162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
262306a36Sopenharmony_ci
362306a36Sopenharmony_ci#include "messages.h"
462306a36Sopenharmony_ci#include "tree-mod-log.h"
562306a36Sopenharmony_ci#include "disk-io.h"
662306a36Sopenharmony_ci#include "fs.h"
762306a36Sopenharmony_ci#include "accessors.h"
862306a36Sopenharmony_ci#include "tree-checker.h"
962306a36Sopenharmony_ci
1062306a36Sopenharmony_cistruct tree_mod_root {
1162306a36Sopenharmony_ci	u64 logical;
1262306a36Sopenharmony_ci	u8 level;
1362306a36Sopenharmony_ci};
1462306a36Sopenharmony_ci
1562306a36Sopenharmony_cistruct tree_mod_elem {
1662306a36Sopenharmony_ci	struct rb_node node;
1762306a36Sopenharmony_ci	u64 logical;
1862306a36Sopenharmony_ci	u64 seq;
1962306a36Sopenharmony_ci	enum btrfs_mod_log_op op;
2062306a36Sopenharmony_ci
2162306a36Sopenharmony_ci	/*
2262306a36Sopenharmony_ci	 * This is used for BTRFS_MOD_LOG_KEY_* and BTRFS_MOD_LOG_MOVE_KEYS
2362306a36Sopenharmony_ci	 * operations.
2462306a36Sopenharmony_ci	 */
2562306a36Sopenharmony_ci	int slot;
2662306a36Sopenharmony_ci
2762306a36Sopenharmony_ci	/* This is used for BTRFS_MOD_LOG_KEY* and BTRFS_MOD_LOG_ROOT_REPLACE. */
2862306a36Sopenharmony_ci	u64 generation;
2962306a36Sopenharmony_ci
3062306a36Sopenharmony_ci	/* Those are used for op == BTRFS_MOD_LOG_KEY_{REPLACE,REMOVE}. */
3162306a36Sopenharmony_ci	struct btrfs_disk_key key;
3262306a36Sopenharmony_ci	u64 blockptr;
3362306a36Sopenharmony_ci
3462306a36Sopenharmony_ci	/* This is used for op == BTRFS_MOD_LOG_MOVE_KEYS. */
3562306a36Sopenharmony_ci	struct {
3662306a36Sopenharmony_ci		int dst_slot;
3762306a36Sopenharmony_ci		int nr_items;
3862306a36Sopenharmony_ci	} move;
3962306a36Sopenharmony_ci
4062306a36Sopenharmony_ci	/* This is used for op == BTRFS_MOD_LOG_ROOT_REPLACE. */
4162306a36Sopenharmony_ci	struct tree_mod_root old_root;
4262306a36Sopenharmony_ci};
4362306a36Sopenharmony_ci
4462306a36Sopenharmony_ci/*
4562306a36Sopenharmony_ci * Pull a new tree mod seq number for our operation.
4662306a36Sopenharmony_ci */
4762306a36Sopenharmony_cistatic inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
4862306a36Sopenharmony_ci{
4962306a36Sopenharmony_ci	return atomic64_inc_return(&fs_info->tree_mod_seq);
5062306a36Sopenharmony_ci}
5162306a36Sopenharmony_ci
5262306a36Sopenharmony_ci/*
5362306a36Sopenharmony_ci * This adds a new blocker to the tree mod log's blocker list if the @elem
5462306a36Sopenharmony_ci * passed does not already have a sequence number set. So when a caller expects
5562306a36Sopenharmony_ci * to record tree modifications, it should ensure to set elem->seq to zero
5662306a36Sopenharmony_ci * before calling btrfs_get_tree_mod_seq.
5762306a36Sopenharmony_ci * Returns a fresh, unused tree log modification sequence number, even if no new
5862306a36Sopenharmony_ci * blocker was added.
5962306a36Sopenharmony_ci */
6062306a36Sopenharmony_ciu64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
6162306a36Sopenharmony_ci			   struct btrfs_seq_list *elem)
6262306a36Sopenharmony_ci{
6362306a36Sopenharmony_ci	write_lock(&fs_info->tree_mod_log_lock);
6462306a36Sopenharmony_ci	if (!elem->seq) {
6562306a36Sopenharmony_ci		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
6662306a36Sopenharmony_ci		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
6762306a36Sopenharmony_ci		set_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
6862306a36Sopenharmony_ci	}
6962306a36Sopenharmony_ci	write_unlock(&fs_info->tree_mod_log_lock);
7062306a36Sopenharmony_ci
7162306a36Sopenharmony_ci	return elem->seq;
7262306a36Sopenharmony_ci}
7362306a36Sopenharmony_ci
7462306a36Sopenharmony_civoid btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
7562306a36Sopenharmony_ci			    struct btrfs_seq_list *elem)
7662306a36Sopenharmony_ci{
7762306a36Sopenharmony_ci	struct rb_root *tm_root;
7862306a36Sopenharmony_ci	struct rb_node *node;
7962306a36Sopenharmony_ci	struct rb_node *next;
8062306a36Sopenharmony_ci	struct tree_mod_elem *tm;
8162306a36Sopenharmony_ci	u64 min_seq = BTRFS_SEQ_LAST;
8262306a36Sopenharmony_ci	u64 seq_putting = elem->seq;
8362306a36Sopenharmony_ci
8462306a36Sopenharmony_ci	if (!seq_putting)
8562306a36Sopenharmony_ci		return;
8662306a36Sopenharmony_ci
8762306a36Sopenharmony_ci	write_lock(&fs_info->tree_mod_log_lock);
8862306a36Sopenharmony_ci	list_del(&elem->list);
8962306a36Sopenharmony_ci	elem->seq = 0;
9062306a36Sopenharmony_ci
9162306a36Sopenharmony_ci	if (list_empty(&fs_info->tree_mod_seq_list)) {
9262306a36Sopenharmony_ci		clear_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
9362306a36Sopenharmony_ci	} else {
9462306a36Sopenharmony_ci		struct btrfs_seq_list *first;
9562306a36Sopenharmony_ci
9662306a36Sopenharmony_ci		first = list_first_entry(&fs_info->tree_mod_seq_list,
9762306a36Sopenharmony_ci					 struct btrfs_seq_list, list);
9862306a36Sopenharmony_ci		if (seq_putting > first->seq) {
9962306a36Sopenharmony_ci			/*
10062306a36Sopenharmony_ci			 * Blocker with lower sequence number exists, we cannot
10162306a36Sopenharmony_ci			 * remove anything from the log.
10262306a36Sopenharmony_ci			 */
10362306a36Sopenharmony_ci			write_unlock(&fs_info->tree_mod_log_lock);
10462306a36Sopenharmony_ci			return;
10562306a36Sopenharmony_ci		}
10662306a36Sopenharmony_ci		min_seq = first->seq;
10762306a36Sopenharmony_ci	}
10862306a36Sopenharmony_ci
10962306a36Sopenharmony_ci	/*
11062306a36Sopenharmony_ci	 * Anything that's lower than the lowest existing (read: blocked)
11162306a36Sopenharmony_ci	 * sequence number can be removed from the tree.
11262306a36Sopenharmony_ci	 */
11362306a36Sopenharmony_ci	tm_root = &fs_info->tree_mod_log;
11462306a36Sopenharmony_ci	for (node = rb_first(tm_root); node; node = next) {
11562306a36Sopenharmony_ci		next = rb_next(node);
11662306a36Sopenharmony_ci		tm = rb_entry(node, struct tree_mod_elem, node);
11762306a36Sopenharmony_ci		if (tm->seq >= min_seq)
11862306a36Sopenharmony_ci			continue;
11962306a36Sopenharmony_ci		rb_erase(node, tm_root);
12062306a36Sopenharmony_ci		kfree(tm);
12162306a36Sopenharmony_ci	}
12262306a36Sopenharmony_ci	write_unlock(&fs_info->tree_mod_log_lock);
12362306a36Sopenharmony_ci}
12462306a36Sopenharmony_ci
12562306a36Sopenharmony_ci/*
12662306a36Sopenharmony_ci * Key order of the log:
12762306a36Sopenharmony_ci *       node/leaf start address -> sequence
12862306a36Sopenharmony_ci *
12962306a36Sopenharmony_ci * The 'start address' is the logical address of the *new* root node for root
13062306a36Sopenharmony_ci * replace operations, or the logical address of the affected block for all
13162306a36Sopenharmony_ci * other operations.
13262306a36Sopenharmony_ci */
13362306a36Sopenharmony_cistatic noinline int tree_mod_log_insert(struct btrfs_fs_info *fs_info,
13462306a36Sopenharmony_ci					struct tree_mod_elem *tm)
13562306a36Sopenharmony_ci{
13662306a36Sopenharmony_ci	struct rb_root *tm_root;
13762306a36Sopenharmony_ci	struct rb_node **new;
13862306a36Sopenharmony_ci	struct rb_node *parent = NULL;
13962306a36Sopenharmony_ci	struct tree_mod_elem *cur;
14062306a36Sopenharmony_ci
14162306a36Sopenharmony_ci	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
14262306a36Sopenharmony_ci
14362306a36Sopenharmony_ci	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
14462306a36Sopenharmony_ci
14562306a36Sopenharmony_ci	tm_root = &fs_info->tree_mod_log;
14662306a36Sopenharmony_ci	new = &tm_root->rb_node;
14762306a36Sopenharmony_ci	while (*new) {
14862306a36Sopenharmony_ci		cur = rb_entry(*new, struct tree_mod_elem, node);
14962306a36Sopenharmony_ci		parent = *new;
15062306a36Sopenharmony_ci		if (cur->logical < tm->logical)
15162306a36Sopenharmony_ci			new = &((*new)->rb_left);
15262306a36Sopenharmony_ci		else if (cur->logical > tm->logical)
15362306a36Sopenharmony_ci			new = &((*new)->rb_right);
15462306a36Sopenharmony_ci		else if (cur->seq < tm->seq)
15562306a36Sopenharmony_ci			new = &((*new)->rb_left);
15662306a36Sopenharmony_ci		else if (cur->seq > tm->seq)
15762306a36Sopenharmony_ci			new = &((*new)->rb_right);
15862306a36Sopenharmony_ci		else
15962306a36Sopenharmony_ci			return -EEXIST;
16062306a36Sopenharmony_ci	}
16162306a36Sopenharmony_ci
16262306a36Sopenharmony_ci	rb_link_node(&tm->node, parent, new);
16362306a36Sopenharmony_ci	rb_insert_color(&tm->node, tm_root);
16462306a36Sopenharmony_ci	return 0;
16562306a36Sopenharmony_ci}
16662306a36Sopenharmony_ci
16762306a36Sopenharmony_ci/*
16862306a36Sopenharmony_ci * Determines if logging can be omitted. Returns true if it can. Otherwise, it
16962306a36Sopenharmony_ci * returns false with the tree_mod_log_lock acquired. The caller must hold
17062306a36Sopenharmony_ci * this until all tree mod log insertions are recorded in the rb tree and then
17162306a36Sopenharmony_ci * write unlock fs_info::tree_mod_log_lock.
17262306a36Sopenharmony_ci */
17362306a36Sopenharmony_cistatic inline bool tree_mod_dont_log(struct btrfs_fs_info *fs_info,
17462306a36Sopenharmony_ci				    struct extent_buffer *eb)
17562306a36Sopenharmony_ci{
17662306a36Sopenharmony_ci	if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
17762306a36Sopenharmony_ci		return true;
17862306a36Sopenharmony_ci	if (eb && btrfs_header_level(eb) == 0)
17962306a36Sopenharmony_ci		return true;
18062306a36Sopenharmony_ci
18162306a36Sopenharmony_ci	write_lock(&fs_info->tree_mod_log_lock);
18262306a36Sopenharmony_ci	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
18362306a36Sopenharmony_ci		write_unlock(&fs_info->tree_mod_log_lock);
18462306a36Sopenharmony_ci		return true;
18562306a36Sopenharmony_ci	}
18662306a36Sopenharmony_ci
18762306a36Sopenharmony_ci	return false;
18862306a36Sopenharmony_ci}
18962306a36Sopenharmony_ci
19062306a36Sopenharmony_ci/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
19162306a36Sopenharmony_cistatic inline bool tree_mod_need_log(const struct btrfs_fs_info *fs_info,
19262306a36Sopenharmony_ci				    struct extent_buffer *eb)
19362306a36Sopenharmony_ci{
19462306a36Sopenharmony_ci	if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
19562306a36Sopenharmony_ci		return false;
19662306a36Sopenharmony_ci	if (eb && btrfs_header_level(eb) == 0)
19762306a36Sopenharmony_ci		return false;
19862306a36Sopenharmony_ci
19962306a36Sopenharmony_ci	return true;
20062306a36Sopenharmony_ci}
20162306a36Sopenharmony_ci
20262306a36Sopenharmony_cistatic struct tree_mod_elem *alloc_tree_mod_elem(struct extent_buffer *eb,
20362306a36Sopenharmony_ci						 int slot,
20462306a36Sopenharmony_ci						 enum btrfs_mod_log_op op)
20562306a36Sopenharmony_ci{
20662306a36Sopenharmony_ci	struct tree_mod_elem *tm;
20762306a36Sopenharmony_ci
20862306a36Sopenharmony_ci	tm = kzalloc(sizeof(*tm), GFP_NOFS);
20962306a36Sopenharmony_ci	if (!tm)
21062306a36Sopenharmony_ci		return NULL;
21162306a36Sopenharmony_ci
21262306a36Sopenharmony_ci	tm->logical = eb->start;
21362306a36Sopenharmony_ci	if (op != BTRFS_MOD_LOG_KEY_ADD) {
21462306a36Sopenharmony_ci		btrfs_node_key(eb, &tm->key, slot);
21562306a36Sopenharmony_ci		tm->blockptr = btrfs_node_blockptr(eb, slot);
21662306a36Sopenharmony_ci	}
21762306a36Sopenharmony_ci	tm->op = op;
21862306a36Sopenharmony_ci	tm->slot = slot;
21962306a36Sopenharmony_ci	tm->generation = btrfs_node_ptr_generation(eb, slot);
22062306a36Sopenharmony_ci	RB_CLEAR_NODE(&tm->node);
22162306a36Sopenharmony_ci
22262306a36Sopenharmony_ci	return tm;
22362306a36Sopenharmony_ci}
22462306a36Sopenharmony_ci
22562306a36Sopenharmony_ciint btrfs_tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
22662306a36Sopenharmony_ci				  enum btrfs_mod_log_op op)
22762306a36Sopenharmony_ci{
22862306a36Sopenharmony_ci	struct tree_mod_elem *tm;
22962306a36Sopenharmony_ci	int ret = 0;
23062306a36Sopenharmony_ci
23162306a36Sopenharmony_ci	if (!tree_mod_need_log(eb->fs_info, eb))
23262306a36Sopenharmony_ci		return 0;
23362306a36Sopenharmony_ci
23462306a36Sopenharmony_ci	tm = alloc_tree_mod_elem(eb, slot, op);
23562306a36Sopenharmony_ci	if (!tm)
23662306a36Sopenharmony_ci		ret = -ENOMEM;
23762306a36Sopenharmony_ci
23862306a36Sopenharmony_ci	if (tree_mod_dont_log(eb->fs_info, eb)) {
23962306a36Sopenharmony_ci		kfree(tm);
24062306a36Sopenharmony_ci		/*
24162306a36Sopenharmony_ci		 * Don't error if we failed to allocate memory because we don't
24262306a36Sopenharmony_ci		 * need to log.
24362306a36Sopenharmony_ci		 */
24462306a36Sopenharmony_ci		return 0;
24562306a36Sopenharmony_ci	} else if (ret != 0) {
24662306a36Sopenharmony_ci		/*
24762306a36Sopenharmony_ci		 * We previously failed to allocate memory and we need to log,
24862306a36Sopenharmony_ci		 * so we have to fail.
24962306a36Sopenharmony_ci		 */
25062306a36Sopenharmony_ci		goto out_unlock;
25162306a36Sopenharmony_ci	}
25262306a36Sopenharmony_ci
25362306a36Sopenharmony_ci	ret = tree_mod_log_insert(eb->fs_info, tm);
25462306a36Sopenharmony_ciout_unlock:
25562306a36Sopenharmony_ci	write_unlock(&eb->fs_info->tree_mod_log_lock);
25662306a36Sopenharmony_ci	if (ret)
25762306a36Sopenharmony_ci		kfree(tm);
25862306a36Sopenharmony_ci
25962306a36Sopenharmony_ci	return ret;
26062306a36Sopenharmony_ci}
26162306a36Sopenharmony_ci
26262306a36Sopenharmony_cistatic struct tree_mod_elem *tree_mod_log_alloc_move(struct extent_buffer *eb,
26362306a36Sopenharmony_ci						     int dst_slot, int src_slot,
26462306a36Sopenharmony_ci						     int nr_items)
26562306a36Sopenharmony_ci{
26662306a36Sopenharmony_ci	struct tree_mod_elem *tm;
26762306a36Sopenharmony_ci
26862306a36Sopenharmony_ci	tm = kzalloc(sizeof(*tm), GFP_NOFS);
26962306a36Sopenharmony_ci	if (!tm)
27062306a36Sopenharmony_ci		return ERR_PTR(-ENOMEM);
27162306a36Sopenharmony_ci
27262306a36Sopenharmony_ci	tm->logical = eb->start;
27362306a36Sopenharmony_ci	tm->slot = src_slot;
27462306a36Sopenharmony_ci	tm->move.dst_slot = dst_slot;
27562306a36Sopenharmony_ci	tm->move.nr_items = nr_items;
27662306a36Sopenharmony_ci	tm->op = BTRFS_MOD_LOG_MOVE_KEYS;
27762306a36Sopenharmony_ci	RB_CLEAR_NODE(&tm->node);
27862306a36Sopenharmony_ci
27962306a36Sopenharmony_ci	return tm;
28062306a36Sopenharmony_ci}
28162306a36Sopenharmony_ci
28262306a36Sopenharmony_ciint btrfs_tree_mod_log_insert_move(struct extent_buffer *eb,
28362306a36Sopenharmony_ci				   int dst_slot, int src_slot,
28462306a36Sopenharmony_ci				   int nr_items)
28562306a36Sopenharmony_ci{
28662306a36Sopenharmony_ci	struct tree_mod_elem *tm = NULL;
28762306a36Sopenharmony_ci	struct tree_mod_elem **tm_list = NULL;
28862306a36Sopenharmony_ci	int ret = 0;
28962306a36Sopenharmony_ci	int i;
29062306a36Sopenharmony_ci	bool locked = false;
29162306a36Sopenharmony_ci
29262306a36Sopenharmony_ci	if (!tree_mod_need_log(eb->fs_info, eb))
29362306a36Sopenharmony_ci		return 0;
29462306a36Sopenharmony_ci
29562306a36Sopenharmony_ci	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
29662306a36Sopenharmony_ci	if (!tm_list) {
29762306a36Sopenharmony_ci		ret = -ENOMEM;
29862306a36Sopenharmony_ci		goto lock;
29962306a36Sopenharmony_ci	}
30062306a36Sopenharmony_ci
30162306a36Sopenharmony_ci	tm = tree_mod_log_alloc_move(eb, dst_slot, src_slot, nr_items);
30262306a36Sopenharmony_ci	if (IS_ERR(tm)) {
30362306a36Sopenharmony_ci		ret = PTR_ERR(tm);
30462306a36Sopenharmony_ci		tm = NULL;
30562306a36Sopenharmony_ci		goto lock;
30662306a36Sopenharmony_ci	}
30762306a36Sopenharmony_ci
30862306a36Sopenharmony_ci	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
30962306a36Sopenharmony_ci		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
31062306a36Sopenharmony_ci				BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING);
31162306a36Sopenharmony_ci		if (!tm_list[i]) {
31262306a36Sopenharmony_ci			ret = -ENOMEM;
31362306a36Sopenharmony_ci			goto lock;
31462306a36Sopenharmony_ci		}
31562306a36Sopenharmony_ci	}
31662306a36Sopenharmony_ci
31762306a36Sopenharmony_cilock:
31862306a36Sopenharmony_ci	if (tree_mod_dont_log(eb->fs_info, eb)) {
31962306a36Sopenharmony_ci		/*
32062306a36Sopenharmony_ci		 * Don't error if we failed to allocate memory because we don't
32162306a36Sopenharmony_ci		 * need to log.
32262306a36Sopenharmony_ci		 */
32362306a36Sopenharmony_ci		ret = 0;
32462306a36Sopenharmony_ci		goto free_tms;
32562306a36Sopenharmony_ci	}
32662306a36Sopenharmony_ci	locked = true;
32762306a36Sopenharmony_ci
32862306a36Sopenharmony_ci	/*
32962306a36Sopenharmony_ci	 * We previously failed to allocate memory and we need to log, so we
33062306a36Sopenharmony_ci	 * have to fail.
33162306a36Sopenharmony_ci	 */
33262306a36Sopenharmony_ci	if (ret != 0)
33362306a36Sopenharmony_ci		goto free_tms;
33462306a36Sopenharmony_ci
33562306a36Sopenharmony_ci	/*
33662306a36Sopenharmony_ci	 * When we override something during the move, we log these removals.
33762306a36Sopenharmony_ci	 * This can only happen when we move towards the beginning of the
33862306a36Sopenharmony_ci	 * buffer, i.e. dst_slot < src_slot.
33962306a36Sopenharmony_ci	 */
34062306a36Sopenharmony_ci	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
34162306a36Sopenharmony_ci		ret = tree_mod_log_insert(eb->fs_info, tm_list[i]);
34262306a36Sopenharmony_ci		if (ret)
34362306a36Sopenharmony_ci			goto free_tms;
34462306a36Sopenharmony_ci	}
34562306a36Sopenharmony_ci
34662306a36Sopenharmony_ci	ret = tree_mod_log_insert(eb->fs_info, tm);
34762306a36Sopenharmony_ci	if (ret)
34862306a36Sopenharmony_ci		goto free_tms;
34962306a36Sopenharmony_ci	write_unlock(&eb->fs_info->tree_mod_log_lock);
35062306a36Sopenharmony_ci	kfree(tm_list);
35162306a36Sopenharmony_ci
35262306a36Sopenharmony_ci	return 0;
35362306a36Sopenharmony_ci
35462306a36Sopenharmony_cifree_tms:
35562306a36Sopenharmony_ci	if (tm_list) {
35662306a36Sopenharmony_ci		for (i = 0; i < nr_items; i++) {
35762306a36Sopenharmony_ci			if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
35862306a36Sopenharmony_ci				rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
35962306a36Sopenharmony_ci			kfree(tm_list[i]);
36062306a36Sopenharmony_ci		}
36162306a36Sopenharmony_ci	}
36262306a36Sopenharmony_ci	if (locked)
36362306a36Sopenharmony_ci		write_unlock(&eb->fs_info->tree_mod_log_lock);
36462306a36Sopenharmony_ci	kfree(tm_list);
36562306a36Sopenharmony_ci	kfree(tm);
36662306a36Sopenharmony_ci
36762306a36Sopenharmony_ci	return ret;
36862306a36Sopenharmony_ci}
36962306a36Sopenharmony_ci
37062306a36Sopenharmony_cistatic inline int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
37162306a36Sopenharmony_ci				       struct tree_mod_elem **tm_list,
37262306a36Sopenharmony_ci				       int nritems)
37362306a36Sopenharmony_ci{
37462306a36Sopenharmony_ci	int i, j;
37562306a36Sopenharmony_ci	int ret;
37662306a36Sopenharmony_ci
37762306a36Sopenharmony_ci	for (i = nritems - 1; i >= 0; i--) {
37862306a36Sopenharmony_ci		ret = tree_mod_log_insert(fs_info, tm_list[i]);
37962306a36Sopenharmony_ci		if (ret) {
38062306a36Sopenharmony_ci			for (j = nritems - 1; j > i; j--)
38162306a36Sopenharmony_ci				rb_erase(&tm_list[j]->node,
38262306a36Sopenharmony_ci					 &fs_info->tree_mod_log);
38362306a36Sopenharmony_ci			return ret;
38462306a36Sopenharmony_ci		}
38562306a36Sopenharmony_ci	}
38662306a36Sopenharmony_ci
38762306a36Sopenharmony_ci	return 0;
38862306a36Sopenharmony_ci}
38962306a36Sopenharmony_ci
39062306a36Sopenharmony_ciint btrfs_tree_mod_log_insert_root(struct extent_buffer *old_root,
39162306a36Sopenharmony_ci				   struct extent_buffer *new_root,
39262306a36Sopenharmony_ci				   bool log_removal)
39362306a36Sopenharmony_ci{
39462306a36Sopenharmony_ci	struct btrfs_fs_info *fs_info = old_root->fs_info;
39562306a36Sopenharmony_ci	struct tree_mod_elem *tm = NULL;
39662306a36Sopenharmony_ci	struct tree_mod_elem **tm_list = NULL;
39762306a36Sopenharmony_ci	int nritems = 0;
39862306a36Sopenharmony_ci	int ret = 0;
39962306a36Sopenharmony_ci	int i;
40062306a36Sopenharmony_ci
40162306a36Sopenharmony_ci	if (!tree_mod_need_log(fs_info, NULL))
40262306a36Sopenharmony_ci		return 0;
40362306a36Sopenharmony_ci
40462306a36Sopenharmony_ci	if (log_removal && btrfs_header_level(old_root) > 0) {
40562306a36Sopenharmony_ci		nritems = btrfs_header_nritems(old_root);
40662306a36Sopenharmony_ci		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
40762306a36Sopenharmony_ci				  GFP_NOFS);
40862306a36Sopenharmony_ci		if (!tm_list) {
40962306a36Sopenharmony_ci			ret = -ENOMEM;
41062306a36Sopenharmony_ci			goto lock;
41162306a36Sopenharmony_ci		}
41262306a36Sopenharmony_ci		for (i = 0; i < nritems; i++) {
41362306a36Sopenharmony_ci			tm_list[i] = alloc_tree_mod_elem(old_root, i,
41462306a36Sopenharmony_ci			    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING);
41562306a36Sopenharmony_ci			if (!tm_list[i]) {
41662306a36Sopenharmony_ci				ret = -ENOMEM;
41762306a36Sopenharmony_ci				goto lock;
41862306a36Sopenharmony_ci			}
41962306a36Sopenharmony_ci		}
42062306a36Sopenharmony_ci	}
42162306a36Sopenharmony_ci
42262306a36Sopenharmony_ci	tm = kzalloc(sizeof(*tm), GFP_NOFS);
42362306a36Sopenharmony_ci	if (!tm) {
42462306a36Sopenharmony_ci		ret = -ENOMEM;
42562306a36Sopenharmony_ci		goto lock;
42662306a36Sopenharmony_ci	}
42762306a36Sopenharmony_ci
42862306a36Sopenharmony_ci	tm->logical = new_root->start;
42962306a36Sopenharmony_ci	tm->old_root.logical = old_root->start;
43062306a36Sopenharmony_ci	tm->old_root.level = btrfs_header_level(old_root);
43162306a36Sopenharmony_ci	tm->generation = btrfs_header_generation(old_root);
43262306a36Sopenharmony_ci	tm->op = BTRFS_MOD_LOG_ROOT_REPLACE;
43362306a36Sopenharmony_ci
43462306a36Sopenharmony_cilock:
43562306a36Sopenharmony_ci	if (tree_mod_dont_log(fs_info, NULL)) {
43662306a36Sopenharmony_ci		/*
43762306a36Sopenharmony_ci		 * Don't error if we failed to allocate memory because we don't
43862306a36Sopenharmony_ci		 * need to log.
43962306a36Sopenharmony_ci		 */
44062306a36Sopenharmony_ci		ret = 0;
44162306a36Sopenharmony_ci		goto free_tms;
44262306a36Sopenharmony_ci	} else if (ret != 0) {
44362306a36Sopenharmony_ci		/*
44462306a36Sopenharmony_ci		 * We previously failed to allocate memory and we need to log,
44562306a36Sopenharmony_ci		 * so we have to fail.
44662306a36Sopenharmony_ci		 */
44762306a36Sopenharmony_ci		goto out_unlock;
44862306a36Sopenharmony_ci	}
44962306a36Sopenharmony_ci
45062306a36Sopenharmony_ci	if (tm_list)
45162306a36Sopenharmony_ci		ret = tree_mod_log_free_eb(fs_info, tm_list, nritems);
45262306a36Sopenharmony_ci	if (!ret)
45362306a36Sopenharmony_ci		ret = tree_mod_log_insert(fs_info, tm);
45462306a36Sopenharmony_ci
45562306a36Sopenharmony_ciout_unlock:
45662306a36Sopenharmony_ci	write_unlock(&fs_info->tree_mod_log_lock);
45762306a36Sopenharmony_ci	if (ret)
45862306a36Sopenharmony_ci		goto free_tms;
45962306a36Sopenharmony_ci	kfree(tm_list);
46062306a36Sopenharmony_ci
46162306a36Sopenharmony_ci	return ret;
46262306a36Sopenharmony_ci
46362306a36Sopenharmony_cifree_tms:
46462306a36Sopenharmony_ci	if (tm_list) {
46562306a36Sopenharmony_ci		for (i = 0; i < nritems; i++)
46662306a36Sopenharmony_ci			kfree(tm_list[i]);
46762306a36Sopenharmony_ci		kfree(tm_list);
46862306a36Sopenharmony_ci	}
46962306a36Sopenharmony_ci	kfree(tm);
47062306a36Sopenharmony_ci
47162306a36Sopenharmony_ci	return ret;
47262306a36Sopenharmony_ci}
47362306a36Sopenharmony_ci
47462306a36Sopenharmony_cistatic struct tree_mod_elem *__tree_mod_log_search(struct btrfs_fs_info *fs_info,
47562306a36Sopenharmony_ci						   u64 start, u64 min_seq,
47662306a36Sopenharmony_ci						   bool smallest)
47762306a36Sopenharmony_ci{
47862306a36Sopenharmony_ci	struct rb_root *tm_root;
47962306a36Sopenharmony_ci	struct rb_node *node;
48062306a36Sopenharmony_ci	struct tree_mod_elem *cur = NULL;
48162306a36Sopenharmony_ci	struct tree_mod_elem *found = NULL;
48262306a36Sopenharmony_ci
48362306a36Sopenharmony_ci	read_lock(&fs_info->tree_mod_log_lock);
48462306a36Sopenharmony_ci	tm_root = &fs_info->tree_mod_log;
48562306a36Sopenharmony_ci	node = tm_root->rb_node;
48662306a36Sopenharmony_ci	while (node) {
48762306a36Sopenharmony_ci		cur = rb_entry(node, struct tree_mod_elem, node);
48862306a36Sopenharmony_ci		if (cur->logical < start) {
48962306a36Sopenharmony_ci			node = node->rb_left;
49062306a36Sopenharmony_ci		} else if (cur->logical > start) {
49162306a36Sopenharmony_ci			node = node->rb_right;
49262306a36Sopenharmony_ci		} else if (cur->seq < min_seq) {
49362306a36Sopenharmony_ci			node = node->rb_left;
49462306a36Sopenharmony_ci		} else if (!smallest) {
49562306a36Sopenharmony_ci			/* We want the node with the highest seq */
49662306a36Sopenharmony_ci			if (found)
49762306a36Sopenharmony_ci				BUG_ON(found->seq > cur->seq);
49862306a36Sopenharmony_ci			found = cur;
49962306a36Sopenharmony_ci			node = node->rb_left;
50062306a36Sopenharmony_ci		} else if (cur->seq > min_seq) {
50162306a36Sopenharmony_ci			/* We want the node with the smallest seq */
50262306a36Sopenharmony_ci			if (found)
50362306a36Sopenharmony_ci				BUG_ON(found->seq < cur->seq);
50462306a36Sopenharmony_ci			found = cur;
50562306a36Sopenharmony_ci			node = node->rb_right;
50662306a36Sopenharmony_ci		} else {
50762306a36Sopenharmony_ci			found = cur;
50862306a36Sopenharmony_ci			break;
50962306a36Sopenharmony_ci		}
51062306a36Sopenharmony_ci	}
51162306a36Sopenharmony_ci	read_unlock(&fs_info->tree_mod_log_lock);
51262306a36Sopenharmony_ci
51362306a36Sopenharmony_ci	return found;
51462306a36Sopenharmony_ci}
51562306a36Sopenharmony_ci
51662306a36Sopenharmony_ci/*
51762306a36Sopenharmony_ci * This returns the element from the log with the smallest time sequence
51862306a36Sopenharmony_ci * value that's in the log (the oldest log item). Any element with a time
51962306a36Sopenharmony_ci * sequence lower than min_seq will be ignored.
52062306a36Sopenharmony_ci */
52162306a36Sopenharmony_cistatic struct tree_mod_elem *tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info,
52262306a36Sopenharmony_ci							u64 start, u64 min_seq)
52362306a36Sopenharmony_ci{
52462306a36Sopenharmony_ci	return __tree_mod_log_search(fs_info, start, min_seq, true);
52562306a36Sopenharmony_ci}
52662306a36Sopenharmony_ci
52762306a36Sopenharmony_ci/*
52862306a36Sopenharmony_ci * This returns the element from the log with the largest time sequence
52962306a36Sopenharmony_ci * value that's in the log (the most recent log item). Any element with
53062306a36Sopenharmony_ci * a time sequence lower than min_seq will be ignored.
53162306a36Sopenharmony_ci */
53262306a36Sopenharmony_cistatic struct tree_mod_elem *tree_mod_log_search(struct btrfs_fs_info *fs_info,
53362306a36Sopenharmony_ci						 u64 start, u64 min_seq)
53462306a36Sopenharmony_ci{
53562306a36Sopenharmony_ci	return __tree_mod_log_search(fs_info, start, min_seq, false);
53662306a36Sopenharmony_ci}
53762306a36Sopenharmony_ci
53862306a36Sopenharmony_ciint btrfs_tree_mod_log_eb_copy(struct extent_buffer *dst,
53962306a36Sopenharmony_ci			       struct extent_buffer *src,
54062306a36Sopenharmony_ci			       unsigned long dst_offset,
54162306a36Sopenharmony_ci			       unsigned long src_offset,
54262306a36Sopenharmony_ci			       int nr_items)
54362306a36Sopenharmony_ci{
54462306a36Sopenharmony_ci	struct btrfs_fs_info *fs_info = dst->fs_info;
54562306a36Sopenharmony_ci	int ret = 0;
54662306a36Sopenharmony_ci	struct tree_mod_elem **tm_list = NULL;
54762306a36Sopenharmony_ci	struct tree_mod_elem **tm_list_add = NULL;
54862306a36Sopenharmony_ci	struct tree_mod_elem **tm_list_rem = NULL;
54962306a36Sopenharmony_ci	int i;
55062306a36Sopenharmony_ci	bool locked = false;
55162306a36Sopenharmony_ci	struct tree_mod_elem *dst_move_tm = NULL;
55262306a36Sopenharmony_ci	struct tree_mod_elem *src_move_tm = NULL;
55362306a36Sopenharmony_ci	u32 dst_move_nr_items = btrfs_header_nritems(dst) - dst_offset;
55462306a36Sopenharmony_ci	u32 src_move_nr_items = btrfs_header_nritems(src) - (src_offset + nr_items);
55562306a36Sopenharmony_ci
55662306a36Sopenharmony_ci	if (!tree_mod_need_log(fs_info, NULL))
55762306a36Sopenharmony_ci		return 0;
55862306a36Sopenharmony_ci
55962306a36Sopenharmony_ci	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
56062306a36Sopenharmony_ci		return 0;
56162306a36Sopenharmony_ci
56262306a36Sopenharmony_ci	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
56362306a36Sopenharmony_ci			  GFP_NOFS);
56462306a36Sopenharmony_ci	if (!tm_list) {
56562306a36Sopenharmony_ci		ret = -ENOMEM;
56662306a36Sopenharmony_ci		goto lock;
56762306a36Sopenharmony_ci	}
56862306a36Sopenharmony_ci
56962306a36Sopenharmony_ci	if (dst_move_nr_items) {
57062306a36Sopenharmony_ci		dst_move_tm = tree_mod_log_alloc_move(dst, dst_offset + nr_items,
57162306a36Sopenharmony_ci						      dst_offset, dst_move_nr_items);
57262306a36Sopenharmony_ci		if (IS_ERR(dst_move_tm)) {
57362306a36Sopenharmony_ci			ret = PTR_ERR(dst_move_tm);
57462306a36Sopenharmony_ci			dst_move_tm = NULL;
57562306a36Sopenharmony_ci			goto lock;
57662306a36Sopenharmony_ci		}
57762306a36Sopenharmony_ci	}
57862306a36Sopenharmony_ci	if (src_move_nr_items) {
57962306a36Sopenharmony_ci		src_move_tm = tree_mod_log_alloc_move(src, src_offset,
58062306a36Sopenharmony_ci						      src_offset + nr_items,
58162306a36Sopenharmony_ci						      src_move_nr_items);
58262306a36Sopenharmony_ci		if (IS_ERR(src_move_tm)) {
58362306a36Sopenharmony_ci			ret = PTR_ERR(src_move_tm);
58462306a36Sopenharmony_ci			src_move_tm = NULL;
58562306a36Sopenharmony_ci			goto lock;
58662306a36Sopenharmony_ci		}
58762306a36Sopenharmony_ci	}
58862306a36Sopenharmony_ci
58962306a36Sopenharmony_ci	tm_list_add = tm_list;
59062306a36Sopenharmony_ci	tm_list_rem = tm_list + nr_items;
59162306a36Sopenharmony_ci	for (i = 0; i < nr_items; i++) {
59262306a36Sopenharmony_ci		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
59362306a36Sopenharmony_ci						     BTRFS_MOD_LOG_KEY_REMOVE);
59462306a36Sopenharmony_ci		if (!tm_list_rem[i]) {
59562306a36Sopenharmony_ci			ret = -ENOMEM;
59662306a36Sopenharmony_ci			goto lock;
59762306a36Sopenharmony_ci		}
59862306a36Sopenharmony_ci
59962306a36Sopenharmony_ci		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
60062306a36Sopenharmony_ci						     BTRFS_MOD_LOG_KEY_ADD);
60162306a36Sopenharmony_ci		if (!tm_list_add[i]) {
60262306a36Sopenharmony_ci			ret = -ENOMEM;
60362306a36Sopenharmony_ci			goto lock;
60462306a36Sopenharmony_ci		}
60562306a36Sopenharmony_ci	}
60662306a36Sopenharmony_ci
60762306a36Sopenharmony_cilock:
60862306a36Sopenharmony_ci	if (tree_mod_dont_log(fs_info, NULL)) {
60962306a36Sopenharmony_ci		/*
61062306a36Sopenharmony_ci		 * Don't error if we failed to allocate memory because we don't
61162306a36Sopenharmony_ci		 * need to log.
61262306a36Sopenharmony_ci		 */
61362306a36Sopenharmony_ci		ret = 0;
61462306a36Sopenharmony_ci		goto free_tms;
61562306a36Sopenharmony_ci	}
61662306a36Sopenharmony_ci	locked = true;
61762306a36Sopenharmony_ci
61862306a36Sopenharmony_ci	/*
61962306a36Sopenharmony_ci	 * We previously failed to allocate memory and we need to log, so we
62062306a36Sopenharmony_ci	 * have to fail.
62162306a36Sopenharmony_ci	 */
62262306a36Sopenharmony_ci	if (ret != 0)
62362306a36Sopenharmony_ci		goto free_tms;
62462306a36Sopenharmony_ci
62562306a36Sopenharmony_ci	if (dst_move_tm) {
62662306a36Sopenharmony_ci		ret = tree_mod_log_insert(fs_info, dst_move_tm);
62762306a36Sopenharmony_ci		if (ret)
62862306a36Sopenharmony_ci			goto free_tms;
62962306a36Sopenharmony_ci	}
63062306a36Sopenharmony_ci	for (i = 0; i < nr_items; i++) {
63162306a36Sopenharmony_ci		ret = tree_mod_log_insert(fs_info, tm_list_rem[i]);
63262306a36Sopenharmony_ci		if (ret)
63362306a36Sopenharmony_ci			goto free_tms;
63462306a36Sopenharmony_ci		ret = tree_mod_log_insert(fs_info, tm_list_add[i]);
63562306a36Sopenharmony_ci		if (ret)
63662306a36Sopenharmony_ci			goto free_tms;
63762306a36Sopenharmony_ci	}
63862306a36Sopenharmony_ci	if (src_move_tm) {
63962306a36Sopenharmony_ci		ret = tree_mod_log_insert(fs_info, src_move_tm);
64062306a36Sopenharmony_ci		if (ret)
64162306a36Sopenharmony_ci			goto free_tms;
64262306a36Sopenharmony_ci	}
64362306a36Sopenharmony_ci
64462306a36Sopenharmony_ci	write_unlock(&fs_info->tree_mod_log_lock);
64562306a36Sopenharmony_ci	kfree(tm_list);
64662306a36Sopenharmony_ci
64762306a36Sopenharmony_ci	return 0;
64862306a36Sopenharmony_ci
64962306a36Sopenharmony_cifree_tms:
65062306a36Sopenharmony_ci	if (dst_move_tm && !RB_EMPTY_NODE(&dst_move_tm->node))
65162306a36Sopenharmony_ci		rb_erase(&dst_move_tm->node, &fs_info->tree_mod_log);
65262306a36Sopenharmony_ci	kfree(dst_move_tm);
65362306a36Sopenharmony_ci	if (src_move_tm && !RB_EMPTY_NODE(&src_move_tm->node))
65462306a36Sopenharmony_ci		rb_erase(&src_move_tm->node, &fs_info->tree_mod_log);
65562306a36Sopenharmony_ci	kfree(src_move_tm);
65662306a36Sopenharmony_ci	if (tm_list) {
65762306a36Sopenharmony_ci		for (i = 0; i < nr_items * 2; i++) {
65862306a36Sopenharmony_ci			if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
65962306a36Sopenharmony_ci				rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
66062306a36Sopenharmony_ci			kfree(tm_list[i]);
66162306a36Sopenharmony_ci		}
66262306a36Sopenharmony_ci	}
66362306a36Sopenharmony_ci	if (locked)
66462306a36Sopenharmony_ci		write_unlock(&fs_info->tree_mod_log_lock);
66562306a36Sopenharmony_ci	kfree(tm_list);
66662306a36Sopenharmony_ci
66762306a36Sopenharmony_ci	return ret;
66862306a36Sopenharmony_ci}
66962306a36Sopenharmony_ci
67062306a36Sopenharmony_ciint btrfs_tree_mod_log_free_eb(struct extent_buffer *eb)
67162306a36Sopenharmony_ci{
67262306a36Sopenharmony_ci	struct tree_mod_elem **tm_list = NULL;
67362306a36Sopenharmony_ci	int nritems = 0;
67462306a36Sopenharmony_ci	int i;
67562306a36Sopenharmony_ci	int ret = 0;
67662306a36Sopenharmony_ci
67762306a36Sopenharmony_ci	if (!tree_mod_need_log(eb->fs_info, eb))
67862306a36Sopenharmony_ci		return 0;
67962306a36Sopenharmony_ci
68062306a36Sopenharmony_ci	nritems = btrfs_header_nritems(eb);
68162306a36Sopenharmony_ci	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
68262306a36Sopenharmony_ci	if (!tm_list) {
68362306a36Sopenharmony_ci		ret = -ENOMEM;
68462306a36Sopenharmony_ci		goto lock;
68562306a36Sopenharmony_ci	}
68662306a36Sopenharmony_ci
68762306a36Sopenharmony_ci	for (i = 0; i < nritems; i++) {
68862306a36Sopenharmony_ci		tm_list[i] = alloc_tree_mod_elem(eb, i,
68962306a36Sopenharmony_ci				    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING);
69062306a36Sopenharmony_ci		if (!tm_list[i]) {
69162306a36Sopenharmony_ci			ret = -ENOMEM;
69262306a36Sopenharmony_ci			goto lock;
69362306a36Sopenharmony_ci		}
69462306a36Sopenharmony_ci	}
69562306a36Sopenharmony_ci
69662306a36Sopenharmony_cilock:
69762306a36Sopenharmony_ci	if (tree_mod_dont_log(eb->fs_info, eb)) {
69862306a36Sopenharmony_ci		/*
69962306a36Sopenharmony_ci		 * Don't error if we failed to allocate memory because we don't
70062306a36Sopenharmony_ci		 * need to log.
70162306a36Sopenharmony_ci		 */
70262306a36Sopenharmony_ci		ret = 0;
70362306a36Sopenharmony_ci		goto free_tms;
70462306a36Sopenharmony_ci	} else if (ret != 0) {
70562306a36Sopenharmony_ci		/*
70662306a36Sopenharmony_ci		 * We previously failed to allocate memory and we need to log,
70762306a36Sopenharmony_ci		 * so we have to fail.
70862306a36Sopenharmony_ci		 */
70962306a36Sopenharmony_ci		goto out_unlock;
71062306a36Sopenharmony_ci	}
71162306a36Sopenharmony_ci
71262306a36Sopenharmony_ci	ret = tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
71362306a36Sopenharmony_ciout_unlock:
71462306a36Sopenharmony_ci	write_unlock(&eb->fs_info->tree_mod_log_lock);
71562306a36Sopenharmony_ci	if (ret)
71662306a36Sopenharmony_ci		goto free_tms;
71762306a36Sopenharmony_ci	kfree(tm_list);
71862306a36Sopenharmony_ci
71962306a36Sopenharmony_ci	return 0;
72062306a36Sopenharmony_ci
72162306a36Sopenharmony_cifree_tms:
72262306a36Sopenharmony_ci	if (tm_list) {
72362306a36Sopenharmony_ci		for (i = 0; i < nritems; i++)
72462306a36Sopenharmony_ci			kfree(tm_list[i]);
72562306a36Sopenharmony_ci		kfree(tm_list);
72662306a36Sopenharmony_ci	}
72762306a36Sopenharmony_ci
72862306a36Sopenharmony_ci	return ret;
72962306a36Sopenharmony_ci}
73062306a36Sopenharmony_ci
73162306a36Sopenharmony_ci/*
73262306a36Sopenharmony_ci * Returns the logical address of the oldest predecessor of the given root.
73362306a36Sopenharmony_ci * Entries older than time_seq are ignored.
73462306a36Sopenharmony_ci */
73562306a36Sopenharmony_cistatic struct tree_mod_elem *tree_mod_log_oldest_root(struct extent_buffer *eb_root,
73662306a36Sopenharmony_ci						      u64 time_seq)
73762306a36Sopenharmony_ci{
73862306a36Sopenharmony_ci	struct tree_mod_elem *tm;
73962306a36Sopenharmony_ci	struct tree_mod_elem *found = NULL;
74062306a36Sopenharmony_ci	u64 root_logical = eb_root->start;
74162306a36Sopenharmony_ci	bool looped = false;
74262306a36Sopenharmony_ci
74362306a36Sopenharmony_ci	if (!time_seq)
74462306a36Sopenharmony_ci		return NULL;
74562306a36Sopenharmony_ci
74662306a36Sopenharmony_ci	/*
74762306a36Sopenharmony_ci	 * The very last operation that's logged for a root is the replacement
74862306a36Sopenharmony_ci	 * operation (if it is replaced at all). This has the logical address
74962306a36Sopenharmony_ci	 * of the *new* root, making it the very first operation that's logged
75062306a36Sopenharmony_ci	 * for this root.
75162306a36Sopenharmony_ci	 */
75262306a36Sopenharmony_ci	while (1) {
75362306a36Sopenharmony_ci		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
75462306a36Sopenharmony_ci						time_seq);
75562306a36Sopenharmony_ci		if (!looped && !tm)
75662306a36Sopenharmony_ci			return NULL;
75762306a36Sopenharmony_ci		/*
75862306a36Sopenharmony_ci		 * If there are no tree operation for the oldest root, we simply
75962306a36Sopenharmony_ci		 * return it. This should only happen if that (old) root is at
76062306a36Sopenharmony_ci		 * level 0.
76162306a36Sopenharmony_ci		 */
76262306a36Sopenharmony_ci		if (!tm)
76362306a36Sopenharmony_ci			break;
76462306a36Sopenharmony_ci
76562306a36Sopenharmony_ci		/*
76662306a36Sopenharmony_ci		 * If there's an operation that's not a root replacement, we
76762306a36Sopenharmony_ci		 * found the oldest version of our root. Normally, we'll find a
76862306a36Sopenharmony_ci		 * BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
76962306a36Sopenharmony_ci		 */
77062306a36Sopenharmony_ci		if (tm->op != BTRFS_MOD_LOG_ROOT_REPLACE)
77162306a36Sopenharmony_ci			break;
77262306a36Sopenharmony_ci
77362306a36Sopenharmony_ci		found = tm;
77462306a36Sopenharmony_ci		root_logical = tm->old_root.logical;
77562306a36Sopenharmony_ci		looped = true;
77662306a36Sopenharmony_ci	}
77762306a36Sopenharmony_ci
77862306a36Sopenharmony_ci	/* If there's no old root to return, return what we found instead */
77962306a36Sopenharmony_ci	if (!found)
78062306a36Sopenharmony_ci		found = tm;
78162306a36Sopenharmony_ci
78262306a36Sopenharmony_ci	return found;
78362306a36Sopenharmony_ci}
78462306a36Sopenharmony_ci
78562306a36Sopenharmony_ci
78662306a36Sopenharmony_ci/*
78762306a36Sopenharmony_ci * tm is a pointer to the first operation to rewind within eb. Then, all
78862306a36Sopenharmony_ci * previous operations will be rewound (until we reach something older than
78962306a36Sopenharmony_ci * time_seq).
79062306a36Sopenharmony_ci */
79162306a36Sopenharmony_cistatic void tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
79262306a36Sopenharmony_ci				struct extent_buffer *eb,
79362306a36Sopenharmony_ci				u64 time_seq,
79462306a36Sopenharmony_ci				struct tree_mod_elem *first_tm)
79562306a36Sopenharmony_ci{
79662306a36Sopenharmony_ci	u32 n;
79762306a36Sopenharmony_ci	struct rb_node *next;
79862306a36Sopenharmony_ci	struct tree_mod_elem *tm = first_tm;
79962306a36Sopenharmony_ci	unsigned long o_dst;
80062306a36Sopenharmony_ci	unsigned long o_src;
80162306a36Sopenharmony_ci	unsigned long p_size = sizeof(struct btrfs_key_ptr);
80262306a36Sopenharmony_ci	/*
80362306a36Sopenharmony_ci	 * max_slot tracks the maximum valid slot of the rewind eb at every
80462306a36Sopenharmony_ci	 * step of the rewind. This is in contrast with 'n' which eventually
80562306a36Sopenharmony_ci	 * matches the number of items, but can be wrong during moves or if
80662306a36Sopenharmony_ci	 * removes overlap on already valid slots (which is probably separately
80762306a36Sopenharmony_ci	 * a bug). We do this to validate the offsets of memmoves for rewinding
80862306a36Sopenharmony_ci	 * moves and detect invalid memmoves.
80962306a36Sopenharmony_ci	 *
81062306a36Sopenharmony_ci	 * Since a rewind eb can start empty, max_slot is a signed integer with
81162306a36Sopenharmony_ci	 * a special meaning for -1, which is that no slot is valid to move out
81262306a36Sopenharmony_ci	 * of. Any other negative value is invalid.
81362306a36Sopenharmony_ci	 */
81462306a36Sopenharmony_ci	int max_slot;
81562306a36Sopenharmony_ci	int move_src_end_slot;
81662306a36Sopenharmony_ci	int move_dst_end_slot;
81762306a36Sopenharmony_ci
81862306a36Sopenharmony_ci	n = btrfs_header_nritems(eb);
81962306a36Sopenharmony_ci	max_slot = n - 1;
82062306a36Sopenharmony_ci	read_lock(&fs_info->tree_mod_log_lock);
82162306a36Sopenharmony_ci	while (tm && tm->seq >= time_seq) {
82262306a36Sopenharmony_ci		ASSERT(max_slot >= -1);
82362306a36Sopenharmony_ci		/*
82462306a36Sopenharmony_ci		 * All the operations are recorded with the operator used for
82562306a36Sopenharmony_ci		 * the modification. As we're going backwards, we do the
82662306a36Sopenharmony_ci		 * opposite of each operation here.
82762306a36Sopenharmony_ci		 */
82862306a36Sopenharmony_ci		switch (tm->op) {
82962306a36Sopenharmony_ci		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
83062306a36Sopenharmony_ci			BUG_ON(tm->slot < n);
83162306a36Sopenharmony_ci			fallthrough;
83262306a36Sopenharmony_ci		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING:
83362306a36Sopenharmony_ci		case BTRFS_MOD_LOG_KEY_REMOVE:
83462306a36Sopenharmony_ci			btrfs_set_node_key(eb, &tm->key, tm->slot);
83562306a36Sopenharmony_ci			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
83662306a36Sopenharmony_ci			btrfs_set_node_ptr_generation(eb, tm->slot,
83762306a36Sopenharmony_ci						      tm->generation);
83862306a36Sopenharmony_ci			n++;
83962306a36Sopenharmony_ci			if (tm->slot > max_slot)
84062306a36Sopenharmony_ci				max_slot = tm->slot;
84162306a36Sopenharmony_ci			break;
84262306a36Sopenharmony_ci		case BTRFS_MOD_LOG_KEY_REPLACE:
84362306a36Sopenharmony_ci			BUG_ON(tm->slot >= n);
84462306a36Sopenharmony_ci			btrfs_set_node_key(eb, &tm->key, tm->slot);
84562306a36Sopenharmony_ci			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
84662306a36Sopenharmony_ci			btrfs_set_node_ptr_generation(eb, tm->slot,
84762306a36Sopenharmony_ci						      tm->generation);
84862306a36Sopenharmony_ci			break;
84962306a36Sopenharmony_ci		case BTRFS_MOD_LOG_KEY_ADD:
85062306a36Sopenharmony_ci			/*
85162306a36Sopenharmony_ci			 * It is possible we could have already removed keys
85262306a36Sopenharmony_ci			 * behind the known max slot, so this will be an
85362306a36Sopenharmony_ci			 * overestimate. In practice, the copy operation
85462306a36Sopenharmony_ci			 * inserts them in increasing order, and overestimating
85562306a36Sopenharmony_ci			 * just means we miss some warnings, so it's OK. It
85662306a36Sopenharmony_ci			 * isn't worth carefully tracking the full array of
85762306a36Sopenharmony_ci			 * valid slots to check against when moving.
85862306a36Sopenharmony_ci			 */
85962306a36Sopenharmony_ci			if (tm->slot == max_slot)
86062306a36Sopenharmony_ci				max_slot--;
86162306a36Sopenharmony_ci			/* if a move operation is needed it's in the log */
86262306a36Sopenharmony_ci			n--;
86362306a36Sopenharmony_ci			break;
86462306a36Sopenharmony_ci		case BTRFS_MOD_LOG_MOVE_KEYS:
86562306a36Sopenharmony_ci			ASSERT(tm->move.nr_items > 0);
86662306a36Sopenharmony_ci			move_src_end_slot = tm->move.dst_slot + tm->move.nr_items - 1;
86762306a36Sopenharmony_ci			move_dst_end_slot = tm->slot + tm->move.nr_items - 1;
86862306a36Sopenharmony_ci			o_dst = btrfs_node_key_ptr_offset(eb, tm->slot);
86962306a36Sopenharmony_ci			o_src = btrfs_node_key_ptr_offset(eb, tm->move.dst_slot);
87062306a36Sopenharmony_ci			if (WARN_ON(move_src_end_slot > max_slot ||
87162306a36Sopenharmony_ci				    tm->move.nr_items <= 0)) {
87262306a36Sopenharmony_ci				btrfs_warn(fs_info,
87362306a36Sopenharmony_ci"move from invalid tree mod log slot eb %llu slot %d dst_slot %d nr_items %d seq %llu n %u max_slot %d",
87462306a36Sopenharmony_ci					   eb->start, tm->slot,
87562306a36Sopenharmony_ci					   tm->move.dst_slot, tm->move.nr_items,
87662306a36Sopenharmony_ci					   tm->seq, n, max_slot);
87762306a36Sopenharmony_ci			}
87862306a36Sopenharmony_ci			memmove_extent_buffer(eb, o_dst, o_src,
87962306a36Sopenharmony_ci					      tm->move.nr_items * p_size);
88062306a36Sopenharmony_ci			max_slot = move_dst_end_slot;
88162306a36Sopenharmony_ci			break;
88262306a36Sopenharmony_ci		case BTRFS_MOD_LOG_ROOT_REPLACE:
88362306a36Sopenharmony_ci			/*
88462306a36Sopenharmony_ci			 * This operation is special. For roots, this must be
88562306a36Sopenharmony_ci			 * handled explicitly before rewinding.
88662306a36Sopenharmony_ci			 * For non-roots, this operation may exist if the node
88762306a36Sopenharmony_ci			 * was a root: root A -> child B; then A gets empty and
88862306a36Sopenharmony_ci			 * B is promoted to the new root. In the mod log, we'll
88962306a36Sopenharmony_ci			 * have a root-replace operation for B, a tree block
89062306a36Sopenharmony_ci			 * that is no root. We simply ignore that operation.
89162306a36Sopenharmony_ci			 */
89262306a36Sopenharmony_ci			break;
89362306a36Sopenharmony_ci		}
89462306a36Sopenharmony_ci		next = rb_next(&tm->node);
89562306a36Sopenharmony_ci		if (!next)
89662306a36Sopenharmony_ci			break;
89762306a36Sopenharmony_ci		tm = rb_entry(next, struct tree_mod_elem, node);
89862306a36Sopenharmony_ci		if (tm->logical != first_tm->logical)
89962306a36Sopenharmony_ci			break;
90062306a36Sopenharmony_ci	}
90162306a36Sopenharmony_ci	read_unlock(&fs_info->tree_mod_log_lock);
90262306a36Sopenharmony_ci	btrfs_set_header_nritems(eb, n);
90362306a36Sopenharmony_ci}
90462306a36Sopenharmony_ci
90562306a36Sopenharmony_ci/*
90662306a36Sopenharmony_ci * Called with eb read locked. If the buffer cannot be rewound, the same buffer
90762306a36Sopenharmony_ci * is returned. If rewind operations happen, a fresh buffer is returned. The
90862306a36Sopenharmony_ci * returned buffer is always read-locked. If the returned buffer is not the
90962306a36Sopenharmony_ci * input buffer, the lock on the input buffer is released and the input buffer
91062306a36Sopenharmony_ci * is freed (its refcount is decremented).
91162306a36Sopenharmony_ci */
91262306a36Sopenharmony_cistruct extent_buffer *btrfs_tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
91362306a36Sopenharmony_ci						struct btrfs_path *path,
91462306a36Sopenharmony_ci						struct extent_buffer *eb,
91562306a36Sopenharmony_ci						u64 time_seq)
91662306a36Sopenharmony_ci{
91762306a36Sopenharmony_ci	struct extent_buffer *eb_rewin;
91862306a36Sopenharmony_ci	struct tree_mod_elem *tm;
91962306a36Sopenharmony_ci
92062306a36Sopenharmony_ci	if (!time_seq)
92162306a36Sopenharmony_ci		return eb;
92262306a36Sopenharmony_ci
92362306a36Sopenharmony_ci	if (btrfs_header_level(eb) == 0)
92462306a36Sopenharmony_ci		return eb;
92562306a36Sopenharmony_ci
92662306a36Sopenharmony_ci	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
92762306a36Sopenharmony_ci	if (!tm)
92862306a36Sopenharmony_ci		return eb;
92962306a36Sopenharmony_ci
93062306a36Sopenharmony_ci	if (tm->op == BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
93162306a36Sopenharmony_ci		BUG_ON(tm->slot != 0);
93262306a36Sopenharmony_ci		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
93362306a36Sopenharmony_ci		if (!eb_rewin) {
93462306a36Sopenharmony_ci			btrfs_tree_read_unlock(eb);
93562306a36Sopenharmony_ci			free_extent_buffer(eb);
93662306a36Sopenharmony_ci			return NULL;
93762306a36Sopenharmony_ci		}
93862306a36Sopenharmony_ci		btrfs_set_header_bytenr(eb_rewin, eb->start);
93962306a36Sopenharmony_ci		btrfs_set_header_backref_rev(eb_rewin,
94062306a36Sopenharmony_ci					     btrfs_header_backref_rev(eb));
94162306a36Sopenharmony_ci		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
94262306a36Sopenharmony_ci		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
94362306a36Sopenharmony_ci	} else {
94462306a36Sopenharmony_ci		eb_rewin = btrfs_clone_extent_buffer(eb);
94562306a36Sopenharmony_ci		if (!eb_rewin) {
94662306a36Sopenharmony_ci			btrfs_tree_read_unlock(eb);
94762306a36Sopenharmony_ci			free_extent_buffer(eb);
94862306a36Sopenharmony_ci			return NULL;
94962306a36Sopenharmony_ci		}
95062306a36Sopenharmony_ci	}
95162306a36Sopenharmony_ci
95262306a36Sopenharmony_ci	btrfs_tree_read_unlock(eb);
95362306a36Sopenharmony_ci	free_extent_buffer(eb);
95462306a36Sopenharmony_ci
95562306a36Sopenharmony_ci	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
95662306a36Sopenharmony_ci				       eb_rewin, btrfs_header_level(eb_rewin));
95762306a36Sopenharmony_ci	btrfs_tree_read_lock(eb_rewin);
95862306a36Sopenharmony_ci	tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
95962306a36Sopenharmony_ci	WARN_ON(btrfs_header_nritems(eb_rewin) >
96062306a36Sopenharmony_ci		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
96162306a36Sopenharmony_ci
96262306a36Sopenharmony_ci	return eb_rewin;
96362306a36Sopenharmony_ci}
96462306a36Sopenharmony_ci
96562306a36Sopenharmony_ci/*
96662306a36Sopenharmony_ci * Rewind the state of @root's root node to the given @time_seq value.
96762306a36Sopenharmony_ci * If there are no changes, the current root->root_node is returned. If anything
96862306a36Sopenharmony_ci * changed in between, there's a fresh buffer allocated on which the rewind
96962306a36Sopenharmony_ci * operations are done. In any case, the returned buffer is read locked.
97062306a36Sopenharmony_ci * Returns NULL on error (with no locks held).
97162306a36Sopenharmony_ci */
97262306a36Sopenharmony_cistruct extent_buffer *btrfs_get_old_root(struct btrfs_root *root, u64 time_seq)
97362306a36Sopenharmony_ci{
97462306a36Sopenharmony_ci	struct btrfs_fs_info *fs_info = root->fs_info;
97562306a36Sopenharmony_ci	struct tree_mod_elem *tm;
97662306a36Sopenharmony_ci	struct extent_buffer *eb = NULL;
97762306a36Sopenharmony_ci	struct extent_buffer *eb_root;
97862306a36Sopenharmony_ci	u64 eb_root_owner = 0;
97962306a36Sopenharmony_ci	struct extent_buffer *old;
98062306a36Sopenharmony_ci	struct tree_mod_root *old_root = NULL;
98162306a36Sopenharmony_ci	u64 old_generation = 0;
98262306a36Sopenharmony_ci	u64 logical;
98362306a36Sopenharmony_ci	int level;
98462306a36Sopenharmony_ci
98562306a36Sopenharmony_ci	eb_root = btrfs_read_lock_root_node(root);
98662306a36Sopenharmony_ci	tm = tree_mod_log_oldest_root(eb_root, time_seq);
98762306a36Sopenharmony_ci	if (!tm)
98862306a36Sopenharmony_ci		return eb_root;
98962306a36Sopenharmony_ci
99062306a36Sopenharmony_ci	if (tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) {
99162306a36Sopenharmony_ci		old_root = &tm->old_root;
99262306a36Sopenharmony_ci		old_generation = tm->generation;
99362306a36Sopenharmony_ci		logical = old_root->logical;
99462306a36Sopenharmony_ci		level = old_root->level;
99562306a36Sopenharmony_ci	} else {
99662306a36Sopenharmony_ci		logical = eb_root->start;
99762306a36Sopenharmony_ci		level = btrfs_header_level(eb_root);
99862306a36Sopenharmony_ci	}
99962306a36Sopenharmony_ci
100062306a36Sopenharmony_ci	tm = tree_mod_log_search(fs_info, logical, time_seq);
100162306a36Sopenharmony_ci	if (old_root && tm && tm->op != BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
100262306a36Sopenharmony_ci		struct btrfs_tree_parent_check check = { 0 };
100362306a36Sopenharmony_ci
100462306a36Sopenharmony_ci		btrfs_tree_read_unlock(eb_root);
100562306a36Sopenharmony_ci		free_extent_buffer(eb_root);
100662306a36Sopenharmony_ci
100762306a36Sopenharmony_ci		check.level = level;
100862306a36Sopenharmony_ci		check.owner_root = root->root_key.objectid;
100962306a36Sopenharmony_ci
101062306a36Sopenharmony_ci		old = read_tree_block(fs_info, logical, &check);
101162306a36Sopenharmony_ci		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
101262306a36Sopenharmony_ci			if (!IS_ERR(old))
101362306a36Sopenharmony_ci				free_extent_buffer(old);
101462306a36Sopenharmony_ci			btrfs_warn(fs_info,
101562306a36Sopenharmony_ci				   "failed to read tree block %llu from get_old_root",
101662306a36Sopenharmony_ci				   logical);
101762306a36Sopenharmony_ci		} else {
101862306a36Sopenharmony_ci			struct tree_mod_elem *tm2;
101962306a36Sopenharmony_ci
102062306a36Sopenharmony_ci			btrfs_tree_read_lock(old);
102162306a36Sopenharmony_ci			eb = btrfs_clone_extent_buffer(old);
102262306a36Sopenharmony_ci			/*
102362306a36Sopenharmony_ci			 * After the lookup for the most recent tree mod operation
102462306a36Sopenharmony_ci			 * above and before we locked and cloned the extent buffer
102562306a36Sopenharmony_ci			 * 'old', a new tree mod log operation may have been added.
102662306a36Sopenharmony_ci			 * So lookup for a more recent one to make sure the number
102762306a36Sopenharmony_ci			 * of mod log operations we replay is consistent with the
102862306a36Sopenharmony_ci			 * number of items we have in the cloned extent buffer,
102962306a36Sopenharmony_ci			 * otherwise we can hit a BUG_ON when rewinding the extent
103062306a36Sopenharmony_ci			 * buffer.
103162306a36Sopenharmony_ci			 */
103262306a36Sopenharmony_ci			tm2 = tree_mod_log_search(fs_info, logical, time_seq);
103362306a36Sopenharmony_ci			btrfs_tree_read_unlock(old);
103462306a36Sopenharmony_ci			free_extent_buffer(old);
103562306a36Sopenharmony_ci			ASSERT(tm2);
103662306a36Sopenharmony_ci			ASSERT(tm2 == tm || tm2->seq > tm->seq);
103762306a36Sopenharmony_ci			if (!tm2 || tm2->seq < tm->seq) {
103862306a36Sopenharmony_ci				free_extent_buffer(eb);
103962306a36Sopenharmony_ci				return NULL;
104062306a36Sopenharmony_ci			}
104162306a36Sopenharmony_ci			tm = tm2;
104262306a36Sopenharmony_ci		}
104362306a36Sopenharmony_ci	} else if (old_root) {
104462306a36Sopenharmony_ci		eb_root_owner = btrfs_header_owner(eb_root);
104562306a36Sopenharmony_ci		btrfs_tree_read_unlock(eb_root);
104662306a36Sopenharmony_ci		free_extent_buffer(eb_root);
104762306a36Sopenharmony_ci		eb = alloc_dummy_extent_buffer(fs_info, logical);
104862306a36Sopenharmony_ci	} else {
104962306a36Sopenharmony_ci		eb = btrfs_clone_extent_buffer(eb_root);
105062306a36Sopenharmony_ci		btrfs_tree_read_unlock(eb_root);
105162306a36Sopenharmony_ci		free_extent_buffer(eb_root);
105262306a36Sopenharmony_ci	}
105362306a36Sopenharmony_ci
105462306a36Sopenharmony_ci	if (!eb)
105562306a36Sopenharmony_ci		return NULL;
105662306a36Sopenharmony_ci	if (old_root) {
105762306a36Sopenharmony_ci		btrfs_set_header_bytenr(eb, eb->start);
105862306a36Sopenharmony_ci		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
105962306a36Sopenharmony_ci		btrfs_set_header_owner(eb, eb_root_owner);
106062306a36Sopenharmony_ci		btrfs_set_header_level(eb, old_root->level);
106162306a36Sopenharmony_ci		btrfs_set_header_generation(eb, old_generation);
106262306a36Sopenharmony_ci	}
106362306a36Sopenharmony_ci	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
106462306a36Sopenharmony_ci				       btrfs_header_level(eb));
106562306a36Sopenharmony_ci	btrfs_tree_read_lock(eb);
106662306a36Sopenharmony_ci	if (tm)
106762306a36Sopenharmony_ci		tree_mod_log_rewind(fs_info, eb, time_seq, tm);
106862306a36Sopenharmony_ci	else
106962306a36Sopenharmony_ci		WARN_ON(btrfs_header_level(eb) != 0);
107062306a36Sopenharmony_ci	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
107162306a36Sopenharmony_ci
107262306a36Sopenharmony_ci	return eb;
107362306a36Sopenharmony_ci}
107462306a36Sopenharmony_ci
107562306a36Sopenharmony_ciint btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
107662306a36Sopenharmony_ci{
107762306a36Sopenharmony_ci	struct tree_mod_elem *tm;
107862306a36Sopenharmony_ci	int level;
107962306a36Sopenharmony_ci	struct extent_buffer *eb_root = btrfs_root_node(root);
108062306a36Sopenharmony_ci
108162306a36Sopenharmony_ci	tm = tree_mod_log_oldest_root(eb_root, time_seq);
108262306a36Sopenharmony_ci	if (tm && tm->op == BTRFS_MOD_LOG_ROOT_REPLACE)
108362306a36Sopenharmony_ci		level = tm->old_root.level;
108462306a36Sopenharmony_ci	else
108562306a36Sopenharmony_ci		level = btrfs_header_level(eb_root);
108662306a36Sopenharmony_ci
108762306a36Sopenharmony_ci	free_extent_buffer(eb_root);
108862306a36Sopenharmony_ci
108962306a36Sopenharmony_ci	return level;
109062306a36Sopenharmony_ci}
109162306a36Sopenharmony_ci
109262306a36Sopenharmony_ci/*
109362306a36Sopenharmony_ci * Return the lowest sequence number in the tree modification log.
109462306a36Sopenharmony_ci *
109562306a36Sopenharmony_ci * Return the sequence number of the oldest tree modification log user, which
109662306a36Sopenharmony_ci * corresponds to the lowest sequence number of all existing users. If there are
109762306a36Sopenharmony_ci * no users it returns 0.
109862306a36Sopenharmony_ci */
109962306a36Sopenharmony_ciu64 btrfs_tree_mod_log_lowest_seq(struct btrfs_fs_info *fs_info)
110062306a36Sopenharmony_ci{
110162306a36Sopenharmony_ci	u64 ret = 0;
110262306a36Sopenharmony_ci
110362306a36Sopenharmony_ci	read_lock(&fs_info->tree_mod_log_lock);
110462306a36Sopenharmony_ci	if (!list_empty(&fs_info->tree_mod_seq_list)) {
110562306a36Sopenharmony_ci		struct btrfs_seq_list *elem;
110662306a36Sopenharmony_ci
110762306a36Sopenharmony_ci		elem = list_first_entry(&fs_info->tree_mod_seq_list,
110862306a36Sopenharmony_ci					struct btrfs_seq_list, list);
110962306a36Sopenharmony_ci		ret = elem->seq;
111062306a36Sopenharmony_ci	}
111162306a36Sopenharmony_ci	read_unlock(&fs_info->tree_mod_log_lock);
111262306a36Sopenharmony_ci
111362306a36Sopenharmony_ci	return ret;
111462306a36Sopenharmony_ci}
1115