offset %u",
7127				  type, cur_offset);
7128			ret = -EIO;
7129			break;
7130		}
7131
7132		len = btrfs_chunk_item_size(num_stripes);
7133		if (cur_offset + len > array_size)
7134			goto out_short_read;
7135
7136		ret = read_one_chunk(&key, sb, chunk);
7137		if (ret)
7138			break;
7139
7140		array_ptr += len;
7141		sb_array_offset += len;
7142		cur_offset += len;
7143	}
7144	clear_extent_buffer_uptodate(sb);
7145	free_extent_buffer_stale(sb);
7146	return ret;
7147
7148out_short_read:
7149	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7150			len, cur_offset);
7151	clear_extent_buffer_uptodate(sb);
7152	free_extent_buffer_stale(sb);
7153	return -EIO;
7154}
7155
7156/*
7157 * Check if all chunks in the fs are OK for read-write degraded mount
7158 *
7159 * If the @failing_dev is specified, it's accounted as missing.
7160 *
7161 * Return true if all chunks meet the minimal RW mount requirements.
7162 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7163 */
7164bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7165					struct btrfs_device *failing_dev)
7166{
7167	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7168	struct extent_map *em;
7169	u64 next_start = 0;
7170	bool ret = true;
7171
7172	read_lock(&map_tree->lock);
7173	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7174	read_unlock(&map_tree->lock);
7175	/* No chunk at all? Return false anyway */
7176	if (!em) {
7177		ret = false;
7178		goto out;
7179	}
7180	while (em) {
7181		struct map_lookup *map;
7182		int missing = 0;
7183		int max_tolerated;
7184		int i;
7185
7186		map = em->map_lookup;
7187		max_tolerated =
7188			btrfs_get_num_tolerated_disk_barrier_failures(
7189					map->type);
7190		for (i = 0; i < map->num_stripes; i++) {
7191			struct btrfs_device *dev = map->stripes[i].dev;
7192
7193			if (!dev || !dev->bdev ||
7194			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7195			    dev->last_flush_error)
7196				missing++;
7197			else if (failing_dev && failing_dev == dev)
7198				missing++;
7199		}
7200		if (missing > max_tolerated) {
7201			if (!failing_dev)
7202				btrfs_warn(fs_info,
7203	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7204				   em->start, missing, max_tolerated);
7205			free_extent_map(em);
7206			ret = false;
7207			goto out;
7208		}
7209		next_start = extent_map_end(em);
7210		free_extent_map(em);
7211
7212		read_lock(&map_tree->lock);
7213		em = lookup_extent_mapping(map_tree, next_start,
7214					   (u64)(-1) - next_start);
7215		read_unlock(&map_tree->lock);
7216	}
7217out:
7218	return ret;
7219}
7220
7221static void readahead_tree_node_children(struct extent_buffer *node)
7222{
7223	int i;
7224	const int nr_items = btrfs_header_nritems(node);
7225
7226	for (i = 0; i < nr_items; i++)
7227		btrfs_readahead_node_child(node, i);
7228}
7229
7230int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7231{
7232	struct btrfs_root *root = fs_info->chunk_root;
7233	struct btrfs_path *path;
7234	struct extent_buffer *leaf;
7235	struct btrfs_key key;
7236	struct btrfs_key found_key;
7237	int ret;
7238	int slot;
7239	int iter_ret = 0;
7240	u64 total_dev = 0;
7241	u64 last_ra_node = 0;
7242
7243	path = btrfs_alloc_path();
7244	if (!path)
7245		return -ENOMEM;
7246
7247	/*
7248	 * uuid_mutex is needed only if we are mounting a sprout FS
7249	 * otherwise we don't need it.
7250	 */
7251	mutex_lock(&uuid_mutex);
7252
7253	/*
7254	 * It is possible for mount and umount to race in such a way that
7255	 * we execute this code path, but open_fs_devices failed to clear
7256	 * total_rw_bytes. We certainly want it cleared before reading the
7257	 * device items, so clear it here.
7258	 */
7259	fs_info->fs_devices->total_rw_bytes = 0;
7260
7261	/*
7262	 * Lockdep complains about possible circular locking dependency between
7263	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7264	 * used for freeze procection of a fs (struct super_block.s_writers),
7265	 * which we take when starting a transaction, and extent buffers of the
7266	 * chunk tree if we call read_one_dev() while holding a lock on an
7267	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7268	 * and at this point there can't be any concurrent task modifying the
7269	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7270	 */
7271	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7272	path->skip_locking = 1;
7273
7274	/*
7275	 * Read all device items, and then all the chunk items. All
7276	 * device items are found before any chunk item (their object id
7277	 * is smaller than the lowest possible object id for a chunk
7278	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7279	 */
7280	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7281	key.offset = 0;
7282	key.type = 0;
7283	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7284		struct extent_buffer *node = path->nodes[1];
7285
7286		leaf = path->nodes[0];
7287		slot = path->slots[0];
7288
7289		if (node) {
7290			if (last_ra_node != node->start) {
7291				readahead_tree_node_children(node);
7292				last_ra_node = node->start;
7293			}
7294		}
7295		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7296			struct btrfs_dev_item *dev_item;
7297			dev_item = btrfs_item_ptr(leaf, slot,
7298						  struct btrfs_dev_item);
7299			ret = read_one_dev(leaf, dev_item);
7300			if (ret)
7301				goto error;
7302			total_dev++;
7303		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7304			struct btrfs_chunk *chunk;
7305
7306			/*
7307			 * We are only called at mount time, so no need to take
7308			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7309			 * we always lock first fs_info->chunk_mutex before
7310			 * acquiring any locks on the chunk tree. This is a
7311			 * requirement for chunk allocation, see the comment on
7312			 * top of btrfs_chunk_alloc() for details.
7313			 */
7314			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7315			ret = read_one_chunk(&found_key, leaf, chunk);
7316			if (ret)
7317				goto error;
7318		}
7319	}
7320	/* Catch error found during iteration */
7321	if (iter_ret < 0) {
7322		ret = iter_ret;
7323		goto error;
7324	}
7325
7326	/*
7327	 * After loading chunk tree, we've got all device information,
7328	 * do another round of validation checks.
7329	 */
7330	if (total_dev != fs_info->fs_devices->total_devices) {
7331		btrfs_warn(fs_info,
7332"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7333			  btrfs_super_num_devices(fs_info->super_copy),
7334			  total_dev);
7335		fs_info->fs_devices->total_devices = total_dev;
7336		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7337	}
7338	if (btrfs_super_total_bytes(fs_info->super_copy) <
7339	    fs_info->fs_devices->total_rw_bytes) {
7340		btrfs_err(fs_info,
7341	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7342			  btrfs_super_total_bytes(fs_info->super_copy),
7343			  fs_info->fs_devices->total_rw_bytes);
7344		ret = -EINVAL;
7345		goto error;
7346	}
7347	ret = 0;
7348error:
7349	mutex_unlock(&uuid_mutex);
7350
7351	btrfs_free_path(path);
7352	return ret;
7353}
7354
7355int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7356{
7357	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7358	struct btrfs_device *device;
7359	int ret = 0;
7360
7361	fs_devices->fs_info = fs_info;
7362
7363	mutex_lock(&fs_devices->device_list_mutex);
7364	list_for_each_entry(device, &fs_devices->devices, dev_list)
7365		device->fs_info = fs_info;
7366
7367	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7368		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7369			device->fs_info = fs_info;
7370			ret = btrfs_get_dev_zone_info(device, false);
7371			if (ret)
7372				break;
7373		}
7374
7375		seed_devs->fs_info = fs_info;
7376	}
7377	mutex_unlock(&fs_devices->device_list_mutex);
7378
7379	return ret;
7380}
7381
7382static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7383				 const struct btrfs_dev_stats_item *ptr,
7384				 int index)
7385{
7386	u64 val;
7387
7388	read_extent_buffer(eb, &val,
7389			   offsetof(struct btrfs_dev_stats_item, values) +
7390			    ((unsigned long)ptr) + (index * sizeof(u64)),
7391			   sizeof(val));
7392	return val;
7393}
7394
7395static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7396				      struct btrfs_dev_stats_item *ptr,
7397				      int index, u64 val)
7398{
7399	write_extent_buffer(eb, &val,
7400			    offsetof(struct btrfs_dev_stats_item, values) +
7401			     ((unsigned long)ptr) + (index * sizeof(u64)),
7402			    sizeof(val));
7403}
7404
7405static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7406				       struct btrfs_path *path)
7407{
7408	struct btrfs_dev_stats_item *ptr;
7409	struct extent_buffer *eb;
7410	struct btrfs_key key;
7411	int item_size;
7412	int i, ret, slot;
7413
7414	if (!device->fs_info->dev_root)
7415		return 0;
7416
7417	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7418	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7419	key.offset = device->devid;
7420	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7421	if (ret) {
7422		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7423			btrfs_dev_stat_set(device, i, 0);
7424		device->dev_stats_valid = 1;
7425		btrfs_release_path(path);
7426		return ret < 0 ? ret : 0;
7427	}
7428	slot = path->slots[0];
7429	eb = path->nodes[0];
7430	item_size = btrfs_item_size(eb, slot);
7431
7432	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7433
7434	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7435		if (item_size >= (1 + i) * sizeof(__le64))
7436			btrfs_dev_stat_set(device, i,
7437					   btrfs_dev_stats_value(eb, ptr, i));
7438		else
7439			btrfs_dev_stat_set(device, i, 0);
7440	}
7441
7442	device->dev_stats_valid = 1;
7443	btrfs_dev_stat_print_on_load(device);
7444	btrfs_release_path(path);
7445
7446	return 0;
7447}
7448
7449int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7450{
7451	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7452	struct btrfs_device *device;
7453	struct btrfs_path *path = NULL;
7454	int ret = 0;
7455
7456	path = btrfs_alloc_path();
7457	if (!path)
7458		return -ENOMEM;
7459
7460	mutex_lock(&fs_devices->device_list_mutex);
7461	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7462		ret = btrfs_device_init_dev_stats(device, path);
7463		if (ret)
7464			goto out;
7465	}
7466	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7467		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7468			ret = btrfs_device_init_dev_stats(device, path);
7469			if (ret)
7470				goto out;
7471		}
7472	}
7473out:
7474	mutex_unlock(&fs_devices->device_list_mutex);
7475
7476	btrfs_free_path(path);
7477	return ret;
7478}
7479
7480static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7481				struct btrfs_device *device)
7482{
7483	struct btrfs_fs_info *fs_info = trans->fs_info;
7484	struct btrfs_root *dev_root = fs_info->dev_root;
7485	struct btrfs_path *path;
7486	struct btrfs_key key;
7487	struct extent_buffer *eb;
7488	struct btrfs_dev_stats_item *ptr;
7489	int ret;
7490	int i;
7491
7492	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7493	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7494	key.offset = device->devid;
7495
7496	path = btrfs_alloc_path();
7497	if (!path)
7498		return -ENOMEM;
7499	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7500	if (ret < 0) {
7501		btrfs_warn_in_rcu(fs_info,
7502			"error %d while searching for dev_stats item for device %s",
7503				  ret, btrfs_dev_name(device));
7504		goto out;
7505	}
7506
7507	if (ret == 0 &&
7508	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7509		/* need to delete old one and insert a new one */
7510		ret = btrfs_del_item(trans, dev_root, path);
7511		if (ret != 0) {
7512			btrfs_warn_in_rcu(fs_info,
7513				"delete too small dev_stats item for device %s failed %d",
7514					  btrfs_dev_name(device), ret);
7515			goto out;
7516		}
7517		ret = 1;
7518	}
7519
7520	if (ret == 1) {
7521		/* need to insert a new item */
7522		btrfs_release_path(path);
7523		ret = btrfs_insert_empty_item(trans, dev_root, path,
7524					      &key, sizeof(*ptr));
7525		if (ret < 0) {
7526			btrfs_warn_in_rcu(fs_info,
7527				"insert dev_stats item for device %s failed %d",
7528				btrfs_dev_name(device), ret);
7529			goto out;
7530		}
7531	}
7532
7533	eb = path->nodes[0];
7534	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7535	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7536		btrfs_set_dev_stats_value(eb, ptr, i,
7537					  btrfs_dev_stat_read(device, i));
7538	btrfs_mark_buffer_dirty(trans, eb);
7539
7540out:
7541	btrfs_free_path(path);
7542	return ret;
7543}
7544
7545/*
7546 * called from commit_transaction. Writes all changed device stats to disk.
7547 */
7548int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7549{
7550	struct btrfs_fs_info *fs_info = trans->fs_info;
7551	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7552	struct btrfs_device *device;
7553	int stats_cnt;
7554	int ret = 0;
7555
7556	mutex_lock(&fs_devices->device_list_mutex);
7557	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7558		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7559		if (!device->dev_stats_valid || stats_cnt == 0)
7560			continue;
7561
7562
7563		/*
7564		 * There is a LOAD-LOAD control dependency between the value of
7565		 * dev_stats_ccnt and updating the on-disk values which requires
7566		 * reading the in-memory counters. Such control dependencies
7567		 * require explicit read memory barriers.
7568		 *
7569		 * This memory barriers pairs with smp_mb__before_atomic in
7570		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7571		 * barrier implied by atomic_xchg in
7572		 * btrfs_dev_stats_read_and_reset
7573		 */
7574		smp_rmb();
7575
7576		ret = update_dev_stat_item(trans, device);
7577		if (!ret)
7578			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7579	}
7580	mutex_unlock(&fs_devices->device_list_mutex);
7581
7582	return ret;
7583}
7584
7585void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7586{
7587	btrfs_dev_stat_inc(dev, index);
7588
7589	if (!dev->dev_stats_valid)
7590		return;
7591	btrfs_err_rl_in_rcu(dev->fs_info,
7592		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7593			   btrfs_dev_name(dev),
7594			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7595			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7596			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7597			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7598			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7599}
7600
7601static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7602{
7603	int i;
7604
7605	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7606		if (btrfs_dev_stat_read(dev, i) != 0)
7607			break;
7608	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7609		return; /* all values == 0, suppress message */
7610
7611	btrfs_info_in_rcu(dev->fs_info,
7612		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7613	       btrfs_dev_name(dev),
7614	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7615	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7616	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7617	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7618	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7619}
7620
7621int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7622			struct btrfs_ioctl_get_dev_stats *stats)
7623{
7624	BTRFS_DEV_LOOKUP_ARGS(args);
7625	struct btrfs_device *dev;
7626	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7627	int i;
7628
7629	mutex_lock(&fs_devices->device_list_mutex);
7630	args.devid = stats->devid;
7631	dev = btrfs_find_device(fs_info->fs_devices, &args);
7632	mutex_unlock(&fs_devices->device_list_mutex);
7633
7634	if (!dev) {
7635		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7636		return -ENODEV;
7637	} else if (!dev->dev_stats_valid) {
7638		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7639		return -ENODEV;
7640	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7641		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7642			if (stats->nr_items > i)
7643				stats->values[i] =
7644					btrfs_dev_stat_read_and_reset(dev, i);
7645			else
7646				btrfs_dev_stat_set(dev, i, 0);
7647		}
7648		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7649			   current->comm, task_pid_nr(current));
7650	} else {
7651		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7652			if (stats->nr_items > i)
7653				stats->values[i] = btrfs_dev_stat_read(dev, i);
7654	}
7655	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7656		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7657	return 0;
7658}
7659
7660/*
7661 * Update the size and bytes used for each device where it changed.  This is
7662 * delayed since we would otherwise get errors while writing out the
7663 * superblocks.
7664 *
7665 * Must be invoked during transaction commit.
7666 */
7667void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7668{
7669	struct btrfs_device *curr, *next;
7670
7671	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7672
7673	if (list_empty(&trans->dev_update_list))
7674		return;
7675
7676	/*
7677	 * We don't need the device_list_mutex here.  This list is owned by the
7678	 * transaction and the transaction must complete before the device is
7679	 * released.
7680	 */
7681	mutex_lock(&trans->fs_info->chunk_mutex);
7682	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7683				 post_commit_list) {
7684		list_del_init(&curr->post_commit_list);
7685		curr->commit_total_bytes = curr->disk_total_bytes;
7686		curr->commit_bytes_used = curr->bytes_used;
7687	}
7688	mutex_unlock(&trans->fs_info->chunk_mutex);
7689}
7690
7691/*
7692 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7693 */
7694int btrfs_bg_type_to_factor(u64 flags)
7695{
7696	const int index = btrfs_bg_flags_to_raid_index(flags);
7697
7698	return btrfs_raid_array[index].ncopies;
7699}
7700
7701
7702
7703static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7704				 u64 chunk_offset, u64 devid,
7705				 u64 physical_offset, u64 physical_len)
7706{
7707	struct btrfs_dev_lookup_args args = { .devid = devid };
7708	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7709	struct extent_map *em;
7710	struct map_lookup *map;
7711	struct btrfs_device *dev;
7712	u64 stripe_len;
7713	bool found = false;
7714	int ret = 0;
7715	int i;
7716
7717	read_lock(&em_tree->lock);
7718	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7719	read_unlock(&em_tree->lock);
7720
7721	if (!em) {
7722		btrfs_err(fs_info,
7723"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7724			  physical_offset, devid);
7725		ret = -EUCLEAN;
7726		goto out;
7727	}
7728
7729	map = em->map_lookup;
7730	stripe_len = btrfs_calc_stripe_length(em);
7731	if (physical_len != stripe_len) {
7732		btrfs_err(fs_info,
7733"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7734			  physical_offset, devid, em->start, physical_len,
7735			  stripe_len);
7736		ret = -EUCLEAN;
7737		goto out;
7738	}
7739
7740	/*
7741	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7742	 * space. Although kernel can handle it without problem, better to warn
7743	 * the users.
7744	 */
7745	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7746		btrfs_warn(fs_info,
7747		"devid %llu physical %llu len %llu inside the reserved space",
7748			   devid, physical_offset, physical_len);
7749
7750	for (i = 0; i < map->num_stripes; i++) {
7751		if (map->stripes[i].dev->devid == devid &&
7752		    map->stripes[i].physical == physical_offset) {
7753			found = true;
7754			if (map->verified_stripes >= map->num_stripes) {
7755				btrfs_err(fs_info,
7756				"too many dev extents for chunk %llu found",
7757					  em->start);
7758				ret = -EUCLEAN;
7759				goto out;
7760			}
7761			map->verified_stripes++;
7762			break;
7763		}
7764	}
7765	if (!found) {
7766		btrfs_err(fs_info,
7767	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7768			physical_offset, devid);
7769		ret = -EUCLEAN;
7770	}
7771
7772	/* Make sure no dev extent is beyond device boundary */
7773	dev = btrfs_find_device(fs_info->fs_devices, &args);
7774	if (!dev) {
7775		btrfs_err(fs_info, "failed to find devid %llu", devid);
7776		ret = -EUCLEAN;
7777		goto out;
7778	}
7779
7780	if (physical_offset + physical_len > dev->disk_total_bytes) {
7781		btrfs_err(fs_info,
7782"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7783			  devid, physical_offset, physical_len,
7784			  dev->disk_total_bytes);
7785		ret = -EUCLEAN;
7786		goto out;
7787	}
7788
7789	if (dev->zone_info) {
7790		u64 zone_size = dev->zone_info->zone_size;
7791
7792		if (!IS_ALIGNED(physical_offset, zone_size) ||
7793		    !IS_ALIGNED(physical_len, zone_size)) {
7794			btrfs_err(fs_info,
7795"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7796				  devid, physical_offset, physical_len);
7797			ret = -EUCLEAN;
7798			goto out;
7799		}
7800	}
7801
7802out:
7803	free_extent_map(em);
7804	return ret;
7805}
7806
7807static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7808{
7809	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7810	struct extent_map *em;
7811	struct rb_node *node;
7812	int ret = 0;
7813
7814	read_lock(&em_tree->lock);
7815	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7816		em = rb_entry(node, struct extent_map, rb_node);
7817		if (em->map_lookup->num_stripes !=
7818		    em->map_lookup->verified_stripes) {
7819			btrfs_err(fs_info,
7820			"chunk %llu has missing dev extent, have %d expect %d",
7821				  em->start, em->map_lookup->verified_stripes,
7822				  em->map_lookup->num_stripes);
7823			ret = -EUCLEAN;
7824			goto out;
7825		}
7826	}
7827out:
7828	read_unlock(&em_tree->lock);
7829	return ret;
7830}
7831
7832/*
7833 * Ensure that all dev extents are mapped to correct chunk, otherwise
7834 * later chunk allocation/free would cause unexpected behavior.
7835 *
7836 * NOTE: This will iterate through the whole device tree, which should be of
7837 * the same size level as the chunk tree.  This slightly increases mount time.
7838 */
7839int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7840{
7841	struct btrfs_path *path;
7842	struct btrfs_root *root = fs_info->dev_root;
7843	struct btrfs_key key;
7844	u64 prev_devid = 0;
7845	u64 prev_dev_ext_end = 0;
7846	int ret = 0;
7847
7848	/*
7849	 * We don't have a dev_root because we mounted with ignorebadroots and
7850	 * failed to load the root, so we want to skip the verification in this
7851	 * case for sure.
7852	 *
7853	 * However if the dev root is fine, but the tree itself is corrupted
7854	 * we'd still fail to mount.  This verification is only to make sure
7855	 * writes can happen safely, so instead just bypass this check
7856	 * completely in the case of IGNOREBADROOTS.
7857	 */
7858	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7859		return 0;
7860
7861	key.objectid = 1;
7862	key.type = BTRFS_DEV_EXTENT_KEY;
7863	key.offset = 0;
7864
7865	path = btrfs_alloc_path();
7866	if (!path)
7867		return -ENOMEM;
7868
7869	path->reada = READA_FORWARD;
7870	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7871	if (ret < 0)
7872		goto out;
7873
7874	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7875		ret = btrfs_next_leaf(root, path);
7876		if (ret < 0)
7877			goto out;
7878		/* No dev extents at all? Not good */
7879		if (ret > 0) {
7880			ret = -EUCLEAN;
7881			goto out;
7882		}
7883	}
7884	while (1) {
7885		struct extent_buffer *leaf = path->nodes[0];
7886		struct btrfs_dev_extent *dext;
7887		int slot = path->slots[0];
7888		u64 chunk_offset;
7889		u64 physical_offset;
7890		u64 physical_len;
7891		u64 devid;
7892
7893		btrfs_item_key_to_cpu(leaf, &key, slot);
7894		if (key.type != BTRFS_DEV_EXTENT_KEY)
7895			break;
7896		devid = key.objectid;
7897		physical_offset = key.offset;
7898
7899		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7900		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7901		physical_len = btrfs_dev_extent_length(leaf, dext);
7902
7903		/* Check if this dev extent overlaps with the previous one */
7904		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7905			btrfs_err(fs_info,
7906"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7907				  devid, physical_offset, prev_dev_ext_end);
7908			ret = -EUCLEAN;
7909			goto out;
7910		}
7911
7912		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7913					    physical_offset, physical_len);
7914		if (ret < 0)
7915			goto out;
7916		prev_devid = devid;
7917		prev_dev_ext_end = physical_offset + physical_len;
7918
7919		ret = btrfs_next_item(root, path);
7920		if (ret < 0)
7921			goto out;
7922		if (ret > 0) {
7923			ret = 0;
7924			break;
7925		}
7926	}
7927
7928	/* Ensure all chunks have corresponding dev extents */
7929	ret = verify_chunk_dev_extent_mapping(fs_info);
7930out:
7931	btrfs_free_path(path);
7932	return ret;
7933}
7934
7935/*
7936 * Check whether the given block group or device is pinned by any inode being
7937 * used as a swapfile.
7938 */
7939bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7940{
7941	struct btrfs_swapfile_pin *sp;
7942	struct rb_node *node;
7943
7944	spin_lock(&fs_info->swapfile_pins_lock);
7945	node = fs_info->swapfile_pins.rb_node;
7946	while (node) {
7947		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7948		if (ptr < sp->ptr)
7949			node = node->rb_left;
7950		else if (ptr > sp->ptr)
7951			node = node->rb_right;
7952		else
7953			break;
7954	}
7955	spin_unlock(&fs_info->swapfile_pins_lock);
7956	return node != NULL;
7957}
7958
7959static int relocating_repair_kthread(void *data)
7960{
7961	struct btrfs_block_group *cache = data;
7962	struct btrfs_fs_info *fs_info = cache->fs_info;
7963	u64 target;
7964	int ret = 0;
7965
7966	target = cache->start;
7967	btrfs_put_block_group(cache);
7968
7969	sb_start_write(fs_info->sb);
7970	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
7971		btrfs_info(fs_info,
7972			   "zoned: skip relocating block group %llu to repair: EBUSY",
7973			   target);
7974		sb_end_write(fs_info->sb);
7975		return -EBUSY;
7976	}
7977
7978	mutex_lock(&fs_info->reclaim_bgs_lock);
7979
7980	/* Ensure block group still exists */
7981	cache = btrfs_lookup_block_group(fs_info, target);
7982	if (!cache)
7983		goto out;
7984
7985	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
7986		goto out;
7987
7988	ret = btrfs_may_alloc_data_chunk(fs_info, target);
7989	if (ret < 0)
7990		goto out;
7991
7992	btrfs_info(fs_info,
7993		   "zoned: relocating block group %llu to repair IO failure",
7994		   target);
7995	ret = btrfs_relocate_chunk(fs_info, target);
7996
7997out:
7998	if (cache)
7999		btrfs_put_block_group(cache);
8000	mutex_unlock(&fs_info->reclaim_bgs_lock);
8001	btrfs_exclop_finish(fs_info);
8002	sb_end_write(fs_info->sb);
8003
8004	return ret;
8005}
8006
8007bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8008{
8009	struct btrfs_block_group *cache;
8010
8011	if (!btrfs_is_zoned(fs_info))
8012		return false;
8013
8014	/* Do not attempt to repair in degraded state */
8015	if (btrfs_test_opt(fs_info, DEGRADED))
8016		return true;
8017
8018	cache = btrfs_lookup_block_group(fs_info, logical);
8019	if (!cache)
8020		return true;
8021
8022	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8023		btrfs_put_block_group(cache);
8024		return true;
8025	}
8026
8027	kthread_run(relocating_repair_kthread, cache,
8028		    "btrfs-relocating-repair");
8029
8030	return true;
8031}
8032
8033static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8034				    struct btrfs_io_stripe *smap,
8035				    u64 logical)
8036{
8037	int data_stripes = nr_bioc_data_stripes(bioc);
8038	int i;
8039
8040	for (i = 0; i < data_stripes; i++) {
8041		u64 stripe_start = bioc->full_stripe_logical +
8042				   btrfs_stripe_nr_to_offset(i);
8043
8044		if (logical >= stripe_start &&
8045		    logical < stripe_start + BTRFS_STRIPE_LEN)
8046			break;
8047	}
8048	ASSERT(i < data_stripes);
8049	smap->dev = bioc->stripes[i].dev;
8050	smap->physical = bioc->stripes[i].physical +
8051			((logical - bioc->full_stripe_logical) &
8052			 BTRFS_STRIPE_LEN_MASK);
8053}
8054
8055/*
8056 * Map a repair write into a single device.
8057 *
8058 * A repair write is triggered by read time repair or scrub, which would only
8059 * update the contents of a single device.
8060 * Not update any other mirrors nor go through RMW path.
8061 *
8062 * Callers should ensure:
8063 *
8064 * - Call btrfs_bio_counter_inc_blocked() first
8065 * - The range does not cross stripe boundary
8066 * - Has a valid @mirror_num passed in.
8067 */
8068int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8069			   struct btrfs_io_stripe *smap, u64 logical,
8070			   u32 length, int mirror_num)
8071{
8072	struct btrfs_io_context *bioc = NULL;
8073	u64 map_length = length;
8074	int mirror_ret = mirror_num;
8075	int ret;
8076
8077	ASSERT(mirror_num > 0);
8078
8079	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8080			      &bioc, smap, &mirror_ret, true);
8081	if (ret < 0)
8082		return ret;
8083
8084	/* The map range should not cross stripe boundary. */
8085	ASSERT(map_length >= length);
8086
8087	/* Already mapped to single stripe. */
8088	if (!bioc)
8089		goto out;
8090
8091	/* Map the RAID56 multi-stripe writes to a single one. */
8092	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8093		map_raid56_repair_block(bioc, smap, logical);
8094		goto out;
8095	}
8096
8097	ASSERT(mirror_num <= bioc->num_stripes);
8098	smap->dev = bioc->stripes[mirror_num - 1].dev;
8099	smap->physical = bioc->stripes[mirror_num - 1].physical;
8100out:
8101	btrfs_put_bioc(bioc);
8102	ASSERT(smap->dev);
8103	return 0;
8104}
8105