xref: /kernel/linux/linux-6.6/fs/btrfs/tree-checker.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) Qu Wenruo 2017.  All rights reserved.
4 */
5
6/*
7 * The module is used to catch unexpected/corrupted tree block data.
8 * Such behavior can be caused either by a fuzzed image or bugs.
9 *
10 * The objective is to do leaf/node validation checks when tree block is read
11 * from disk, and check *every* possible member, so other code won't
12 * need to checking them again.
13 *
14 * Due to the potential and unwanted damage, every checker needs to be
15 * carefully reviewed otherwise so it does not prevent mount of valid images.
16 */
17
18#include <linux/types.h>
19#include <linux/stddef.h>
20#include <linux/error-injection.h>
21#include "messages.h"
22#include "ctree.h"
23#include "tree-checker.h"
24#include "disk-io.h"
25#include "compression.h"
26#include "volumes.h"
27#include "misc.h"
28#include "fs.h"
29#include "accessors.h"
30#include "file-item.h"
31#include "inode-item.h"
32
33/*
34 * Error message should follow the following format:
35 * corrupt <type>: <identifier>, <reason>[, <bad_value>]
36 *
37 * @type:	leaf or node
38 * @identifier:	the necessary info to locate the leaf/node.
39 * 		It's recommended to decode key.objecitd/offset if it's
40 * 		meaningful.
41 * @reason:	describe the error
42 * @bad_value:	optional, it's recommended to output bad value and its
43 *		expected value (range).
44 *
45 * Since comma is used to separate the components, only space is allowed
46 * inside each component.
47 */
48
49/*
50 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt.
51 * Allows callers to customize the output.
52 */
53__printf(3, 4)
54__cold
55static void generic_err(const struct extent_buffer *eb, int slot,
56			const char *fmt, ...)
57{
58	const struct btrfs_fs_info *fs_info = eb->fs_info;
59	struct va_format vaf;
60	va_list args;
61
62	va_start(args, fmt);
63
64	vaf.fmt = fmt;
65	vaf.va = &args;
66
67	btrfs_crit(fs_info,
68		"corrupt %s: root=%llu block=%llu slot=%d, %pV",
69		btrfs_header_level(eb) == 0 ? "leaf" : "node",
70		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf);
71	va_end(args);
72}
73
74/*
75 * Customized reporter for extent data item, since its key objectid and
76 * offset has its own meaning.
77 */
78__printf(3, 4)
79__cold
80static void file_extent_err(const struct extent_buffer *eb, int slot,
81			    const char *fmt, ...)
82{
83	const struct btrfs_fs_info *fs_info = eb->fs_info;
84	struct btrfs_key key;
85	struct va_format vaf;
86	va_list args;
87
88	btrfs_item_key_to_cpu(eb, &key, slot);
89	va_start(args, fmt);
90
91	vaf.fmt = fmt;
92	vaf.va = &args;
93
94	btrfs_crit(fs_info,
95	"corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV",
96		btrfs_header_level(eb) == 0 ? "leaf" : "node",
97		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
98		key.objectid, key.offset, &vaf);
99	va_end(args);
100}
101
102/*
103 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment
104 * Else return 1
105 */
106#define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment)		      \
107({									      \
108	if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)),      \
109				 (alignment))))				      \
110		file_extent_err((leaf), (slot),				      \
111	"invalid %s for file extent, have %llu, should be aligned to %u",     \
112			(#name), btrfs_file_extent_##name((leaf), (fi)),      \
113			(alignment));					      \
114	(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment)));   \
115})
116
117static u64 file_extent_end(struct extent_buffer *leaf,
118			   struct btrfs_key *key,
119			   struct btrfs_file_extent_item *extent)
120{
121	u64 end;
122	u64 len;
123
124	if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) {
125		len = btrfs_file_extent_ram_bytes(leaf, extent);
126		end = ALIGN(key->offset + len, leaf->fs_info->sectorsize);
127	} else {
128		len = btrfs_file_extent_num_bytes(leaf, extent);
129		end = key->offset + len;
130	}
131	return end;
132}
133
134/*
135 * Customized report for dir_item, the only new important information is
136 * key->objectid, which represents inode number
137 */
138__printf(3, 4)
139__cold
140static void dir_item_err(const struct extent_buffer *eb, int slot,
141			 const char *fmt, ...)
142{
143	const struct btrfs_fs_info *fs_info = eb->fs_info;
144	struct btrfs_key key;
145	struct va_format vaf;
146	va_list args;
147
148	btrfs_item_key_to_cpu(eb, &key, slot);
149	va_start(args, fmt);
150
151	vaf.fmt = fmt;
152	vaf.va = &args;
153
154	btrfs_crit(fs_info,
155		"corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV",
156		btrfs_header_level(eb) == 0 ? "leaf" : "node",
157		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
158		key.objectid, &vaf);
159	va_end(args);
160}
161
162/*
163 * This functions checks prev_key->objectid, to ensure current key and prev_key
164 * share the same objectid as inode number.
165 *
166 * This is to detect missing INODE_ITEM in subvolume trees.
167 *
168 * Return true if everything is OK or we don't need to check.
169 * Return false if anything is wrong.
170 */
171static bool check_prev_ino(struct extent_buffer *leaf,
172			   struct btrfs_key *key, int slot,
173			   struct btrfs_key *prev_key)
174{
175	/* No prev key, skip check */
176	if (slot == 0)
177		return true;
178
179	/* Only these key->types needs to be checked */
180	ASSERT(key->type == BTRFS_XATTR_ITEM_KEY ||
181	       key->type == BTRFS_INODE_REF_KEY ||
182	       key->type == BTRFS_DIR_INDEX_KEY ||
183	       key->type == BTRFS_DIR_ITEM_KEY ||
184	       key->type == BTRFS_EXTENT_DATA_KEY);
185
186	/*
187	 * Only subvolume trees along with their reloc trees need this check.
188	 * Things like log tree doesn't follow this ino requirement.
189	 */
190	if (!is_fstree(btrfs_header_owner(leaf)))
191		return true;
192
193	if (key->objectid == prev_key->objectid)
194		return true;
195
196	/* Error found */
197	dir_item_err(leaf, slot,
198		"invalid previous key objectid, have %llu expect %llu",
199		prev_key->objectid, key->objectid);
200	return false;
201}
202static int check_extent_data_item(struct extent_buffer *leaf,
203				  struct btrfs_key *key, int slot,
204				  struct btrfs_key *prev_key)
205{
206	struct btrfs_fs_info *fs_info = leaf->fs_info;
207	struct btrfs_file_extent_item *fi;
208	u32 sectorsize = fs_info->sectorsize;
209	u32 item_size = btrfs_item_size(leaf, slot);
210	u64 extent_end;
211
212	if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
213		file_extent_err(leaf, slot,
214"unaligned file_offset for file extent, have %llu should be aligned to %u",
215			key->offset, sectorsize);
216		return -EUCLEAN;
217	}
218
219	/*
220	 * Previous key must have the same key->objectid (ino).
221	 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA.
222	 * But if objectids mismatch, it means we have a missing
223	 * INODE_ITEM.
224	 */
225	if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
226		return -EUCLEAN;
227
228	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
229
230	/*
231	 * Make sure the item contains at least inline header, so the file
232	 * extent type is not some garbage.
233	 */
234	if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) {
235		file_extent_err(leaf, slot,
236				"invalid item size, have %u expect [%zu, %u)",
237				item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START,
238				SZ_4K);
239		return -EUCLEAN;
240	}
241	if (unlikely(btrfs_file_extent_type(leaf, fi) >=
242		     BTRFS_NR_FILE_EXTENT_TYPES)) {
243		file_extent_err(leaf, slot,
244		"invalid type for file extent, have %u expect range [0, %u]",
245			btrfs_file_extent_type(leaf, fi),
246			BTRFS_NR_FILE_EXTENT_TYPES - 1);
247		return -EUCLEAN;
248	}
249
250	/*
251	 * Support for new compression/encryption must introduce incompat flag,
252	 * and must be caught in open_ctree().
253	 */
254	if (unlikely(btrfs_file_extent_compression(leaf, fi) >=
255		     BTRFS_NR_COMPRESS_TYPES)) {
256		file_extent_err(leaf, slot,
257	"invalid compression for file extent, have %u expect range [0, %u]",
258			btrfs_file_extent_compression(leaf, fi),
259			BTRFS_NR_COMPRESS_TYPES - 1);
260		return -EUCLEAN;
261	}
262	if (unlikely(btrfs_file_extent_encryption(leaf, fi))) {
263		file_extent_err(leaf, slot,
264			"invalid encryption for file extent, have %u expect 0",
265			btrfs_file_extent_encryption(leaf, fi));
266		return -EUCLEAN;
267	}
268	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
269		/* Inline extent must have 0 as key offset */
270		if (unlikely(key->offset)) {
271			file_extent_err(leaf, slot,
272		"invalid file_offset for inline file extent, have %llu expect 0",
273				key->offset);
274			return -EUCLEAN;
275		}
276
277		/* Compressed inline extent has no on-disk size, skip it */
278		if (btrfs_file_extent_compression(leaf, fi) !=
279		    BTRFS_COMPRESS_NONE)
280			return 0;
281
282		/* Uncompressed inline extent size must match item size */
283		if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START +
284					  btrfs_file_extent_ram_bytes(leaf, fi))) {
285			file_extent_err(leaf, slot,
286	"invalid ram_bytes for uncompressed inline extent, have %u expect %llu",
287				item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START +
288				btrfs_file_extent_ram_bytes(leaf, fi));
289			return -EUCLEAN;
290		}
291		return 0;
292	}
293
294	/* Regular or preallocated extent has fixed item size */
295	if (unlikely(item_size != sizeof(*fi))) {
296		file_extent_err(leaf, slot,
297	"invalid item size for reg/prealloc file extent, have %u expect %zu",
298			item_size, sizeof(*fi));
299		return -EUCLEAN;
300	}
301	if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) ||
302		     CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) ||
303		     CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) ||
304		     CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) ||
305		     CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize)))
306		return -EUCLEAN;
307
308	/* Catch extent end overflow */
309	if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi),
310					key->offset, &extent_end))) {
311		file_extent_err(leaf, slot,
312	"extent end overflow, have file offset %llu extent num bytes %llu",
313				key->offset,
314				btrfs_file_extent_num_bytes(leaf, fi));
315		return -EUCLEAN;
316	}
317
318	/*
319	 * Check that no two consecutive file extent items, in the same leaf,
320	 * present ranges that overlap each other.
321	 */
322	if (slot > 0 &&
323	    prev_key->objectid == key->objectid &&
324	    prev_key->type == BTRFS_EXTENT_DATA_KEY) {
325		struct btrfs_file_extent_item *prev_fi;
326		u64 prev_end;
327
328		prev_fi = btrfs_item_ptr(leaf, slot - 1,
329					 struct btrfs_file_extent_item);
330		prev_end = file_extent_end(leaf, prev_key, prev_fi);
331		if (unlikely(prev_end > key->offset)) {
332			file_extent_err(leaf, slot - 1,
333"file extent end range (%llu) goes beyond start offset (%llu) of the next file extent",
334					prev_end, key->offset);
335			return -EUCLEAN;
336		}
337	}
338
339	return 0;
340}
341
342static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key,
343			   int slot, struct btrfs_key *prev_key)
344{
345	struct btrfs_fs_info *fs_info = leaf->fs_info;
346	u32 sectorsize = fs_info->sectorsize;
347	const u32 csumsize = fs_info->csum_size;
348
349	if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) {
350		generic_err(leaf, slot,
351		"invalid key objectid for csum item, have %llu expect %llu",
352			key->objectid, BTRFS_EXTENT_CSUM_OBJECTID);
353		return -EUCLEAN;
354	}
355	if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
356		generic_err(leaf, slot,
357	"unaligned key offset for csum item, have %llu should be aligned to %u",
358			key->offset, sectorsize);
359		return -EUCLEAN;
360	}
361	if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) {
362		generic_err(leaf, slot,
363	"unaligned item size for csum item, have %u should be aligned to %u",
364			btrfs_item_size(leaf, slot), csumsize);
365		return -EUCLEAN;
366	}
367	if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) {
368		u64 prev_csum_end;
369		u32 prev_item_size;
370
371		prev_item_size = btrfs_item_size(leaf, slot - 1);
372		prev_csum_end = (prev_item_size / csumsize) * sectorsize;
373		prev_csum_end += prev_key->offset;
374		if (unlikely(prev_csum_end > key->offset)) {
375			generic_err(leaf, slot - 1,
376"csum end range (%llu) goes beyond the start range (%llu) of the next csum item",
377				    prev_csum_end, key->offset);
378			return -EUCLEAN;
379		}
380	}
381	return 0;
382}
383
384/* Inode item error output has the same format as dir_item_err() */
385#define inode_item_err(eb, slot, fmt, ...)			\
386	dir_item_err(eb, slot, fmt, __VA_ARGS__)
387
388static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key,
389			   int slot)
390{
391	struct btrfs_key item_key;
392	bool is_inode_item;
393
394	btrfs_item_key_to_cpu(leaf, &item_key, slot);
395	is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY);
396
397	/* For XATTR_ITEM, location key should be all 0 */
398	if (item_key.type == BTRFS_XATTR_ITEM_KEY) {
399		if (unlikely(key->objectid != 0 || key->type != 0 ||
400			     key->offset != 0))
401			return -EUCLEAN;
402		return 0;
403	}
404
405	if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID ||
406		      key->objectid > BTRFS_LAST_FREE_OBJECTID) &&
407		     key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID &&
408		     key->objectid != BTRFS_FREE_INO_OBJECTID)) {
409		if (is_inode_item) {
410			generic_err(leaf, slot,
411	"invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
412				key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
413				BTRFS_FIRST_FREE_OBJECTID,
414				BTRFS_LAST_FREE_OBJECTID,
415				BTRFS_FREE_INO_OBJECTID);
416		} else {
417			dir_item_err(leaf, slot,
418"invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
419				key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
420				BTRFS_FIRST_FREE_OBJECTID,
421				BTRFS_LAST_FREE_OBJECTID,
422				BTRFS_FREE_INO_OBJECTID);
423		}
424		return -EUCLEAN;
425	}
426	if (unlikely(key->offset != 0)) {
427		if (is_inode_item)
428			inode_item_err(leaf, slot,
429				       "invalid key offset: has %llu expect 0",
430				       key->offset);
431		else
432			dir_item_err(leaf, slot,
433				"invalid location key offset:has %llu expect 0",
434				key->offset);
435		return -EUCLEAN;
436	}
437	return 0;
438}
439
440static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key,
441			  int slot)
442{
443	struct btrfs_key item_key;
444	bool is_root_item;
445
446	btrfs_item_key_to_cpu(leaf, &item_key, slot);
447	is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY);
448
449	/*
450	 * Bad rootid for reloc trees.
451	 *
452	 * Reloc trees are only for subvolume trees, other trees only need
453	 * to be COWed to be relocated.
454	 */
455	if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
456		     !is_fstree(key->offset))) {
457		generic_err(leaf, slot,
458		"invalid reloc tree for root %lld, root id is not a subvolume tree",
459			    key->offset);
460		return -EUCLEAN;
461	}
462
463	/* No such tree id */
464	if (unlikely(key->objectid == 0)) {
465		if (is_root_item)
466			generic_err(leaf, slot, "invalid root id 0");
467		else
468			dir_item_err(leaf, slot,
469				     "invalid location key root id 0");
470		return -EUCLEAN;
471	}
472
473	/* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */
474	if (unlikely(!is_fstree(key->objectid) && !is_root_item)) {
475		dir_item_err(leaf, slot,
476		"invalid location key objectid, have %llu expect [%llu, %llu]",
477				key->objectid, BTRFS_FIRST_FREE_OBJECTID,
478				BTRFS_LAST_FREE_OBJECTID);
479		return -EUCLEAN;
480	}
481
482	/*
483	 * ROOT_ITEM with non-zero offset means this is a snapshot, created at
484	 * @offset transid.
485	 * Furthermore, for location key in DIR_ITEM, its offset is always -1.
486	 *
487	 * So here we only check offset for reloc tree whose key->offset must
488	 * be a valid tree.
489	 */
490	if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
491		     key->offset == 0)) {
492		generic_err(leaf, slot, "invalid root id 0 for reloc tree");
493		return -EUCLEAN;
494	}
495	return 0;
496}
497
498static int check_dir_item(struct extent_buffer *leaf,
499			  struct btrfs_key *key, struct btrfs_key *prev_key,
500			  int slot)
501{
502	struct btrfs_fs_info *fs_info = leaf->fs_info;
503	struct btrfs_dir_item *di;
504	u32 item_size = btrfs_item_size(leaf, slot);
505	u32 cur = 0;
506
507	if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
508		return -EUCLEAN;
509
510	di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
511	while (cur < item_size) {
512		struct btrfs_key location_key;
513		u32 name_len;
514		u32 data_len;
515		u32 max_name_len;
516		u32 total_size;
517		u32 name_hash;
518		u8 dir_type;
519		int ret;
520
521		/* header itself should not cross item boundary */
522		if (unlikely(cur + sizeof(*di) > item_size)) {
523			dir_item_err(leaf, slot,
524		"dir item header crosses item boundary, have %zu boundary %u",
525				cur + sizeof(*di), item_size);
526			return -EUCLEAN;
527		}
528
529		/* Location key check */
530		btrfs_dir_item_key_to_cpu(leaf, di, &location_key);
531		if (location_key.type == BTRFS_ROOT_ITEM_KEY) {
532			ret = check_root_key(leaf, &location_key, slot);
533			if (unlikely(ret < 0))
534				return ret;
535		} else if (location_key.type == BTRFS_INODE_ITEM_KEY ||
536			   location_key.type == 0) {
537			ret = check_inode_key(leaf, &location_key, slot);
538			if (unlikely(ret < 0))
539				return ret;
540		} else {
541			dir_item_err(leaf, slot,
542			"invalid location key type, have %u, expect %u or %u",
543				     location_key.type, BTRFS_ROOT_ITEM_KEY,
544				     BTRFS_INODE_ITEM_KEY);
545			return -EUCLEAN;
546		}
547
548		/* dir type check */
549		dir_type = btrfs_dir_ftype(leaf, di);
550		if (unlikely(dir_type >= BTRFS_FT_MAX)) {
551			dir_item_err(leaf, slot,
552			"invalid dir item type, have %u expect [0, %u)",
553				dir_type, BTRFS_FT_MAX);
554			return -EUCLEAN;
555		}
556
557		if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY &&
558			     dir_type != BTRFS_FT_XATTR)) {
559			dir_item_err(leaf, slot,
560		"invalid dir item type for XATTR key, have %u expect %u",
561				dir_type, BTRFS_FT_XATTR);
562			return -EUCLEAN;
563		}
564		if (unlikely(dir_type == BTRFS_FT_XATTR &&
565			     key->type != BTRFS_XATTR_ITEM_KEY)) {
566			dir_item_err(leaf, slot,
567			"xattr dir type found for non-XATTR key");
568			return -EUCLEAN;
569		}
570		if (dir_type == BTRFS_FT_XATTR)
571			max_name_len = XATTR_NAME_MAX;
572		else
573			max_name_len = BTRFS_NAME_LEN;
574
575		/* Name/data length check */
576		name_len = btrfs_dir_name_len(leaf, di);
577		data_len = btrfs_dir_data_len(leaf, di);
578		if (unlikely(name_len > max_name_len)) {
579			dir_item_err(leaf, slot,
580			"dir item name len too long, have %u max %u",
581				name_len, max_name_len);
582			return -EUCLEAN;
583		}
584		if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) {
585			dir_item_err(leaf, slot,
586			"dir item name and data len too long, have %u max %u",
587				name_len + data_len,
588				BTRFS_MAX_XATTR_SIZE(fs_info));
589			return -EUCLEAN;
590		}
591
592		if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) {
593			dir_item_err(leaf, slot,
594			"dir item with invalid data len, have %u expect 0",
595				data_len);
596			return -EUCLEAN;
597		}
598
599		total_size = sizeof(*di) + name_len + data_len;
600
601		/* header and name/data should not cross item boundary */
602		if (unlikely(cur + total_size > item_size)) {
603			dir_item_err(leaf, slot,
604		"dir item data crosses item boundary, have %u boundary %u",
605				cur + total_size, item_size);
606			return -EUCLEAN;
607		}
608
609		/*
610		 * Special check for XATTR/DIR_ITEM, as key->offset is name
611		 * hash, should match its name
612		 */
613		if (key->type == BTRFS_DIR_ITEM_KEY ||
614		    key->type == BTRFS_XATTR_ITEM_KEY) {
615			char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)];
616
617			read_extent_buffer(leaf, namebuf,
618					(unsigned long)(di + 1), name_len);
619			name_hash = btrfs_name_hash(namebuf, name_len);
620			if (unlikely(key->offset != name_hash)) {
621				dir_item_err(leaf, slot,
622		"name hash mismatch with key, have 0x%016x expect 0x%016llx",
623					name_hash, key->offset);
624				return -EUCLEAN;
625			}
626		}
627		cur += total_size;
628		di = (struct btrfs_dir_item *)((void *)di + total_size);
629	}
630	return 0;
631}
632
633__printf(3, 4)
634__cold
635static void block_group_err(const struct extent_buffer *eb, int slot,
636			    const char *fmt, ...)
637{
638	const struct btrfs_fs_info *fs_info = eb->fs_info;
639	struct btrfs_key key;
640	struct va_format vaf;
641	va_list args;
642
643	btrfs_item_key_to_cpu(eb, &key, slot);
644	va_start(args, fmt);
645
646	vaf.fmt = fmt;
647	vaf.va = &args;
648
649	btrfs_crit(fs_info,
650	"corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV",
651		btrfs_header_level(eb) == 0 ? "leaf" : "node",
652		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
653		key.objectid, key.offset, &vaf);
654	va_end(args);
655}
656
657static int check_block_group_item(struct extent_buffer *leaf,
658				  struct btrfs_key *key, int slot)
659{
660	struct btrfs_fs_info *fs_info = leaf->fs_info;
661	struct btrfs_block_group_item bgi;
662	u32 item_size = btrfs_item_size(leaf, slot);
663	u64 chunk_objectid;
664	u64 flags;
665	u64 type;
666
667	/*
668	 * Here we don't really care about alignment since extent allocator can
669	 * handle it.  We care more about the size.
670	 */
671	if (unlikely(key->offset == 0)) {
672		block_group_err(leaf, slot,
673				"invalid block group size 0");
674		return -EUCLEAN;
675	}
676
677	if (unlikely(item_size != sizeof(bgi))) {
678		block_group_err(leaf, slot,
679			"invalid item size, have %u expect %zu",
680				item_size, sizeof(bgi));
681		return -EUCLEAN;
682	}
683
684	read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
685			   sizeof(bgi));
686	chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi);
687	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
688		/*
689		 * We don't init the nr_global_roots until we load the global
690		 * roots, so this could be 0 at mount time.  If it's 0 we'll
691		 * just assume we're fine, and later we'll check against our
692		 * actual value.
693		 */
694		if (unlikely(fs_info->nr_global_roots &&
695			     chunk_objectid >= fs_info->nr_global_roots)) {
696			block_group_err(leaf, slot,
697	"invalid block group global root id, have %llu, needs to be <= %llu",
698					chunk_objectid,
699					fs_info->nr_global_roots);
700			return -EUCLEAN;
701		}
702	} else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
703		block_group_err(leaf, slot,
704		"invalid block group chunk objectid, have %llu expect %llu",
705				btrfs_stack_block_group_chunk_objectid(&bgi),
706				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
707		return -EUCLEAN;
708	}
709
710	if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) {
711		block_group_err(leaf, slot,
712			"invalid block group used, have %llu expect [0, %llu)",
713				btrfs_stack_block_group_used(&bgi), key->offset);
714		return -EUCLEAN;
715	}
716
717	flags = btrfs_stack_block_group_flags(&bgi);
718	if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) {
719		block_group_err(leaf, slot,
720"invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set",
721			flags & BTRFS_BLOCK_GROUP_PROFILE_MASK,
722			hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK));
723		return -EUCLEAN;
724	}
725
726	type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
727	if (unlikely(type != BTRFS_BLOCK_GROUP_DATA &&
728		     type != BTRFS_BLOCK_GROUP_METADATA &&
729		     type != BTRFS_BLOCK_GROUP_SYSTEM &&
730		     type != (BTRFS_BLOCK_GROUP_METADATA |
731			      BTRFS_BLOCK_GROUP_DATA))) {
732		block_group_err(leaf, slot,
733"invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx",
734			type, hweight64(type),
735			BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA,
736			BTRFS_BLOCK_GROUP_SYSTEM,
737			BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA);
738		return -EUCLEAN;
739	}
740	return 0;
741}
742
743__printf(4, 5)
744__cold
745static void chunk_err(const struct extent_buffer *leaf,
746		      const struct btrfs_chunk *chunk, u64 logical,
747		      const char *fmt, ...)
748{
749	const struct btrfs_fs_info *fs_info = leaf->fs_info;
750	bool is_sb;
751	struct va_format vaf;
752	va_list args;
753	int i;
754	int slot = -1;
755
756	/* Only superblock eb is able to have such small offset */
757	is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET);
758
759	if (!is_sb) {
760		/*
761		 * Get the slot number by iterating through all slots, this
762		 * would provide better readability.
763		 */
764		for (i = 0; i < btrfs_header_nritems(leaf); i++) {
765			if (btrfs_item_ptr_offset(leaf, i) ==
766					(unsigned long)chunk) {
767				slot = i;
768				break;
769			}
770		}
771	}
772	va_start(args, fmt);
773	vaf.fmt = fmt;
774	vaf.va = &args;
775
776	if (is_sb)
777		btrfs_crit(fs_info,
778		"corrupt superblock syschunk array: chunk_start=%llu, %pV",
779			   logical, &vaf);
780	else
781		btrfs_crit(fs_info,
782	"corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV",
783			   BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot,
784			   logical, &vaf);
785	va_end(args);
786}
787
788/*
789 * The common chunk check which could also work on super block sys chunk array.
790 *
791 * Return -EUCLEAN if anything is corrupted.
792 * Return 0 if everything is OK.
793 */
794int btrfs_check_chunk_valid(struct extent_buffer *leaf,
795			    struct btrfs_chunk *chunk, u64 logical)
796{
797	struct btrfs_fs_info *fs_info = leaf->fs_info;
798	u64 length;
799	u64 chunk_end;
800	u64 stripe_len;
801	u16 num_stripes;
802	u16 sub_stripes;
803	u64 type;
804	u64 features;
805	bool mixed = false;
806	int raid_index;
807	int nparity;
808	int ncopies;
809
810	length = btrfs_chunk_length(leaf, chunk);
811	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
812	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
813	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
814	type = btrfs_chunk_type(leaf, chunk);
815	raid_index = btrfs_bg_flags_to_raid_index(type);
816	ncopies = btrfs_raid_array[raid_index].ncopies;
817	nparity = btrfs_raid_array[raid_index].nparity;
818
819	if (unlikely(!num_stripes)) {
820		chunk_err(leaf, chunk, logical,
821			  "invalid chunk num_stripes, have %u", num_stripes);
822		return -EUCLEAN;
823	}
824	if (unlikely(num_stripes < ncopies)) {
825		chunk_err(leaf, chunk, logical,
826			  "invalid chunk num_stripes < ncopies, have %u < %d",
827			  num_stripes, ncopies);
828		return -EUCLEAN;
829	}
830	if (unlikely(nparity && num_stripes == nparity)) {
831		chunk_err(leaf, chunk, logical,
832			  "invalid chunk num_stripes == nparity, have %u == %d",
833			  num_stripes, nparity);
834		return -EUCLEAN;
835	}
836	if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) {
837		chunk_err(leaf, chunk, logical,
838		"invalid chunk logical, have %llu should aligned to %u",
839			  logical, fs_info->sectorsize);
840		return -EUCLEAN;
841	}
842	if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) {
843		chunk_err(leaf, chunk, logical,
844			  "invalid chunk sectorsize, have %u expect %u",
845			  btrfs_chunk_sector_size(leaf, chunk),
846			  fs_info->sectorsize);
847		return -EUCLEAN;
848	}
849	if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) {
850		chunk_err(leaf, chunk, logical,
851			  "invalid chunk length, have %llu", length);
852		return -EUCLEAN;
853	}
854	if (unlikely(check_add_overflow(logical, length, &chunk_end))) {
855		chunk_err(leaf, chunk, logical,
856"invalid chunk logical start and length, have logical start %llu length %llu",
857			  logical, length);
858		return -EUCLEAN;
859	}
860	if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) {
861		chunk_err(leaf, chunk, logical,
862			  "invalid chunk stripe length: %llu",
863			  stripe_len);
864		return -EUCLEAN;
865	}
866	/*
867	 * We artificially limit the chunk size, so that the number of stripes
868	 * inside a chunk can be fit into a U32.  The current limit (256G) is
869	 * way too large for real world usage anyway, and it's also much larger
870	 * than our existing limit (10G).
871	 *
872	 * Thus it should be a good way to catch obvious bitflips.
873	 */
874	if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) {
875		chunk_err(leaf, chunk, logical,
876			  "chunk length too large: have %llu limit %llu",
877			  length, btrfs_stripe_nr_to_offset(U32_MAX));
878		return -EUCLEAN;
879	}
880	if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
881			      BTRFS_BLOCK_GROUP_PROFILE_MASK))) {
882		chunk_err(leaf, chunk, logical,
883			  "unrecognized chunk type: 0x%llx",
884			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
885			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
886			  btrfs_chunk_type(leaf, chunk));
887		return -EUCLEAN;
888	}
889
890	if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
891		     (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) {
892		chunk_err(leaf, chunk, logical,
893		"invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
894			  type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
895		return -EUCLEAN;
896	}
897	if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) {
898		chunk_err(leaf, chunk, logical,
899	"missing chunk type flag, have 0x%llx one bit must be set in 0x%llx",
900			  type, BTRFS_BLOCK_GROUP_TYPE_MASK);
901		return -EUCLEAN;
902	}
903
904	if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
905		     (type & (BTRFS_BLOCK_GROUP_METADATA |
906			      BTRFS_BLOCK_GROUP_DATA)))) {
907		chunk_err(leaf, chunk, logical,
908			  "system chunk with data or metadata type: 0x%llx",
909			  type);
910		return -EUCLEAN;
911	}
912
913	features = btrfs_super_incompat_flags(fs_info->super_copy);
914	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
915		mixed = true;
916
917	if (!mixed) {
918		if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) &&
919			     (type & BTRFS_BLOCK_GROUP_DATA))) {
920			chunk_err(leaf, chunk, logical,
921			"mixed chunk type in non-mixed mode: 0x%llx", type);
922			return -EUCLEAN;
923		}
924	}
925
926	if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 &&
927		      sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) ||
928		     (type & BTRFS_BLOCK_GROUP_RAID1 &&
929		      num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) ||
930		     (type & BTRFS_BLOCK_GROUP_RAID1C3 &&
931		      num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) ||
932		     (type & BTRFS_BLOCK_GROUP_RAID1C4 &&
933		      num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) ||
934		     (type & BTRFS_BLOCK_GROUP_RAID5 &&
935		      num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) ||
936		     (type & BTRFS_BLOCK_GROUP_RAID6 &&
937		      num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) ||
938		     (type & BTRFS_BLOCK_GROUP_DUP &&
939		      num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) ||
940		     ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
941		      num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) {
942		chunk_err(leaf, chunk, logical,
943			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
944			num_stripes, sub_stripes,
945			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
946		return -EUCLEAN;
947	}
948
949	return 0;
950}
951
952/*
953 * Enhanced version of chunk item checker.
954 *
955 * The common btrfs_check_chunk_valid() doesn't check item size since it needs
956 * to work on super block sys_chunk_array which doesn't have full item ptr.
957 */
958static int check_leaf_chunk_item(struct extent_buffer *leaf,
959				 struct btrfs_chunk *chunk,
960				 struct btrfs_key *key, int slot)
961{
962	int num_stripes;
963
964	if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) {
965		chunk_err(leaf, chunk, key->offset,
966			"invalid chunk item size: have %u expect [%zu, %u)",
967			btrfs_item_size(leaf, slot),
968			sizeof(struct btrfs_chunk),
969			BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
970		return -EUCLEAN;
971	}
972
973	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
974	/* Let btrfs_check_chunk_valid() handle this error type */
975	if (num_stripes == 0)
976		goto out;
977
978	if (unlikely(btrfs_chunk_item_size(num_stripes) !=
979		     btrfs_item_size(leaf, slot))) {
980		chunk_err(leaf, chunk, key->offset,
981			"invalid chunk item size: have %u expect %lu",
982			btrfs_item_size(leaf, slot),
983			btrfs_chunk_item_size(num_stripes));
984		return -EUCLEAN;
985	}
986out:
987	return btrfs_check_chunk_valid(leaf, chunk, key->offset);
988}
989
990__printf(3, 4)
991__cold
992static void dev_item_err(const struct extent_buffer *eb, int slot,
993			 const char *fmt, ...)
994{
995	struct btrfs_key key;
996	struct va_format vaf;
997	va_list args;
998
999	btrfs_item_key_to_cpu(eb, &key, slot);
1000	va_start(args, fmt);
1001
1002	vaf.fmt = fmt;
1003	vaf.va = &args;
1004
1005	btrfs_crit(eb->fs_info,
1006	"corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV",
1007		btrfs_header_level(eb) == 0 ? "leaf" : "node",
1008		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
1009		key.objectid, &vaf);
1010	va_end(args);
1011}
1012
1013static int check_dev_item(struct extent_buffer *leaf,
1014			  struct btrfs_key *key, int slot)
1015{
1016	struct btrfs_dev_item *ditem;
1017	const u32 item_size = btrfs_item_size(leaf, slot);
1018
1019	if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) {
1020		dev_item_err(leaf, slot,
1021			     "invalid objectid: has=%llu expect=%llu",
1022			     key->objectid, BTRFS_DEV_ITEMS_OBJECTID);
1023		return -EUCLEAN;
1024	}
1025
1026	if (unlikely(item_size != sizeof(*ditem))) {
1027		dev_item_err(leaf, slot, "invalid item size: has %u expect %zu",
1028			     item_size, sizeof(*ditem));
1029		return -EUCLEAN;
1030	}
1031
1032	ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item);
1033	if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) {
1034		dev_item_err(leaf, slot,
1035			     "devid mismatch: key has=%llu item has=%llu",
1036			     key->offset, btrfs_device_id(leaf, ditem));
1037		return -EUCLEAN;
1038	}
1039
1040	/*
1041	 * For device total_bytes, we don't have reliable way to check it, as
1042	 * it can be 0 for device removal. Device size check can only be done
1043	 * by dev extents check.
1044	 */
1045	if (unlikely(btrfs_device_bytes_used(leaf, ditem) >
1046		     btrfs_device_total_bytes(leaf, ditem))) {
1047		dev_item_err(leaf, slot,
1048			     "invalid bytes used: have %llu expect [0, %llu]",
1049			     btrfs_device_bytes_used(leaf, ditem),
1050			     btrfs_device_total_bytes(leaf, ditem));
1051		return -EUCLEAN;
1052	}
1053	/*
1054	 * Remaining members like io_align/type/gen/dev_group aren't really
1055	 * utilized.  Skip them to make later usage of them easier.
1056	 */
1057	return 0;
1058}
1059
1060static int check_inode_item(struct extent_buffer *leaf,
1061			    struct btrfs_key *key, int slot)
1062{
1063	struct btrfs_fs_info *fs_info = leaf->fs_info;
1064	struct btrfs_inode_item *iitem;
1065	u64 super_gen = btrfs_super_generation(fs_info->super_copy);
1066	u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777);
1067	const u32 item_size = btrfs_item_size(leaf, slot);
1068	u32 mode;
1069	int ret;
1070	u32 flags;
1071	u32 ro_flags;
1072
1073	ret = check_inode_key(leaf, key, slot);
1074	if (unlikely(ret < 0))
1075		return ret;
1076
1077	if (unlikely(item_size != sizeof(*iitem))) {
1078		generic_err(leaf, slot, "invalid item size: has %u expect %zu",
1079			    item_size, sizeof(*iitem));
1080		return -EUCLEAN;
1081	}
1082
1083	iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item);
1084
1085	/* Here we use super block generation + 1 to handle log tree */
1086	if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) {
1087		inode_item_err(leaf, slot,
1088			"invalid inode generation: has %llu expect (0, %llu]",
1089			       btrfs_inode_generation(leaf, iitem),
1090			       super_gen + 1);
1091		return -EUCLEAN;
1092	}
1093	/* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */
1094	if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) {
1095		inode_item_err(leaf, slot,
1096			"invalid inode transid: has %llu expect [0, %llu]",
1097			       btrfs_inode_transid(leaf, iitem), super_gen + 1);
1098		return -EUCLEAN;
1099	}
1100
1101	/*
1102	 * For size and nbytes it's better not to be too strict, as for dir
1103	 * item its size/nbytes can easily get wrong, but doesn't affect
1104	 * anything in the fs. So here we skip the check.
1105	 */
1106	mode = btrfs_inode_mode(leaf, iitem);
1107	if (unlikely(mode & ~valid_mask)) {
1108		inode_item_err(leaf, slot,
1109			       "unknown mode bit detected: 0x%x",
1110			       mode & ~valid_mask);
1111		return -EUCLEAN;
1112	}
1113
1114	/*
1115	 * S_IFMT is not bit mapped so we can't completely rely on
1116	 * is_power_of_2/has_single_bit_set, but it can save us from checking
1117	 * FIFO/CHR/DIR/REG.  Only needs to check BLK, LNK and SOCKS
1118	 */
1119	if (!has_single_bit_set(mode & S_IFMT)) {
1120		if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) {
1121			inode_item_err(leaf, slot,
1122			"invalid mode: has 0%o expect valid S_IF* bit(s)",
1123				       mode & S_IFMT);
1124			return -EUCLEAN;
1125		}
1126	}
1127	if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) {
1128		inode_item_err(leaf, slot,
1129		       "invalid nlink: has %u expect no more than 1 for dir",
1130			btrfs_inode_nlink(leaf, iitem));
1131		return -EUCLEAN;
1132	}
1133	btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags);
1134	if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) {
1135		inode_item_err(leaf, slot,
1136			       "unknown incompat flags detected: 0x%x", flags);
1137		return -EUCLEAN;
1138	}
1139	if (unlikely(!sb_rdonly(fs_info->sb) &&
1140		     (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) {
1141		inode_item_err(leaf, slot,
1142			"unknown ro-compat flags detected on writeable mount: 0x%x",
1143			ro_flags);
1144		return -EUCLEAN;
1145	}
1146	return 0;
1147}
1148
1149static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key,
1150			   int slot)
1151{
1152	struct btrfs_fs_info *fs_info = leaf->fs_info;
1153	struct btrfs_root_item ri = { 0 };
1154	const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY |
1155				     BTRFS_ROOT_SUBVOL_DEAD;
1156	int ret;
1157
1158	ret = check_root_key(leaf, key, slot);
1159	if (unlikely(ret < 0))
1160		return ret;
1161
1162	if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) &&
1163		     btrfs_item_size(leaf, slot) !=
1164		     btrfs_legacy_root_item_size())) {
1165		generic_err(leaf, slot,
1166			    "invalid root item size, have %u expect %zu or %u",
1167			    btrfs_item_size(leaf, slot), sizeof(ri),
1168			    btrfs_legacy_root_item_size());
1169		return -EUCLEAN;
1170	}
1171
1172	/*
1173	 * For legacy root item, the members starting at generation_v2 will be
1174	 * all filled with 0.
1175	 * And since we allow geneartion_v2 as 0, it will still pass the check.
1176	 */
1177	read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot),
1178			   btrfs_item_size(leaf, slot));
1179
1180	/* Generation related */
1181	if (unlikely(btrfs_root_generation(&ri) >
1182		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1183		generic_err(leaf, slot,
1184			"invalid root generation, have %llu expect (0, %llu]",
1185			    btrfs_root_generation(&ri),
1186			    btrfs_super_generation(fs_info->super_copy) + 1);
1187		return -EUCLEAN;
1188	}
1189	if (unlikely(btrfs_root_generation_v2(&ri) >
1190		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1191		generic_err(leaf, slot,
1192		"invalid root v2 generation, have %llu expect (0, %llu]",
1193			    btrfs_root_generation_v2(&ri),
1194			    btrfs_super_generation(fs_info->super_copy) + 1);
1195		return -EUCLEAN;
1196	}
1197	if (unlikely(btrfs_root_last_snapshot(&ri) >
1198		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1199		generic_err(leaf, slot,
1200		"invalid root last_snapshot, have %llu expect (0, %llu]",
1201			    btrfs_root_last_snapshot(&ri),
1202			    btrfs_super_generation(fs_info->super_copy) + 1);
1203		return -EUCLEAN;
1204	}
1205
1206	/* Alignment and level check */
1207	if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) {
1208		generic_err(leaf, slot,
1209		"invalid root bytenr, have %llu expect to be aligned to %u",
1210			    btrfs_root_bytenr(&ri), fs_info->sectorsize);
1211		return -EUCLEAN;
1212	}
1213	if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) {
1214		generic_err(leaf, slot,
1215			    "invalid root level, have %u expect [0, %u]",
1216			    btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1);
1217		return -EUCLEAN;
1218	}
1219	if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) {
1220		generic_err(leaf, slot,
1221			    "invalid root level, have %u expect [0, %u]",
1222			    btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1);
1223		return -EUCLEAN;
1224	}
1225
1226	/* Flags check */
1227	if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) {
1228		generic_err(leaf, slot,
1229			    "invalid root flags, have 0x%llx expect mask 0x%llx",
1230			    btrfs_root_flags(&ri), valid_root_flags);
1231		return -EUCLEAN;
1232	}
1233	return 0;
1234}
1235
1236__printf(3,4)
1237__cold
1238static void extent_err(const struct extent_buffer *eb, int slot,
1239		       const char *fmt, ...)
1240{
1241	struct btrfs_key key;
1242	struct va_format vaf;
1243	va_list args;
1244	u64 bytenr;
1245	u64 len;
1246
1247	btrfs_item_key_to_cpu(eb, &key, slot);
1248	bytenr = key.objectid;
1249	if (key.type == BTRFS_METADATA_ITEM_KEY ||
1250	    key.type == BTRFS_TREE_BLOCK_REF_KEY ||
1251	    key.type == BTRFS_SHARED_BLOCK_REF_KEY)
1252		len = eb->fs_info->nodesize;
1253	else
1254		len = key.offset;
1255	va_start(args, fmt);
1256
1257	vaf.fmt = fmt;
1258	vaf.va = &args;
1259
1260	btrfs_crit(eb->fs_info,
1261	"corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV",
1262		btrfs_header_level(eb) == 0 ? "leaf" : "node",
1263		eb->start, slot, bytenr, len, &vaf);
1264	va_end(args);
1265}
1266
1267static int check_extent_item(struct extent_buffer *leaf,
1268			     struct btrfs_key *key, int slot,
1269			     struct btrfs_key *prev_key)
1270{
1271	struct btrfs_fs_info *fs_info = leaf->fs_info;
1272	struct btrfs_extent_item *ei;
1273	bool is_tree_block = false;
1274	unsigned long ptr;	/* Current pointer inside inline refs */
1275	unsigned long end;	/* Extent item end */
1276	const u32 item_size = btrfs_item_size(leaf, slot);
1277	u64 flags;
1278	u64 generation;
1279	u64 total_refs;		/* Total refs in btrfs_extent_item */
1280	u64 inline_refs = 0;	/* found total inline refs */
1281
1282	if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1283		     !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) {
1284		generic_err(leaf, slot,
1285"invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled");
1286		return -EUCLEAN;
1287	}
1288	/* key->objectid is the bytenr for both key types */
1289	if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) {
1290		generic_err(leaf, slot,
1291		"invalid key objectid, have %llu expect to be aligned to %u",
1292			   key->objectid, fs_info->sectorsize);
1293		return -EUCLEAN;
1294	}
1295
1296	/* key->offset is tree level for METADATA_ITEM_KEY */
1297	if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1298		     key->offset >= BTRFS_MAX_LEVEL)) {
1299		extent_err(leaf, slot,
1300			   "invalid tree level, have %llu expect [0, %u]",
1301			   key->offset, BTRFS_MAX_LEVEL - 1);
1302		return -EUCLEAN;
1303	}
1304
1305	/*
1306	 * EXTENT/METADATA_ITEM consists of:
1307	 * 1) One btrfs_extent_item
1308	 *    Records the total refs, type and generation of the extent.
1309	 *
1310	 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only)
1311	 *    Records the first key and level of the tree block.
1312	 *
1313	 * 2) Zero or more btrfs_extent_inline_ref(s)
1314	 *    Each inline ref has one btrfs_extent_inline_ref shows:
1315	 *    2.1) The ref type, one of the 4
1316	 *         TREE_BLOCK_REF	Tree block only
1317	 *         SHARED_BLOCK_REF	Tree block only
1318	 *         EXTENT_DATA_REF	Data only
1319	 *         SHARED_DATA_REF	Data only
1320	 *    2.2) Ref type specific data
1321	 *         Either using btrfs_extent_inline_ref::offset, or specific
1322	 *         data structure.
1323	 */
1324	if (unlikely(item_size < sizeof(*ei))) {
1325		extent_err(leaf, slot,
1326			   "invalid item size, have %u expect [%zu, %u)",
1327			   item_size, sizeof(*ei),
1328			   BTRFS_LEAF_DATA_SIZE(fs_info));
1329		return -EUCLEAN;
1330	}
1331	end = item_size + btrfs_item_ptr_offset(leaf, slot);
1332
1333	/* Checks against extent_item */
1334	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1335	flags = btrfs_extent_flags(leaf, ei);
1336	total_refs = btrfs_extent_refs(leaf, ei);
1337	generation = btrfs_extent_generation(leaf, ei);
1338	if (unlikely(generation >
1339		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1340		extent_err(leaf, slot,
1341			   "invalid generation, have %llu expect (0, %llu]",
1342			   generation,
1343			   btrfs_super_generation(fs_info->super_copy) + 1);
1344		return -EUCLEAN;
1345	}
1346	if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA |
1347						  BTRFS_EXTENT_FLAG_TREE_BLOCK)))) {
1348		extent_err(leaf, slot,
1349		"invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx",
1350			flags, BTRFS_EXTENT_FLAG_DATA |
1351			BTRFS_EXTENT_FLAG_TREE_BLOCK);
1352		return -EUCLEAN;
1353	}
1354	is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK);
1355	if (is_tree_block) {
1356		if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY &&
1357			     key->offset != fs_info->nodesize)) {
1358			extent_err(leaf, slot,
1359				   "invalid extent length, have %llu expect %u",
1360				   key->offset, fs_info->nodesize);
1361			return -EUCLEAN;
1362		}
1363	} else {
1364		if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) {
1365			extent_err(leaf, slot,
1366			"invalid key type, have %u expect %u for data backref",
1367				   key->type, BTRFS_EXTENT_ITEM_KEY);
1368			return -EUCLEAN;
1369		}
1370		if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) {
1371			extent_err(leaf, slot,
1372			"invalid extent length, have %llu expect aligned to %u",
1373				   key->offset, fs_info->sectorsize);
1374			return -EUCLEAN;
1375		}
1376		if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1377			extent_err(leaf, slot,
1378			"invalid extent flag, data has full backref set");
1379			return -EUCLEAN;
1380		}
1381	}
1382	ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1);
1383
1384	/* Check the special case of btrfs_tree_block_info */
1385	if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) {
1386		struct btrfs_tree_block_info *info;
1387
1388		info = (struct btrfs_tree_block_info *)ptr;
1389		if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) {
1390			extent_err(leaf, slot,
1391			"invalid tree block info level, have %u expect [0, %u]",
1392				   btrfs_tree_block_level(leaf, info),
1393				   BTRFS_MAX_LEVEL - 1);
1394			return -EUCLEAN;
1395		}
1396		ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1);
1397	}
1398
1399	/* Check inline refs */
1400	while (ptr < end) {
1401		struct btrfs_extent_inline_ref *iref;
1402		struct btrfs_extent_data_ref *dref;
1403		struct btrfs_shared_data_ref *sref;
1404		u64 dref_offset;
1405		u64 inline_offset;
1406		u8 inline_type;
1407
1408		if (unlikely(ptr + sizeof(*iref) > end)) {
1409			extent_err(leaf, slot,
1410"inline ref item overflows extent item, ptr %lu iref size %zu end %lu",
1411				   ptr, sizeof(*iref), end);
1412			return -EUCLEAN;
1413		}
1414		iref = (struct btrfs_extent_inline_ref *)ptr;
1415		inline_type = btrfs_extent_inline_ref_type(leaf, iref);
1416		inline_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1417		if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) {
1418			extent_err(leaf, slot,
1419"inline ref item overflows extent item, ptr %lu iref size %u end %lu",
1420				   ptr, btrfs_extent_inline_ref_size(inline_type), end);
1421			return -EUCLEAN;
1422		}
1423
1424		switch (inline_type) {
1425		/* inline_offset is subvolid of the owner, no need to check */
1426		case BTRFS_TREE_BLOCK_REF_KEY:
1427			inline_refs++;
1428			break;
1429		/* Contains parent bytenr */
1430		case BTRFS_SHARED_BLOCK_REF_KEY:
1431			if (unlikely(!IS_ALIGNED(inline_offset,
1432						 fs_info->sectorsize))) {
1433				extent_err(leaf, slot,
1434		"invalid tree parent bytenr, have %llu expect aligned to %u",
1435					   inline_offset, fs_info->sectorsize);
1436				return -EUCLEAN;
1437			}
1438			inline_refs++;
1439			break;
1440		/*
1441		 * Contains owner subvolid, owner key objectid, adjusted offset.
1442		 * The only obvious corruption can happen in that offset.
1443		 */
1444		case BTRFS_EXTENT_DATA_REF_KEY:
1445			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1446			dref_offset = btrfs_extent_data_ref_offset(leaf, dref);
1447			if (unlikely(!IS_ALIGNED(dref_offset,
1448						 fs_info->sectorsize))) {
1449				extent_err(leaf, slot,
1450		"invalid data ref offset, have %llu expect aligned to %u",
1451					   dref_offset, fs_info->sectorsize);
1452				return -EUCLEAN;
1453			}
1454			inline_refs += btrfs_extent_data_ref_count(leaf, dref);
1455			break;
1456		/* Contains parent bytenr and ref count */
1457		case BTRFS_SHARED_DATA_REF_KEY:
1458			sref = (struct btrfs_shared_data_ref *)(iref + 1);
1459			if (unlikely(!IS_ALIGNED(inline_offset,
1460						 fs_info->sectorsize))) {
1461				extent_err(leaf, slot,
1462		"invalid data parent bytenr, have %llu expect aligned to %u",
1463					   inline_offset, fs_info->sectorsize);
1464				return -EUCLEAN;
1465			}
1466			inline_refs += btrfs_shared_data_ref_count(leaf, sref);
1467			break;
1468		default:
1469			extent_err(leaf, slot, "unknown inline ref type: %u",
1470				   inline_type);
1471			return -EUCLEAN;
1472		}
1473		ptr += btrfs_extent_inline_ref_size(inline_type);
1474	}
1475	/* No padding is allowed */
1476	if (unlikely(ptr != end)) {
1477		extent_err(leaf, slot,
1478			   "invalid extent item size, padding bytes found");
1479		return -EUCLEAN;
1480	}
1481
1482	/* Finally, check the inline refs against total refs */
1483	if (unlikely(inline_refs > total_refs)) {
1484		extent_err(leaf, slot,
1485			"invalid extent refs, have %llu expect >= inline %llu",
1486			   total_refs, inline_refs);
1487		return -EUCLEAN;
1488	}
1489
1490	if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) ||
1491	    (prev_key->type == BTRFS_METADATA_ITEM_KEY)) {
1492		u64 prev_end = prev_key->objectid;
1493
1494		if (prev_key->type == BTRFS_METADATA_ITEM_KEY)
1495			prev_end += fs_info->nodesize;
1496		else
1497			prev_end += prev_key->offset;
1498
1499		if (unlikely(prev_end > key->objectid)) {
1500			extent_err(leaf, slot,
1501	"previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]",
1502				   prev_key->objectid, prev_key->type,
1503				   prev_key->offset, key->objectid, key->type,
1504				   key->offset);
1505			return -EUCLEAN;
1506		}
1507	}
1508
1509	return 0;
1510}
1511
1512static int check_simple_keyed_refs(struct extent_buffer *leaf,
1513				   struct btrfs_key *key, int slot)
1514{
1515	u32 expect_item_size = 0;
1516
1517	if (key->type == BTRFS_SHARED_DATA_REF_KEY)
1518		expect_item_size = sizeof(struct btrfs_shared_data_ref);
1519
1520	if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) {
1521		generic_err(leaf, slot,
1522		"invalid item size, have %u expect %u for key type %u",
1523			    btrfs_item_size(leaf, slot),
1524			    expect_item_size, key->type);
1525		return -EUCLEAN;
1526	}
1527	if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1528		generic_err(leaf, slot,
1529"invalid key objectid for shared block ref, have %llu expect aligned to %u",
1530			    key->objectid, leaf->fs_info->sectorsize);
1531		return -EUCLEAN;
1532	}
1533	if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY &&
1534		     !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) {
1535		extent_err(leaf, slot,
1536		"invalid tree parent bytenr, have %llu expect aligned to %u",
1537			   key->offset, leaf->fs_info->sectorsize);
1538		return -EUCLEAN;
1539	}
1540	return 0;
1541}
1542
1543static int check_extent_data_ref(struct extent_buffer *leaf,
1544				 struct btrfs_key *key, int slot)
1545{
1546	struct btrfs_extent_data_ref *dref;
1547	unsigned long ptr = btrfs_item_ptr_offset(leaf, slot);
1548	const unsigned long end = ptr + btrfs_item_size(leaf, slot);
1549
1550	if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) {
1551		generic_err(leaf, slot,
1552	"invalid item size, have %u expect aligned to %zu for key type %u",
1553			    btrfs_item_size(leaf, slot),
1554			    sizeof(*dref), key->type);
1555		return -EUCLEAN;
1556	}
1557	if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1558		generic_err(leaf, slot,
1559"invalid key objectid for shared block ref, have %llu expect aligned to %u",
1560			    key->objectid, leaf->fs_info->sectorsize);
1561		return -EUCLEAN;
1562	}
1563	for (; ptr < end; ptr += sizeof(*dref)) {
1564		u64 offset;
1565
1566		/*
1567		 * We cannot check the extent_data_ref hash due to possible
1568		 * overflow from the leaf due to hash collisions.
1569		 */
1570		dref = (struct btrfs_extent_data_ref *)ptr;
1571		offset = btrfs_extent_data_ref_offset(leaf, dref);
1572		if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) {
1573			extent_err(leaf, slot,
1574	"invalid extent data backref offset, have %llu expect aligned to %u",
1575				   offset, leaf->fs_info->sectorsize);
1576			return -EUCLEAN;
1577		}
1578	}
1579	return 0;
1580}
1581
1582#define inode_ref_err(eb, slot, fmt, args...)			\
1583	inode_item_err(eb, slot, fmt, ##args)
1584static int check_inode_ref(struct extent_buffer *leaf,
1585			   struct btrfs_key *key, struct btrfs_key *prev_key,
1586			   int slot)
1587{
1588	struct btrfs_inode_ref *iref;
1589	unsigned long ptr;
1590	unsigned long end;
1591
1592	if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
1593		return -EUCLEAN;
1594	/* namelen can't be 0, so item_size == sizeof() is also invalid */
1595	if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) {
1596		inode_ref_err(leaf, slot,
1597			"invalid item size, have %u expect (%zu, %u)",
1598			btrfs_item_size(leaf, slot),
1599			sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
1600		return -EUCLEAN;
1601	}
1602
1603	ptr = btrfs_item_ptr_offset(leaf, slot);
1604	end = ptr + btrfs_item_size(leaf, slot);
1605	while (ptr < end) {
1606		u16 namelen;
1607
1608		if (unlikely(ptr + sizeof(iref) > end)) {
1609			inode_ref_err(leaf, slot,
1610			"inode ref overflow, ptr %lu end %lu inode_ref_size %zu",
1611				ptr, end, sizeof(iref));
1612			return -EUCLEAN;
1613		}
1614
1615		iref = (struct btrfs_inode_ref *)ptr;
1616		namelen = btrfs_inode_ref_name_len(leaf, iref);
1617		if (unlikely(ptr + sizeof(*iref) + namelen > end)) {
1618			inode_ref_err(leaf, slot,
1619				"inode ref overflow, ptr %lu end %lu namelen %u",
1620				ptr, end, namelen);
1621			return -EUCLEAN;
1622		}
1623
1624		/*
1625		 * NOTE: In theory we should record all found index numbers
1626		 * to find any duplicated indexes, but that will be too time
1627		 * consuming for inodes with too many hard links.
1628		 */
1629		ptr += sizeof(*iref) + namelen;
1630	}
1631	return 0;
1632}
1633
1634/*
1635 * Common point to switch the item-specific validation.
1636 */
1637static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf,
1638						    struct btrfs_key *key,
1639						    int slot,
1640						    struct btrfs_key *prev_key)
1641{
1642	int ret = 0;
1643	struct btrfs_chunk *chunk;
1644
1645	switch (key->type) {
1646	case BTRFS_EXTENT_DATA_KEY:
1647		ret = check_extent_data_item(leaf, key, slot, prev_key);
1648		break;
1649	case BTRFS_EXTENT_CSUM_KEY:
1650		ret = check_csum_item(leaf, key, slot, prev_key);
1651		break;
1652	case BTRFS_DIR_ITEM_KEY:
1653	case BTRFS_DIR_INDEX_KEY:
1654	case BTRFS_XATTR_ITEM_KEY:
1655		ret = check_dir_item(leaf, key, prev_key, slot);
1656		break;
1657	case BTRFS_INODE_REF_KEY:
1658		ret = check_inode_ref(leaf, key, prev_key, slot);
1659		break;
1660	case BTRFS_BLOCK_GROUP_ITEM_KEY:
1661		ret = check_block_group_item(leaf, key, slot);
1662		break;
1663	case BTRFS_CHUNK_ITEM_KEY:
1664		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1665		ret = check_leaf_chunk_item(leaf, chunk, key, slot);
1666		break;
1667	case BTRFS_DEV_ITEM_KEY:
1668		ret = check_dev_item(leaf, key, slot);
1669		break;
1670	case BTRFS_INODE_ITEM_KEY:
1671		ret = check_inode_item(leaf, key, slot);
1672		break;
1673	case BTRFS_ROOT_ITEM_KEY:
1674		ret = check_root_item(leaf, key, slot);
1675		break;
1676	case BTRFS_EXTENT_ITEM_KEY:
1677	case BTRFS_METADATA_ITEM_KEY:
1678		ret = check_extent_item(leaf, key, slot, prev_key);
1679		break;
1680	case BTRFS_TREE_BLOCK_REF_KEY:
1681	case BTRFS_SHARED_DATA_REF_KEY:
1682	case BTRFS_SHARED_BLOCK_REF_KEY:
1683		ret = check_simple_keyed_refs(leaf, key, slot);
1684		break;
1685	case BTRFS_EXTENT_DATA_REF_KEY:
1686		ret = check_extent_data_ref(leaf, key, slot);
1687		break;
1688	}
1689
1690	if (ret)
1691		return BTRFS_TREE_BLOCK_INVALID_ITEM;
1692	return BTRFS_TREE_BLOCK_CLEAN;
1693}
1694
1695enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf)
1696{
1697	struct btrfs_fs_info *fs_info = leaf->fs_info;
1698	/* No valid key type is 0, so all key should be larger than this key */
1699	struct btrfs_key prev_key = {0, 0, 0};
1700	struct btrfs_key key;
1701	u32 nritems = btrfs_header_nritems(leaf);
1702	int slot;
1703
1704	if (unlikely(btrfs_header_level(leaf) != 0)) {
1705		generic_err(leaf, 0,
1706			"invalid level for leaf, have %d expect 0",
1707			btrfs_header_level(leaf));
1708		return BTRFS_TREE_BLOCK_INVALID_LEVEL;
1709	}
1710
1711	/*
1712	 * Extent buffers from a relocation tree have a owner field that
1713	 * corresponds to the subvolume tree they are based on. So just from an
1714	 * extent buffer alone we can not find out what is the id of the
1715	 * corresponding subvolume tree, so we can not figure out if the extent
1716	 * buffer corresponds to the root of the relocation tree or not. So
1717	 * skip this check for relocation trees.
1718	 */
1719	if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
1720		u64 owner = btrfs_header_owner(leaf);
1721
1722		/* These trees must never be empty */
1723		if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID ||
1724			     owner == BTRFS_CHUNK_TREE_OBJECTID ||
1725			     owner == BTRFS_DEV_TREE_OBJECTID ||
1726			     owner == BTRFS_FS_TREE_OBJECTID ||
1727			     owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
1728			generic_err(leaf, 0,
1729			"invalid root, root %llu must never be empty",
1730				    owner);
1731			return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1732		}
1733
1734		/* Unknown tree */
1735		if (unlikely(owner == 0)) {
1736			generic_err(leaf, 0,
1737				"invalid owner, root 0 is not defined");
1738			return BTRFS_TREE_BLOCK_INVALID_OWNER;
1739		}
1740
1741		/* EXTENT_TREE_V2 can have empty extent trees. */
1742		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1743			return BTRFS_TREE_BLOCK_CLEAN;
1744
1745		if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) {
1746			generic_err(leaf, 0,
1747			"invalid root, root %llu must never be empty",
1748				    owner);
1749			return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1750		}
1751
1752		return BTRFS_TREE_BLOCK_CLEAN;
1753	}
1754
1755	if (unlikely(nritems == 0))
1756		return BTRFS_TREE_BLOCK_CLEAN;
1757
1758	/*
1759	 * Check the following things to make sure this is a good leaf, and
1760	 * leaf users won't need to bother with similar sanity checks:
1761	 *
1762	 * 1) key ordering
1763	 * 2) item offset and size
1764	 *    No overlap, no hole, all inside the leaf.
1765	 * 3) item content
1766	 *    If possible, do comprehensive sanity check.
1767	 *    NOTE: All checks must only rely on the item data itself.
1768	 */
1769	for (slot = 0; slot < nritems; slot++) {
1770		u32 item_end_expected;
1771		u64 item_data_end;
1772
1773		btrfs_item_key_to_cpu(leaf, &key, slot);
1774
1775		/* Make sure the keys are in the right order */
1776		if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) {
1777			generic_err(leaf, slot,
1778	"bad key order, prev (%llu %u %llu) current (%llu %u %llu)",
1779				prev_key.objectid, prev_key.type,
1780				prev_key.offset, key.objectid, key.type,
1781				key.offset);
1782			return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
1783		}
1784
1785		item_data_end = (u64)btrfs_item_offset(leaf, slot) +
1786				btrfs_item_size(leaf, slot);
1787		/*
1788		 * Make sure the offset and ends are right, remember that the
1789		 * item data starts at the end of the leaf and grows towards the
1790		 * front.
1791		 */
1792		if (slot == 0)
1793			item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info);
1794		else
1795			item_end_expected = btrfs_item_offset(leaf,
1796								 slot - 1);
1797		if (unlikely(item_data_end != item_end_expected)) {
1798			generic_err(leaf, slot,
1799				"unexpected item end, have %llu expect %u",
1800				item_data_end, item_end_expected);
1801			return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
1802		}
1803
1804		/*
1805		 * Check to make sure that we don't point outside of the leaf,
1806		 * just in case all the items are consistent to each other, but
1807		 * all point outside of the leaf.
1808		 */
1809		if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) {
1810			generic_err(leaf, slot,
1811			"slot end outside of leaf, have %llu expect range [0, %u]",
1812				item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info));
1813			return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
1814		}
1815
1816		/* Also check if the item pointer overlaps with btrfs item. */
1817		if (unlikely(btrfs_item_ptr_offset(leaf, slot) <
1818			     btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) {
1819			generic_err(leaf, slot,
1820		"slot overlaps with its data, item end %lu data start %lu",
1821				btrfs_item_nr_offset(leaf, slot) +
1822				sizeof(struct btrfs_item),
1823				btrfs_item_ptr_offset(leaf, slot));
1824			return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
1825		}
1826
1827		/*
1828		 * We only want to do this if WRITTEN is set, otherwise the leaf
1829		 * may be in some intermediate state and won't appear valid.
1830		 */
1831		if (btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN)) {
1832			enum btrfs_tree_block_status ret;
1833
1834			/*
1835			 * Check if the item size and content meet other
1836			 * criteria
1837			 */
1838			ret = check_leaf_item(leaf, &key, slot, &prev_key);
1839			if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
1840				return ret;
1841		}
1842
1843		prev_key.objectid = key.objectid;
1844		prev_key.type = key.type;
1845		prev_key.offset = key.offset;
1846	}
1847
1848	return BTRFS_TREE_BLOCK_CLEAN;
1849}
1850
1851int btrfs_check_leaf(struct extent_buffer *leaf)
1852{
1853	enum btrfs_tree_block_status ret;
1854
1855	ret = __btrfs_check_leaf(leaf);
1856	if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
1857		return -EUCLEAN;
1858	return 0;
1859}
1860ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO);
1861
1862enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node)
1863{
1864	struct btrfs_fs_info *fs_info = node->fs_info;
1865	unsigned long nr = btrfs_header_nritems(node);
1866	struct btrfs_key key, next_key;
1867	int slot;
1868	int level = btrfs_header_level(node);
1869	u64 bytenr;
1870
1871	if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) {
1872		generic_err(node, 0,
1873			"invalid level for node, have %d expect [1, %d]",
1874			level, BTRFS_MAX_LEVEL - 1);
1875		return BTRFS_TREE_BLOCK_INVALID_LEVEL;
1876	}
1877	if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) {
1878		btrfs_crit(fs_info,
1879"corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]",
1880			   btrfs_header_owner(node), node->start,
1881			   nr == 0 ? "small" : "large", nr,
1882			   BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1883		return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1884	}
1885
1886	for (slot = 0; slot < nr - 1; slot++) {
1887		bytenr = btrfs_node_blockptr(node, slot);
1888		btrfs_node_key_to_cpu(node, &key, slot);
1889		btrfs_node_key_to_cpu(node, &next_key, slot + 1);
1890
1891		if (unlikely(!bytenr)) {
1892			generic_err(node, slot,
1893				"invalid NULL node pointer");
1894			return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
1895		}
1896		if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) {
1897			generic_err(node, slot,
1898			"unaligned pointer, have %llu should be aligned to %u",
1899				bytenr, fs_info->sectorsize);
1900			return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
1901		}
1902
1903		if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) {
1904			generic_err(node, slot,
1905	"bad key order, current (%llu %u %llu) next (%llu %u %llu)",
1906				key.objectid, key.type, key.offset,
1907				next_key.objectid, next_key.type,
1908				next_key.offset);
1909			return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
1910		}
1911	}
1912	return BTRFS_TREE_BLOCK_CLEAN;
1913}
1914
1915int btrfs_check_node(struct extent_buffer *node)
1916{
1917	enum btrfs_tree_block_status ret;
1918
1919	ret = __btrfs_check_node(node);
1920	if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
1921		return -EUCLEAN;
1922	return 0;
1923}
1924ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO);
1925
1926int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner)
1927{
1928	const bool is_subvol = is_fstree(root_owner);
1929	const u64 eb_owner = btrfs_header_owner(eb);
1930
1931	/*
1932	 * Skip dummy fs, as selftests don't create unique ebs for each dummy
1933	 * root.
1934	 */
1935	if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &eb->fs_info->fs_state))
1936		return 0;
1937	/*
1938	 * There are several call sites (backref walking, qgroup, and data
1939	 * reloc) passing 0 as @root_owner, as they are not holding the
1940	 * tree root.  In that case, we can not do a reliable ownership check,
1941	 * so just exit.
1942	 */
1943	if (root_owner == 0)
1944		return 0;
1945	/*
1946	 * These trees use key.offset as their owner, our callers don't have
1947	 * the extra capacity to pass key.offset here.  So we just skip them.
1948	 */
1949	if (root_owner == BTRFS_TREE_LOG_OBJECTID ||
1950	    root_owner == BTRFS_TREE_RELOC_OBJECTID)
1951		return 0;
1952
1953	if (!is_subvol) {
1954		/* For non-subvolume trees, the eb owner should match root owner */
1955		if (unlikely(root_owner != eb_owner)) {
1956			btrfs_crit(eb->fs_info,
1957"corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu",
1958				btrfs_header_level(eb) == 0 ? "leaf" : "node",
1959				root_owner, btrfs_header_bytenr(eb), eb_owner,
1960				root_owner);
1961			return -EUCLEAN;
1962		}
1963		return 0;
1964	}
1965
1966	/*
1967	 * For subvolume trees, owners can mismatch, but they should all belong
1968	 * to subvolume trees.
1969	 */
1970	if (unlikely(is_subvol != is_fstree(eb_owner))) {
1971		btrfs_crit(eb->fs_info,
1972"corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]",
1973			btrfs_header_level(eb) == 0 ? "leaf" : "node",
1974			root_owner, btrfs_header_bytenr(eb), eb_owner,
1975			BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID);
1976		return -EUCLEAN;
1977	}
1978	return 0;
1979}
1980
1981int btrfs_verify_level_key(struct extent_buffer *eb, int level,
1982			   struct btrfs_key *first_key, u64 parent_transid)
1983{
1984	struct btrfs_fs_info *fs_info = eb->fs_info;
1985	int found_level;
1986	struct btrfs_key found_key;
1987	int ret;
1988
1989	found_level = btrfs_header_level(eb);
1990	if (found_level != level) {
1991		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
1992		     KERN_ERR "BTRFS: tree level check failed\n");
1993		btrfs_err(fs_info,
1994"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
1995			  eb->start, level, found_level);
1996		return -EIO;
1997	}
1998
1999	if (!first_key)
2000		return 0;
2001
2002	/*
2003	 * For live tree block (new tree blocks in current transaction),
2004	 * we need proper lock context to avoid race, which is impossible here.
2005	 * So we only checks tree blocks which is read from disk, whose
2006	 * generation <= fs_info->last_trans_committed.
2007	 */
2008	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
2009		return 0;
2010
2011	/* We have @first_key, so this @eb must have at least one item */
2012	if (btrfs_header_nritems(eb) == 0) {
2013		btrfs_err(fs_info,
2014		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
2015			  eb->start);
2016		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2017		return -EUCLEAN;
2018	}
2019
2020	if (found_level)
2021		btrfs_node_key_to_cpu(eb, &found_key, 0);
2022	else
2023		btrfs_item_key_to_cpu(eb, &found_key, 0);
2024	ret = btrfs_comp_cpu_keys(first_key, &found_key);
2025
2026	if (ret) {
2027		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
2028		     KERN_ERR "BTRFS: tree first key check failed\n");
2029		btrfs_err(fs_info,
2030"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
2031			  eb->start, parent_transid, first_key->objectid,
2032			  first_key->type, first_key->offset,
2033			  found_key.objectid, found_key.type,
2034			  found_key.offset);
2035	}
2036	return ret;
2037}
2038