162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0 262306a36Sopenharmony_ci 362306a36Sopenharmony_ci#include "messages.h" 462306a36Sopenharmony_ci#include "tree-mod-log.h" 562306a36Sopenharmony_ci#include "disk-io.h" 662306a36Sopenharmony_ci#include "fs.h" 762306a36Sopenharmony_ci#include "accessors.h" 862306a36Sopenharmony_ci#include "tree-checker.h" 962306a36Sopenharmony_ci 1062306a36Sopenharmony_cistruct tree_mod_root { 1162306a36Sopenharmony_ci u64 logical; 1262306a36Sopenharmony_ci u8 level; 1362306a36Sopenharmony_ci}; 1462306a36Sopenharmony_ci 1562306a36Sopenharmony_cistruct tree_mod_elem { 1662306a36Sopenharmony_ci struct rb_node node; 1762306a36Sopenharmony_ci u64 logical; 1862306a36Sopenharmony_ci u64 seq; 1962306a36Sopenharmony_ci enum btrfs_mod_log_op op; 2062306a36Sopenharmony_ci 2162306a36Sopenharmony_ci /* 2262306a36Sopenharmony_ci * This is used for BTRFS_MOD_LOG_KEY_* and BTRFS_MOD_LOG_MOVE_KEYS 2362306a36Sopenharmony_ci * operations. 2462306a36Sopenharmony_ci */ 2562306a36Sopenharmony_ci int slot; 2662306a36Sopenharmony_ci 2762306a36Sopenharmony_ci /* This is used for BTRFS_MOD_LOG_KEY* and BTRFS_MOD_LOG_ROOT_REPLACE. */ 2862306a36Sopenharmony_ci u64 generation; 2962306a36Sopenharmony_ci 3062306a36Sopenharmony_ci /* Those are used for op == BTRFS_MOD_LOG_KEY_{REPLACE,REMOVE}. */ 3162306a36Sopenharmony_ci struct btrfs_disk_key key; 3262306a36Sopenharmony_ci u64 blockptr; 3362306a36Sopenharmony_ci 3462306a36Sopenharmony_ci /* This is used for op == BTRFS_MOD_LOG_MOVE_KEYS. */ 3562306a36Sopenharmony_ci struct { 3662306a36Sopenharmony_ci int dst_slot; 3762306a36Sopenharmony_ci int nr_items; 3862306a36Sopenharmony_ci } move; 3962306a36Sopenharmony_ci 4062306a36Sopenharmony_ci /* This is used for op == BTRFS_MOD_LOG_ROOT_REPLACE. */ 4162306a36Sopenharmony_ci struct tree_mod_root old_root; 4262306a36Sopenharmony_ci}; 4362306a36Sopenharmony_ci 4462306a36Sopenharmony_ci/* 4562306a36Sopenharmony_ci * Pull a new tree mod seq number for our operation. 4662306a36Sopenharmony_ci */ 4762306a36Sopenharmony_cistatic inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 4862306a36Sopenharmony_ci{ 4962306a36Sopenharmony_ci return atomic64_inc_return(&fs_info->tree_mod_seq); 5062306a36Sopenharmony_ci} 5162306a36Sopenharmony_ci 5262306a36Sopenharmony_ci/* 5362306a36Sopenharmony_ci * This adds a new blocker to the tree mod log's blocker list if the @elem 5462306a36Sopenharmony_ci * passed does not already have a sequence number set. So when a caller expects 5562306a36Sopenharmony_ci * to record tree modifications, it should ensure to set elem->seq to zero 5662306a36Sopenharmony_ci * before calling btrfs_get_tree_mod_seq. 5762306a36Sopenharmony_ci * Returns a fresh, unused tree log modification sequence number, even if no new 5862306a36Sopenharmony_ci * blocker was added. 5962306a36Sopenharmony_ci */ 6062306a36Sopenharmony_ciu64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 6162306a36Sopenharmony_ci struct btrfs_seq_list *elem) 6262306a36Sopenharmony_ci{ 6362306a36Sopenharmony_ci write_lock(&fs_info->tree_mod_log_lock); 6462306a36Sopenharmony_ci if (!elem->seq) { 6562306a36Sopenharmony_ci elem->seq = btrfs_inc_tree_mod_seq(fs_info); 6662306a36Sopenharmony_ci list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 6762306a36Sopenharmony_ci set_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags); 6862306a36Sopenharmony_ci } 6962306a36Sopenharmony_ci write_unlock(&fs_info->tree_mod_log_lock); 7062306a36Sopenharmony_ci 7162306a36Sopenharmony_ci return elem->seq; 7262306a36Sopenharmony_ci} 7362306a36Sopenharmony_ci 7462306a36Sopenharmony_civoid btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 7562306a36Sopenharmony_ci struct btrfs_seq_list *elem) 7662306a36Sopenharmony_ci{ 7762306a36Sopenharmony_ci struct rb_root *tm_root; 7862306a36Sopenharmony_ci struct rb_node *node; 7962306a36Sopenharmony_ci struct rb_node *next; 8062306a36Sopenharmony_ci struct tree_mod_elem *tm; 8162306a36Sopenharmony_ci u64 min_seq = BTRFS_SEQ_LAST; 8262306a36Sopenharmony_ci u64 seq_putting = elem->seq; 8362306a36Sopenharmony_ci 8462306a36Sopenharmony_ci if (!seq_putting) 8562306a36Sopenharmony_ci return; 8662306a36Sopenharmony_ci 8762306a36Sopenharmony_ci write_lock(&fs_info->tree_mod_log_lock); 8862306a36Sopenharmony_ci list_del(&elem->list); 8962306a36Sopenharmony_ci elem->seq = 0; 9062306a36Sopenharmony_ci 9162306a36Sopenharmony_ci if (list_empty(&fs_info->tree_mod_seq_list)) { 9262306a36Sopenharmony_ci clear_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags); 9362306a36Sopenharmony_ci } else { 9462306a36Sopenharmony_ci struct btrfs_seq_list *first; 9562306a36Sopenharmony_ci 9662306a36Sopenharmony_ci first = list_first_entry(&fs_info->tree_mod_seq_list, 9762306a36Sopenharmony_ci struct btrfs_seq_list, list); 9862306a36Sopenharmony_ci if (seq_putting > first->seq) { 9962306a36Sopenharmony_ci /* 10062306a36Sopenharmony_ci * Blocker with lower sequence number exists, we cannot 10162306a36Sopenharmony_ci * remove anything from the log. 10262306a36Sopenharmony_ci */ 10362306a36Sopenharmony_ci write_unlock(&fs_info->tree_mod_log_lock); 10462306a36Sopenharmony_ci return; 10562306a36Sopenharmony_ci } 10662306a36Sopenharmony_ci min_seq = first->seq; 10762306a36Sopenharmony_ci } 10862306a36Sopenharmony_ci 10962306a36Sopenharmony_ci /* 11062306a36Sopenharmony_ci * Anything that's lower than the lowest existing (read: blocked) 11162306a36Sopenharmony_ci * sequence number can be removed from the tree. 11262306a36Sopenharmony_ci */ 11362306a36Sopenharmony_ci tm_root = &fs_info->tree_mod_log; 11462306a36Sopenharmony_ci for (node = rb_first(tm_root); node; node = next) { 11562306a36Sopenharmony_ci next = rb_next(node); 11662306a36Sopenharmony_ci tm = rb_entry(node, struct tree_mod_elem, node); 11762306a36Sopenharmony_ci if (tm->seq >= min_seq) 11862306a36Sopenharmony_ci continue; 11962306a36Sopenharmony_ci rb_erase(node, tm_root); 12062306a36Sopenharmony_ci kfree(tm); 12162306a36Sopenharmony_ci } 12262306a36Sopenharmony_ci write_unlock(&fs_info->tree_mod_log_lock); 12362306a36Sopenharmony_ci} 12462306a36Sopenharmony_ci 12562306a36Sopenharmony_ci/* 12662306a36Sopenharmony_ci * Key order of the log: 12762306a36Sopenharmony_ci * node/leaf start address -> sequence 12862306a36Sopenharmony_ci * 12962306a36Sopenharmony_ci * The 'start address' is the logical address of the *new* root node for root 13062306a36Sopenharmony_ci * replace operations, or the logical address of the affected block for all 13162306a36Sopenharmony_ci * other operations. 13262306a36Sopenharmony_ci */ 13362306a36Sopenharmony_cistatic noinline int tree_mod_log_insert(struct btrfs_fs_info *fs_info, 13462306a36Sopenharmony_ci struct tree_mod_elem *tm) 13562306a36Sopenharmony_ci{ 13662306a36Sopenharmony_ci struct rb_root *tm_root; 13762306a36Sopenharmony_ci struct rb_node **new; 13862306a36Sopenharmony_ci struct rb_node *parent = NULL; 13962306a36Sopenharmony_ci struct tree_mod_elem *cur; 14062306a36Sopenharmony_ci 14162306a36Sopenharmony_ci lockdep_assert_held_write(&fs_info->tree_mod_log_lock); 14262306a36Sopenharmony_ci 14362306a36Sopenharmony_ci tm->seq = btrfs_inc_tree_mod_seq(fs_info); 14462306a36Sopenharmony_ci 14562306a36Sopenharmony_ci tm_root = &fs_info->tree_mod_log; 14662306a36Sopenharmony_ci new = &tm_root->rb_node; 14762306a36Sopenharmony_ci while (*new) { 14862306a36Sopenharmony_ci cur = rb_entry(*new, struct tree_mod_elem, node); 14962306a36Sopenharmony_ci parent = *new; 15062306a36Sopenharmony_ci if (cur->logical < tm->logical) 15162306a36Sopenharmony_ci new = &((*new)->rb_left); 15262306a36Sopenharmony_ci else if (cur->logical > tm->logical) 15362306a36Sopenharmony_ci new = &((*new)->rb_right); 15462306a36Sopenharmony_ci else if (cur->seq < tm->seq) 15562306a36Sopenharmony_ci new = &((*new)->rb_left); 15662306a36Sopenharmony_ci else if (cur->seq > tm->seq) 15762306a36Sopenharmony_ci new = &((*new)->rb_right); 15862306a36Sopenharmony_ci else 15962306a36Sopenharmony_ci return -EEXIST; 16062306a36Sopenharmony_ci } 16162306a36Sopenharmony_ci 16262306a36Sopenharmony_ci rb_link_node(&tm->node, parent, new); 16362306a36Sopenharmony_ci rb_insert_color(&tm->node, tm_root); 16462306a36Sopenharmony_ci return 0; 16562306a36Sopenharmony_ci} 16662306a36Sopenharmony_ci 16762306a36Sopenharmony_ci/* 16862306a36Sopenharmony_ci * Determines if logging can be omitted. Returns true if it can. Otherwise, it 16962306a36Sopenharmony_ci * returns false with the tree_mod_log_lock acquired. The caller must hold 17062306a36Sopenharmony_ci * this until all tree mod log insertions are recorded in the rb tree and then 17162306a36Sopenharmony_ci * write unlock fs_info::tree_mod_log_lock. 17262306a36Sopenharmony_ci */ 17362306a36Sopenharmony_cistatic inline bool tree_mod_dont_log(struct btrfs_fs_info *fs_info, 17462306a36Sopenharmony_ci struct extent_buffer *eb) 17562306a36Sopenharmony_ci{ 17662306a36Sopenharmony_ci if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 17762306a36Sopenharmony_ci return true; 17862306a36Sopenharmony_ci if (eb && btrfs_header_level(eb) == 0) 17962306a36Sopenharmony_ci return true; 18062306a36Sopenharmony_ci 18162306a36Sopenharmony_ci write_lock(&fs_info->tree_mod_log_lock); 18262306a36Sopenharmony_ci if (list_empty(&(fs_info)->tree_mod_seq_list)) { 18362306a36Sopenharmony_ci write_unlock(&fs_info->tree_mod_log_lock); 18462306a36Sopenharmony_ci return true; 18562306a36Sopenharmony_ci } 18662306a36Sopenharmony_ci 18762306a36Sopenharmony_ci return false; 18862306a36Sopenharmony_ci} 18962306a36Sopenharmony_ci 19062306a36Sopenharmony_ci/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 19162306a36Sopenharmony_cistatic inline bool tree_mod_need_log(const struct btrfs_fs_info *fs_info, 19262306a36Sopenharmony_ci struct extent_buffer *eb) 19362306a36Sopenharmony_ci{ 19462306a36Sopenharmony_ci if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 19562306a36Sopenharmony_ci return false; 19662306a36Sopenharmony_ci if (eb && btrfs_header_level(eb) == 0) 19762306a36Sopenharmony_ci return false; 19862306a36Sopenharmony_ci 19962306a36Sopenharmony_ci return true; 20062306a36Sopenharmony_ci} 20162306a36Sopenharmony_ci 20262306a36Sopenharmony_cistatic struct tree_mod_elem *alloc_tree_mod_elem(struct extent_buffer *eb, 20362306a36Sopenharmony_ci int slot, 20462306a36Sopenharmony_ci enum btrfs_mod_log_op op) 20562306a36Sopenharmony_ci{ 20662306a36Sopenharmony_ci struct tree_mod_elem *tm; 20762306a36Sopenharmony_ci 20862306a36Sopenharmony_ci tm = kzalloc(sizeof(*tm), GFP_NOFS); 20962306a36Sopenharmony_ci if (!tm) 21062306a36Sopenharmony_ci return NULL; 21162306a36Sopenharmony_ci 21262306a36Sopenharmony_ci tm->logical = eb->start; 21362306a36Sopenharmony_ci if (op != BTRFS_MOD_LOG_KEY_ADD) { 21462306a36Sopenharmony_ci btrfs_node_key(eb, &tm->key, slot); 21562306a36Sopenharmony_ci tm->blockptr = btrfs_node_blockptr(eb, slot); 21662306a36Sopenharmony_ci } 21762306a36Sopenharmony_ci tm->op = op; 21862306a36Sopenharmony_ci tm->slot = slot; 21962306a36Sopenharmony_ci tm->generation = btrfs_node_ptr_generation(eb, slot); 22062306a36Sopenharmony_ci RB_CLEAR_NODE(&tm->node); 22162306a36Sopenharmony_ci 22262306a36Sopenharmony_ci return tm; 22362306a36Sopenharmony_ci} 22462306a36Sopenharmony_ci 22562306a36Sopenharmony_ciint btrfs_tree_mod_log_insert_key(struct extent_buffer *eb, int slot, 22662306a36Sopenharmony_ci enum btrfs_mod_log_op op) 22762306a36Sopenharmony_ci{ 22862306a36Sopenharmony_ci struct tree_mod_elem *tm; 22962306a36Sopenharmony_ci int ret = 0; 23062306a36Sopenharmony_ci 23162306a36Sopenharmony_ci if (!tree_mod_need_log(eb->fs_info, eb)) 23262306a36Sopenharmony_ci return 0; 23362306a36Sopenharmony_ci 23462306a36Sopenharmony_ci tm = alloc_tree_mod_elem(eb, slot, op); 23562306a36Sopenharmony_ci if (!tm) 23662306a36Sopenharmony_ci ret = -ENOMEM; 23762306a36Sopenharmony_ci 23862306a36Sopenharmony_ci if (tree_mod_dont_log(eb->fs_info, eb)) { 23962306a36Sopenharmony_ci kfree(tm); 24062306a36Sopenharmony_ci /* 24162306a36Sopenharmony_ci * Don't error if we failed to allocate memory because we don't 24262306a36Sopenharmony_ci * need to log. 24362306a36Sopenharmony_ci */ 24462306a36Sopenharmony_ci return 0; 24562306a36Sopenharmony_ci } else if (ret != 0) { 24662306a36Sopenharmony_ci /* 24762306a36Sopenharmony_ci * We previously failed to allocate memory and we need to log, 24862306a36Sopenharmony_ci * so we have to fail. 24962306a36Sopenharmony_ci */ 25062306a36Sopenharmony_ci goto out_unlock; 25162306a36Sopenharmony_ci } 25262306a36Sopenharmony_ci 25362306a36Sopenharmony_ci ret = tree_mod_log_insert(eb->fs_info, tm); 25462306a36Sopenharmony_ciout_unlock: 25562306a36Sopenharmony_ci write_unlock(&eb->fs_info->tree_mod_log_lock); 25662306a36Sopenharmony_ci if (ret) 25762306a36Sopenharmony_ci kfree(tm); 25862306a36Sopenharmony_ci 25962306a36Sopenharmony_ci return ret; 26062306a36Sopenharmony_ci} 26162306a36Sopenharmony_ci 26262306a36Sopenharmony_cistatic struct tree_mod_elem *tree_mod_log_alloc_move(struct extent_buffer *eb, 26362306a36Sopenharmony_ci int dst_slot, int src_slot, 26462306a36Sopenharmony_ci int nr_items) 26562306a36Sopenharmony_ci{ 26662306a36Sopenharmony_ci struct tree_mod_elem *tm; 26762306a36Sopenharmony_ci 26862306a36Sopenharmony_ci tm = kzalloc(sizeof(*tm), GFP_NOFS); 26962306a36Sopenharmony_ci if (!tm) 27062306a36Sopenharmony_ci return ERR_PTR(-ENOMEM); 27162306a36Sopenharmony_ci 27262306a36Sopenharmony_ci tm->logical = eb->start; 27362306a36Sopenharmony_ci tm->slot = src_slot; 27462306a36Sopenharmony_ci tm->move.dst_slot = dst_slot; 27562306a36Sopenharmony_ci tm->move.nr_items = nr_items; 27662306a36Sopenharmony_ci tm->op = BTRFS_MOD_LOG_MOVE_KEYS; 27762306a36Sopenharmony_ci RB_CLEAR_NODE(&tm->node); 27862306a36Sopenharmony_ci 27962306a36Sopenharmony_ci return tm; 28062306a36Sopenharmony_ci} 28162306a36Sopenharmony_ci 28262306a36Sopenharmony_ciint btrfs_tree_mod_log_insert_move(struct extent_buffer *eb, 28362306a36Sopenharmony_ci int dst_slot, int src_slot, 28462306a36Sopenharmony_ci int nr_items) 28562306a36Sopenharmony_ci{ 28662306a36Sopenharmony_ci struct tree_mod_elem *tm = NULL; 28762306a36Sopenharmony_ci struct tree_mod_elem **tm_list = NULL; 28862306a36Sopenharmony_ci int ret = 0; 28962306a36Sopenharmony_ci int i; 29062306a36Sopenharmony_ci bool locked = false; 29162306a36Sopenharmony_ci 29262306a36Sopenharmony_ci if (!tree_mod_need_log(eb->fs_info, eb)) 29362306a36Sopenharmony_ci return 0; 29462306a36Sopenharmony_ci 29562306a36Sopenharmony_ci tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 29662306a36Sopenharmony_ci if (!tm_list) { 29762306a36Sopenharmony_ci ret = -ENOMEM; 29862306a36Sopenharmony_ci goto lock; 29962306a36Sopenharmony_ci } 30062306a36Sopenharmony_ci 30162306a36Sopenharmony_ci tm = tree_mod_log_alloc_move(eb, dst_slot, src_slot, nr_items); 30262306a36Sopenharmony_ci if (IS_ERR(tm)) { 30362306a36Sopenharmony_ci ret = PTR_ERR(tm); 30462306a36Sopenharmony_ci tm = NULL; 30562306a36Sopenharmony_ci goto lock; 30662306a36Sopenharmony_ci } 30762306a36Sopenharmony_ci 30862306a36Sopenharmony_ci for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 30962306a36Sopenharmony_ci tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 31062306a36Sopenharmony_ci BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING); 31162306a36Sopenharmony_ci if (!tm_list[i]) { 31262306a36Sopenharmony_ci ret = -ENOMEM; 31362306a36Sopenharmony_ci goto lock; 31462306a36Sopenharmony_ci } 31562306a36Sopenharmony_ci } 31662306a36Sopenharmony_ci 31762306a36Sopenharmony_cilock: 31862306a36Sopenharmony_ci if (tree_mod_dont_log(eb->fs_info, eb)) { 31962306a36Sopenharmony_ci /* 32062306a36Sopenharmony_ci * Don't error if we failed to allocate memory because we don't 32162306a36Sopenharmony_ci * need to log. 32262306a36Sopenharmony_ci */ 32362306a36Sopenharmony_ci ret = 0; 32462306a36Sopenharmony_ci goto free_tms; 32562306a36Sopenharmony_ci } 32662306a36Sopenharmony_ci locked = true; 32762306a36Sopenharmony_ci 32862306a36Sopenharmony_ci /* 32962306a36Sopenharmony_ci * We previously failed to allocate memory and we need to log, so we 33062306a36Sopenharmony_ci * have to fail. 33162306a36Sopenharmony_ci */ 33262306a36Sopenharmony_ci if (ret != 0) 33362306a36Sopenharmony_ci goto free_tms; 33462306a36Sopenharmony_ci 33562306a36Sopenharmony_ci /* 33662306a36Sopenharmony_ci * When we override something during the move, we log these removals. 33762306a36Sopenharmony_ci * This can only happen when we move towards the beginning of the 33862306a36Sopenharmony_ci * buffer, i.e. dst_slot < src_slot. 33962306a36Sopenharmony_ci */ 34062306a36Sopenharmony_ci for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 34162306a36Sopenharmony_ci ret = tree_mod_log_insert(eb->fs_info, tm_list[i]); 34262306a36Sopenharmony_ci if (ret) 34362306a36Sopenharmony_ci goto free_tms; 34462306a36Sopenharmony_ci } 34562306a36Sopenharmony_ci 34662306a36Sopenharmony_ci ret = tree_mod_log_insert(eb->fs_info, tm); 34762306a36Sopenharmony_ci if (ret) 34862306a36Sopenharmony_ci goto free_tms; 34962306a36Sopenharmony_ci write_unlock(&eb->fs_info->tree_mod_log_lock); 35062306a36Sopenharmony_ci kfree(tm_list); 35162306a36Sopenharmony_ci 35262306a36Sopenharmony_ci return 0; 35362306a36Sopenharmony_ci 35462306a36Sopenharmony_cifree_tms: 35562306a36Sopenharmony_ci if (tm_list) { 35662306a36Sopenharmony_ci for (i = 0; i < nr_items; i++) { 35762306a36Sopenharmony_ci if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 35862306a36Sopenharmony_ci rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); 35962306a36Sopenharmony_ci kfree(tm_list[i]); 36062306a36Sopenharmony_ci } 36162306a36Sopenharmony_ci } 36262306a36Sopenharmony_ci if (locked) 36362306a36Sopenharmony_ci write_unlock(&eb->fs_info->tree_mod_log_lock); 36462306a36Sopenharmony_ci kfree(tm_list); 36562306a36Sopenharmony_ci kfree(tm); 36662306a36Sopenharmony_ci 36762306a36Sopenharmony_ci return ret; 36862306a36Sopenharmony_ci} 36962306a36Sopenharmony_ci 37062306a36Sopenharmony_cistatic inline int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 37162306a36Sopenharmony_ci struct tree_mod_elem **tm_list, 37262306a36Sopenharmony_ci int nritems) 37362306a36Sopenharmony_ci{ 37462306a36Sopenharmony_ci int i, j; 37562306a36Sopenharmony_ci int ret; 37662306a36Sopenharmony_ci 37762306a36Sopenharmony_ci for (i = nritems - 1; i >= 0; i--) { 37862306a36Sopenharmony_ci ret = tree_mod_log_insert(fs_info, tm_list[i]); 37962306a36Sopenharmony_ci if (ret) { 38062306a36Sopenharmony_ci for (j = nritems - 1; j > i; j--) 38162306a36Sopenharmony_ci rb_erase(&tm_list[j]->node, 38262306a36Sopenharmony_ci &fs_info->tree_mod_log); 38362306a36Sopenharmony_ci return ret; 38462306a36Sopenharmony_ci } 38562306a36Sopenharmony_ci } 38662306a36Sopenharmony_ci 38762306a36Sopenharmony_ci return 0; 38862306a36Sopenharmony_ci} 38962306a36Sopenharmony_ci 39062306a36Sopenharmony_ciint btrfs_tree_mod_log_insert_root(struct extent_buffer *old_root, 39162306a36Sopenharmony_ci struct extent_buffer *new_root, 39262306a36Sopenharmony_ci bool log_removal) 39362306a36Sopenharmony_ci{ 39462306a36Sopenharmony_ci struct btrfs_fs_info *fs_info = old_root->fs_info; 39562306a36Sopenharmony_ci struct tree_mod_elem *tm = NULL; 39662306a36Sopenharmony_ci struct tree_mod_elem **tm_list = NULL; 39762306a36Sopenharmony_ci int nritems = 0; 39862306a36Sopenharmony_ci int ret = 0; 39962306a36Sopenharmony_ci int i; 40062306a36Sopenharmony_ci 40162306a36Sopenharmony_ci if (!tree_mod_need_log(fs_info, NULL)) 40262306a36Sopenharmony_ci return 0; 40362306a36Sopenharmony_ci 40462306a36Sopenharmony_ci if (log_removal && btrfs_header_level(old_root) > 0) { 40562306a36Sopenharmony_ci nritems = btrfs_header_nritems(old_root); 40662306a36Sopenharmony_ci tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 40762306a36Sopenharmony_ci GFP_NOFS); 40862306a36Sopenharmony_ci if (!tm_list) { 40962306a36Sopenharmony_ci ret = -ENOMEM; 41062306a36Sopenharmony_ci goto lock; 41162306a36Sopenharmony_ci } 41262306a36Sopenharmony_ci for (i = 0; i < nritems; i++) { 41362306a36Sopenharmony_ci tm_list[i] = alloc_tree_mod_elem(old_root, i, 41462306a36Sopenharmony_ci BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING); 41562306a36Sopenharmony_ci if (!tm_list[i]) { 41662306a36Sopenharmony_ci ret = -ENOMEM; 41762306a36Sopenharmony_ci goto lock; 41862306a36Sopenharmony_ci } 41962306a36Sopenharmony_ci } 42062306a36Sopenharmony_ci } 42162306a36Sopenharmony_ci 42262306a36Sopenharmony_ci tm = kzalloc(sizeof(*tm), GFP_NOFS); 42362306a36Sopenharmony_ci if (!tm) { 42462306a36Sopenharmony_ci ret = -ENOMEM; 42562306a36Sopenharmony_ci goto lock; 42662306a36Sopenharmony_ci } 42762306a36Sopenharmony_ci 42862306a36Sopenharmony_ci tm->logical = new_root->start; 42962306a36Sopenharmony_ci tm->old_root.logical = old_root->start; 43062306a36Sopenharmony_ci tm->old_root.level = btrfs_header_level(old_root); 43162306a36Sopenharmony_ci tm->generation = btrfs_header_generation(old_root); 43262306a36Sopenharmony_ci tm->op = BTRFS_MOD_LOG_ROOT_REPLACE; 43362306a36Sopenharmony_ci 43462306a36Sopenharmony_cilock: 43562306a36Sopenharmony_ci if (tree_mod_dont_log(fs_info, NULL)) { 43662306a36Sopenharmony_ci /* 43762306a36Sopenharmony_ci * Don't error if we failed to allocate memory because we don't 43862306a36Sopenharmony_ci * need to log. 43962306a36Sopenharmony_ci */ 44062306a36Sopenharmony_ci ret = 0; 44162306a36Sopenharmony_ci goto free_tms; 44262306a36Sopenharmony_ci } else if (ret != 0) { 44362306a36Sopenharmony_ci /* 44462306a36Sopenharmony_ci * We previously failed to allocate memory and we need to log, 44562306a36Sopenharmony_ci * so we have to fail. 44662306a36Sopenharmony_ci */ 44762306a36Sopenharmony_ci goto out_unlock; 44862306a36Sopenharmony_ci } 44962306a36Sopenharmony_ci 45062306a36Sopenharmony_ci if (tm_list) 45162306a36Sopenharmony_ci ret = tree_mod_log_free_eb(fs_info, tm_list, nritems); 45262306a36Sopenharmony_ci if (!ret) 45362306a36Sopenharmony_ci ret = tree_mod_log_insert(fs_info, tm); 45462306a36Sopenharmony_ci 45562306a36Sopenharmony_ciout_unlock: 45662306a36Sopenharmony_ci write_unlock(&fs_info->tree_mod_log_lock); 45762306a36Sopenharmony_ci if (ret) 45862306a36Sopenharmony_ci goto free_tms; 45962306a36Sopenharmony_ci kfree(tm_list); 46062306a36Sopenharmony_ci 46162306a36Sopenharmony_ci return ret; 46262306a36Sopenharmony_ci 46362306a36Sopenharmony_cifree_tms: 46462306a36Sopenharmony_ci if (tm_list) { 46562306a36Sopenharmony_ci for (i = 0; i < nritems; i++) 46662306a36Sopenharmony_ci kfree(tm_list[i]); 46762306a36Sopenharmony_ci kfree(tm_list); 46862306a36Sopenharmony_ci } 46962306a36Sopenharmony_ci kfree(tm); 47062306a36Sopenharmony_ci 47162306a36Sopenharmony_ci return ret; 47262306a36Sopenharmony_ci} 47362306a36Sopenharmony_ci 47462306a36Sopenharmony_cistatic struct tree_mod_elem *__tree_mod_log_search(struct btrfs_fs_info *fs_info, 47562306a36Sopenharmony_ci u64 start, u64 min_seq, 47662306a36Sopenharmony_ci bool smallest) 47762306a36Sopenharmony_ci{ 47862306a36Sopenharmony_ci struct rb_root *tm_root; 47962306a36Sopenharmony_ci struct rb_node *node; 48062306a36Sopenharmony_ci struct tree_mod_elem *cur = NULL; 48162306a36Sopenharmony_ci struct tree_mod_elem *found = NULL; 48262306a36Sopenharmony_ci 48362306a36Sopenharmony_ci read_lock(&fs_info->tree_mod_log_lock); 48462306a36Sopenharmony_ci tm_root = &fs_info->tree_mod_log; 48562306a36Sopenharmony_ci node = tm_root->rb_node; 48662306a36Sopenharmony_ci while (node) { 48762306a36Sopenharmony_ci cur = rb_entry(node, struct tree_mod_elem, node); 48862306a36Sopenharmony_ci if (cur->logical < start) { 48962306a36Sopenharmony_ci node = node->rb_left; 49062306a36Sopenharmony_ci } else if (cur->logical > start) { 49162306a36Sopenharmony_ci node = node->rb_right; 49262306a36Sopenharmony_ci } else if (cur->seq < min_seq) { 49362306a36Sopenharmony_ci node = node->rb_left; 49462306a36Sopenharmony_ci } else if (!smallest) { 49562306a36Sopenharmony_ci /* We want the node with the highest seq */ 49662306a36Sopenharmony_ci if (found) 49762306a36Sopenharmony_ci BUG_ON(found->seq > cur->seq); 49862306a36Sopenharmony_ci found = cur; 49962306a36Sopenharmony_ci node = node->rb_left; 50062306a36Sopenharmony_ci } else if (cur->seq > min_seq) { 50162306a36Sopenharmony_ci /* We want the node with the smallest seq */ 50262306a36Sopenharmony_ci if (found) 50362306a36Sopenharmony_ci BUG_ON(found->seq < cur->seq); 50462306a36Sopenharmony_ci found = cur; 50562306a36Sopenharmony_ci node = node->rb_right; 50662306a36Sopenharmony_ci } else { 50762306a36Sopenharmony_ci found = cur; 50862306a36Sopenharmony_ci break; 50962306a36Sopenharmony_ci } 51062306a36Sopenharmony_ci } 51162306a36Sopenharmony_ci read_unlock(&fs_info->tree_mod_log_lock); 51262306a36Sopenharmony_ci 51362306a36Sopenharmony_ci return found; 51462306a36Sopenharmony_ci} 51562306a36Sopenharmony_ci 51662306a36Sopenharmony_ci/* 51762306a36Sopenharmony_ci * This returns the element from the log with the smallest time sequence 51862306a36Sopenharmony_ci * value that's in the log (the oldest log item). Any element with a time 51962306a36Sopenharmony_ci * sequence lower than min_seq will be ignored. 52062306a36Sopenharmony_ci */ 52162306a36Sopenharmony_cistatic struct tree_mod_elem *tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, 52262306a36Sopenharmony_ci u64 start, u64 min_seq) 52362306a36Sopenharmony_ci{ 52462306a36Sopenharmony_ci return __tree_mod_log_search(fs_info, start, min_seq, true); 52562306a36Sopenharmony_ci} 52662306a36Sopenharmony_ci 52762306a36Sopenharmony_ci/* 52862306a36Sopenharmony_ci * This returns the element from the log with the largest time sequence 52962306a36Sopenharmony_ci * value that's in the log (the most recent log item). Any element with 53062306a36Sopenharmony_ci * a time sequence lower than min_seq will be ignored. 53162306a36Sopenharmony_ci */ 53262306a36Sopenharmony_cistatic struct tree_mod_elem *tree_mod_log_search(struct btrfs_fs_info *fs_info, 53362306a36Sopenharmony_ci u64 start, u64 min_seq) 53462306a36Sopenharmony_ci{ 53562306a36Sopenharmony_ci return __tree_mod_log_search(fs_info, start, min_seq, false); 53662306a36Sopenharmony_ci} 53762306a36Sopenharmony_ci 53862306a36Sopenharmony_ciint btrfs_tree_mod_log_eb_copy(struct extent_buffer *dst, 53962306a36Sopenharmony_ci struct extent_buffer *src, 54062306a36Sopenharmony_ci unsigned long dst_offset, 54162306a36Sopenharmony_ci unsigned long src_offset, 54262306a36Sopenharmony_ci int nr_items) 54362306a36Sopenharmony_ci{ 54462306a36Sopenharmony_ci struct btrfs_fs_info *fs_info = dst->fs_info; 54562306a36Sopenharmony_ci int ret = 0; 54662306a36Sopenharmony_ci struct tree_mod_elem **tm_list = NULL; 54762306a36Sopenharmony_ci struct tree_mod_elem **tm_list_add = NULL; 54862306a36Sopenharmony_ci struct tree_mod_elem **tm_list_rem = NULL; 54962306a36Sopenharmony_ci int i; 55062306a36Sopenharmony_ci bool locked = false; 55162306a36Sopenharmony_ci struct tree_mod_elem *dst_move_tm = NULL; 55262306a36Sopenharmony_ci struct tree_mod_elem *src_move_tm = NULL; 55362306a36Sopenharmony_ci u32 dst_move_nr_items = btrfs_header_nritems(dst) - dst_offset; 55462306a36Sopenharmony_ci u32 src_move_nr_items = btrfs_header_nritems(src) - (src_offset + nr_items); 55562306a36Sopenharmony_ci 55662306a36Sopenharmony_ci if (!tree_mod_need_log(fs_info, NULL)) 55762306a36Sopenharmony_ci return 0; 55862306a36Sopenharmony_ci 55962306a36Sopenharmony_ci if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 56062306a36Sopenharmony_ci return 0; 56162306a36Sopenharmony_ci 56262306a36Sopenharmony_ci tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 56362306a36Sopenharmony_ci GFP_NOFS); 56462306a36Sopenharmony_ci if (!tm_list) { 56562306a36Sopenharmony_ci ret = -ENOMEM; 56662306a36Sopenharmony_ci goto lock; 56762306a36Sopenharmony_ci } 56862306a36Sopenharmony_ci 56962306a36Sopenharmony_ci if (dst_move_nr_items) { 57062306a36Sopenharmony_ci dst_move_tm = tree_mod_log_alloc_move(dst, dst_offset + nr_items, 57162306a36Sopenharmony_ci dst_offset, dst_move_nr_items); 57262306a36Sopenharmony_ci if (IS_ERR(dst_move_tm)) { 57362306a36Sopenharmony_ci ret = PTR_ERR(dst_move_tm); 57462306a36Sopenharmony_ci dst_move_tm = NULL; 57562306a36Sopenharmony_ci goto lock; 57662306a36Sopenharmony_ci } 57762306a36Sopenharmony_ci } 57862306a36Sopenharmony_ci if (src_move_nr_items) { 57962306a36Sopenharmony_ci src_move_tm = tree_mod_log_alloc_move(src, src_offset, 58062306a36Sopenharmony_ci src_offset + nr_items, 58162306a36Sopenharmony_ci src_move_nr_items); 58262306a36Sopenharmony_ci if (IS_ERR(src_move_tm)) { 58362306a36Sopenharmony_ci ret = PTR_ERR(src_move_tm); 58462306a36Sopenharmony_ci src_move_tm = NULL; 58562306a36Sopenharmony_ci goto lock; 58662306a36Sopenharmony_ci } 58762306a36Sopenharmony_ci } 58862306a36Sopenharmony_ci 58962306a36Sopenharmony_ci tm_list_add = tm_list; 59062306a36Sopenharmony_ci tm_list_rem = tm_list + nr_items; 59162306a36Sopenharmony_ci for (i = 0; i < nr_items; i++) { 59262306a36Sopenharmony_ci tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 59362306a36Sopenharmony_ci BTRFS_MOD_LOG_KEY_REMOVE); 59462306a36Sopenharmony_ci if (!tm_list_rem[i]) { 59562306a36Sopenharmony_ci ret = -ENOMEM; 59662306a36Sopenharmony_ci goto lock; 59762306a36Sopenharmony_ci } 59862306a36Sopenharmony_ci 59962306a36Sopenharmony_ci tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 60062306a36Sopenharmony_ci BTRFS_MOD_LOG_KEY_ADD); 60162306a36Sopenharmony_ci if (!tm_list_add[i]) { 60262306a36Sopenharmony_ci ret = -ENOMEM; 60362306a36Sopenharmony_ci goto lock; 60462306a36Sopenharmony_ci } 60562306a36Sopenharmony_ci } 60662306a36Sopenharmony_ci 60762306a36Sopenharmony_cilock: 60862306a36Sopenharmony_ci if (tree_mod_dont_log(fs_info, NULL)) { 60962306a36Sopenharmony_ci /* 61062306a36Sopenharmony_ci * Don't error if we failed to allocate memory because we don't 61162306a36Sopenharmony_ci * need to log. 61262306a36Sopenharmony_ci */ 61362306a36Sopenharmony_ci ret = 0; 61462306a36Sopenharmony_ci goto free_tms; 61562306a36Sopenharmony_ci } 61662306a36Sopenharmony_ci locked = true; 61762306a36Sopenharmony_ci 61862306a36Sopenharmony_ci /* 61962306a36Sopenharmony_ci * We previously failed to allocate memory and we need to log, so we 62062306a36Sopenharmony_ci * have to fail. 62162306a36Sopenharmony_ci */ 62262306a36Sopenharmony_ci if (ret != 0) 62362306a36Sopenharmony_ci goto free_tms; 62462306a36Sopenharmony_ci 62562306a36Sopenharmony_ci if (dst_move_tm) { 62662306a36Sopenharmony_ci ret = tree_mod_log_insert(fs_info, dst_move_tm); 62762306a36Sopenharmony_ci if (ret) 62862306a36Sopenharmony_ci goto free_tms; 62962306a36Sopenharmony_ci } 63062306a36Sopenharmony_ci for (i = 0; i < nr_items; i++) { 63162306a36Sopenharmony_ci ret = tree_mod_log_insert(fs_info, tm_list_rem[i]); 63262306a36Sopenharmony_ci if (ret) 63362306a36Sopenharmony_ci goto free_tms; 63462306a36Sopenharmony_ci ret = tree_mod_log_insert(fs_info, tm_list_add[i]); 63562306a36Sopenharmony_ci if (ret) 63662306a36Sopenharmony_ci goto free_tms; 63762306a36Sopenharmony_ci } 63862306a36Sopenharmony_ci if (src_move_tm) { 63962306a36Sopenharmony_ci ret = tree_mod_log_insert(fs_info, src_move_tm); 64062306a36Sopenharmony_ci if (ret) 64162306a36Sopenharmony_ci goto free_tms; 64262306a36Sopenharmony_ci } 64362306a36Sopenharmony_ci 64462306a36Sopenharmony_ci write_unlock(&fs_info->tree_mod_log_lock); 64562306a36Sopenharmony_ci kfree(tm_list); 64662306a36Sopenharmony_ci 64762306a36Sopenharmony_ci return 0; 64862306a36Sopenharmony_ci 64962306a36Sopenharmony_cifree_tms: 65062306a36Sopenharmony_ci if (dst_move_tm && !RB_EMPTY_NODE(&dst_move_tm->node)) 65162306a36Sopenharmony_ci rb_erase(&dst_move_tm->node, &fs_info->tree_mod_log); 65262306a36Sopenharmony_ci kfree(dst_move_tm); 65362306a36Sopenharmony_ci if (src_move_tm && !RB_EMPTY_NODE(&src_move_tm->node)) 65462306a36Sopenharmony_ci rb_erase(&src_move_tm->node, &fs_info->tree_mod_log); 65562306a36Sopenharmony_ci kfree(src_move_tm); 65662306a36Sopenharmony_ci if (tm_list) { 65762306a36Sopenharmony_ci for (i = 0; i < nr_items * 2; i++) { 65862306a36Sopenharmony_ci if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 65962306a36Sopenharmony_ci rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 66062306a36Sopenharmony_ci kfree(tm_list[i]); 66162306a36Sopenharmony_ci } 66262306a36Sopenharmony_ci } 66362306a36Sopenharmony_ci if (locked) 66462306a36Sopenharmony_ci write_unlock(&fs_info->tree_mod_log_lock); 66562306a36Sopenharmony_ci kfree(tm_list); 66662306a36Sopenharmony_ci 66762306a36Sopenharmony_ci return ret; 66862306a36Sopenharmony_ci} 66962306a36Sopenharmony_ci 67062306a36Sopenharmony_ciint btrfs_tree_mod_log_free_eb(struct extent_buffer *eb) 67162306a36Sopenharmony_ci{ 67262306a36Sopenharmony_ci struct tree_mod_elem **tm_list = NULL; 67362306a36Sopenharmony_ci int nritems = 0; 67462306a36Sopenharmony_ci int i; 67562306a36Sopenharmony_ci int ret = 0; 67662306a36Sopenharmony_ci 67762306a36Sopenharmony_ci if (!tree_mod_need_log(eb->fs_info, eb)) 67862306a36Sopenharmony_ci return 0; 67962306a36Sopenharmony_ci 68062306a36Sopenharmony_ci nritems = btrfs_header_nritems(eb); 68162306a36Sopenharmony_ci tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 68262306a36Sopenharmony_ci if (!tm_list) { 68362306a36Sopenharmony_ci ret = -ENOMEM; 68462306a36Sopenharmony_ci goto lock; 68562306a36Sopenharmony_ci } 68662306a36Sopenharmony_ci 68762306a36Sopenharmony_ci for (i = 0; i < nritems; i++) { 68862306a36Sopenharmony_ci tm_list[i] = alloc_tree_mod_elem(eb, i, 68962306a36Sopenharmony_ci BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING); 69062306a36Sopenharmony_ci if (!tm_list[i]) { 69162306a36Sopenharmony_ci ret = -ENOMEM; 69262306a36Sopenharmony_ci goto lock; 69362306a36Sopenharmony_ci } 69462306a36Sopenharmony_ci } 69562306a36Sopenharmony_ci 69662306a36Sopenharmony_cilock: 69762306a36Sopenharmony_ci if (tree_mod_dont_log(eb->fs_info, eb)) { 69862306a36Sopenharmony_ci /* 69962306a36Sopenharmony_ci * Don't error if we failed to allocate memory because we don't 70062306a36Sopenharmony_ci * need to log. 70162306a36Sopenharmony_ci */ 70262306a36Sopenharmony_ci ret = 0; 70362306a36Sopenharmony_ci goto free_tms; 70462306a36Sopenharmony_ci } else if (ret != 0) { 70562306a36Sopenharmony_ci /* 70662306a36Sopenharmony_ci * We previously failed to allocate memory and we need to log, 70762306a36Sopenharmony_ci * so we have to fail. 70862306a36Sopenharmony_ci */ 70962306a36Sopenharmony_ci goto out_unlock; 71062306a36Sopenharmony_ci } 71162306a36Sopenharmony_ci 71262306a36Sopenharmony_ci ret = tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); 71362306a36Sopenharmony_ciout_unlock: 71462306a36Sopenharmony_ci write_unlock(&eb->fs_info->tree_mod_log_lock); 71562306a36Sopenharmony_ci if (ret) 71662306a36Sopenharmony_ci goto free_tms; 71762306a36Sopenharmony_ci kfree(tm_list); 71862306a36Sopenharmony_ci 71962306a36Sopenharmony_ci return 0; 72062306a36Sopenharmony_ci 72162306a36Sopenharmony_cifree_tms: 72262306a36Sopenharmony_ci if (tm_list) { 72362306a36Sopenharmony_ci for (i = 0; i < nritems; i++) 72462306a36Sopenharmony_ci kfree(tm_list[i]); 72562306a36Sopenharmony_ci kfree(tm_list); 72662306a36Sopenharmony_ci } 72762306a36Sopenharmony_ci 72862306a36Sopenharmony_ci return ret; 72962306a36Sopenharmony_ci} 73062306a36Sopenharmony_ci 73162306a36Sopenharmony_ci/* 73262306a36Sopenharmony_ci * Returns the logical address of the oldest predecessor of the given root. 73362306a36Sopenharmony_ci * Entries older than time_seq are ignored. 73462306a36Sopenharmony_ci */ 73562306a36Sopenharmony_cistatic struct tree_mod_elem *tree_mod_log_oldest_root(struct extent_buffer *eb_root, 73662306a36Sopenharmony_ci u64 time_seq) 73762306a36Sopenharmony_ci{ 73862306a36Sopenharmony_ci struct tree_mod_elem *tm; 73962306a36Sopenharmony_ci struct tree_mod_elem *found = NULL; 74062306a36Sopenharmony_ci u64 root_logical = eb_root->start; 74162306a36Sopenharmony_ci bool looped = false; 74262306a36Sopenharmony_ci 74362306a36Sopenharmony_ci if (!time_seq) 74462306a36Sopenharmony_ci return NULL; 74562306a36Sopenharmony_ci 74662306a36Sopenharmony_ci /* 74762306a36Sopenharmony_ci * The very last operation that's logged for a root is the replacement 74862306a36Sopenharmony_ci * operation (if it is replaced at all). This has the logical address 74962306a36Sopenharmony_ci * of the *new* root, making it the very first operation that's logged 75062306a36Sopenharmony_ci * for this root. 75162306a36Sopenharmony_ci */ 75262306a36Sopenharmony_ci while (1) { 75362306a36Sopenharmony_ci tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, 75462306a36Sopenharmony_ci time_seq); 75562306a36Sopenharmony_ci if (!looped && !tm) 75662306a36Sopenharmony_ci return NULL; 75762306a36Sopenharmony_ci /* 75862306a36Sopenharmony_ci * If there are no tree operation for the oldest root, we simply 75962306a36Sopenharmony_ci * return it. This should only happen if that (old) root is at 76062306a36Sopenharmony_ci * level 0. 76162306a36Sopenharmony_ci */ 76262306a36Sopenharmony_ci if (!tm) 76362306a36Sopenharmony_ci break; 76462306a36Sopenharmony_ci 76562306a36Sopenharmony_ci /* 76662306a36Sopenharmony_ci * If there's an operation that's not a root replacement, we 76762306a36Sopenharmony_ci * found the oldest version of our root. Normally, we'll find a 76862306a36Sopenharmony_ci * BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 76962306a36Sopenharmony_ci */ 77062306a36Sopenharmony_ci if (tm->op != BTRFS_MOD_LOG_ROOT_REPLACE) 77162306a36Sopenharmony_ci break; 77262306a36Sopenharmony_ci 77362306a36Sopenharmony_ci found = tm; 77462306a36Sopenharmony_ci root_logical = tm->old_root.logical; 77562306a36Sopenharmony_ci looped = true; 77662306a36Sopenharmony_ci } 77762306a36Sopenharmony_ci 77862306a36Sopenharmony_ci /* If there's no old root to return, return what we found instead */ 77962306a36Sopenharmony_ci if (!found) 78062306a36Sopenharmony_ci found = tm; 78162306a36Sopenharmony_ci 78262306a36Sopenharmony_ci return found; 78362306a36Sopenharmony_ci} 78462306a36Sopenharmony_ci 78562306a36Sopenharmony_ci 78662306a36Sopenharmony_ci/* 78762306a36Sopenharmony_ci * tm is a pointer to the first operation to rewind within eb. Then, all 78862306a36Sopenharmony_ci * previous operations will be rewound (until we reach something older than 78962306a36Sopenharmony_ci * time_seq). 79062306a36Sopenharmony_ci */ 79162306a36Sopenharmony_cistatic void tree_mod_log_rewind(struct btrfs_fs_info *fs_info, 79262306a36Sopenharmony_ci struct extent_buffer *eb, 79362306a36Sopenharmony_ci u64 time_seq, 79462306a36Sopenharmony_ci struct tree_mod_elem *first_tm) 79562306a36Sopenharmony_ci{ 79662306a36Sopenharmony_ci u32 n; 79762306a36Sopenharmony_ci struct rb_node *next; 79862306a36Sopenharmony_ci struct tree_mod_elem *tm = first_tm; 79962306a36Sopenharmony_ci unsigned long o_dst; 80062306a36Sopenharmony_ci unsigned long o_src; 80162306a36Sopenharmony_ci unsigned long p_size = sizeof(struct btrfs_key_ptr); 80262306a36Sopenharmony_ci /* 80362306a36Sopenharmony_ci * max_slot tracks the maximum valid slot of the rewind eb at every 80462306a36Sopenharmony_ci * step of the rewind. This is in contrast with 'n' which eventually 80562306a36Sopenharmony_ci * matches the number of items, but can be wrong during moves or if 80662306a36Sopenharmony_ci * removes overlap on already valid slots (which is probably separately 80762306a36Sopenharmony_ci * a bug). We do this to validate the offsets of memmoves for rewinding 80862306a36Sopenharmony_ci * moves and detect invalid memmoves. 80962306a36Sopenharmony_ci * 81062306a36Sopenharmony_ci * Since a rewind eb can start empty, max_slot is a signed integer with 81162306a36Sopenharmony_ci * a special meaning for -1, which is that no slot is valid to move out 81262306a36Sopenharmony_ci * of. Any other negative value is invalid. 81362306a36Sopenharmony_ci */ 81462306a36Sopenharmony_ci int max_slot; 81562306a36Sopenharmony_ci int move_src_end_slot; 81662306a36Sopenharmony_ci int move_dst_end_slot; 81762306a36Sopenharmony_ci 81862306a36Sopenharmony_ci n = btrfs_header_nritems(eb); 81962306a36Sopenharmony_ci max_slot = n - 1; 82062306a36Sopenharmony_ci read_lock(&fs_info->tree_mod_log_lock); 82162306a36Sopenharmony_ci while (tm && tm->seq >= time_seq) { 82262306a36Sopenharmony_ci ASSERT(max_slot >= -1); 82362306a36Sopenharmony_ci /* 82462306a36Sopenharmony_ci * All the operations are recorded with the operator used for 82562306a36Sopenharmony_ci * the modification. As we're going backwards, we do the 82662306a36Sopenharmony_ci * opposite of each operation here. 82762306a36Sopenharmony_ci */ 82862306a36Sopenharmony_ci switch (tm->op) { 82962306a36Sopenharmony_ci case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING: 83062306a36Sopenharmony_ci BUG_ON(tm->slot < n); 83162306a36Sopenharmony_ci fallthrough; 83262306a36Sopenharmony_ci case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING: 83362306a36Sopenharmony_ci case BTRFS_MOD_LOG_KEY_REMOVE: 83462306a36Sopenharmony_ci btrfs_set_node_key(eb, &tm->key, tm->slot); 83562306a36Sopenharmony_ci btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 83662306a36Sopenharmony_ci btrfs_set_node_ptr_generation(eb, tm->slot, 83762306a36Sopenharmony_ci tm->generation); 83862306a36Sopenharmony_ci n++; 83962306a36Sopenharmony_ci if (tm->slot > max_slot) 84062306a36Sopenharmony_ci max_slot = tm->slot; 84162306a36Sopenharmony_ci break; 84262306a36Sopenharmony_ci case BTRFS_MOD_LOG_KEY_REPLACE: 84362306a36Sopenharmony_ci BUG_ON(tm->slot >= n); 84462306a36Sopenharmony_ci btrfs_set_node_key(eb, &tm->key, tm->slot); 84562306a36Sopenharmony_ci btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 84662306a36Sopenharmony_ci btrfs_set_node_ptr_generation(eb, tm->slot, 84762306a36Sopenharmony_ci tm->generation); 84862306a36Sopenharmony_ci break; 84962306a36Sopenharmony_ci case BTRFS_MOD_LOG_KEY_ADD: 85062306a36Sopenharmony_ci /* 85162306a36Sopenharmony_ci * It is possible we could have already removed keys 85262306a36Sopenharmony_ci * behind the known max slot, so this will be an 85362306a36Sopenharmony_ci * overestimate. In practice, the copy operation 85462306a36Sopenharmony_ci * inserts them in increasing order, and overestimating 85562306a36Sopenharmony_ci * just means we miss some warnings, so it's OK. It 85662306a36Sopenharmony_ci * isn't worth carefully tracking the full array of 85762306a36Sopenharmony_ci * valid slots to check against when moving. 85862306a36Sopenharmony_ci */ 85962306a36Sopenharmony_ci if (tm->slot == max_slot) 86062306a36Sopenharmony_ci max_slot--; 86162306a36Sopenharmony_ci /* if a move operation is needed it's in the log */ 86262306a36Sopenharmony_ci n--; 86362306a36Sopenharmony_ci break; 86462306a36Sopenharmony_ci case BTRFS_MOD_LOG_MOVE_KEYS: 86562306a36Sopenharmony_ci ASSERT(tm->move.nr_items > 0); 86662306a36Sopenharmony_ci move_src_end_slot = tm->move.dst_slot + tm->move.nr_items - 1; 86762306a36Sopenharmony_ci move_dst_end_slot = tm->slot + tm->move.nr_items - 1; 86862306a36Sopenharmony_ci o_dst = btrfs_node_key_ptr_offset(eb, tm->slot); 86962306a36Sopenharmony_ci o_src = btrfs_node_key_ptr_offset(eb, tm->move.dst_slot); 87062306a36Sopenharmony_ci if (WARN_ON(move_src_end_slot > max_slot || 87162306a36Sopenharmony_ci tm->move.nr_items <= 0)) { 87262306a36Sopenharmony_ci btrfs_warn(fs_info, 87362306a36Sopenharmony_ci"move from invalid tree mod log slot eb %llu slot %d dst_slot %d nr_items %d seq %llu n %u max_slot %d", 87462306a36Sopenharmony_ci eb->start, tm->slot, 87562306a36Sopenharmony_ci tm->move.dst_slot, tm->move.nr_items, 87662306a36Sopenharmony_ci tm->seq, n, max_slot); 87762306a36Sopenharmony_ci } 87862306a36Sopenharmony_ci memmove_extent_buffer(eb, o_dst, o_src, 87962306a36Sopenharmony_ci tm->move.nr_items * p_size); 88062306a36Sopenharmony_ci max_slot = move_dst_end_slot; 88162306a36Sopenharmony_ci break; 88262306a36Sopenharmony_ci case BTRFS_MOD_LOG_ROOT_REPLACE: 88362306a36Sopenharmony_ci /* 88462306a36Sopenharmony_ci * This operation is special. For roots, this must be 88562306a36Sopenharmony_ci * handled explicitly before rewinding. 88662306a36Sopenharmony_ci * For non-roots, this operation may exist if the node 88762306a36Sopenharmony_ci * was a root: root A -> child B; then A gets empty and 88862306a36Sopenharmony_ci * B is promoted to the new root. In the mod log, we'll 88962306a36Sopenharmony_ci * have a root-replace operation for B, a tree block 89062306a36Sopenharmony_ci * that is no root. We simply ignore that operation. 89162306a36Sopenharmony_ci */ 89262306a36Sopenharmony_ci break; 89362306a36Sopenharmony_ci } 89462306a36Sopenharmony_ci next = rb_next(&tm->node); 89562306a36Sopenharmony_ci if (!next) 89662306a36Sopenharmony_ci break; 89762306a36Sopenharmony_ci tm = rb_entry(next, struct tree_mod_elem, node); 89862306a36Sopenharmony_ci if (tm->logical != first_tm->logical) 89962306a36Sopenharmony_ci break; 90062306a36Sopenharmony_ci } 90162306a36Sopenharmony_ci read_unlock(&fs_info->tree_mod_log_lock); 90262306a36Sopenharmony_ci btrfs_set_header_nritems(eb, n); 90362306a36Sopenharmony_ci} 90462306a36Sopenharmony_ci 90562306a36Sopenharmony_ci/* 90662306a36Sopenharmony_ci * Called with eb read locked. If the buffer cannot be rewound, the same buffer 90762306a36Sopenharmony_ci * is returned. If rewind operations happen, a fresh buffer is returned. The 90862306a36Sopenharmony_ci * returned buffer is always read-locked. If the returned buffer is not the 90962306a36Sopenharmony_ci * input buffer, the lock on the input buffer is released and the input buffer 91062306a36Sopenharmony_ci * is freed (its refcount is decremented). 91162306a36Sopenharmony_ci */ 91262306a36Sopenharmony_cistruct extent_buffer *btrfs_tree_mod_log_rewind(struct btrfs_fs_info *fs_info, 91362306a36Sopenharmony_ci struct btrfs_path *path, 91462306a36Sopenharmony_ci struct extent_buffer *eb, 91562306a36Sopenharmony_ci u64 time_seq) 91662306a36Sopenharmony_ci{ 91762306a36Sopenharmony_ci struct extent_buffer *eb_rewin; 91862306a36Sopenharmony_ci struct tree_mod_elem *tm; 91962306a36Sopenharmony_ci 92062306a36Sopenharmony_ci if (!time_seq) 92162306a36Sopenharmony_ci return eb; 92262306a36Sopenharmony_ci 92362306a36Sopenharmony_ci if (btrfs_header_level(eb) == 0) 92462306a36Sopenharmony_ci return eb; 92562306a36Sopenharmony_ci 92662306a36Sopenharmony_ci tm = tree_mod_log_search(fs_info, eb->start, time_seq); 92762306a36Sopenharmony_ci if (!tm) 92862306a36Sopenharmony_ci return eb; 92962306a36Sopenharmony_ci 93062306a36Sopenharmony_ci if (tm->op == BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 93162306a36Sopenharmony_ci BUG_ON(tm->slot != 0); 93262306a36Sopenharmony_ci eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 93362306a36Sopenharmony_ci if (!eb_rewin) { 93462306a36Sopenharmony_ci btrfs_tree_read_unlock(eb); 93562306a36Sopenharmony_ci free_extent_buffer(eb); 93662306a36Sopenharmony_ci return NULL; 93762306a36Sopenharmony_ci } 93862306a36Sopenharmony_ci btrfs_set_header_bytenr(eb_rewin, eb->start); 93962306a36Sopenharmony_ci btrfs_set_header_backref_rev(eb_rewin, 94062306a36Sopenharmony_ci btrfs_header_backref_rev(eb)); 94162306a36Sopenharmony_ci btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 94262306a36Sopenharmony_ci btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 94362306a36Sopenharmony_ci } else { 94462306a36Sopenharmony_ci eb_rewin = btrfs_clone_extent_buffer(eb); 94562306a36Sopenharmony_ci if (!eb_rewin) { 94662306a36Sopenharmony_ci btrfs_tree_read_unlock(eb); 94762306a36Sopenharmony_ci free_extent_buffer(eb); 94862306a36Sopenharmony_ci return NULL; 94962306a36Sopenharmony_ci } 95062306a36Sopenharmony_ci } 95162306a36Sopenharmony_ci 95262306a36Sopenharmony_ci btrfs_tree_read_unlock(eb); 95362306a36Sopenharmony_ci free_extent_buffer(eb); 95462306a36Sopenharmony_ci 95562306a36Sopenharmony_ci btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin), 95662306a36Sopenharmony_ci eb_rewin, btrfs_header_level(eb_rewin)); 95762306a36Sopenharmony_ci btrfs_tree_read_lock(eb_rewin); 95862306a36Sopenharmony_ci tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 95962306a36Sopenharmony_ci WARN_ON(btrfs_header_nritems(eb_rewin) > 96062306a36Sopenharmony_ci BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 96162306a36Sopenharmony_ci 96262306a36Sopenharmony_ci return eb_rewin; 96362306a36Sopenharmony_ci} 96462306a36Sopenharmony_ci 96562306a36Sopenharmony_ci/* 96662306a36Sopenharmony_ci * Rewind the state of @root's root node to the given @time_seq value. 96762306a36Sopenharmony_ci * If there are no changes, the current root->root_node is returned. If anything 96862306a36Sopenharmony_ci * changed in between, there's a fresh buffer allocated on which the rewind 96962306a36Sopenharmony_ci * operations are done. In any case, the returned buffer is read locked. 97062306a36Sopenharmony_ci * Returns NULL on error (with no locks held). 97162306a36Sopenharmony_ci */ 97262306a36Sopenharmony_cistruct extent_buffer *btrfs_get_old_root(struct btrfs_root *root, u64 time_seq) 97362306a36Sopenharmony_ci{ 97462306a36Sopenharmony_ci struct btrfs_fs_info *fs_info = root->fs_info; 97562306a36Sopenharmony_ci struct tree_mod_elem *tm; 97662306a36Sopenharmony_ci struct extent_buffer *eb = NULL; 97762306a36Sopenharmony_ci struct extent_buffer *eb_root; 97862306a36Sopenharmony_ci u64 eb_root_owner = 0; 97962306a36Sopenharmony_ci struct extent_buffer *old; 98062306a36Sopenharmony_ci struct tree_mod_root *old_root = NULL; 98162306a36Sopenharmony_ci u64 old_generation = 0; 98262306a36Sopenharmony_ci u64 logical; 98362306a36Sopenharmony_ci int level; 98462306a36Sopenharmony_ci 98562306a36Sopenharmony_ci eb_root = btrfs_read_lock_root_node(root); 98662306a36Sopenharmony_ci tm = tree_mod_log_oldest_root(eb_root, time_seq); 98762306a36Sopenharmony_ci if (!tm) 98862306a36Sopenharmony_ci return eb_root; 98962306a36Sopenharmony_ci 99062306a36Sopenharmony_ci if (tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) { 99162306a36Sopenharmony_ci old_root = &tm->old_root; 99262306a36Sopenharmony_ci old_generation = tm->generation; 99362306a36Sopenharmony_ci logical = old_root->logical; 99462306a36Sopenharmony_ci level = old_root->level; 99562306a36Sopenharmony_ci } else { 99662306a36Sopenharmony_ci logical = eb_root->start; 99762306a36Sopenharmony_ci level = btrfs_header_level(eb_root); 99862306a36Sopenharmony_ci } 99962306a36Sopenharmony_ci 100062306a36Sopenharmony_ci tm = tree_mod_log_search(fs_info, logical, time_seq); 100162306a36Sopenharmony_ci if (old_root && tm && tm->op != BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 100262306a36Sopenharmony_ci struct btrfs_tree_parent_check check = { 0 }; 100362306a36Sopenharmony_ci 100462306a36Sopenharmony_ci btrfs_tree_read_unlock(eb_root); 100562306a36Sopenharmony_ci free_extent_buffer(eb_root); 100662306a36Sopenharmony_ci 100762306a36Sopenharmony_ci check.level = level; 100862306a36Sopenharmony_ci check.owner_root = root->root_key.objectid; 100962306a36Sopenharmony_ci 101062306a36Sopenharmony_ci old = read_tree_block(fs_info, logical, &check); 101162306a36Sopenharmony_ci if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 101262306a36Sopenharmony_ci if (!IS_ERR(old)) 101362306a36Sopenharmony_ci free_extent_buffer(old); 101462306a36Sopenharmony_ci btrfs_warn(fs_info, 101562306a36Sopenharmony_ci "failed to read tree block %llu from get_old_root", 101662306a36Sopenharmony_ci logical); 101762306a36Sopenharmony_ci } else { 101862306a36Sopenharmony_ci struct tree_mod_elem *tm2; 101962306a36Sopenharmony_ci 102062306a36Sopenharmony_ci btrfs_tree_read_lock(old); 102162306a36Sopenharmony_ci eb = btrfs_clone_extent_buffer(old); 102262306a36Sopenharmony_ci /* 102362306a36Sopenharmony_ci * After the lookup for the most recent tree mod operation 102462306a36Sopenharmony_ci * above and before we locked and cloned the extent buffer 102562306a36Sopenharmony_ci * 'old', a new tree mod log operation may have been added. 102662306a36Sopenharmony_ci * So lookup for a more recent one to make sure the number 102762306a36Sopenharmony_ci * of mod log operations we replay is consistent with the 102862306a36Sopenharmony_ci * number of items we have in the cloned extent buffer, 102962306a36Sopenharmony_ci * otherwise we can hit a BUG_ON when rewinding the extent 103062306a36Sopenharmony_ci * buffer. 103162306a36Sopenharmony_ci */ 103262306a36Sopenharmony_ci tm2 = tree_mod_log_search(fs_info, logical, time_seq); 103362306a36Sopenharmony_ci btrfs_tree_read_unlock(old); 103462306a36Sopenharmony_ci free_extent_buffer(old); 103562306a36Sopenharmony_ci ASSERT(tm2); 103662306a36Sopenharmony_ci ASSERT(tm2 == tm || tm2->seq > tm->seq); 103762306a36Sopenharmony_ci if (!tm2 || tm2->seq < tm->seq) { 103862306a36Sopenharmony_ci free_extent_buffer(eb); 103962306a36Sopenharmony_ci return NULL; 104062306a36Sopenharmony_ci } 104162306a36Sopenharmony_ci tm = tm2; 104262306a36Sopenharmony_ci } 104362306a36Sopenharmony_ci } else if (old_root) { 104462306a36Sopenharmony_ci eb_root_owner = btrfs_header_owner(eb_root); 104562306a36Sopenharmony_ci btrfs_tree_read_unlock(eb_root); 104662306a36Sopenharmony_ci free_extent_buffer(eb_root); 104762306a36Sopenharmony_ci eb = alloc_dummy_extent_buffer(fs_info, logical); 104862306a36Sopenharmony_ci } else { 104962306a36Sopenharmony_ci eb = btrfs_clone_extent_buffer(eb_root); 105062306a36Sopenharmony_ci btrfs_tree_read_unlock(eb_root); 105162306a36Sopenharmony_ci free_extent_buffer(eb_root); 105262306a36Sopenharmony_ci } 105362306a36Sopenharmony_ci 105462306a36Sopenharmony_ci if (!eb) 105562306a36Sopenharmony_ci return NULL; 105662306a36Sopenharmony_ci if (old_root) { 105762306a36Sopenharmony_ci btrfs_set_header_bytenr(eb, eb->start); 105862306a36Sopenharmony_ci btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 105962306a36Sopenharmony_ci btrfs_set_header_owner(eb, eb_root_owner); 106062306a36Sopenharmony_ci btrfs_set_header_level(eb, old_root->level); 106162306a36Sopenharmony_ci btrfs_set_header_generation(eb, old_generation); 106262306a36Sopenharmony_ci } 106362306a36Sopenharmony_ci btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb, 106462306a36Sopenharmony_ci btrfs_header_level(eb)); 106562306a36Sopenharmony_ci btrfs_tree_read_lock(eb); 106662306a36Sopenharmony_ci if (tm) 106762306a36Sopenharmony_ci tree_mod_log_rewind(fs_info, eb, time_seq, tm); 106862306a36Sopenharmony_ci else 106962306a36Sopenharmony_ci WARN_ON(btrfs_header_level(eb) != 0); 107062306a36Sopenharmony_ci WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 107162306a36Sopenharmony_ci 107262306a36Sopenharmony_ci return eb; 107362306a36Sopenharmony_ci} 107462306a36Sopenharmony_ci 107562306a36Sopenharmony_ciint btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 107662306a36Sopenharmony_ci{ 107762306a36Sopenharmony_ci struct tree_mod_elem *tm; 107862306a36Sopenharmony_ci int level; 107962306a36Sopenharmony_ci struct extent_buffer *eb_root = btrfs_root_node(root); 108062306a36Sopenharmony_ci 108162306a36Sopenharmony_ci tm = tree_mod_log_oldest_root(eb_root, time_seq); 108262306a36Sopenharmony_ci if (tm && tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) 108362306a36Sopenharmony_ci level = tm->old_root.level; 108462306a36Sopenharmony_ci else 108562306a36Sopenharmony_ci level = btrfs_header_level(eb_root); 108662306a36Sopenharmony_ci 108762306a36Sopenharmony_ci free_extent_buffer(eb_root); 108862306a36Sopenharmony_ci 108962306a36Sopenharmony_ci return level; 109062306a36Sopenharmony_ci} 109162306a36Sopenharmony_ci 109262306a36Sopenharmony_ci/* 109362306a36Sopenharmony_ci * Return the lowest sequence number in the tree modification log. 109462306a36Sopenharmony_ci * 109562306a36Sopenharmony_ci * Return the sequence number of the oldest tree modification log user, which 109662306a36Sopenharmony_ci * corresponds to the lowest sequence number of all existing users. If there are 109762306a36Sopenharmony_ci * no users it returns 0. 109862306a36Sopenharmony_ci */ 109962306a36Sopenharmony_ciu64 btrfs_tree_mod_log_lowest_seq(struct btrfs_fs_info *fs_info) 110062306a36Sopenharmony_ci{ 110162306a36Sopenharmony_ci u64 ret = 0; 110262306a36Sopenharmony_ci 110362306a36Sopenharmony_ci read_lock(&fs_info->tree_mod_log_lock); 110462306a36Sopenharmony_ci if (!list_empty(&fs_info->tree_mod_seq_list)) { 110562306a36Sopenharmony_ci struct btrfs_seq_list *elem; 110662306a36Sopenharmony_ci 110762306a36Sopenharmony_ci elem = list_first_entry(&fs_info->tree_mod_seq_list, 110862306a36Sopenharmony_ci struct btrfs_seq_list, list); 110962306a36Sopenharmony_ci ret = elem->seq; 111062306a36Sopenharmony_ci } 111162306a36Sopenharmony_ci read_unlock(&fs_info->tree_mod_log_lock); 111262306a36Sopenharmony_ci 111362306a36Sopenharmony_ci return ret; 111462306a36Sopenharmony_ci} 1115