xref: /kernel/linux/linux-6.6/fs/btrfs/ulist.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 STRATO AG
4 * written by Arne Jansen <sensille@gmx.net>
5 */
6
7#include <linux/slab.h>
8#include "messages.h"
9#include "ulist.h"
10#include "ctree.h"
11
12/*
13 * ulist is a generic data structure to hold a collection of unique u64
14 * values. The only operations it supports is adding to the list and
15 * enumerating it.
16 * It is possible to store an auxiliary value along with the key.
17 *
18 * A sample usage for ulists is the enumeration of directed graphs without
19 * visiting a node twice. The pseudo-code could look like this:
20 *
21 * ulist = ulist_alloc();
22 * ulist_add(ulist, root);
23 * ULIST_ITER_INIT(&uiter);
24 *
25 * while ((elem = ulist_next(ulist, &uiter)) {
26 * 	for (all child nodes n in elem)
27 *		ulist_add(ulist, n);
28 *	do something useful with the node;
29 * }
30 * ulist_free(ulist);
31 *
32 * This assumes the graph nodes are addressable by u64. This stems from the
33 * usage for tree enumeration in btrfs, where the logical addresses are
34 * 64 bit.
35 *
36 * It is also useful for tree enumeration which could be done elegantly
37 * recursively, but is not possible due to kernel stack limitations. The
38 * loop would be similar to the above.
39 */
40
41/*
42 * Freshly initialize a ulist.
43 *
44 * @ulist:	the ulist to initialize
45 *
46 * Note: don't use this function to init an already used ulist, use
47 * ulist_reinit instead.
48 */
49void ulist_init(struct ulist *ulist)
50{
51	INIT_LIST_HEAD(&ulist->nodes);
52	ulist->root = RB_ROOT;
53	ulist->nnodes = 0;
54}
55
56/*
57 * Free up additionally allocated memory for the ulist.
58 *
59 * @ulist:	the ulist from which to free the additional memory
60 *
61 * This is useful in cases where the base 'struct ulist' has been statically
62 * allocated.
63 */
64void ulist_release(struct ulist *ulist)
65{
66	struct ulist_node *node;
67	struct ulist_node *next;
68
69	list_for_each_entry_safe(node, next, &ulist->nodes, list) {
70		kfree(node);
71	}
72	ulist->root = RB_ROOT;
73	INIT_LIST_HEAD(&ulist->nodes);
74}
75
76/*
77 * Prepare a ulist for reuse.
78 *
79 * @ulist:	ulist to be reused
80 *
81 * Free up all additional memory allocated for the list elements and reinit
82 * the ulist.
83 */
84void ulist_reinit(struct ulist *ulist)
85{
86	ulist_release(ulist);
87	ulist_init(ulist);
88}
89
90/*
91 * Dynamically allocate a ulist.
92 *
93 * @gfp_mask:	allocation flags to for base allocation
94 *
95 * The allocated ulist will be returned in an initialized state.
96 */
97struct ulist *ulist_alloc(gfp_t gfp_mask)
98{
99	struct ulist *ulist = kmalloc(sizeof(*ulist), gfp_mask);
100
101	if (!ulist)
102		return NULL;
103
104	ulist_init(ulist);
105
106	return ulist;
107}
108
109/*
110 * Free dynamically allocated ulist.
111 *
112 * @ulist:	ulist to free
113 *
114 * It is not necessary to call ulist_release before.
115 */
116void ulist_free(struct ulist *ulist)
117{
118	if (!ulist)
119		return;
120	ulist_release(ulist);
121	kfree(ulist);
122}
123
124static struct ulist_node *ulist_rbtree_search(struct ulist *ulist, u64 val)
125{
126	struct rb_node *n = ulist->root.rb_node;
127	struct ulist_node *u = NULL;
128
129	while (n) {
130		u = rb_entry(n, struct ulist_node, rb_node);
131		if (u->val < val)
132			n = n->rb_right;
133		else if (u->val > val)
134			n = n->rb_left;
135		else
136			return u;
137	}
138	return NULL;
139}
140
141static void ulist_rbtree_erase(struct ulist *ulist, struct ulist_node *node)
142{
143	rb_erase(&node->rb_node, &ulist->root);
144	list_del(&node->list);
145	kfree(node);
146	BUG_ON(ulist->nnodes == 0);
147	ulist->nnodes--;
148}
149
150static int ulist_rbtree_insert(struct ulist *ulist, struct ulist_node *ins)
151{
152	struct rb_node **p = &ulist->root.rb_node;
153	struct rb_node *parent = NULL;
154	struct ulist_node *cur = NULL;
155
156	while (*p) {
157		parent = *p;
158		cur = rb_entry(parent, struct ulist_node, rb_node);
159
160		if (cur->val < ins->val)
161			p = &(*p)->rb_right;
162		else if (cur->val > ins->val)
163			p = &(*p)->rb_left;
164		else
165			return -EEXIST;
166	}
167	rb_link_node(&ins->rb_node, parent, p);
168	rb_insert_color(&ins->rb_node, &ulist->root);
169	return 0;
170}
171
172/*
173 * Add an element to the ulist.
174 *
175 * @ulist:	ulist to add the element to
176 * @val:	value to add to ulist
177 * @aux:	auxiliary value to store along with val
178 * @gfp_mask:	flags to use for allocation
179 *
180 * Note: locking must be provided by the caller. In case of rwlocks write
181 *       locking is needed
182 *
183 * Add an element to a ulist. The @val will only be added if it doesn't
184 * already exist. If it is added, the auxiliary value @aux is stored along with
185 * it. In case @val already exists in the ulist, @aux is ignored, even if
186 * it differs from the already stored value.
187 *
188 * ulist_add returns 0 if @val already exists in ulist and 1 if @val has been
189 * inserted.
190 * In case of allocation failure -ENOMEM is returned and the ulist stays
191 * unaltered.
192 */
193int ulist_add(struct ulist *ulist, u64 val, u64 aux, gfp_t gfp_mask)
194{
195	return ulist_add_merge(ulist, val, aux, NULL, gfp_mask);
196}
197
198int ulist_add_merge(struct ulist *ulist, u64 val, u64 aux,
199		    u64 *old_aux, gfp_t gfp_mask)
200{
201	int ret;
202	struct ulist_node *node;
203
204	node = ulist_rbtree_search(ulist, val);
205	if (node) {
206		if (old_aux)
207			*old_aux = node->aux;
208		return 0;
209	}
210	node = kmalloc(sizeof(*node), gfp_mask);
211	if (!node)
212		return -ENOMEM;
213
214	node->val = val;
215	node->aux = aux;
216
217	ret = ulist_rbtree_insert(ulist, node);
218	ASSERT(!ret);
219	list_add_tail(&node->list, &ulist->nodes);
220	ulist->nnodes++;
221
222	return 1;
223}
224
225/*
226 * ulist_del - delete one node from ulist
227 * @ulist:	ulist to remove node from
228 * @val:	value to delete
229 * @aux:	aux to delete
230 *
231 * The deletion will only be done when *BOTH* val and aux matches.
232 * Return 0 for successful delete.
233 * Return > 0 for not found.
234 */
235int ulist_del(struct ulist *ulist, u64 val, u64 aux)
236{
237	struct ulist_node *node;
238
239	node = ulist_rbtree_search(ulist, val);
240	/* Not found */
241	if (!node)
242		return 1;
243
244	if (node->aux != aux)
245		return 1;
246
247	/* Found and delete */
248	ulist_rbtree_erase(ulist, node);
249	return 0;
250}
251
252/*
253 * Iterate ulist.
254 *
255 * @ulist:	ulist to iterate
256 * @uiter:	iterator variable, initialized with ULIST_ITER_INIT(&iterator)
257 *
258 * Note: locking must be provided by the caller. In case of rwlocks only read
259 *       locking is needed
260 *
261 * This function is used to iterate an ulist.
262 * It returns the next element from the ulist or %NULL when the
263 * end is reached. No guarantee is made with respect to the order in which
264 * the elements are returned. They might neither be returned in order of
265 * addition nor in ascending order.
266 * It is allowed to call ulist_add during an enumeration. Newly added items
267 * are guaranteed to show up in the running enumeration.
268 */
269struct ulist_node *ulist_next(const struct ulist *ulist, struct ulist_iterator *uiter)
270{
271	struct ulist_node *node;
272
273	if (list_empty(&ulist->nodes))
274		return NULL;
275	if (uiter->cur_list && uiter->cur_list->next == &ulist->nodes)
276		return NULL;
277	if (uiter->cur_list) {
278		uiter->cur_list = uiter->cur_list->next;
279	} else {
280		uiter->cur_list = ulist->nodes.next;
281	}
282	node = list_entry(uiter->cur_list, struct ulist_node, list);
283	return node;
284}
285