xref: /kernel/linux/linux-6.6/fs/btrfs/transaction.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/writeback.h>
11#include <linux/pagemap.h>
12#include <linux/blkdev.h>
13#include <linux/uuid.h>
14#include <linux/timekeeping.h>
15#include "misc.h"
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
19#include "locking.h"
20#include "tree-log.h"
21#include "volumes.h"
22#include "dev-replace.h"
23#include "qgroup.h"
24#include "block-group.h"
25#include "space-info.h"
26#include "zoned.h"
27#include "fs.h"
28#include "accessors.h"
29#include "extent-tree.h"
30#include "root-tree.h"
31#include "defrag.h"
32#include "dir-item.h"
33#include "uuid-tree.h"
34#include "ioctl.h"
35#include "relocation.h"
36#include "scrub.h"
37
38static struct kmem_cache *btrfs_trans_handle_cachep;
39
40/*
41 * Transaction states and transitions
42 *
43 * No running transaction (fs tree blocks are not modified)
44 * |
45 * | To next stage:
46 * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
47 * V
48 * Transaction N [[TRANS_STATE_RUNNING]]
49 * |
50 * | New trans handles can be attached to transaction N by calling all
51 * | start_transaction() variants.
52 * |
53 * | To next stage:
54 * |  Call btrfs_commit_transaction() on any trans handle attached to
55 * |  transaction N
56 * V
57 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
58 * |
59 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
60 * | the race and the rest will wait for the winner to commit the transaction.
61 * |
62 * | The winner will wait for previous running transaction to completely finish
63 * | if there is one.
64 * |
65 * Transaction N [[TRANS_STATE_COMMIT_START]]
66 * |
67 * | Then one of the following happens:
68 * | - Wait for all other trans handle holders to release.
69 * |   The btrfs_commit_transaction() caller will do the commit work.
70 * | - Wait for current transaction to be committed by others.
71 * |   Other btrfs_commit_transaction() caller will do the commit work.
72 * |
73 * | At this stage, only btrfs_join_transaction*() variants can attach
74 * | to this running transaction.
75 * | All other variants will wait for current one to finish and attach to
76 * | transaction N+1.
77 * |
78 * | To next stage:
79 * |  Caller is chosen to commit transaction N, and all other trans handle
80 * |  haven been released.
81 * V
82 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
83 * |
84 * | The heavy lifting transaction work is started.
85 * | From running delayed refs (modifying extent tree) to creating pending
86 * | snapshots, running qgroups.
87 * | In short, modify supporting trees to reflect modifications of subvolume
88 * | trees.
89 * |
90 * | At this stage, all start_transaction() calls will wait for this
91 * | transaction to finish and attach to transaction N+1.
92 * |
93 * | To next stage:
94 * |  Until all supporting trees are updated.
95 * V
96 * Transaction N [[TRANS_STATE_UNBLOCKED]]
97 * |						    Transaction N+1
98 * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
99 * | need to write them back to disk and update	    |
100 * | super blocks.				    |
101 * |						    |
102 * | At this stage, new transaction is allowed to   |
103 * | start.					    |
104 * | All new start_transaction() calls will be	    |
105 * | attached to transid N+1.			    |
106 * |						    |
107 * | To next stage:				    |
108 * |  Until all tree blocks are super blocks are    |
109 * |  written to block devices			    |
110 * V						    |
111 * Transaction N [[TRANS_STATE_COMPLETED]]	    V
112 *   All tree blocks and super blocks are written.  Transaction N+1
113 *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
114 *   data structures will be cleaned up.	    | Life goes on
115 */
116static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
117	[TRANS_STATE_RUNNING]		= 0U,
118	[TRANS_STATE_COMMIT_PREP]	= 0U,
119	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
120	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
121					   __TRANS_ATTACH |
122					   __TRANS_JOIN |
123					   __TRANS_JOIN_NOSTART),
124	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
125					   __TRANS_ATTACH |
126					   __TRANS_JOIN |
127					   __TRANS_JOIN_NOLOCK |
128					   __TRANS_JOIN_NOSTART),
129	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
130					   __TRANS_ATTACH |
131					   __TRANS_JOIN |
132					   __TRANS_JOIN_NOLOCK |
133					   __TRANS_JOIN_NOSTART),
134	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
135					   __TRANS_ATTACH |
136					   __TRANS_JOIN |
137					   __TRANS_JOIN_NOLOCK |
138					   __TRANS_JOIN_NOSTART),
139};
140
141void btrfs_put_transaction(struct btrfs_transaction *transaction)
142{
143	WARN_ON(refcount_read(&transaction->use_count) == 0);
144	if (refcount_dec_and_test(&transaction->use_count)) {
145		BUG_ON(!list_empty(&transaction->list));
146		WARN_ON(!RB_EMPTY_ROOT(
147				&transaction->delayed_refs.href_root.rb_root));
148		WARN_ON(!RB_EMPTY_ROOT(
149				&transaction->delayed_refs.dirty_extent_root));
150		if (transaction->delayed_refs.pending_csums)
151			btrfs_err(transaction->fs_info,
152				  "pending csums is %llu",
153				  transaction->delayed_refs.pending_csums);
154		/*
155		 * If any block groups are found in ->deleted_bgs then it's
156		 * because the transaction was aborted and a commit did not
157		 * happen (things failed before writing the new superblock
158		 * and calling btrfs_finish_extent_commit()), so we can not
159		 * discard the physical locations of the block groups.
160		 */
161		while (!list_empty(&transaction->deleted_bgs)) {
162			struct btrfs_block_group *cache;
163
164			cache = list_first_entry(&transaction->deleted_bgs,
165						 struct btrfs_block_group,
166						 bg_list);
167			list_del_init(&cache->bg_list);
168			btrfs_unfreeze_block_group(cache);
169			btrfs_put_block_group(cache);
170		}
171		WARN_ON(!list_empty(&transaction->dev_update_list));
172		kfree(transaction);
173	}
174}
175
176static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
177{
178	struct btrfs_transaction *cur_trans = trans->transaction;
179	struct btrfs_fs_info *fs_info = trans->fs_info;
180	struct btrfs_root *root, *tmp;
181
182	/*
183	 * At this point no one can be using this transaction to modify any tree
184	 * and no one can start another transaction to modify any tree either.
185	 */
186	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
187
188	down_write(&fs_info->commit_root_sem);
189
190	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
191		fs_info->last_reloc_trans = trans->transid;
192
193	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
194				 dirty_list) {
195		list_del_init(&root->dirty_list);
196		free_extent_buffer(root->commit_root);
197		root->commit_root = btrfs_root_node(root);
198		extent_io_tree_release(&root->dirty_log_pages);
199		btrfs_qgroup_clean_swapped_blocks(root);
200	}
201
202	/* We can free old roots now. */
203	spin_lock(&cur_trans->dropped_roots_lock);
204	while (!list_empty(&cur_trans->dropped_roots)) {
205		root = list_first_entry(&cur_trans->dropped_roots,
206					struct btrfs_root, root_list);
207		list_del_init(&root->root_list);
208		spin_unlock(&cur_trans->dropped_roots_lock);
209		btrfs_free_log(trans, root);
210		btrfs_drop_and_free_fs_root(fs_info, root);
211		spin_lock(&cur_trans->dropped_roots_lock);
212	}
213	spin_unlock(&cur_trans->dropped_roots_lock);
214
215	up_write(&fs_info->commit_root_sem);
216}
217
218static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
219					 unsigned int type)
220{
221	if (type & TRANS_EXTWRITERS)
222		atomic_inc(&trans->num_extwriters);
223}
224
225static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
226					 unsigned int type)
227{
228	if (type & TRANS_EXTWRITERS)
229		atomic_dec(&trans->num_extwriters);
230}
231
232static inline void extwriter_counter_init(struct btrfs_transaction *trans,
233					  unsigned int type)
234{
235	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
236}
237
238static inline int extwriter_counter_read(struct btrfs_transaction *trans)
239{
240	return atomic_read(&trans->num_extwriters);
241}
242
243/*
244 * To be called after doing the chunk btree updates right after allocating a new
245 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
246 * chunk after all chunk btree updates and after finishing the second phase of
247 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
248 * group had its chunk item insertion delayed to the second phase.
249 */
250void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
251{
252	struct btrfs_fs_info *fs_info = trans->fs_info;
253
254	if (!trans->chunk_bytes_reserved)
255		return;
256
257	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
258				trans->chunk_bytes_reserved, NULL);
259	trans->chunk_bytes_reserved = 0;
260}
261
262/*
263 * either allocate a new transaction or hop into the existing one
264 */
265static noinline int join_transaction(struct btrfs_fs_info *fs_info,
266				     unsigned int type)
267{
268	struct btrfs_transaction *cur_trans;
269
270	spin_lock(&fs_info->trans_lock);
271loop:
272	/* The file system has been taken offline. No new transactions. */
273	if (BTRFS_FS_ERROR(fs_info)) {
274		spin_unlock(&fs_info->trans_lock);
275		return -EROFS;
276	}
277
278	cur_trans = fs_info->running_transaction;
279	if (cur_trans) {
280		if (TRANS_ABORTED(cur_trans)) {
281			spin_unlock(&fs_info->trans_lock);
282			return cur_trans->aborted;
283		}
284		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
285			spin_unlock(&fs_info->trans_lock);
286			return -EBUSY;
287		}
288		refcount_inc(&cur_trans->use_count);
289		atomic_inc(&cur_trans->num_writers);
290		extwriter_counter_inc(cur_trans, type);
291		spin_unlock(&fs_info->trans_lock);
292		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
293		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
294		return 0;
295	}
296	spin_unlock(&fs_info->trans_lock);
297
298	/*
299	 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
300	 * current transaction, and commit it. If there is no transaction, just
301	 * return ENOENT.
302	 */
303	if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
304		return -ENOENT;
305
306	/*
307	 * JOIN_NOLOCK only happens during the transaction commit, so
308	 * it is impossible that ->running_transaction is NULL
309	 */
310	BUG_ON(type == TRANS_JOIN_NOLOCK);
311
312	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
313	if (!cur_trans)
314		return -ENOMEM;
315
316	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
317	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
318
319	spin_lock(&fs_info->trans_lock);
320	if (fs_info->running_transaction) {
321		/*
322		 * someone started a transaction after we unlocked.  Make sure
323		 * to redo the checks above
324		 */
325		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
326		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
327		kfree(cur_trans);
328		goto loop;
329	} else if (BTRFS_FS_ERROR(fs_info)) {
330		spin_unlock(&fs_info->trans_lock);
331		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
332		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
333		kfree(cur_trans);
334		return -EROFS;
335	}
336
337	cur_trans->fs_info = fs_info;
338	atomic_set(&cur_trans->pending_ordered, 0);
339	init_waitqueue_head(&cur_trans->pending_wait);
340	atomic_set(&cur_trans->num_writers, 1);
341	extwriter_counter_init(cur_trans, type);
342	init_waitqueue_head(&cur_trans->writer_wait);
343	init_waitqueue_head(&cur_trans->commit_wait);
344	cur_trans->state = TRANS_STATE_RUNNING;
345	/*
346	 * One for this trans handle, one so it will live on until we
347	 * commit the transaction.
348	 */
349	refcount_set(&cur_trans->use_count, 2);
350	cur_trans->flags = 0;
351	cur_trans->start_time = ktime_get_seconds();
352
353	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
354
355	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
356	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
357	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
358
359	/*
360	 * although the tree mod log is per file system and not per transaction,
361	 * the log must never go across transaction boundaries.
362	 */
363	smp_mb();
364	if (!list_empty(&fs_info->tree_mod_seq_list))
365		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
366	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
367		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
368	atomic64_set(&fs_info->tree_mod_seq, 0);
369
370	spin_lock_init(&cur_trans->delayed_refs.lock);
371
372	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
373	INIT_LIST_HEAD(&cur_trans->dev_update_list);
374	INIT_LIST_HEAD(&cur_trans->switch_commits);
375	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
376	INIT_LIST_HEAD(&cur_trans->io_bgs);
377	INIT_LIST_HEAD(&cur_trans->dropped_roots);
378	mutex_init(&cur_trans->cache_write_mutex);
379	spin_lock_init(&cur_trans->dirty_bgs_lock);
380	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
381	spin_lock_init(&cur_trans->dropped_roots_lock);
382	list_add_tail(&cur_trans->list, &fs_info->trans_list);
383	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
384			IO_TREE_TRANS_DIRTY_PAGES);
385	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
386			IO_TREE_FS_PINNED_EXTENTS);
387	fs_info->generation++;
388	cur_trans->transid = fs_info->generation;
389	fs_info->running_transaction = cur_trans;
390	cur_trans->aborted = 0;
391	spin_unlock(&fs_info->trans_lock);
392
393	return 0;
394}
395
396/*
397 * This does all the record keeping required to make sure that a shareable root
398 * is properly recorded in a given transaction.  This is required to make sure
399 * the old root from before we joined the transaction is deleted when the
400 * transaction commits.
401 */
402static int record_root_in_trans(struct btrfs_trans_handle *trans,
403			       struct btrfs_root *root,
404			       int force)
405{
406	struct btrfs_fs_info *fs_info = root->fs_info;
407	int ret = 0;
408
409	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
410	    root->last_trans < trans->transid) || force) {
411		WARN_ON(!force && root->commit_root != root->node);
412
413		/*
414		 * see below for IN_TRANS_SETUP usage rules
415		 * we have the reloc mutex held now, so there
416		 * is only one writer in this function
417		 */
418		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
419
420		/* make sure readers find IN_TRANS_SETUP before
421		 * they find our root->last_trans update
422		 */
423		smp_wmb();
424
425		spin_lock(&fs_info->fs_roots_radix_lock);
426		if (root->last_trans == trans->transid && !force) {
427			spin_unlock(&fs_info->fs_roots_radix_lock);
428			return 0;
429		}
430		radix_tree_tag_set(&fs_info->fs_roots_radix,
431				   (unsigned long)root->root_key.objectid,
432				   BTRFS_ROOT_TRANS_TAG);
433		spin_unlock(&fs_info->fs_roots_radix_lock);
434		root->last_trans = trans->transid;
435
436		/* this is pretty tricky.  We don't want to
437		 * take the relocation lock in btrfs_record_root_in_trans
438		 * unless we're really doing the first setup for this root in
439		 * this transaction.
440		 *
441		 * Normally we'd use root->last_trans as a flag to decide
442		 * if we want to take the expensive mutex.
443		 *
444		 * But, we have to set root->last_trans before we
445		 * init the relocation root, otherwise, we trip over warnings
446		 * in ctree.c.  The solution used here is to flag ourselves
447		 * with root IN_TRANS_SETUP.  When this is 1, we're still
448		 * fixing up the reloc trees and everyone must wait.
449		 *
450		 * When this is zero, they can trust root->last_trans and fly
451		 * through btrfs_record_root_in_trans without having to take the
452		 * lock.  smp_wmb() makes sure that all the writes above are
453		 * done before we pop in the zero below
454		 */
455		ret = btrfs_init_reloc_root(trans, root);
456		smp_mb__before_atomic();
457		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
458	}
459	return ret;
460}
461
462
463void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
464			    struct btrfs_root *root)
465{
466	struct btrfs_fs_info *fs_info = root->fs_info;
467	struct btrfs_transaction *cur_trans = trans->transaction;
468
469	/* Add ourselves to the transaction dropped list */
470	spin_lock(&cur_trans->dropped_roots_lock);
471	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
472	spin_unlock(&cur_trans->dropped_roots_lock);
473
474	/* Make sure we don't try to update the root at commit time */
475	spin_lock(&fs_info->fs_roots_radix_lock);
476	radix_tree_tag_clear(&fs_info->fs_roots_radix,
477			     (unsigned long)root->root_key.objectid,
478			     BTRFS_ROOT_TRANS_TAG);
479	spin_unlock(&fs_info->fs_roots_radix_lock);
480}
481
482int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
483			       struct btrfs_root *root)
484{
485	struct btrfs_fs_info *fs_info = root->fs_info;
486	int ret;
487
488	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
489		return 0;
490
491	/*
492	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
493	 * and barriers
494	 */
495	smp_rmb();
496	if (root->last_trans == trans->transid &&
497	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
498		return 0;
499
500	mutex_lock(&fs_info->reloc_mutex);
501	ret = record_root_in_trans(trans, root, 0);
502	mutex_unlock(&fs_info->reloc_mutex);
503
504	return ret;
505}
506
507static inline int is_transaction_blocked(struct btrfs_transaction *trans)
508{
509	return (trans->state >= TRANS_STATE_COMMIT_START &&
510		trans->state < TRANS_STATE_UNBLOCKED &&
511		!TRANS_ABORTED(trans));
512}
513
514/* wait for commit against the current transaction to become unblocked
515 * when this is done, it is safe to start a new transaction, but the current
516 * transaction might not be fully on disk.
517 */
518static void wait_current_trans(struct btrfs_fs_info *fs_info)
519{
520	struct btrfs_transaction *cur_trans;
521
522	spin_lock(&fs_info->trans_lock);
523	cur_trans = fs_info->running_transaction;
524	if (cur_trans && is_transaction_blocked(cur_trans)) {
525		refcount_inc(&cur_trans->use_count);
526		spin_unlock(&fs_info->trans_lock);
527
528		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
529		wait_event(fs_info->transaction_wait,
530			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
531			   TRANS_ABORTED(cur_trans));
532		btrfs_put_transaction(cur_trans);
533	} else {
534		spin_unlock(&fs_info->trans_lock);
535	}
536}
537
538static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
539{
540	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
541		return 0;
542
543	if (type == TRANS_START)
544		return 1;
545
546	return 0;
547}
548
549static inline bool need_reserve_reloc_root(struct btrfs_root *root)
550{
551	struct btrfs_fs_info *fs_info = root->fs_info;
552
553	if (!fs_info->reloc_ctl ||
554	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
555	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
556	    root->reloc_root)
557		return false;
558
559	return true;
560}
561
562static struct btrfs_trans_handle *
563start_transaction(struct btrfs_root *root, unsigned int num_items,
564		  unsigned int type, enum btrfs_reserve_flush_enum flush,
565		  bool enforce_qgroups)
566{
567	struct btrfs_fs_info *fs_info = root->fs_info;
568	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
569	struct btrfs_trans_handle *h;
570	struct btrfs_transaction *cur_trans;
571	u64 num_bytes = 0;
572	u64 qgroup_reserved = 0;
573	bool reloc_reserved = false;
574	bool do_chunk_alloc = false;
575	int ret;
576
577	if (BTRFS_FS_ERROR(fs_info))
578		return ERR_PTR(-EROFS);
579
580	if (current->journal_info) {
581		WARN_ON(type & TRANS_EXTWRITERS);
582		h = current->journal_info;
583		refcount_inc(&h->use_count);
584		WARN_ON(refcount_read(&h->use_count) > 2);
585		h->orig_rsv = h->block_rsv;
586		h->block_rsv = NULL;
587		goto got_it;
588	}
589
590	/*
591	 * Do the reservation before we join the transaction so we can do all
592	 * the appropriate flushing if need be.
593	 */
594	if (num_items && root != fs_info->chunk_root) {
595		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
596		u64 delayed_refs_bytes = 0;
597
598		qgroup_reserved = num_items * fs_info->nodesize;
599		/*
600		 * Use prealloc for now, as there might be a currently running
601		 * transaction that could free this reserved space prematurely
602		 * by committing.
603		 */
604		ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
605							 enforce_qgroups, false);
606		if (ret)
607			return ERR_PTR(ret);
608
609		/*
610		 * We want to reserve all the bytes we may need all at once, so
611		 * we only do 1 enospc flushing cycle per transaction start.  We
612		 * accomplish this by simply assuming we'll do num_items worth
613		 * of delayed refs updates in this trans handle, and refill that
614		 * amount for whatever is missing in the reserve.
615		 */
616		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
617		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
618		    !btrfs_block_rsv_full(delayed_refs_rsv)) {
619			delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
620									  num_items);
621			num_bytes += delayed_refs_bytes;
622		}
623
624		/*
625		 * Do the reservation for the relocation root creation
626		 */
627		if (need_reserve_reloc_root(root)) {
628			num_bytes += fs_info->nodesize;
629			reloc_reserved = true;
630		}
631
632		ret = btrfs_reserve_metadata_bytes(fs_info, rsv, num_bytes, flush);
633		if (ret)
634			goto reserve_fail;
635		if (delayed_refs_bytes) {
636			btrfs_migrate_to_delayed_refs_rsv(fs_info, delayed_refs_bytes);
637			num_bytes -= delayed_refs_bytes;
638		}
639		btrfs_block_rsv_add_bytes(rsv, num_bytes, true);
640
641		if (rsv->space_info->force_alloc)
642			do_chunk_alloc = true;
643	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
644		   !btrfs_block_rsv_full(delayed_refs_rsv)) {
645		/*
646		 * Some people call with btrfs_start_transaction(root, 0)
647		 * because they can be throttled, but have some other mechanism
648		 * for reserving space.  We still want these guys to refill the
649		 * delayed block_rsv so just add 1 items worth of reservation
650		 * here.
651		 */
652		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
653		if (ret)
654			goto reserve_fail;
655	}
656again:
657	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
658	if (!h) {
659		ret = -ENOMEM;
660		goto alloc_fail;
661	}
662
663	/*
664	 * If we are JOIN_NOLOCK we're already committing a transaction and
665	 * waiting on this guy, so we don't need to do the sb_start_intwrite
666	 * because we're already holding a ref.  We need this because we could
667	 * have raced in and did an fsync() on a file which can kick a commit
668	 * and then we deadlock with somebody doing a freeze.
669	 *
670	 * If we are ATTACH, it means we just want to catch the current
671	 * transaction and commit it, so we needn't do sb_start_intwrite().
672	 */
673	if (type & __TRANS_FREEZABLE)
674		sb_start_intwrite(fs_info->sb);
675
676	if (may_wait_transaction(fs_info, type))
677		wait_current_trans(fs_info);
678
679	do {
680		ret = join_transaction(fs_info, type);
681		if (ret == -EBUSY) {
682			wait_current_trans(fs_info);
683			if (unlikely(type == TRANS_ATTACH ||
684				     type == TRANS_JOIN_NOSTART))
685				ret = -ENOENT;
686		}
687	} while (ret == -EBUSY);
688
689	if (ret < 0)
690		goto join_fail;
691
692	cur_trans = fs_info->running_transaction;
693
694	h->transid = cur_trans->transid;
695	h->transaction = cur_trans;
696	refcount_set(&h->use_count, 1);
697	h->fs_info = root->fs_info;
698
699	h->type = type;
700	INIT_LIST_HEAD(&h->new_bgs);
701
702	smp_mb();
703	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
704	    may_wait_transaction(fs_info, type)) {
705		current->journal_info = h;
706		btrfs_commit_transaction(h);
707		goto again;
708	}
709
710	if (num_bytes) {
711		trace_btrfs_space_reservation(fs_info, "transaction",
712					      h->transid, num_bytes, 1);
713		h->block_rsv = &fs_info->trans_block_rsv;
714		h->bytes_reserved = num_bytes;
715		h->reloc_reserved = reloc_reserved;
716	}
717
718	/*
719	 * Now that we have found a transaction to be a part of, convert the
720	 * qgroup reservation from prealloc to pertrans. A different transaction
721	 * can't race in and free our pertrans out from under us.
722	 */
723	if (qgroup_reserved)
724		btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
725
726got_it:
727	if (!current->journal_info)
728		current->journal_info = h;
729
730	/*
731	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
732	 * ALLOC_FORCE the first run through, and then we won't allocate for
733	 * anybody else who races in later.  We don't care about the return
734	 * value here.
735	 */
736	if (do_chunk_alloc && num_bytes) {
737		u64 flags = h->block_rsv->space_info->flags;
738
739		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
740				  CHUNK_ALLOC_NO_FORCE);
741	}
742
743	/*
744	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
745	 * call btrfs_join_transaction() while we're also starting a
746	 * transaction.
747	 *
748	 * Thus it need to be called after current->journal_info initialized,
749	 * or we can deadlock.
750	 */
751	ret = btrfs_record_root_in_trans(h, root);
752	if (ret) {
753		/*
754		 * The transaction handle is fully initialized and linked with
755		 * other structures so it needs to be ended in case of errors,
756		 * not just freed.
757		 */
758		btrfs_end_transaction(h);
759		return ERR_PTR(ret);
760	}
761
762	return h;
763
764join_fail:
765	if (type & __TRANS_FREEZABLE)
766		sb_end_intwrite(fs_info->sb);
767	kmem_cache_free(btrfs_trans_handle_cachep, h);
768alloc_fail:
769	if (num_bytes)
770		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
771					num_bytes, NULL);
772reserve_fail:
773	btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
774	return ERR_PTR(ret);
775}
776
777struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
778						   unsigned int num_items)
779{
780	return start_transaction(root, num_items, TRANS_START,
781				 BTRFS_RESERVE_FLUSH_ALL, true);
782}
783
784struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
785					struct btrfs_root *root,
786					unsigned int num_items)
787{
788	return start_transaction(root, num_items, TRANS_START,
789				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
790}
791
792struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
793{
794	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
795				 true);
796}
797
798struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
799{
800	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
801				 BTRFS_RESERVE_NO_FLUSH, true);
802}
803
804/*
805 * Similar to regular join but it never starts a transaction when none is
806 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
807 * This is similar to btrfs_attach_transaction() but it allows the join to
808 * happen if the transaction commit already started but it's not yet in the
809 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
810 */
811struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
812{
813	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
814				 BTRFS_RESERVE_NO_FLUSH, true);
815}
816
817/*
818 * btrfs_attach_transaction() - catch the running transaction
819 *
820 * It is used when we want to commit the current the transaction, but
821 * don't want to start a new one.
822 *
823 * Note: If this function return -ENOENT, it just means there is no
824 * running transaction. But it is possible that the inactive transaction
825 * is still in the memory, not fully on disk. If you hope there is no
826 * inactive transaction in the fs when -ENOENT is returned, you should
827 * invoke
828 *     btrfs_attach_transaction_barrier()
829 */
830struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
831{
832	return start_transaction(root, 0, TRANS_ATTACH,
833				 BTRFS_RESERVE_NO_FLUSH, true);
834}
835
836/*
837 * btrfs_attach_transaction_barrier() - catch the running transaction
838 *
839 * It is similar to the above function, the difference is this one
840 * will wait for all the inactive transactions until they fully
841 * complete.
842 */
843struct btrfs_trans_handle *
844btrfs_attach_transaction_barrier(struct btrfs_root *root)
845{
846	struct btrfs_trans_handle *trans;
847
848	trans = start_transaction(root, 0, TRANS_ATTACH,
849				  BTRFS_RESERVE_NO_FLUSH, true);
850	if (trans == ERR_PTR(-ENOENT)) {
851		int ret;
852
853		ret = btrfs_wait_for_commit(root->fs_info, 0);
854		if (ret)
855			return ERR_PTR(ret);
856	}
857
858	return trans;
859}
860
861/* Wait for a transaction commit to reach at least the given state. */
862static noinline void wait_for_commit(struct btrfs_transaction *commit,
863				     const enum btrfs_trans_state min_state)
864{
865	struct btrfs_fs_info *fs_info = commit->fs_info;
866	u64 transid = commit->transid;
867	bool put = false;
868
869	/*
870	 * At the moment this function is called with min_state either being
871	 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
872	 */
873	if (min_state == TRANS_STATE_COMPLETED)
874		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
875	else
876		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
877
878	while (1) {
879		wait_event(commit->commit_wait, commit->state >= min_state);
880		if (put)
881			btrfs_put_transaction(commit);
882
883		if (min_state < TRANS_STATE_COMPLETED)
884			break;
885
886		/*
887		 * A transaction isn't really completed until all of the
888		 * previous transactions are completed, but with fsync we can
889		 * end up with SUPER_COMMITTED transactions before a COMPLETED
890		 * transaction. Wait for those.
891		 */
892
893		spin_lock(&fs_info->trans_lock);
894		commit = list_first_entry_or_null(&fs_info->trans_list,
895						  struct btrfs_transaction,
896						  list);
897		if (!commit || commit->transid > transid) {
898			spin_unlock(&fs_info->trans_lock);
899			break;
900		}
901		refcount_inc(&commit->use_count);
902		put = true;
903		spin_unlock(&fs_info->trans_lock);
904	}
905}
906
907int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
908{
909	struct btrfs_transaction *cur_trans = NULL, *t;
910	int ret = 0;
911
912	if (transid) {
913		if (transid <= fs_info->last_trans_committed)
914			goto out;
915
916		/* find specified transaction */
917		spin_lock(&fs_info->trans_lock);
918		list_for_each_entry(t, &fs_info->trans_list, list) {
919			if (t->transid == transid) {
920				cur_trans = t;
921				refcount_inc(&cur_trans->use_count);
922				ret = 0;
923				break;
924			}
925			if (t->transid > transid) {
926				ret = 0;
927				break;
928			}
929		}
930		spin_unlock(&fs_info->trans_lock);
931
932		/*
933		 * The specified transaction doesn't exist, or we
934		 * raced with btrfs_commit_transaction
935		 */
936		if (!cur_trans) {
937			if (transid > fs_info->last_trans_committed)
938				ret = -EINVAL;
939			goto out;
940		}
941	} else {
942		/* find newest transaction that is committing | committed */
943		spin_lock(&fs_info->trans_lock);
944		list_for_each_entry_reverse(t, &fs_info->trans_list,
945					    list) {
946			if (t->state >= TRANS_STATE_COMMIT_START) {
947				if (t->state == TRANS_STATE_COMPLETED)
948					break;
949				cur_trans = t;
950				refcount_inc(&cur_trans->use_count);
951				break;
952			}
953		}
954		spin_unlock(&fs_info->trans_lock);
955		if (!cur_trans)
956			goto out;  /* nothing committing|committed */
957	}
958
959	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
960	ret = cur_trans->aborted;
961	btrfs_put_transaction(cur_trans);
962out:
963	return ret;
964}
965
966void btrfs_throttle(struct btrfs_fs_info *fs_info)
967{
968	wait_current_trans(fs_info);
969}
970
971bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
972{
973	struct btrfs_transaction *cur_trans = trans->transaction;
974
975	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
976	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
977		return true;
978
979	if (btrfs_check_space_for_delayed_refs(trans->fs_info))
980		return true;
981
982	return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
983}
984
985static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
986
987{
988	struct btrfs_fs_info *fs_info = trans->fs_info;
989
990	if (!trans->block_rsv) {
991		ASSERT(!trans->bytes_reserved);
992		return;
993	}
994
995	if (!trans->bytes_reserved)
996		return;
997
998	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
999	trace_btrfs_space_reservation(fs_info, "transaction",
1000				      trans->transid, trans->bytes_reserved, 0);
1001	btrfs_block_rsv_release(fs_info, trans->block_rsv,
1002				trans->bytes_reserved, NULL);
1003	trans->bytes_reserved = 0;
1004}
1005
1006static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1007				   int throttle)
1008{
1009	struct btrfs_fs_info *info = trans->fs_info;
1010	struct btrfs_transaction *cur_trans = trans->transaction;
1011	int err = 0;
1012
1013	if (refcount_read(&trans->use_count) > 1) {
1014		refcount_dec(&trans->use_count);
1015		trans->block_rsv = trans->orig_rsv;
1016		return 0;
1017	}
1018
1019	btrfs_trans_release_metadata(trans);
1020	trans->block_rsv = NULL;
1021
1022	btrfs_create_pending_block_groups(trans);
1023
1024	btrfs_trans_release_chunk_metadata(trans);
1025
1026	if (trans->type & __TRANS_FREEZABLE)
1027		sb_end_intwrite(info->sb);
1028
1029	WARN_ON(cur_trans != info->running_transaction);
1030	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1031	atomic_dec(&cur_trans->num_writers);
1032	extwriter_counter_dec(cur_trans, trans->type);
1033
1034	cond_wake_up(&cur_trans->writer_wait);
1035
1036	btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1037	btrfs_lockdep_release(info, btrfs_trans_num_writers);
1038
1039	btrfs_put_transaction(cur_trans);
1040
1041	if (current->journal_info == trans)
1042		current->journal_info = NULL;
1043
1044	if (throttle)
1045		btrfs_run_delayed_iputs(info);
1046
1047	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1048		wake_up_process(info->transaction_kthread);
1049		if (TRANS_ABORTED(trans))
1050			err = trans->aborted;
1051		else
1052			err = -EROFS;
1053	}
1054
1055	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1056	return err;
1057}
1058
1059int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1060{
1061	return __btrfs_end_transaction(trans, 0);
1062}
1063
1064int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1065{
1066	return __btrfs_end_transaction(trans, 1);
1067}
1068
1069/*
1070 * when btree blocks are allocated, they have some corresponding bits set for
1071 * them in one of two extent_io trees.  This is used to make sure all of
1072 * those extents are sent to disk but does not wait on them
1073 */
1074int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1075			       struct extent_io_tree *dirty_pages, int mark)
1076{
1077	int err = 0;
1078	int werr = 0;
1079	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1080	struct extent_state *cached_state = NULL;
1081	u64 start = 0;
1082	u64 end;
1083
1084	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1085				     mark, &cached_state)) {
1086		bool wait_writeback = false;
1087
1088		err = convert_extent_bit(dirty_pages, start, end,
1089					 EXTENT_NEED_WAIT,
1090					 mark, &cached_state);
1091		/*
1092		 * convert_extent_bit can return -ENOMEM, which is most of the
1093		 * time a temporary error. So when it happens, ignore the error
1094		 * and wait for writeback of this range to finish - because we
1095		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1096		 * to __btrfs_wait_marked_extents() would not know that
1097		 * writeback for this range started and therefore wouldn't
1098		 * wait for it to finish - we don't want to commit a
1099		 * superblock that points to btree nodes/leafs for which
1100		 * writeback hasn't finished yet (and without errors).
1101		 * We cleanup any entries left in the io tree when committing
1102		 * the transaction (through extent_io_tree_release()).
1103		 */
1104		if (err == -ENOMEM) {
1105			err = 0;
1106			wait_writeback = true;
1107		}
1108		if (!err)
1109			err = filemap_fdatawrite_range(mapping, start, end);
1110		if (err)
1111			werr = err;
1112		else if (wait_writeback)
1113			werr = filemap_fdatawait_range(mapping, start, end);
1114		free_extent_state(cached_state);
1115		cached_state = NULL;
1116		cond_resched();
1117		start = end + 1;
1118	}
1119	return werr;
1120}
1121
1122/*
1123 * when btree blocks are allocated, they have some corresponding bits set for
1124 * them in one of two extent_io trees.  This is used to make sure all of
1125 * those extents are on disk for transaction or log commit.  We wait
1126 * on all the pages and clear them from the dirty pages state tree
1127 */
1128static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1129				       struct extent_io_tree *dirty_pages)
1130{
1131	int err = 0;
1132	int werr = 0;
1133	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1134	struct extent_state *cached_state = NULL;
1135	u64 start = 0;
1136	u64 end;
1137
1138	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1139				     EXTENT_NEED_WAIT, &cached_state)) {
1140		/*
1141		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1142		 * When committing the transaction, we'll remove any entries
1143		 * left in the io tree. For a log commit, we don't remove them
1144		 * after committing the log because the tree can be accessed
1145		 * concurrently - we do it only at transaction commit time when
1146		 * it's safe to do it (through extent_io_tree_release()).
1147		 */
1148		err = clear_extent_bit(dirty_pages, start, end,
1149				       EXTENT_NEED_WAIT, &cached_state);
1150		if (err == -ENOMEM)
1151			err = 0;
1152		if (!err)
1153			err = filemap_fdatawait_range(mapping, start, end);
1154		if (err)
1155			werr = err;
1156		free_extent_state(cached_state);
1157		cached_state = NULL;
1158		cond_resched();
1159		start = end + 1;
1160	}
1161	if (err)
1162		werr = err;
1163	return werr;
1164}
1165
1166static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1167		       struct extent_io_tree *dirty_pages)
1168{
1169	bool errors = false;
1170	int err;
1171
1172	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1173	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1174		errors = true;
1175
1176	if (errors && !err)
1177		err = -EIO;
1178	return err;
1179}
1180
1181int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1182{
1183	struct btrfs_fs_info *fs_info = log_root->fs_info;
1184	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1185	bool errors = false;
1186	int err;
1187
1188	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1189
1190	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1191	if ((mark & EXTENT_DIRTY) &&
1192	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1193		errors = true;
1194
1195	if ((mark & EXTENT_NEW) &&
1196	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1197		errors = true;
1198
1199	if (errors && !err)
1200		err = -EIO;
1201	return err;
1202}
1203
1204/*
1205 * When btree blocks are allocated the corresponding extents are marked dirty.
1206 * This function ensures such extents are persisted on disk for transaction or
1207 * log commit.
1208 *
1209 * @trans: transaction whose dirty pages we'd like to write
1210 */
1211static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1212{
1213	int ret;
1214	int ret2;
1215	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1216	struct btrfs_fs_info *fs_info = trans->fs_info;
1217	struct blk_plug plug;
1218
1219	blk_start_plug(&plug);
1220	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1221	blk_finish_plug(&plug);
1222	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1223
1224	extent_io_tree_release(&trans->transaction->dirty_pages);
1225
1226	if (ret)
1227		return ret;
1228	else if (ret2)
1229		return ret2;
1230	else
1231		return 0;
1232}
1233
1234/*
1235 * this is used to update the root pointer in the tree of tree roots.
1236 *
1237 * But, in the case of the extent allocation tree, updating the root
1238 * pointer may allocate blocks which may change the root of the extent
1239 * allocation tree.
1240 *
1241 * So, this loops and repeats and makes sure the cowonly root didn't
1242 * change while the root pointer was being updated in the metadata.
1243 */
1244static int update_cowonly_root(struct btrfs_trans_handle *trans,
1245			       struct btrfs_root *root)
1246{
1247	int ret;
1248	u64 old_root_bytenr;
1249	u64 old_root_used;
1250	struct btrfs_fs_info *fs_info = root->fs_info;
1251	struct btrfs_root *tree_root = fs_info->tree_root;
1252
1253	old_root_used = btrfs_root_used(&root->root_item);
1254
1255	while (1) {
1256		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1257		if (old_root_bytenr == root->node->start &&
1258		    old_root_used == btrfs_root_used(&root->root_item))
1259			break;
1260
1261		btrfs_set_root_node(&root->root_item, root->node);
1262		ret = btrfs_update_root(trans, tree_root,
1263					&root->root_key,
1264					&root->root_item);
1265		if (ret)
1266			return ret;
1267
1268		old_root_used = btrfs_root_used(&root->root_item);
1269	}
1270
1271	return 0;
1272}
1273
1274/*
1275 * update all the cowonly tree roots on disk
1276 *
1277 * The error handling in this function may not be obvious. Any of the
1278 * failures will cause the file system to go offline. We still need
1279 * to clean up the delayed refs.
1280 */
1281static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1282{
1283	struct btrfs_fs_info *fs_info = trans->fs_info;
1284	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1285	struct list_head *io_bgs = &trans->transaction->io_bgs;
1286	struct list_head *next;
1287	struct extent_buffer *eb;
1288	int ret;
1289
1290	/*
1291	 * At this point no one can be using this transaction to modify any tree
1292	 * and no one can start another transaction to modify any tree either.
1293	 */
1294	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1295
1296	eb = btrfs_lock_root_node(fs_info->tree_root);
1297	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1298			      0, &eb, BTRFS_NESTING_COW);
1299	btrfs_tree_unlock(eb);
1300	free_extent_buffer(eb);
1301
1302	if (ret)
1303		return ret;
1304
1305	ret = btrfs_run_dev_stats(trans);
1306	if (ret)
1307		return ret;
1308	ret = btrfs_run_dev_replace(trans);
1309	if (ret)
1310		return ret;
1311	ret = btrfs_run_qgroups(trans);
1312	if (ret)
1313		return ret;
1314
1315	ret = btrfs_setup_space_cache(trans);
1316	if (ret)
1317		return ret;
1318
1319again:
1320	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1321		struct btrfs_root *root;
1322		next = fs_info->dirty_cowonly_roots.next;
1323		list_del_init(next);
1324		root = list_entry(next, struct btrfs_root, dirty_list);
1325		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1326
1327		list_add_tail(&root->dirty_list,
1328			      &trans->transaction->switch_commits);
1329		ret = update_cowonly_root(trans, root);
1330		if (ret)
1331			return ret;
1332	}
1333
1334	/* Now flush any delayed refs generated by updating all of the roots */
1335	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1336	if (ret)
1337		return ret;
1338
1339	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1340		ret = btrfs_write_dirty_block_groups(trans);
1341		if (ret)
1342			return ret;
1343
1344		/*
1345		 * We're writing the dirty block groups, which could generate
1346		 * delayed refs, which could generate more dirty block groups,
1347		 * so we want to keep this flushing in this loop to make sure
1348		 * everything gets run.
1349		 */
1350		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1351		if (ret)
1352			return ret;
1353	}
1354
1355	if (!list_empty(&fs_info->dirty_cowonly_roots))
1356		goto again;
1357
1358	/* Update dev-replace pointer once everything is committed */
1359	fs_info->dev_replace.committed_cursor_left =
1360		fs_info->dev_replace.cursor_left_last_write_of_item;
1361
1362	return 0;
1363}
1364
1365/*
1366 * If we had a pending drop we need to see if there are any others left in our
1367 * dead roots list, and if not clear our bit and wake any waiters.
1368 */
1369void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1370{
1371	/*
1372	 * We put the drop in progress roots at the front of the list, so if the
1373	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1374	 * up.
1375	 */
1376	spin_lock(&fs_info->trans_lock);
1377	if (!list_empty(&fs_info->dead_roots)) {
1378		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1379							   struct btrfs_root,
1380							   root_list);
1381		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1382			spin_unlock(&fs_info->trans_lock);
1383			return;
1384		}
1385	}
1386	spin_unlock(&fs_info->trans_lock);
1387
1388	btrfs_wake_unfinished_drop(fs_info);
1389}
1390
1391/*
1392 * dead roots are old snapshots that need to be deleted.  This allocates
1393 * a dirty root struct and adds it into the list of dead roots that need to
1394 * be deleted
1395 */
1396void btrfs_add_dead_root(struct btrfs_root *root)
1397{
1398	struct btrfs_fs_info *fs_info = root->fs_info;
1399
1400	spin_lock(&fs_info->trans_lock);
1401	if (list_empty(&root->root_list)) {
1402		btrfs_grab_root(root);
1403
1404		/* We want to process the partially complete drops first. */
1405		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1406			list_add(&root->root_list, &fs_info->dead_roots);
1407		else
1408			list_add_tail(&root->root_list, &fs_info->dead_roots);
1409	}
1410	spin_unlock(&fs_info->trans_lock);
1411}
1412
1413/*
1414 * Update each subvolume root and its relocation root, if it exists, in the tree
1415 * of tree roots. Also free log roots if they exist.
1416 */
1417static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1418{
1419	struct btrfs_fs_info *fs_info = trans->fs_info;
1420	struct btrfs_root *gang[8];
1421	int i;
1422	int ret;
1423
1424	/*
1425	 * At this point no one can be using this transaction to modify any tree
1426	 * and no one can start another transaction to modify any tree either.
1427	 */
1428	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1429
1430	spin_lock(&fs_info->fs_roots_radix_lock);
1431	while (1) {
1432		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1433						 (void **)gang, 0,
1434						 ARRAY_SIZE(gang),
1435						 BTRFS_ROOT_TRANS_TAG);
1436		if (ret == 0)
1437			break;
1438		for (i = 0; i < ret; i++) {
1439			struct btrfs_root *root = gang[i];
1440			int ret2;
1441
1442			/*
1443			 * At this point we can neither have tasks logging inodes
1444			 * from a root nor trying to commit a log tree.
1445			 */
1446			ASSERT(atomic_read(&root->log_writers) == 0);
1447			ASSERT(atomic_read(&root->log_commit[0]) == 0);
1448			ASSERT(atomic_read(&root->log_commit[1]) == 0);
1449
1450			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1451					(unsigned long)root->root_key.objectid,
1452					BTRFS_ROOT_TRANS_TAG);
1453			spin_unlock(&fs_info->fs_roots_radix_lock);
1454
1455			btrfs_free_log(trans, root);
1456			ret2 = btrfs_update_reloc_root(trans, root);
1457			if (ret2)
1458				return ret2;
1459
1460			/* see comments in should_cow_block() */
1461			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1462			smp_mb__after_atomic();
1463
1464			if (root->commit_root != root->node) {
1465				list_add_tail(&root->dirty_list,
1466					&trans->transaction->switch_commits);
1467				btrfs_set_root_node(&root->root_item,
1468						    root->node);
1469			}
1470
1471			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1472						&root->root_key,
1473						&root->root_item);
1474			if (ret2)
1475				return ret2;
1476			spin_lock(&fs_info->fs_roots_radix_lock);
1477			btrfs_qgroup_free_meta_all_pertrans(root);
1478		}
1479	}
1480	spin_unlock(&fs_info->fs_roots_radix_lock);
1481	return 0;
1482}
1483
1484/*
1485 * defrag a given btree.
1486 * Every leaf in the btree is read and defragged.
1487 */
1488int btrfs_defrag_root(struct btrfs_root *root)
1489{
1490	struct btrfs_fs_info *info = root->fs_info;
1491	struct btrfs_trans_handle *trans;
1492	int ret;
1493
1494	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1495		return 0;
1496
1497	while (1) {
1498		trans = btrfs_start_transaction(root, 0);
1499		if (IS_ERR(trans)) {
1500			ret = PTR_ERR(trans);
1501			break;
1502		}
1503
1504		ret = btrfs_defrag_leaves(trans, root);
1505
1506		btrfs_end_transaction(trans);
1507		btrfs_btree_balance_dirty(info);
1508		cond_resched();
1509
1510		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1511			break;
1512
1513		if (btrfs_defrag_cancelled(info)) {
1514			btrfs_debug(info, "defrag_root cancelled");
1515			ret = -EAGAIN;
1516			break;
1517		}
1518	}
1519	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1520	return ret;
1521}
1522
1523/*
1524 * Do all special snapshot related qgroup dirty hack.
1525 *
1526 * Will do all needed qgroup inherit and dirty hack like switch commit
1527 * roots inside one transaction and write all btree into disk, to make
1528 * qgroup works.
1529 */
1530static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1531				   struct btrfs_root *src,
1532				   struct btrfs_root *parent,
1533				   struct btrfs_qgroup_inherit *inherit,
1534				   u64 dst_objectid)
1535{
1536	struct btrfs_fs_info *fs_info = src->fs_info;
1537	int ret;
1538
1539	/*
1540	 * Save some performance in the case that qgroups are not
1541	 * enabled. If this check races with the ioctl, rescan will
1542	 * kick in anyway.
1543	 */
1544	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1545		return 0;
1546
1547	/*
1548	 * Ensure dirty @src will be committed.  Or, after coming
1549	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1550	 * recorded root will never be updated again, causing an outdated root
1551	 * item.
1552	 */
1553	ret = record_root_in_trans(trans, src, 1);
1554	if (ret)
1555		return ret;
1556
1557	/*
1558	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1559	 * src root, so we must run the delayed refs here.
1560	 *
1561	 * However this isn't particularly fool proof, because there's no
1562	 * synchronization keeping us from changing the tree after this point
1563	 * before we do the qgroup_inherit, or even from making changes while
1564	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1565	 * for now flush the delayed refs to narrow the race window where the
1566	 * qgroup counters could end up wrong.
1567	 */
1568	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1569	if (ret) {
1570		btrfs_abort_transaction(trans, ret);
1571		return ret;
1572	}
1573
1574	ret = commit_fs_roots(trans);
1575	if (ret)
1576		goto out;
1577	ret = btrfs_qgroup_account_extents(trans);
1578	if (ret < 0)
1579		goto out;
1580
1581	/* Now qgroup are all updated, we can inherit it to new qgroups */
1582	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1583				   inherit);
1584	if (ret < 0)
1585		goto out;
1586
1587	/*
1588	 * Now we do a simplified commit transaction, which will:
1589	 * 1) commit all subvolume and extent tree
1590	 *    To ensure all subvolume and extent tree have a valid
1591	 *    commit_root to accounting later insert_dir_item()
1592	 * 2) write all btree blocks onto disk
1593	 *    This is to make sure later btree modification will be cowed
1594	 *    Or commit_root can be populated and cause wrong qgroup numbers
1595	 * In this simplified commit, we don't really care about other trees
1596	 * like chunk and root tree, as they won't affect qgroup.
1597	 * And we don't write super to avoid half committed status.
1598	 */
1599	ret = commit_cowonly_roots(trans);
1600	if (ret)
1601		goto out;
1602	switch_commit_roots(trans);
1603	ret = btrfs_write_and_wait_transaction(trans);
1604	if (ret)
1605		btrfs_handle_fs_error(fs_info, ret,
1606			"Error while writing out transaction for qgroup");
1607
1608out:
1609	/*
1610	 * Force parent root to be updated, as we recorded it before so its
1611	 * last_trans == cur_transid.
1612	 * Or it won't be committed again onto disk after later
1613	 * insert_dir_item()
1614	 */
1615	if (!ret)
1616		ret = record_root_in_trans(trans, parent, 1);
1617	return ret;
1618}
1619
1620/*
1621 * new snapshots need to be created at a very specific time in the
1622 * transaction commit.  This does the actual creation.
1623 *
1624 * Note:
1625 * If the error which may affect the commitment of the current transaction
1626 * happens, we should return the error number. If the error which just affect
1627 * the creation of the pending snapshots, just return 0.
1628 */
1629static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1630				   struct btrfs_pending_snapshot *pending)
1631{
1632
1633	struct btrfs_fs_info *fs_info = trans->fs_info;
1634	struct btrfs_key key;
1635	struct btrfs_root_item *new_root_item;
1636	struct btrfs_root *tree_root = fs_info->tree_root;
1637	struct btrfs_root *root = pending->root;
1638	struct btrfs_root *parent_root;
1639	struct btrfs_block_rsv *rsv;
1640	struct inode *parent_inode = pending->dir;
1641	struct btrfs_path *path;
1642	struct btrfs_dir_item *dir_item;
1643	struct extent_buffer *tmp;
1644	struct extent_buffer *old;
1645	struct timespec64 cur_time;
1646	int ret = 0;
1647	u64 to_reserve = 0;
1648	u64 index = 0;
1649	u64 objectid;
1650	u64 root_flags;
1651	unsigned int nofs_flags;
1652	struct fscrypt_name fname;
1653
1654	ASSERT(pending->path);
1655	path = pending->path;
1656
1657	ASSERT(pending->root_item);
1658	new_root_item = pending->root_item;
1659
1660	/*
1661	 * We're inside a transaction and must make sure that any potential
1662	 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1663	 * filesystem.
1664	 */
1665	nofs_flags = memalloc_nofs_save();
1666	pending->error = fscrypt_setup_filename(parent_inode,
1667						&pending->dentry->d_name, 0,
1668						&fname);
1669	memalloc_nofs_restore(nofs_flags);
1670	if (pending->error)
1671		goto free_pending;
1672
1673	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1674	if (pending->error)
1675		goto free_fname;
1676
1677	/*
1678	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1679	 * accounted by later btrfs_qgroup_inherit().
1680	 */
1681	btrfs_set_skip_qgroup(trans, objectid);
1682
1683	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1684
1685	if (to_reserve > 0) {
1686		pending->error = btrfs_block_rsv_add(fs_info,
1687						     &pending->block_rsv,
1688						     to_reserve,
1689						     BTRFS_RESERVE_NO_FLUSH);
1690		if (pending->error)
1691			goto clear_skip_qgroup;
1692	}
1693
1694	key.objectid = objectid;
1695	key.offset = (u64)-1;
1696	key.type = BTRFS_ROOT_ITEM_KEY;
1697
1698	rsv = trans->block_rsv;
1699	trans->block_rsv = &pending->block_rsv;
1700	trans->bytes_reserved = trans->block_rsv->reserved;
1701	trace_btrfs_space_reservation(fs_info, "transaction",
1702				      trans->transid,
1703				      trans->bytes_reserved, 1);
1704	parent_root = BTRFS_I(parent_inode)->root;
1705	ret = record_root_in_trans(trans, parent_root, 0);
1706	if (ret)
1707		goto fail;
1708	cur_time = current_time(parent_inode);
1709
1710	/*
1711	 * insert the directory item
1712	 */
1713	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1714	if (ret) {
1715		btrfs_abort_transaction(trans, ret);
1716		goto fail;
1717	}
1718
1719	/* check if there is a file/dir which has the same name. */
1720	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1721					 btrfs_ino(BTRFS_I(parent_inode)),
1722					 &fname.disk_name, 0);
1723	if (dir_item != NULL && !IS_ERR(dir_item)) {
1724		pending->error = -EEXIST;
1725		goto dir_item_existed;
1726	} else if (IS_ERR(dir_item)) {
1727		ret = PTR_ERR(dir_item);
1728		btrfs_abort_transaction(trans, ret);
1729		goto fail;
1730	}
1731	btrfs_release_path(path);
1732
1733	/*
1734	 * pull in the delayed directory update
1735	 * and the delayed inode item
1736	 * otherwise we corrupt the FS during
1737	 * snapshot
1738	 */
1739	ret = btrfs_run_delayed_items(trans);
1740	if (ret) {	/* Transaction aborted */
1741		btrfs_abort_transaction(trans, ret);
1742		goto fail;
1743	}
1744
1745	ret = record_root_in_trans(trans, root, 0);
1746	if (ret) {
1747		btrfs_abort_transaction(trans, ret);
1748		goto fail;
1749	}
1750	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1751	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1752	btrfs_check_and_init_root_item(new_root_item);
1753
1754	root_flags = btrfs_root_flags(new_root_item);
1755	if (pending->readonly)
1756		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1757	else
1758		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1759	btrfs_set_root_flags(new_root_item, root_flags);
1760
1761	btrfs_set_root_generation_v2(new_root_item,
1762			trans->transid);
1763	generate_random_guid(new_root_item->uuid);
1764	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1765			BTRFS_UUID_SIZE);
1766	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1767		memset(new_root_item->received_uuid, 0,
1768		       sizeof(new_root_item->received_uuid));
1769		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1770		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1771		btrfs_set_root_stransid(new_root_item, 0);
1772		btrfs_set_root_rtransid(new_root_item, 0);
1773	}
1774	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1775	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1776	btrfs_set_root_otransid(new_root_item, trans->transid);
1777
1778	old = btrfs_lock_root_node(root);
1779	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1780			      BTRFS_NESTING_COW);
1781	if (ret) {
1782		btrfs_tree_unlock(old);
1783		free_extent_buffer(old);
1784		btrfs_abort_transaction(trans, ret);
1785		goto fail;
1786	}
1787
1788	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1789	/* clean up in any case */
1790	btrfs_tree_unlock(old);
1791	free_extent_buffer(old);
1792	if (ret) {
1793		btrfs_abort_transaction(trans, ret);
1794		goto fail;
1795	}
1796	/* see comments in should_cow_block() */
1797	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1798	smp_wmb();
1799
1800	btrfs_set_root_node(new_root_item, tmp);
1801	/* record when the snapshot was created in key.offset */
1802	key.offset = trans->transid;
1803	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1804	btrfs_tree_unlock(tmp);
1805	free_extent_buffer(tmp);
1806	if (ret) {
1807		btrfs_abort_transaction(trans, ret);
1808		goto fail;
1809	}
1810
1811	/*
1812	 * insert root back/forward references
1813	 */
1814	ret = btrfs_add_root_ref(trans, objectid,
1815				 parent_root->root_key.objectid,
1816				 btrfs_ino(BTRFS_I(parent_inode)), index,
1817				 &fname.disk_name);
1818	if (ret) {
1819		btrfs_abort_transaction(trans, ret);
1820		goto fail;
1821	}
1822
1823	key.offset = (u64)-1;
1824	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1825	if (IS_ERR(pending->snap)) {
1826		ret = PTR_ERR(pending->snap);
1827		pending->snap = NULL;
1828		btrfs_abort_transaction(trans, ret);
1829		goto fail;
1830	}
1831
1832	ret = btrfs_reloc_post_snapshot(trans, pending);
1833	if (ret) {
1834		btrfs_abort_transaction(trans, ret);
1835		goto fail;
1836	}
1837
1838	/*
1839	 * Do special qgroup accounting for snapshot, as we do some qgroup
1840	 * snapshot hack to do fast snapshot.
1841	 * To co-operate with that hack, we do hack again.
1842	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1843	 */
1844	ret = qgroup_account_snapshot(trans, root, parent_root,
1845				      pending->inherit, objectid);
1846	if (ret < 0)
1847		goto fail;
1848
1849	ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1850				    BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1851				    index);
1852	/* We have check then name at the beginning, so it is impossible. */
1853	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1854	if (ret) {
1855		btrfs_abort_transaction(trans, ret);
1856		goto fail;
1857	}
1858
1859	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1860						  fname.disk_name.len * 2);
1861	parent_inode->i_mtime = inode_set_ctime_current(parent_inode);
1862	ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1863	if (ret) {
1864		btrfs_abort_transaction(trans, ret);
1865		goto fail;
1866	}
1867	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1868				  BTRFS_UUID_KEY_SUBVOL,
1869				  objectid);
1870	if (ret) {
1871		btrfs_abort_transaction(trans, ret);
1872		goto fail;
1873	}
1874	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1875		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1876					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1877					  objectid);
1878		if (ret && ret != -EEXIST) {
1879			btrfs_abort_transaction(trans, ret);
1880			goto fail;
1881		}
1882	}
1883
1884fail:
1885	pending->error = ret;
1886dir_item_existed:
1887	trans->block_rsv = rsv;
1888	trans->bytes_reserved = 0;
1889clear_skip_qgroup:
1890	btrfs_clear_skip_qgroup(trans);
1891free_fname:
1892	fscrypt_free_filename(&fname);
1893free_pending:
1894	kfree(new_root_item);
1895	pending->root_item = NULL;
1896	btrfs_free_path(path);
1897	pending->path = NULL;
1898
1899	return ret;
1900}
1901
1902/*
1903 * create all the snapshots we've scheduled for creation
1904 */
1905static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1906{
1907	struct btrfs_pending_snapshot *pending, *next;
1908	struct list_head *head = &trans->transaction->pending_snapshots;
1909	int ret = 0;
1910
1911	list_for_each_entry_safe(pending, next, head, list) {
1912		list_del(&pending->list);
1913		ret = create_pending_snapshot(trans, pending);
1914		if (ret)
1915			break;
1916	}
1917	return ret;
1918}
1919
1920static void update_super_roots(struct btrfs_fs_info *fs_info)
1921{
1922	struct btrfs_root_item *root_item;
1923	struct btrfs_super_block *super;
1924
1925	super = fs_info->super_copy;
1926
1927	root_item = &fs_info->chunk_root->root_item;
1928	super->chunk_root = root_item->bytenr;
1929	super->chunk_root_generation = root_item->generation;
1930	super->chunk_root_level = root_item->level;
1931
1932	root_item = &fs_info->tree_root->root_item;
1933	super->root = root_item->bytenr;
1934	super->generation = root_item->generation;
1935	super->root_level = root_item->level;
1936	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1937		super->cache_generation = root_item->generation;
1938	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1939		super->cache_generation = 0;
1940	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1941		super->uuid_tree_generation = root_item->generation;
1942}
1943
1944int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1945{
1946	struct btrfs_transaction *trans;
1947	int ret = 0;
1948
1949	spin_lock(&info->trans_lock);
1950	trans = info->running_transaction;
1951	if (trans)
1952		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1953	spin_unlock(&info->trans_lock);
1954	return ret;
1955}
1956
1957int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1958{
1959	struct btrfs_transaction *trans;
1960	int ret = 0;
1961
1962	spin_lock(&info->trans_lock);
1963	trans = info->running_transaction;
1964	if (trans)
1965		ret = is_transaction_blocked(trans);
1966	spin_unlock(&info->trans_lock);
1967	return ret;
1968}
1969
1970void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1971{
1972	struct btrfs_fs_info *fs_info = trans->fs_info;
1973	struct btrfs_transaction *cur_trans;
1974
1975	/* Kick the transaction kthread. */
1976	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1977	wake_up_process(fs_info->transaction_kthread);
1978
1979	/* take transaction reference */
1980	cur_trans = trans->transaction;
1981	refcount_inc(&cur_trans->use_count);
1982
1983	btrfs_end_transaction(trans);
1984
1985	/*
1986	 * Wait for the current transaction commit to start and block
1987	 * subsequent transaction joins
1988	 */
1989	btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1990	wait_event(fs_info->transaction_blocked_wait,
1991		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
1992		   TRANS_ABORTED(cur_trans));
1993	btrfs_put_transaction(cur_trans);
1994}
1995
1996static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1997{
1998	struct btrfs_fs_info *fs_info = trans->fs_info;
1999	struct btrfs_transaction *cur_trans = trans->transaction;
2000
2001	WARN_ON(refcount_read(&trans->use_count) > 1);
2002
2003	btrfs_abort_transaction(trans, err);
2004
2005	spin_lock(&fs_info->trans_lock);
2006
2007	/*
2008	 * If the transaction is removed from the list, it means this
2009	 * transaction has been committed successfully, so it is impossible
2010	 * to call the cleanup function.
2011	 */
2012	BUG_ON(list_empty(&cur_trans->list));
2013
2014	if (cur_trans == fs_info->running_transaction) {
2015		cur_trans->state = TRANS_STATE_COMMIT_DOING;
2016		spin_unlock(&fs_info->trans_lock);
2017
2018		/*
2019		 * The thread has already released the lockdep map as reader
2020		 * already in btrfs_commit_transaction().
2021		 */
2022		btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2023		wait_event(cur_trans->writer_wait,
2024			   atomic_read(&cur_trans->num_writers) == 1);
2025
2026		spin_lock(&fs_info->trans_lock);
2027	}
2028
2029	/*
2030	 * Now that we know no one else is still using the transaction we can
2031	 * remove the transaction from the list of transactions. This avoids
2032	 * the transaction kthread from cleaning up the transaction while some
2033	 * other task is still using it, which could result in a use-after-free
2034	 * on things like log trees, as it forces the transaction kthread to
2035	 * wait for this transaction to be cleaned up by us.
2036	 */
2037	list_del_init(&cur_trans->list);
2038
2039	spin_unlock(&fs_info->trans_lock);
2040
2041	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2042
2043	spin_lock(&fs_info->trans_lock);
2044	if (cur_trans == fs_info->running_transaction)
2045		fs_info->running_transaction = NULL;
2046	spin_unlock(&fs_info->trans_lock);
2047
2048	if (trans->type & __TRANS_FREEZABLE)
2049		sb_end_intwrite(fs_info->sb);
2050	btrfs_put_transaction(cur_trans);
2051	btrfs_put_transaction(cur_trans);
2052
2053	trace_btrfs_transaction_commit(fs_info);
2054
2055	if (current->journal_info == trans)
2056		current->journal_info = NULL;
2057
2058	/*
2059	 * If relocation is running, we can't cancel scrub because that will
2060	 * result in a deadlock. Before relocating a block group, relocation
2061	 * pauses scrub, then starts and commits a transaction before unpausing
2062	 * scrub. If the transaction commit is being done by the relocation
2063	 * task or triggered by another task and the relocation task is waiting
2064	 * for the commit, and we end up here due to an error in the commit
2065	 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2066	 * asking for scrub to stop while having it asked to be paused higher
2067	 * above in relocation code.
2068	 */
2069	if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2070		btrfs_scrub_cancel(fs_info);
2071
2072	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2073}
2074
2075/*
2076 * Release reserved delayed ref space of all pending block groups of the
2077 * transaction and remove them from the list
2078 */
2079static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2080{
2081       struct btrfs_fs_info *fs_info = trans->fs_info;
2082       struct btrfs_block_group *block_group, *tmp;
2083
2084       list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2085               btrfs_delayed_refs_rsv_release(fs_info, 1);
2086               list_del_init(&block_group->bg_list);
2087       }
2088}
2089
2090static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2091{
2092	/*
2093	 * We use try_to_writeback_inodes_sb() here because if we used
2094	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2095	 * Currently are holding the fs freeze lock, if we do an async flush
2096	 * we'll do btrfs_join_transaction() and deadlock because we need to
2097	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2098	 * from already being in a transaction and our join_transaction doesn't
2099	 * have to re-take the fs freeze lock.
2100	 *
2101	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2102	 * if it can read lock sb->s_umount. It will always be able to lock it,
2103	 * except when the filesystem is being unmounted or being frozen, but in
2104	 * those cases sync_filesystem() is called, which results in calling
2105	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2106	 * Note that we don't call writeback_inodes_sb() directly, because it
2107	 * will emit a warning if sb->s_umount is not locked.
2108	 */
2109	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2110		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2111	return 0;
2112}
2113
2114static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2115{
2116	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2117		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2118}
2119
2120/*
2121 * Add a pending snapshot associated with the given transaction handle to the
2122 * respective handle. This must be called after the transaction commit started
2123 * and while holding fs_info->trans_lock.
2124 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2125 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2126 * returns an error.
2127 */
2128static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2129{
2130	struct btrfs_transaction *cur_trans = trans->transaction;
2131
2132	if (!trans->pending_snapshot)
2133		return;
2134
2135	lockdep_assert_held(&trans->fs_info->trans_lock);
2136	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2137
2138	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2139}
2140
2141static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2142{
2143	fs_info->commit_stats.commit_count++;
2144	fs_info->commit_stats.last_commit_dur = interval;
2145	fs_info->commit_stats.max_commit_dur =
2146			max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2147	fs_info->commit_stats.total_commit_dur += interval;
2148}
2149
2150int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2151{
2152	struct btrfs_fs_info *fs_info = trans->fs_info;
2153	struct btrfs_transaction *cur_trans = trans->transaction;
2154	struct btrfs_transaction *prev_trans = NULL;
2155	int ret;
2156	ktime_t start_time;
2157	ktime_t interval;
2158
2159	ASSERT(refcount_read(&trans->use_count) == 1);
2160	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2161
2162	clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2163
2164	/* Stop the commit early if ->aborted is set */
2165	if (TRANS_ABORTED(cur_trans)) {
2166		ret = cur_trans->aborted;
2167		goto lockdep_trans_commit_start_release;
2168	}
2169
2170	btrfs_trans_release_metadata(trans);
2171	trans->block_rsv = NULL;
2172
2173	/*
2174	 * We only want one transaction commit doing the flushing so we do not
2175	 * waste a bunch of time on lock contention on the extent root node.
2176	 */
2177	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2178			      &cur_trans->delayed_refs.flags)) {
2179		/*
2180		 * Make a pass through all the delayed refs we have so far.
2181		 * Any running threads may add more while we are here.
2182		 */
2183		ret = btrfs_run_delayed_refs(trans, 0);
2184		if (ret)
2185			goto lockdep_trans_commit_start_release;
2186	}
2187
2188	btrfs_create_pending_block_groups(trans);
2189
2190	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2191		int run_it = 0;
2192
2193		/* this mutex is also taken before trying to set
2194		 * block groups readonly.  We need to make sure
2195		 * that nobody has set a block group readonly
2196		 * after a extents from that block group have been
2197		 * allocated for cache files.  btrfs_set_block_group_ro
2198		 * will wait for the transaction to commit if it
2199		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2200		 *
2201		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2202		 * only one process starts all the block group IO.  It wouldn't
2203		 * hurt to have more than one go through, but there's no
2204		 * real advantage to it either.
2205		 */
2206		mutex_lock(&fs_info->ro_block_group_mutex);
2207		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2208				      &cur_trans->flags))
2209			run_it = 1;
2210		mutex_unlock(&fs_info->ro_block_group_mutex);
2211
2212		if (run_it) {
2213			ret = btrfs_start_dirty_block_groups(trans);
2214			if (ret)
2215				goto lockdep_trans_commit_start_release;
2216		}
2217	}
2218
2219	spin_lock(&fs_info->trans_lock);
2220	if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2221		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2222
2223		add_pending_snapshot(trans);
2224
2225		spin_unlock(&fs_info->trans_lock);
2226		refcount_inc(&cur_trans->use_count);
2227
2228		if (trans->in_fsync)
2229			want_state = TRANS_STATE_SUPER_COMMITTED;
2230
2231		btrfs_trans_state_lockdep_release(fs_info,
2232						  BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2233		ret = btrfs_end_transaction(trans);
2234		wait_for_commit(cur_trans, want_state);
2235
2236		if (TRANS_ABORTED(cur_trans))
2237			ret = cur_trans->aborted;
2238
2239		btrfs_put_transaction(cur_trans);
2240
2241		return ret;
2242	}
2243
2244	cur_trans->state = TRANS_STATE_COMMIT_PREP;
2245	wake_up(&fs_info->transaction_blocked_wait);
2246	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2247
2248	if (cur_trans->list.prev != &fs_info->trans_list) {
2249		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2250
2251		if (trans->in_fsync)
2252			want_state = TRANS_STATE_SUPER_COMMITTED;
2253
2254		prev_trans = list_entry(cur_trans->list.prev,
2255					struct btrfs_transaction, list);
2256		if (prev_trans->state < want_state) {
2257			refcount_inc(&prev_trans->use_count);
2258			spin_unlock(&fs_info->trans_lock);
2259
2260			wait_for_commit(prev_trans, want_state);
2261
2262			ret = READ_ONCE(prev_trans->aborted);
2263
2264			btrfs_put_transaction(prev_trans);
2265			if (ret)
2266				goto lockdep_release;
2267			spin_lock(&fs_info->trans_lock);
2268		}
2269	} else {
2270		/*
2271		 * The previous transaction was aborted and was already removed
2272		 * from the list of transactions at fs_info->trans_list. So we
2273		 * abort to prevent writing a new superblock that reflects a
2274		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2275		 */
2276		if (BTRFS_FS_ERROR(fs_info)) {
2277			spin_unlock(&fs_info->trans_lock);
2278			ret = -EROFS;
2279			goto lockdep_release;
2280		}
2281	}
2282
2283	cur_trans->state = TRANS_STATE_COMMIT_START;
2284	wake_up(&fs_info->transaction_blocked_wait);
2285	spin_unlock(&fs_info->trans_lock);
2286
2287	/*
2288	 * Get the time spent on the work done by the commit thread and not
2289	 * the time spent waiting on a previous commit
2290	 */
2291	start_time = ktime_get_ns();
2292
2293	extwriter_counter_dec(cur_trans, trans->type);
2294
2295	ret = btrfs_start_delalloc_flush(fs_info);
2296	if (ret)
2297		goto lockdep_release;
2298
2299	ret = btrfs_run_delayed_items(trans);
2300	if (ret)
2301		goto lockdep_release;
2302
2303	/*
2304	 * The thread has started/joined the transaction thus it holds the
2305	 * lockdep map as a reader. It has to release it before acquiring the
2306	 * lockdep map as a writer.
2307	 */
2308	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2309	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2310	wait_event(cur_trans->writer_wait,
2311		   extwriter_counter_read(cur_trans) == 0);
2312
2313	/* some pending stuffs might be added after the previous flush. */
2314	ret = btrfs_run_delayed_items(trans);
2315	if (ret) {
2316		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2317		goto cleanup_transaction;
2318	}
2319
2320	btrfs_wait_delalloc_flush(fs_info);
2321
2322	/*
2323	 * Wait for all ordered extents started by a fast fsync that joined this
2324	 * transaction. Otherwise if this transaction commits before the ordered
2325	 * extents complete we lose logged data after a power failure.
2326	 */
2327	btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2328	wait_event(cur_trans->pending_wait,
2329		   atomic_read(&cur_trans->pending_ordered) == 0);
2330
2331	btrfs_scrub_pause(fs_info);
2332	/*
2333	 * Ok now we need to make sure to block out any other joins while we
2334	 * commit the transaction.  We could have started a join before setting
2335	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2336	 */
2337	spin_lock(&fs_info->trans_lock);
2338	add_pending_snapshot(trans);
2339	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2340	spin_unlock(&fs_info->trans_lock);
2341
2342	/*
2343	 * The thread has started/joined the transaction thus it holds the
2344	 * lockdep map as a reader. It has to release it before acquiring the
2345	 * lockdep map as a writer.
2346	 */
2347	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2348	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2349	wait_event(cur_trans->writer_wait,
2350		   atomic_read(&cur_trans->num_writers) == 1);
2351
2352	/*
2353	 * Make lockdep happy by acquiring the state locks after
2354	 * btrfs_trans_num_writers is released. If we acquired the state locks
2355	 * before releasing the btrfs_trans_num_writers lock then lockdep would
2356	 * complain because we did not follow the reverse order unlocking rule.
2357	 */
2358	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2359	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2360	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2361
2362	/*
2363	 * We've started the commit, clear the flag in case we were triggered to
2364	 * do an async commit but somebody else started before the transaction
2365	 * kthread could do the work.
2366	 */
2367	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2368
2369	if (TRANS_ABORTED(cur_trans)) {
2370		ret = cur_trans->aborted;
2371		btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2372		goto scrub_continue;
2373	}
2374	/*
2375	 * the reloc mutex makes sure that we stop
2376	 * the balancing code from coming in and moving
2377	 * extents around in the middle of the commit
2378	 */
2379	mutex_lock(&fs_info->reloc_mutex);
2380
2381	/*
2382	 * We needn't worry about the delayed items because we will
2383	 * deal with them in create_pending_snapshot(), which is the
2384	 * core function of the snapshot creation.
2385	 */
2386	ret = create_pending_snapshots(trans);
2387	if (ret)
2388		goto unlock_reloc;
2389
2390	/*
2391	 * We insert the dir indexes of the snapshots and update the inode
2392	 * of the snapshots' parents after the snapshot creation, so there
2393	 * are some delayed items which are not dealt with. Now deal with
2394	 * them.
2395	 *
2396	 * We needn't worry that this operation will corrupt the snapshots,
2397	 * because all the tree which are snapshoted will be forced to COW
2398	 * the nodes and leaves.
2399	 */
2400	ret = btrfs_run_delayed_items(trans);
2401	if (ret)
2402		goto unlock_reloc;
2403
2404	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2405	if (ret)
2406		goto unlock_reloc;
2407
2408	/*
2409	 * make sure none of the code above managed to slip in a
2410	 * delayed item
2411	 */
2412	btrfs_assert_delayed_root_empty(fs_info);
2413
2414	WARN_ON(cur_trans != trans->transaction);
2415
2416	ret = commit_fs_roots(trans);
2417	if (ret)
2418		goto unlock_reloc;
2419
2420	/* commit_fs_roots gets rid of all the tree log roots, it is now
2421	 * safe to free the root of tree log roots
2422	 */
2423	btrfs_free_log_root_tree(trans, fs_info);
2424
2425	/*
2426	 * Since fs roots are all committed, we can get a quite accurate
2427	 * new_roots. So let's do quota accounting.
2428	 */
2429	ret = btrfs_qgroup_account_extents(trans);
2430	if (ret < 0)
2431		goto unlock_reloc;
2432
2433	ret = commit_cowonly_roots(trans);
2434	if (ret)
2435		goto unlock_reloc;
2436
2437	/*
2438	 * The tasks which save the space cache and inode cache may also
2439	 * update ->aborted, check it.
2440	 */
2441	if (TRANS_ABORTED(cur_trans)) {
2442		ret = cur_trans->aborted;
2443		goto unlock_reloc;
2444	}
2445
2446	cur_trans = fs_info->running_transaction;
2447
2448	btrfs_set_root_node(&fs_info->tree_root->root_item,
2449			    fs_info->tree_root->node);
2450	list_add_tail(&fs_info->tree_root->dirty_list,
2451		      &cur_trans->switch_commits);
2452
2453	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2454			    fs_info->chunk_root->node);
2455	list_add_tail(&fs_info->chunk_root->dirty_list,
2456		      &cur_trans->switch_commits);
2457
2458	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2459		btrfs_set_root_node(&fs_info->block_group_root->root_item,
2460				    fs_info->block_group_root->node);
2461		list_add_tail(&fs_info->block_group_root->dirty_list,
2462			      &cur_trans->switch_commits);
2463	}
2464
2465	switch_commit_roots(trans);
2466
2467	ASSERT(list_empty(&cur_trans->dirty_bgs));
2468	ASSERT(list_empty(&cur_trans->io_bgs));
2469	update_super_roots(fs_info);
2470
2471	btrfs_set_super_log_root(fs_info->super_copy, 0);
2472	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2473	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2474	       sizeof(*fs_info->super_copy));
2475
2476	btrfs_commit_device_sizes(cur_trans);
2477
2478	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2479	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2480
2481	btrfs_trans_release_chunk_metadata(trans);
2482
2483	/*
2484	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2485	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2486	 * make sure that before we commit our superblock, no other task can
2487	 * start a new transaction and commit a log tree before we commit our
2488	 * superblock. Anyone trying to commit a log tree locks this mutex before
2489	 * writing its superblock.
2490	 */
2491	mutex_lock(&fs_info->tree_log_mutex);
2492
2493	spin_lock(&fs_info->trans_lock);
2494	cur_trans->state = TRANS_STATE_UNBLOCKED;
2495	fs_info->running_transaction = NULL;
2496	spin_unlock(&fs_info->trans_lock);
2497	mutex_unlock(&fs_info->reloc_mutex);
2498
2499	wake_up(&fs_info->transaction_wait);
2500	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2501
2502	/* If we have features changed, wake up the cleaner to update sysfs. */
2503	if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2504	    fs_info->cleaner_kthread)
2505		wake_up_process(fs_info->cleaner_kthread);
2506
2507	ret = btrfs_write_and_wait_transaction(trans);
2508	if (ret) {
2509		btrfs_handle_fs_error(fs_info, ret,
2510				      "Error while writing out transaction");
2511		mutex_unlock(&fs_info->tree_log_mutex);
2512		goto scrub_continue;
2513	}
2514
2515	ret = write_all_supers(fs_info, 0);
2516	/*
2517	 * the super is written, we can safely allow the tree-loggers
2518	 * to go about their business
2519	 */
2520	mutex_unlock(&fs_info->tree_log_mutex);
2521	if (ret)
2522		goto scrub_continue;
2523
2524	/*
2525	 * We needn't acquire the lock here because there is no other task
2526	 * which can change it.
2527	 */
2528	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2529	wake_up(&cur_trans->commit_wait);
2530	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2531
2532	btrfs_finish_extent_commit(trans);
2533
2534	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2535		btrfs_clear_space_info_full(fs_info);
2536
2537	fs_info->last_trans_committed = cur_trans->transid;
2538	/*
2539	 * We needn't acquire the lock here because there is no other task
2540	 * which can change it.
2541	 */
2542	cur_trans->state = TRANS_STATE_COMPLETED;
2543	wake_up(&cur_trans->commit_wait);
2544	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2545
2546	spin_lock(&fs_info->trans_lock);
2547	list_del_init(&cur_trans->list);
2548	spin_unlock(&fs_info->trans_lock);
2549
2550	btrfs_put_transaction(cur_trans);
2551	btrfs_put_transaction(cur_trans);
2552
2553	if (trans->type & __TRANS_FREEZABLE)
2554		sb_end_intwrite(fs_info->sb);
2555
2556	trace_btrfs_transaction_commit(fs_info);
2557
2558	interval = ktime_get_ns() - start_time;
2559
2560	btrfs_scrub_continue(fs_info);
2561
2562	if (current->journal_info == trans)
2563		current->journal_info = NULL;
2564
2565	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2566
2567	update_commit_stats(fs_info, interval);
2568
2569	return ret;
2570
2571unlock_reloc:
2572	mutex_unlock(&fs_info->reloc_mutex);
2573	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2574scrub_continue:
2575	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2576	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2577	btrfs_scrub_continue(fs_info);
2578cleanup_transaction:
2579	btrfs_trans_release_metadata(trans);
2580	btrfs_cleanup_pending_block_groups(trans);
2581	btrfs_trans_release_chunk_metadata(trans);
2582	trans->block_rsv = NULL;
2583	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2584	if (current->journal_info == trans)
2585		current->journal_info = NULL;
2586	cleanup_transaction(trans, ret);
2587
2588	return ret;
2589
2590lockdep_release:
2591	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2592	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2593	goto cleanup_transaction;
2594
2595lockdep_trans_commit_start_release:
2596	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2597	btrfs_end_transaction(trans);
2598	return ret;
2599}
2600
2601/*
2602 * return < 0 if error
2603 * 0 if there are no more dead_roots at the time of call
2604 * 1 there are more to be processed, call me again
2605 *
2606 * The return value indicates there are certainly more snapshots to delete, but
2607 * if there comes a new one during processing, it may return 0. We don't mind,
2608 * because btrfs_commit_super will poke cleaner thread and it will process it a
2609 * few seconds later.
2610 */
2611int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2612{
2613	struct btrfs_root *root;
2614	int ret;
2615
2616	spin_lock(&fs_info->trans_lock);
2617	if (list_empty(&fs_info->dead_roots)) {
2618		spin_unlock(&fs_info->trans_lock);
2619		return 0;
2620	}
2621	root = list_first_entry(&fs_info->dead_roots,
2622			struct btrfs_root, root_list);
2623	list_del_init(&root->root_list);
2624	spin_unlock(&fs_info->trans_lock);
2625
2626	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2627
2628	btrfs_kill_all_delayed_nodes(root);
2629
2630	if (btrfs_header_backref_rev(root->node) <
2631			BTRFS_MIXED_BACKREF_REV)
2632		ret = btrfs_drop_snapshot(root, 0, 0);
2633	else
2634		ret = btrfs_drop_snapshot(root, 1, 0);
2635
2636	btrfs_put_root(root);
2637	return (ret < 0) ? 0 : 1;
2638}
2639
2640/*
2641 * We only mark the transaction aborted and then set the file system read-only.
2642 * This will prevent new transactions from starting or trying to join this
2643 * one.
2644 *
2645 * This means that error recovery at the call site is limited to freeing
2646 * any local memory allocations and passing the error code up without
2647 * further cleanup. The transaction should complete as it normally would
2648 * in the call path but will return -EIO.
2649 *
2650 * We'll complete the cleanup in btrfs_end_transaction and
2651 * btrfs_commit_transaction.
2652 */
2653void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2654				      const char *function,
2655				      unsigned int line, int errno, bool first_hit)
2656{
2657	struct btrfs_fs_info *fs_info = trans->fs_info;
2658
2659	WRITE_ONCE(trans->aborted, errno);
2660	WRITE_ONCE(trans->transaction->aborted, errno);
2661	if (first_hit && errno == -ENOSPC)
2662		btrfs_dump_space_info_for_trans_abort(fs_info);
2663	/* Wake up anybody who may be waiting on this transaction */
2664	wake_up(&fs_info->transaction_wait);
2665	wake_up(&fs_info->transaction_blocked_wait);
2666	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
2667}
2668
2669int __init btrfs_transaction_init(void)
2670{
2671	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2672			sizeof(struct btrfs_trans_handle), 0,
2673			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2674	if (!btrfs_trans_handle_cachep)
2675		return -ENOMEM;
2676	return 0;
2677}
2678
2679void __cold btrfs_transaction_exit(void)
2680{
2681	kmem_cache_destroy(btrfs_trans_handle_cachep);
2682}
2683