xref: /kernel/linux/linux-6.6/fs/btrfs/super.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/blkdev.h>
7#include <linux/module.h>
8#include <linux/fs.h>
9#include <linux/pagemap.h>
10#include <linux/highmem.h>
11#include <linux/time.h>
12#include <linux/init.h>
13#include <linux/seq_file.h>
14#include <linux/string.h>
15#include <linux/backing-dev.h>
16#include <linux/mount.h>
17#include <linux/writeback.h>
18#include <linux/statfs.h>
19#include <linux/compat.h>
20#include <linux/parser.h>
21#include <linux/ctype.h>
22#include <linux/namei.h>
23#include <linux/miscdevice.h>
24#include <linux/magic.h>
25#include <linux/slab.h>
26#include <linux/ratelimit.h>
27#include <linux/crc32c.h>
28#include <linux/btrfs.h>
29#include "messages.h"
30#include "delayed-inode.h"
31#include "ctree.h"
32#include "disk-io.h"
33#include "transaction.h"
34#include "btrfs_inode.h"
35#include "print-tree.h"
36#include "props.h"
37#include "xattr.h"
38#include "bio.h"
39#include "export.h"
40#include "compression.h"
41#include "rcu-string.h"
42#include "dev-replace.h"
43#include "free-space-cache.h"
44#include "backref.h"
45#include "space-info.h"
46#include "sysfs.h"
47#include "zoned.h"
48#include "tests/btrfs-tests.h"
49#include "block-group.h"
50#include "discard.h"
51#include "qgroup.h"
52#include "raid56.h"
53#include "fs.h"
54#include "accessors.h"
55#include "defrag.h"
56#include "dir-item.h"
57#include "ioctl.h"
58#include "scrub.h"
59#include "verity.h"
60#include "super.h"
61#include "extent-tree.h"
62#define CREATE_TRACE_POINTS
63#include <trace/events/btrfs.h>
64
65static const struct super_operations btrfs_super_ops;
66
67/*
68 * Types for mounting the default subvolume and a subvolume explicitly
69 * requested by subvol=/path. That way the callchain is straightforward and we
70 * don't have to play tricks with the mount options and recursive calls to
71 * btrfs_mount.
72 *
73 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
74 */
75static struct file_system_type btrfs_fs_type;
76static struct file_system_type btrfs_root_fs_type;
77
78static int btrfs_remount(struct super_block *sb, int *flags, char *data);
79
80static void btrfs_put_super(struct super_block *sb)
81{
82	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
83
84	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
85	close_ctree(fs_info);
86}
87
88enum {
89	Opt_acl, Opt_noacl,
90	Opt_clear_cache,
91	Opt_commit_interval,
92	Opt_compress,
93	Opt_compress_force,
94	Opt_compress_force_type,
95	Opt_compress_type,
96	Opt_degraded,
97	Opt_device,
98	Opt_fatal_errors,
99	Opt_flushoncommit, Opt_noflushoncommit,
100	Opt_max_inline,
101	Opt_barrier, Opt_nobarrier,
102	Opt_datacow, Opt_nodatacow,
103	Opt_datasum, Opt_nodatasum,
104	Opt_defrag, Opt_nodefrag,
105	Opt_discard, Opt_nodiscard,
106	Opt_discard_mode,
107	Opt_norecovery,
108	Opt_ratio,
109	Opt_rescan_uuid_tree,
110	Opt_skip_balance,
111	Opt_space_cache, Opt_no_space_cache,
112	Opt_space_cache_version,
113	Opt_ssd, Opt_nossd,
114	Opt_ssd_spread, Opt_nossd_spread,
115	Opt_subvol,
116	Opt_subvol_empty,
117	Opt_subvolid,
118	Opt_thread_pool,
119	Opt_treelog, Opt_notreelog,
120	Opt_user_subvol_rm_allowed,
121
122	/* Rescue options */
123	Opt_rescue,
124	Opt_usebackuproot,
125	Opt_nologreplay,
126	Opt_ignorebadroots,
127	Opt_ignoredatacsums,
128	Opt_rescue_all,
129
130	/* Deprecated options */
131	Opt_recovery,
132	Opt_inode_cache, Opt_noinode_cache,
133
134	/* Debugging options */
135	Opt_check_integrity,
136	Opt_check_integrity_including_extent_data,
137	Opt_check_integrity_print_mask,
138	Opt_enospc_debug, Opt_noenospc_debug,
139#ifdef CONFIG_BTRFS_DEBUG
140	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
141#endif
142#ifdef CONFIG_BTRFS_FS_REF_VERIFY
143	Opt_ref_verify,
144#endif
145	Opt_err,
146};
147
148static const match_table_t tokens = {
149	{Opt_acl, "acl"},
150	{Opt_noacl, "noacl"},
151	{Opt_clear_cache, "clear_cache"},
152	{Opt_commit_interval, "commit=%u"},
153	{Opt_compress, "compress"},
154	{Opt_compress_type, "compress=%s"},
155	{Opt_compress_force, "compress-force"},
156	{Opt_compress_force_type, "compress-force=%s"},
157	{Opt_degraded, "degraded"},
158	{Opt_device, "device=%s"},
159	{Opt_fatal_errors, "fatal_errors=%s"},
160	{Opt_flushoncommit, "flushoncommit"},
161	{Opt_noflushoncommit, "noflushoncommit"},
162	{Opt_inode_cache, "inode_cache"},
163	{Opt_noinode_cache, "noinode_cache"},
164	{Opt_max_inline, "max_inline=%s"},
165	{Opt_barrier, "barrier"},
166	{Opt_nobarrier, "nobarrier"},
167	{Opt_datacow, "datacow"},
168	{Opt_nodatacow, "nodatacow"},
169	{Opt_datasum, "datasum"},
170	{Opt_nodatasum, "nodatasum"},
171	{Opt_defrag, "autodefrag"},
172	{Opt_nodefrag, "noautodefrag"},
173	{Opt_discard, "discard"},
174	{Opt_discard_mode, "discard=%s"},
175	{Opt_nodiscard, "nodiscard"},
176	{Opt_norecovery, "norecovery"},
177	{Opt_ratio, "metadata_ratio=%u"},
178	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
179	{Opt_skip_balance, "skip_balance"},
180	{Opt_space_cache, "space_cache"},
181	{Opt_no_space_cache, "nospace_cache"},
182	{Opt_space_cache_version, "space_cache=%s"},
183	{Opt_ssd, "ssd"},
184	{Opt_nossd, "nossd"},
185	{Opt_ssd_spread, "ssd_spread"},
186	{Opt_nossd_spread, "nossd_spread"},
187	{Opt_subvol, "subvol=%s"},
188	{Opt_subvol_empty, "subvol="},
189	{Opt_subvolid, "subvolid=%s"},
190	{Opt_thread_pool, "thread_pool=%u"},
191	{Opt_treelog, "treelog"},
192	{Opt_notreelog, "notreelog"},
193	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
194
195	/* Rescue options */
196	{Opt_rescue, "rescue=%s"},
197	/* Deprecated, with alias rescue=nologreplay */
198	{Opt_nologreplay, "nologreplay"},
199	/* Deprecated, with alias rescue=usebackuproot */
200	{Opt_usebackuproot, "usebackuproot"},
201
202	/* Deprecated options */
203	{Opt_recovery, "recovery"},
204
205	/* Debugging options */
206	{Opt_check_integrity, "check_int"},
207	{Opt_check_integrity_including_extent_data, "check_int_data"},
208	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
209	{Opt_enospc_debug, "enospc_debug"},
210	{Opt_noenospc_debug, "noenospc_debug"},
211#ifdef CONFIG_BTRFS_DEBUG
212	{Opt_fragment_data, "fragment=data"},
213	{Opt_fragment_metadata, "fragment=metadata"},
214	{Opt_fragment_all, "fragment=all"},
215#endif
216#ifdef CONFIG_BTRFS_FS_REF_VERIFY
217	{Opt_ref_verify, "ref_verify"},
218#endif
219	{Opt_err, NULL},
220};
221
222static const match_table_t rescue_tokens = {
223	{Opt_usebackuproot, "usebackuproot"},
224	{Opt_nologreplay, "nologreplay"},
225	{Opt_ignorebadroots, "ignorebadroots"},
226	{Opt_ignorebadroots, "ibadroots"},
227	{Opt_ignoredatacsums, "ignoredatacsums"},
228	{Opt_ignoredatacsums, "idatacsums"},
229	{Opt_rescue_all, "all"},
230	{Opt_err, NULL},
231};
232
233static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
234			    const char *opt_name)
235{
236	if (fs_info->mount_opt & opt) {
237		btrfs_err(fs_info, "%s must be used with ro mount option",
238			  opt_name);
239		return true;
240	}
241	return false;
242}
243
244static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
245{
246	char *opts;
247	char *orig;
248	char *p;
249	substring_t args[MAX_OPT_ARGS];
250	int ret = 0;
251
252	opts = kstrdup(options, GFP_KERNEL);
253	if (!opts)
254		return -ENOMEM;
255	orig = opts;
256
257	while ((p = strsep(&opts, ":")) != NULL) {
258		int token;
259
260		if (!*p)
261			continue;
262		token = match_token(p, rescue_tokens, args);
263		switch (token){
264		case Opt_usebackuproot:
265			btrfs_info(info,
266				   "trying to use backup root at mount time");
267			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
268			break;
269		case Opt_nologreplay:
270			btrfs_set_and_info(info, NOLOGREPLAY,
271					   "disabling log replay at mount time");
272			break;
273		case Opt_ignorebadroots:
274			btrfs_set_and_info(info, IGNOREBADROOTS,
275					   "ignoring bad roots");
276			break;
277		case Opt_ignoredatacsums:
278			btrfs_set_and_info(info, IGNOREDATACSUMS,
279					   "ignoring data csums");
280			break;
281		case Opt_rescue_all:
282			btrfs_info(info, "enabling all of the rescue options");
283			btrfs_set_and_info(info, IGNOREDATACSUMS,
284					   "ignoring data csums");
285			btrfs_set_and_info(info, IGNOREBADROOTS,
286					   "ignoring bad roots");
287			btrfs_set_and_info(info, NOLOGREPLAY,
288					   "disabling log replay at mount time");
289			break;
290		case Opt_err:
291			btrfs_info(info, "unrecognized rescue option '%s'", p);
292			ret = -EINVAL;
293			goto out;
294		default:
295			break;
296		}
297
298	}
299out:
300	kfree(orig);
301	return ret;
302}
303
304/*
305 * Regular mount options parser.  Everything that is needed only when
306 * reading in a new superblock is parsed here.
307 * XXX JDM: This needs to be cleaned up for remount.
308 */
309int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
310			unsigned long new_flags)
311{
312	substring_t args[MAX_OPT_ARGS];
313	char *p, *num;
314	int intarg;
315	int ret = 0;
316	char *compress_type;
317	bool compress_force = false;
318	enum btrfs_compression_type saved_compress_type;
319	int saved_compress_level;
320	bool saved_compress_force;
321	int no_compress = 0;
322	const bool remounting = test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state);
323
324	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
325		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
326	else if (btrfs_free_space_cache_v1_active(info)) {
327		if (btrfs_is_zoned(info)) {
328			btrfs_info(info,
329			"zoned: clearing existing space cache");
330			btrfs_set_super_cache_generation(info->super_copy, 0);
331		} else {
332			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
333		}
334	}
335
336	/*
337	 * Even the options are empty, we still need to do extra check
338	 * against new flags
339	 */
340	if (!options)
341		goto check;
342
343	while ((p = strsep(&options, ",")) != NULL) {
344		int token;
345		if (!*p)
346			continue;
347
348		token = match_token(p, tokens, args);
349		switch (token) {
350		case Opt_degraded:
351			btrfs_info(info, "allowing degraded mounts");
352			btrfs_set_opt(info->mount_opt, DEGRADED);
353			break;
354		case Opt_subvol:
355		case Opt_subvol_empty:
356		case Opt_subvolid:
357		case Opt_device:
358			/*
359			 * These are parsed by btrfs_parse_subvol_options or
360			 * btrfs_parse_device_options and can be ignored here.
361			 */
362			break;
363		case Opt_nodatasum:
364			btrfs_set_and_info(info, NODATASUM,
365					   "setting nodatasum");
366			break;
367		case Opt_datasum:
368			if (btrfs_test_opt(info, NODATASUM)) {
369				if (btrfs_test_opt(info, NODATACOW))
370					btrfs_info(info,
371						   "setting datasum, datacow enabled");
372				else
373					btrfs_info(info, "setting datasum");
374			}
375			btrfs_clear_opt(info->mount_opt, NODATACOW);
376			btrfs_clear_opt(info->mount_opt, NODATASUM);
377			break;
378		case Opt_nodatacow:
379			if (!btrfs_test_opt(info, NODATACOW)) {
380				if (!btrfs_test_opt(info, COMPRESS) ||
381				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
382					btrfs_info(info,
383						   "setting nodatacow, compression disabled");
384				} else {
385					btrfs_info(info, "setting nodatacow");
386				}
387			}
388			btrfs_clear_opt(info->mount_opt, COMPRESS);
389			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
390			btrfs_set_opt(info->mount_opt, NODATACOW);
391			btrfs_set_opt(info->mount_opt, NODATASUM);
392			break;
393		case Opt_datacow:
394			btrfs_clear_and_info(info, NODATACOW,
395					     "setting datacow");
396			break;
397		case Opt_compress_force:
398		case Opt_compress_force_type:
399			compress_force = true;
400			fallthrough;
401		case Opt_compress:
402		case Opt_compress_type:
403			saved_compress_type = btrfs_test_opt(info,
404							     COMPRESS) ?
405				info->compress_type : BTRFS_COMPRESS_NONE;
406			saved_compress_force =
407				btrfs_test_opt(info, FORCE_COMPRESS);
408			saved_compress_level = info->compress_level;
409			if (token == Opt_compress ||
410			    token == Opt_compress_force ||
411			    strncmp(args[0].from, "zlib", 4) == 0) {
412				compress_type = "zlib";
413
414				info->compress_type = BTRFS_COMPRESS_ZLIB;
415				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
416				/*
417				 * args[0] contains uninitialized data since
418				 * for these tokens we don't expect any
419				 * parameter.
420				 */
421				if (token != Opt_compress &&
422				    token != Opt_compress_force)
423					info->compress_level =
424					  btrfs_compress_str2level(
425							BTRFS_COMPRESS_ZLIB,
426							args[0].from + 4);
427				btrfs_set_opt(info->mount_opt, COMPRESS);
428				btrfs_clear_opt(info->mount_opt, NODATACOW);
429				btrfs_clear_opt(info->mount_opt, NODATASUM);
430				no_compress = 0;
431			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
432				compress_type = "lzo";
433				info->compress_type = BTRFS_COMPRESS_LZO;
434				info->compress_level = 0;
435				btrfs_set_opt(info->mount_opt, COMPRESS);
436				btrfs_clear_opt(info->mount_opt, NODATACOW);
437				btrfs_clear_opt(info->mount_opt, NODATASUM);
438				btrfs_set_fs_incompat(info, COMPRESS_LZO);
439				no_compress = 0;
440			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
441				compress_type = "zstd";
442				info->compress_type = BTRFS_COMPRESS_ZSTD;
443				info->compress_level =
444					btrfs_compress_str2level(
445							 BTRFS_COMPRESS_ZSTD,
446							 args[0].from + 4);
447				btrfs_set_opt(info->mount_opt, COMPRESS);
448				btrfs_clear_opt(info->mount_opt, NODATACOW);
449				btrfs_clear_opt(info->mount_opt, NODATASUM);
450				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
451				no_compress = 0;
452			} else if (strncmp(args[0].from, "no", 2) == 0) {
453				compress_type = "no";
454				info->compress_level = 0;
455				info->compress_type = 0;
456				btrfs_clear_opt(info->mount_opt, COMPRESS);
457				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
458				compress_force = false;
459				no_compress++;
460			} else {
461				btrfs_err(info, "unrecognized compression value %s",
462					  args[0].from);
463				ret = -EINVAL;
464				goto out;
465			}
466
467			if (compress_force) {
468				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
469			} else {
470				/*
471				 * If we remount from compress-force=xxx to
472				 * compress=xxx, we need clear FORCE_COMPRESS
473				 * flag, otherwise, there is no way for users
474				 * to disable forcible compression separately.
475				 */
476				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
477			}
478			if (no_compress == 1) {
479				btrfs_info(info, "use no compression");
480			} else if ((info->compress_type != saved_compress_type) ||
481				   (compress_force != saved_compress_force) ||
482				   (info->compress_level != saved_compress_level)) {
483				btrfs_info(info, "%s %s compression, level %d",
484					   (compress_force) ? "force" : "use",
485					   compress_type, info->compress_level);
486			}
487			compress_force = false;
488			break;
489		case Opt_ssd:
490			btrfs_set_and_info(info, SSD,
491					   "enabling ssd optimizations");
492			btrfs_clear_opt(info->mount_opt, NOSSD);
493			break;
494		case Opt_ssd_spread:
495			btrfs_set_and_info(info, SSD,
496					   "enabling ssd optimizations");
497			btrfs_set_and_info(info, SSD_SPREAD,
498					   "using spread ssd allocation scheme");
499			btrfs_clear_opt(info->mount_opt, NOSSD);
500			break;
501		case Opt_nossd:
502			btrfs_set_opt(info->mount_opt, NOSSD);
503			btrfs_clear_and_info(info, SSD,
504					     "not using ssd optimizations");
505			fallthrough;
506		case Opt_nossd_spread:
507			btrfs_clear_and_info(info, SSD_SPREAD,
508					     "not using spread ssd allocation scheme");
509			break;
510		case Opt_barrier:
511			btrfs_clear_and_info(info, NOBARRIER,
512					     "turning on barriers");
513			break;
514		case Opt_nobarrier:
515			btrfs_set_and_info(info, NOBARRIER,
516					   "turning off barriers");
517			break;
518		case Opt_thread_pool:
519			ret = match_int(&args[0], &intarg);
520			if (ret) {
521				btrfs_err(info, "unrecognized thread_pool value %s",
522					  args[0].from);
523				goto out;
524			} else if (intarg == 0) {
525				btrfs_err(info, "invalid value 0 for thread_pool");
526				ret = -EINVAL;
527				goto out;
528			}
529			info->thread_pool_size = intarg;
530			break;
531		case Opt_max_inline:
532			num = match_strdup(&args[0]);
533			if (num) {
534				info->max_inline = memparse(num, NULL);
535				kfree(num);
536
537				if (info->max_inline) {
538					info->max_inline = min_t(u64,
539						info->max_inline,
540						info->sectorsize);
541				}
542				btrfs_info(info, "max_inline at %llu",
543					   info->max_inline);
544			} else {
545				ret = -ENOMEM;
546				goto out;
547			}
548			break;
549		case Opt_acl:
550#ifdef CONFIG_BTRFS_FS_POSIX_ACL
551			info->sb->s_flags |= SB_POSIXACL;
552			break;
553#else
554			btrfs_err(info, "support for ACL not compiled in!");
555			ret = -EINVAL;
556			goto out;
557#endif
558		case Opt_noacl:
559			info->sb->s_flags &= ~SB_POSIXACL;
560			break;
561		case Opt_notreelog:
562			btrfs_set_and_info(info, NOTREELOG,
563					   "disabling tree log");
564			break;
565		case Opt_treelog:
566			btrfs_clear_and_info(info, NOTREELOG,
567					     "enabling tree log");
568			break;
569		case Opt_norecovery:
570		case Opt_nologreplay:
571			btrfs_warn(info,
572		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
573			btrfs_set_and_info(info, NOLOGREPLAY,
574					   "disabling log replay at mount time");
575			break;
576		case Opt_flushoncommit:
577			btrfs_set_and_info(info, FLUSHONCOMMIT,
578					   "turning on flush-on-commit");
579			break;
580		case Opt_noflushoncommit:
581			btrfs_clear_and_info(info, FLUSHONCOMMIT,
582					     "turning off flush-on-commit");
583			break;
584		case Opt_ratio:
585			ret = match_int(&args[0], &intarg);
586			if (ret) {
587				btrfs_err(info, "unrecognized metadata_ratio value %s",
588					  args[0].from);
589				goto out;
590			}
591			info->metadata_ratio = intarg;
592			btrfs_info(info, "metadata ratio %u",
593				   info->metadata_ratio);
594			break;
595		case Opt_discard:
596		case Opt_discard_mode:
597			if (token == Opt_discard ||
598			    strcmp(args[0].from, "sync") == 0) {
599				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
600				btrfs_set_and_info(info, DISCARD_SYNC,
601						   "turning on sync discard");
602			} else if (strcmp(args[0].from, "async") == 0) {
603				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
604				btrfs_set_and_info(info, DISCARD_ASYNC,
605						   "turning on async discard");
606			} else {
607				btrfs_err(info, "unrecognized discard mode value %s",
608					  args[0].from);
609				ret = -EINVAL;
610				goto out;
611			}
612			btrfs_clear_opt(info->mount_opt, NODISCARD);
613			break;
614		case Opt_nodiscard:
615			btrfs_clear_and_info(info, DISCARD_SYNC,
616					     "turning off discard");
617			btrfs_clear_and_info(info, DISCARD_ASYNC,
618					     "turning off async discard");
619			btrfs_set_opt(info->mount_opt, NODISCARD);
620			break;
621		case Opt_space_cache:
622		case Opt_space_cache_version:
623			/*
624			 * We already set FREE_SPACE_TREE above because we have
625			 * compat_ro(FREE_SPACE_TREE) set, and we aren't going
626			 * to allow v1 to be set for extent tree v2, simply
627			 * ignore this setting if we're extent tree v2.
628			 */
629			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
630				break;
631			if (token == Opt_space_cache ||
632			    strcmp(args[0].from, "v1") == 0) {
633				btrfs_clear_opt(info->mount_opt,
634						FREE_SPACE_TREE);
635				btrfs_set_and_info(info, SPACE_CACHE,
636					   "enabling disk space caching");
637			} else if (strcmp(args[0].from, "v2") == 0) {
638				btrfs_clear_opt(info->mount_opt,
639						SPACE_CACHE);
640				btrfs_set_and_info(info, FREE_SPACE_TREE,
641						   "enabling free space tree");
642			} else {
643				btrfs_err(info, "unrecognized space_cache value %s",
644					  args[0].from);
645				ret = -EINVAL;
646				goto out;
647			}
648			break;
649		case Opt_rescan_uuid_tree:
650			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
651			break;
652		case Opt_no_space_cache:
653			/*
654			 * We cannot operate without the free space tree with
655			 * extent tree v2, ignore this option.
656			 */
657			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
658				break;
659			if (btrfs_test_opt(info, SPACE_CACHE)) {
660				btrfs_clear_and_info(info, SPACE_CACHE,
661					     "disabling disk space caching");
662			}
663			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
664				btrfs_clear_and_info(info, FREE_SPACE_TREE,
665					     "disabling free space tree");
666			}
667			break;
668		case Opt_inode_cache:
669		case Opt_noinode_cache:
670			btrfs_warn(info,
671	"the 'inode_cache' option is deprecated and has no effect since 5.11");
672			break;
673		case Opt_clear_cache:
674			/*
675			 * We cannot clear the free space tree with extent tree
676			 * v2, ignore this option.
677			 */
678			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
679				break;
680			btrfs_set_and_info(info, CLEAR_CACHE,
681					   "force clearing of disk cache");
682			break;
683		case Opt_user_subvol_rm_allowed:
684			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
685			break;
686		case Opt_enospc_debug:
687			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
688			break;
689		case Opt_noenospc_debug:
690			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
691			break;
692		case Opt_defrag:
693			btrfs_set_and_info(info, AUTO_DEFRAG,
694					   "enabling auto defrag");
695			break;
696		case Opt_nodefrag:
697			btrfs_clear_and_info(info, AUTO_DEFRAG,
698					     "disabling auto defrag");
699			break;
700		case Opt_recovery:
701		case Opt_usebackuproot:
702			btrfs_warn(info,
703			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
704				   token == Opt_recovery ? "recovery" :
705				   "usebackuproot");
706			btrfs_info(info,
707				   "trying to use backup root at mount time");
708			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
709			break;
710		case Opt_skip_balance:
711			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
712			break;
713#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
714		case Opt_check_integrity_including_extent_data:
715			btrfs_warn(info,
716	"integrity checker is deprecated and will be removed in 6.7");
717			btrfs_info(info,
718				   "enabling check integrity including extent data");
719			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA);
720			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
721			break;
722		case Opt_check_integrity:
723			btrfs_warn(info,
724	"integrity checker is deprecated and will be removed in 6.7");
725			btrfs_info(info, "enabling check integrity");
726			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
727			break;
728		case Opt_check_integrity_print_mask:
729			ret = match_int(&args[0], &intarg);
730			if (ret) {
731				btrfs_err(info,
732				"unrecognized check_integrity_print_mask value %s",
733					args[0].from);
734				goto out;
735			}
736			info->check_integrity_print_mask = intarg;
737			btrfs_warn(info,
738	"integrity checker is deprecated and will be removed in 6.7");
739			btrfs_info(info, "check_integrity_print_mask 0x%x",
740				   info->check_integrity_print_mask);
741			break;
742#else
743		case Opt_check_integrity_including_extent_data:
744		case Opt_check_integrity:
745		case Opt_check_integrity_print_mask:
746			btrfs_err(info,
747				  "support for check_integrity* not compiled in!");
748			ret = -EINVAL;
749			goto out;
750#endif
751		case Opt_fatal_errors:
752			if (strcmp(args[0].from, "panic") == 0) {
753				btrfs_set_opt(info->mount_opt,
754					      PANIC_ON_FATAL_ERROR);
755			} else if (strcmp(args[0].from, "bug") == 0) {
756				btrfs_clear_opt(info->mount_opt,
757					      PANIC_ON_FATAL_ERROR);
758			} else {
759				btrfs_err(info, "unrecognized fatal_errors value %s",
760					  args[0].from);
761				ret = -EINVAL;
762				goto out;
763			}
764			break;
765		case Opt_commit_interval:
766			intarg = 0;
767			ret = match_int(&args[0], &intarg);
768			if (ret) {
769				btrfs_err(info, "unrecognized commit_interval value %s",
770					  args[0].from);
771				ret = -EINVAL;
772				goto out;
773			}
774			if (intarg == 0) {
775				btrfs_info(info,
776					   "using default commit interval %us",
777					   BTRFS_DEFAULT_COMMIT_INTERVAL);
778				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
779			} else if (intarg > 300) {
780				btrfs_warn(info, "excessive commit interval %d",
781					   intarg);
782			}
783			info->commit_interval = intarg;
784			break;
785		case Opt_rescue:
786			ret = parse_rescue_options(info, args[0].from);
787			if (ret < 0) {
788				btrfs_err(info, "unrecognized rescue value %s",
789					  args[0].from);
790				goto out;
791			}
792			break;
793#ifdef CONFIG_BTRFS_DEBUG
794		case Opt_fragment_all:
795			btrfs_info(info, "fragmenting all space");
796			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
797			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
798			break;
799		case Opt_fragment_metadata:
800			btrfs_info(info, "fragmenting metadata");
801			btrfs_set_opt(info->mount_opt,
802				      FRAGMENT_METADATA);
803			break;
804		case Opt_fragment_data:
805			btrfs_info(info, "fragmenting data");
806			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
807			break;
808#endif
809#ifdef CONFIG_BTRFS_FS_REF_VERIFY
810		case Opt_ref_verify:
811			btrfs_info(info, "doing ref verification");
812			btrfs_set_opt(info->mount_opt, REF_VERIFY);
813			break;
814#endif
815		case Opt_err:
816			btrfs_err(info, "unrecognized mount option '%s'", p);
817			ret = -EINVAL;
818			goto out;
819		default:
820			break;
821		}
822	}
823check:
824	/* We're read-only, don't have to check. */
825	if (new_flags & SB_RDONLY)
826		goto out;
827
828	if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
829	    check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
830	    check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
831		ret = -EINVAL;
832out:
833	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
834	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
835	    !btrfs_test_opt(info, CLEAR_CACHE)) {
836		btrfs_err(info, "cannot disable free space tree");
837		ret = -EINVAL;
838	}
839	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
840	     !btrfs_test_opt(info, FREE_SPACE_TREE)) {
841		btrfs_err(info, "cannot disable free space tree with block-group-tree feature");
842		ret = -EINVAL;
843	}
844	if (!ret)
845		ret = btrfs_check_mountopts_zoned(info);
846	if (!ret && !remounting) {
847		if (btrfs_test_opt(info, SPACE_CACHE))
848			btrfs_info(info, "disk space caching is enabled");
849		if (btrfs_test_opt(info, FREE_SPACE_TREE))
850			btrfs_info(info, "using free space tree");
851	}
852	return ret;
853}
854
855/*
856 * Parse mount options that are required early in the mount process.
857 *
858 * All other options will be parsed on much later in the mount process and
859 * only when we need to allocate a new super block.
860 */
861static int btrfs_parse_device_options(const char *options, blk_mode_t flags)
862{
863	substring_t args[MAX_OPT_ARGS];
864	char *device_name, *opts, *orig, *p;
865	struct btrfs_device *device = NULL;
866	int error = 0;
867
868	lockdep_assert_held(&uuid_mutex);
869
870	if (!options)
871		return 0;
872
873	/*
874	 * strsep changes the string, duplicate it because btrfs_parse_options
875	 * gets called later
876	 */
877	opts = kstrdup(options, GFP_KERNEL);
878	if (!opts)
879		return -ENOMEM;
880	orig = opts;
881
882	while ((p = strsep(&opts, ",")) != NULL) {
883		int token;
884
885		if (!*p)
886			continue;
887
888		token = match_token(p, tokens, args);
889		if (token == Opt_device) {
890			device_name = match_strdup(&args[0]);
891			if (!device_name) {
892				error = -ENOMEM;
893				goto out;
894			}
895			device = btrfs_scan_one_device(device_name, flags);
896			kfree(device_name);
897			if (IS_ERR(device)) {
898				error = PTR_ERR(device);
899				goto out;
900			}
901		}
902	}
903
904out:
905	kfree(orig);
906	return error;
907}
908
909/*
910 * Parse mount options that are related to subvolume id
911 *
912 * The value is later passed to mount_subvol()
913 */
914static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
915		u64 *subvol_objectid)
916{
917	substring_t args[MAX_OPT_ARGS];
918	char *opts, *orig, *p;
919	int error = 0;
920	u64 subvolid;
921
922	if (!options)
923		return 0;
924
925	/*
926	 * strsep changes the string, duplicate it because
927	 * btrfs_parse_device_options gets called later
928	 */
929	opts = kstrdup(options, GFP_KERNEL);
930	if (!opts)
931		return -ENOMEM;
932	orig = opts;
933
934	while ((p = strsep(&opts, ",")) != NULL) {
935		int token;
936		if (!*p)
937			continue;
938
939		token = match_token(p, tokens, args);
940		switch (token) {
941		case Opt_subvol:
942			kfree(*subvol_name);
943			*subvol_name = match_strdup(&args[0]);
944			if (!*subvol_name) {
945				error = -ENOMEM;
946				goto out;
947			}
948			break;
949		case Opt_subvolid:
950			error = match_u64(&args[0], &subvolid);
951			if (error)
952				goto out;
953
954			/* we want the original fs_tree */
955			if (subvolid == 0)
956				subvolid = BTRFS_FS_TREE_OBJECTID;
957
958			*subvol_objectid = subvolid;
959			break;
960		default:
961			break;
962		}
963	}
964
965out:
966	kfree(orig);
967	return error;
968}
969
970char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
971					  u64 subvol_objectid)
972{
973	struct btrfs_root *root = fs_info->tree_root;
974	struct btrfs_root *fs_root = NULL;
975	struct btrfs_root_ref *root_ref;
976	struct btrfs_inode_ref *inode_ref;
977	struct btrfs_key key;
978	struct btrfs_path *path = NULL;
979	char *name = NULL, *ptr;
980	u64 dirid;
981	int len;
982	int ret;
983
984	path = btrfs_alloc_path();
985	if (!path) {
986		ret = -ENOMEM;
987		goto err;
988	}
989
990	name = kmalloc(PATH_MAX, GFP_KERNEL);
991	if (!name) {
992		ret = -ENOMEM;
993		goto err;
994	}
995	ptr = name + PATH_MAX - 1;
996	ptr[0] = '\0';
997
998	/*
999	 * Walk up the subvolume trees in the tree of tree roots by root
1000	 * backrefs until we hit the top-level subvolume.
1001	 */
1002	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1003		key.objectid = subvol_objectid;
1004		key.type = BTRFS_ROOT_BACKREF_KEY;
1005		key.offset = (u64)-1;
1006
1007		ret = btrfs_search_backwards(root, &key, path);
1008		if (ret < 0) {
1009			goto err;
1010		} else if (ret > 0) {
1011			ret = -ENOENT;
1012			goto err;
1013		}
1014
1015		subvol_objectid = key.offset;
1016
1017		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1018					  struct btrfs_root_ref);
1019		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1020		ptr -= len + 1;
1021		if (ptr < name) {
1022			ret = -ENAMETOOLONG;
1023			goto err;
1024		}
1025		read_extent_buffer(path->nodes[0], ptr + 1,
1026				   (unsigned long)(root_ref + 1), len);
1027		ptr[0] = '/';
1028		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1029		btrfs_release_path(path);
1030
1031		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1032		if (IS_ERR(fs_root)) {
1033			ret = PTR_ERR(fs_root);
1034			fs_root = NULL;
1035			goto err;
1036		}
1037
1038		/*
1039		 * Walk up the filesystem tree by inode refs until we hit the
1040		 * root directory.
1041		 */
1042		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1043			key.objectid = dirid;
1044			key.type = BTRFS_INODE_REF_KEY;
1045			key.offset = (u64)-1;
1046
1047			ret = btrfs_search_backwards(fs_root, &key, path);
1048			if (ret < 0) {
1049				goto err;
1050			} else if (ret > 0) {
1051				ret = -ENOENT;
1052				goto err;
1053			}
1054
1055			dirid = key.offset;
1056
1057			inode_ref = btrfs_item_ptr(path->nodes[0],
1058						   path->slots[0],
1059						   struct btrfs_inode_ref);
1060			len = btrfs_inode_ref_name_len(path->nodes[0],
1061						       inode_ref);
1062			ptr -= len + 1;
1063			if (ptr < name) {
1064				ret = -ENAMETOOLONG;
1065				goto err;
1066			}
1067			read_extent_buffer(path->nodes[0], ptr + 1,
1068					   (unsigned long)(inode_ref + 1), len);
1069			ptr[0] = '/';
1070			btrfs_release_path(path);
1071		}
1072		btrfs_put_root(fs_root);
1073		fs_root = NULL;
1074	}
1075
1076	btrfs_free_path(path);
1077	if (ptr == name + PATH_MAX - 1) {
1078		name[0] = '/';
1079		name[1] = '\0';
1080	} else {
1081		memmove(name, ptr, name + PATH_MAX - ptr);
1082	}
1083	return name;
1084
1085err:
1086	btrfs_put_root(fs_root);
1087	btrfs_free_path(path);
1088	kfree(name);
1089	return ERR_PTR(ret);
1090}
1091
1092static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1093{
1094	struct btrfs_root *root = fs_info->tree_root;
1095	struct btrfs_dir_item *di;
1096	struct btrfs_path *path;
1097	struct btrfs_key location;
1098	struct fscrypt_str name = FSTR_INIT("default", 7);
1099	u64 dir_id;
1100
1101	path = btrfs_alloc_path();
1102	if (!path)
1103		return -ENOMEM;
1104
1105	/*
1106	 * Find the "default" dir item which points to the root item that we
1107	 * will mount by default if we haven't been given a specific subvolume
1108	 * to mount.
1109	 */
1110	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1111	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
1112	if (IS_ERR(di)) {
1113		btrfs_free_path(path);
1114		return PTR_ERR(di);
1115	}
1116	if (!di) {
1117		/*
1118		 * Ok the default dir item isn't there.  This is weird since
1119		 * it's always been there, but don't freak out, just try and
1120		 * mount the top-level subvolume.
1121		 */
1122		btrfs_free_path(path);
1123		*objectid = BTRFS_FS_TREE_OBJECTID;
1124		return 0;
1125	}
1126
1127	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1128	btrfs_free_path(path);
1129	*objectid = location.objectid;
1130	return 0;
1131}
1132
1133static int btrfs_fill_super(struct super_block *sb,
1134			    struct btrfs_fs_devices *fs_devices,
1135			    void *data)
1136{
1137	struct inode *inode;
1138	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1139	int err;
1140
1141	sb->s_maxbytes = MAX_LFS_FILESIZE;
1142	sb->s_magic = BTRFS_SUPER_MAGIC;
1143	sb->s_op = &btrfs_super_ops;
1144	sb->s_d_op = &btrfs_dentry_operations;
1145	sb->s_export_op = &btrfs_export_ops;
1146#ifdef CONFIG_FS_VERITY
1147	sb->s_vop = &btrfs_verityops;
1148#endif
1149	sb->s_xattr = btrfs_xattr_handlers;
1150	sb->s_time_gran = 1;
1151#ifdef CONFIG_BTRFS_FS_POSIX_ACL
1152	sb->s_flags |= SB_POSIXACL;
1153#endif
1154	sb->s_flags |= SB_I_VERSION;
1155	sb->s_iflags |= SB_I_CGROUPWB;
1156
1157	err = super_setup_bdi(sb);
1158	if (err) {
1159		btrfs_err(fs_info, "super_setup_bdi failed");
1160		return err;
1161	}
1162
1163	err = open_ctree(sb, fs_devices, (char *)data);
1164	if (err) {
1165		btrfs_err(fs_info, "open_ctree failed");
1166		return err;
1167	}
1168
1169	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1170	if (IS_ERR(inode)) {
1171		err = PTR_ERR(inode);
1172		btrfs_handle_fs_error(fs_info, err, NULL);
1173		goto fail_close;
1174	}
1175
1176	sb->s_root = d_make_root(inode);
1177	if (!sb->s_root) {
1178		err = -ENOMEM;
1179		goto fail_close;
1180	}
1181
1182	sb->s_flags |= SB_ACTIVE;
1183	return 0;
1184
1185fail_close:
1186	close_ctree(fs_info);
1187	return err;
1188}
1189
1190int btrfs_sync_fs(struct super_block *sb, int wait)
1191{
1192	struct btrfs_trans_handle *trans;
1193	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1194	struct btrfs_root *root = fs_info->tree_root;
1195
1196	trace_btrfs_sync_fs(fs_info, wait);
1197
1198	if (!wait) {
1199		filemap_flush(fs_info->btree_inode->i_mapping);
1200		return 0;
1201	}
1202
1203	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1204
1205	trans = btrfs_attach_transaction_barrier(root);
1206	if (IS_ERR(trans)) {
1207		/* no transaction, don't bother */
1208		if (PTR_ERR(trans) == -ENOENT) {
1209			/*
1210			 * Exit unless we have some pending changes
1211			 * that need to go through commit
1212			 */
1213			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1214				      &fs_info->flags))
1215				return 0;
1216			/*
1217			 * A non-blocking test if the fs is frozen. We must not
1218			 * start a new transaction here otherwise a deadlock
1219			 * happens. The pending operations are delayed to the
1220			 * next commit after thawing.
1221			 */
1222			if (sb_start_write_trylock(sb))
1223				sb_end_write(sb);
1224			else
1225				return 0;
1226			trans = btrfs_start_transaction(root, 0);
1227		}
1228		if (IS_ERR(trans))
1229			return PTR_ERR(trans);
1230	}
1231	return btrfs_commit_transaction(trans);
1232}
1233
1234static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1235{
1236	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1237	*printed = true;
1238}
1239
1240static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1241{
1242	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1243	const char *compress_type;
1244	const char *subvol_name;
1245	bool printed = false;
1246
1247	if (btrfs_test_opt(info, DEGRADED))
1248		seq_puts(seq, ",degraded");
1249	if (btrfs_test_opt(info, NODATASUM))
1250		seq_puts(seq, ",nodatasum");
1251	if (btrfs_test_opt(info, NODATACOW))
1252		seq_puts(seq, ",nodatacow");
1253	if (btrfs_test_opt(info, NOBARRIER))
1254		seq_puts(seq, ",nobarrier");
1255	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1256		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1257	if (info->thread_pool_size !=  min_t(unsigned long,
1258					     num_online_cpus() + 2, 8))
1259		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1260	if (btrfs_test_opt(info, COMPRESS)) {
1261		compress_type = btrfs_compress_type2str(info->compress_type);
1262		if (btrfs_test_opt(info, FORCE_COMPRESS))
1263			seq_printf(seq, ",compress-force=%s", compress_type);
1264		else
1265			seq_printf(seq, ",compress=%s", compress_type);
1266		if (info->compress_level)
1267			seq_printf(seq, ":%d", info->compress_level);
1268	}
1269	if (btrfs_test_opt(info, NOSSD))
1270		seq_puts(seq, ",nossd");
1271	if (btrfs_test_opt(info, SSD_SPREAD))
1272		seq_puts(seq, ",ssd_spread");
1273	else if (btrfs_test_opt(info, SSD))
1274		seq_puts(seq, ",ssd");
1275	if (btrfs_test_opt(info, NOTREELOG))
1276		seq_puts(seq, ",notreelog");
1277	if (btrfs_test_opt(info, NOLOGREPLAY))
1278		print_rescue_option(seq, "nologreplay", &printed);
1279	if (btrfs_test_opt(info, USEBACKUPROOT))
1280		print_rescue_option(seq, "usebackuproot", &printed);
1281	if (btrfs_test_opt(info, IGNOREBADROOTS))
1282		print_rescue_option(seq, "ignorebadroots", &printed);
1283	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1284		print_rescue_option(seq, "ignoredatacsums", &printed);
1285	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1286		seq_puts(seq, ",flushoncommit");
1287	if (btrfs_test_opt(info, DISCARD_SYNC))
1288		seq_puts(seq, ",discard");
1289	if (btrfs_test_opt(info, DISCARD_ASYNC))
1290		seq_puts(seq, ",discard=async");
1291	if (!(info->sb->s_flags & SB_POSIXACL))
1292		seq_puts(seq, ",noacl");
1293	if (btrfs_free_space_cache_v1_active(info))
1294		seq_puts(seq, ",space_cache");
1295	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1296		seq_puts(seq, ",space_cache=v2");
1297	else
1298		seq_puts(seq, ",nospace_cache");
1299	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1300		seq_puts(seq, ",rescan_uuid_tree");
1301	if (btrfs_test_opt(info, CLEAR_CACHE))
1302		seq_puts(seq, ",clear_cache");
1303	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1304		seq_puts(seq, ",user_subvol_rm_allowed");
1305	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1306		seq_puts(seq, ",enospc_debug");
1307	if (btrfs_test_opt(info, AUTO_DEFRAG))
1308		seq_puts(seq, ",autodefrag");
1309	if (btrfs_test_opt(info, SKIP_BALANCE))
1310		seq_puts(seq, ",skip_balance");
1311#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1312	if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA))
1313		seq_puts(seq, ",check_int_data");
1314	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1315		seq_puts(seq, ",check_int");
1316	if (info->check_integrity_print_mask)
1317		seq_printf(seq, ",check_int_print_mask=%d",
1318				info->check_integrity_print_mask);
1319#endif
1320	if (info->metadata_ratio)
1321		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1322	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1323		seq_puts(seq, ",fatal_errors=panic");
1324	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1325		seq_printf(seq, ",commit=%u", info->commit_interval);
1326#ifdef CONFIG_BTRFS_DEBUG
1327	if (btrfs_test_opt(info, FRAGMENT_DATA))
1328		seq_puts(seq, ",fragment=data");
1329	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1330		seq_puts(seq, ",fragment=metadata");
1331#endif
1332	if (btrfs_test_opt(info, REF_VERIFY))
1333		seq_puts(seq, ",ref_verify");
1334	seq_printf(seq, ",subvolid=%llu",
1335		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1336	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1337			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1338	if (!IS_ERR(subvol_name)) {
1339		seq_puts(seq, ",subvol=");
1340		seq_escape(seq, subvol_name, " \t\n\\");
1341		kfree(subvol_name);
1342	}
1343	return 0;
1344}
1345
1346static int btrfs_test_super(struct super_block *s, void *data)
1347{
1348	struct btrfs_fs_info *p = data;
1349	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1350
1351	return fs_info->fs_devices == p->fs_devices;
1352}
1353
1354static int btrfs_set_super(struct super_block *s, void *data)
1355{
1356	int err = set_anon_super(s, data);
1357	if (!err)
1358		s->s_fs_info = data;
1359	return err;
1360}
1361
1362/*
1363 * subvolumes are identified by ino 256
1364 */
1365static inline int is_subvolume_inode(struct inode *inode)
1366{
1367	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1368		return 1;
1369	return 0;
1370}
1371
1372static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1373				   struct vfsmount *mnt)
1374{
1375	struct dentry *root;
1376	int ret;
1377
1378	if (!subvol_name) {
1379		if (!subvol_objectid) {
1380			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1381							  &subvol_objectid);
1382			if (ret) {
1383				root = ERR_PTR(ret);
1384				goto out;
1385			}
1386		}
1387		subvol_name = btrfs_get_subvol_name_from_objectid(
1388					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1389		if (IS_ERR(subvol_name)) {
1390			root = ERR_CAST(subvol_name);
1391			subvol_name = NULL;
1392			goto out;
1393		}
1394
1395	}
1396
1397	root = mount_subtree(mnt, subvol_name);
1398	/* mount_subtree() drops our reference on the vfsmount. */
1399	mnt = NULL;
1400
1401	if (!IS_ERR(root)) {
1402		struct super_block *s = root->d_sb;
1403		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1404		struct inode *root_inode = d_inode(root);
1405		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1406
1407		ret = 0;
1408		if (!is_subvolume_inode(root_inode)) {
1409			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1410			       subvol_name);
1411			ret = -EINVAL;
1412		}
1413		if (subvol_objectid && root_objectid != subvol_objectid) {
1414			/*
1415			 * This will also catch a race condition where a
1416			 * subvolume which was passed by ID is renamed and
1417			 * another subvolume is renamed over the old location.
1418			 */
1419			btrfs_err(fs_info,
1420				  "subvol '%s' does not match subvolid %llu",
1421				  subvol_name, subvol_objectid);
1422			ret = -EINVAL;
1423		}
1424		if (ret) {
1425			dput(root);
1426			root = ERR_PTR(ret);
1427			deactivate_locked_super(s);
1428		}
1429	}
1430
1431out:
1432	mntput(mnt);
1433	kfree(subvol_name);
1434	return root;
1435}
1436
1437/*
1438 * Find a superblock for the given device / mount point.
1439 *
1440 * Note: This is based on mount_bdev from fs/super.c with a few additions
1441 *       for multiple device setup.  Make sure to keep it in sync.
1442 */
1443static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1444		int flags, const char *device_name, void *data)
1445{
1446	struct block_device *bdev = NULL;
1447	struct super_block *s;
1448	struct btrfs_device *device = NULL;
1449	struct btrfs_fs_devices *fs_devices = NULL;
1450	struct btrfs_fs_info *fs_info = NULL;
1451	void *new_sec_opts = NULL;
1452	blk_mode_t mode = sb_open_mode(flags);
1453	int error = 0;
1454
1455	if (data) {
1456		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1457		if (error)
1458			return ERR_PTR(error);
1459	}
1460
1461	/*
1462	 * Setup a dummy root and fs_info for test/set super.  This is because
1463	 * we don't actually fill this stuff out until open_ctree, but we need
1464	 * then open_ctree will properly initialize the file system specific
1465	 * settings later.  btrfs_init_fs_info initializes the static elements
1466	 * of the fs_info (locks and such) to make cleanup easier if we find a
1467	 * superblock with our given fs_devices later on at sget() time.
1468	 */
1469	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1470	if (!fs_info) {
1471		error = -ENOMEM;
1472		goto error_sec_opts;
1473	}
1474	btrfs_init_fs_info(fs_info);
1475
1476	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1477	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1478	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1479		error = -ENOMEM;
1480		goto error_fs_info;
1481	}
1482
1483	mutex_lock(&uuid_mutex);
1484	error = btrfs_parse_device_options(data, mode);
1485	if (error) {
1486		mutex_unlock(&uuid_mutex);
1487		goto error_fs_info;
1488	}
1489
1490	device = btrfs_scan_one_device(device_name, mode);
1491	if (IS_ERR(device)) {
1492		mutex_unlock(&uuid_mutex);
1493		error = PTR_ERR(device);
1494		goto error_fs_info;
1495	}
1496
1497	fs_devices = device->fs_devices;
1498	fs_info->fs_devices = fs_devices;
1499
1500	error = btrfs_open_devices(fs_devices, mode, fs_type);
1501	mutex_unlock(&uuid_mutex);
1502	if (error)
1503		goto error_fs_info;
1504
1505	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1506		error = -EACCES;
1507		goto error_close_devices;
1508	}
1509
1510	bdev = fs_devices->latest_dev->bdev;
1511	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1512		 fs_info);
1513	if (IS_ERR(s)) {
1514		error = PTR_ERR(s);
1515		goto error_close_devices;
1516	}
1517
1518	if (s->s_root) {
1519		btrfs_close_devices(fs_devices);
1520		btrfs_free_fs_info(fs_info);
1521		if ((flags ^ s->s_flags) & SB_RDONLY)
1522			error = -EBUSY;
1523	} else {
1524		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1525		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", fs_type->name,
1526					s->s_id);
1527		btrfs_sb(s)->bdev_holder = fs_type;
1528		error = btrfs_fill_super(s, fs_devices, data);
1529	}
1530	if (!error)
1531		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1532	security_free_mnt_opts(&new_sec_opts);
1533	if (error) {
1534		deactivate_locked_super(s);
1535		return ERR_PTR(error);
1536	}
1537
1538	return dget(s->s_root);
1539
1540error_close_devices:
1541	btrfs_close_devices(fs_devices);
1542error_fs_info:
1543	btrfs_free_fs_info(fs_info);
1544error_sec_opts:
1545	security_free_mnt_opts(&new_sec_opts);
1546	return ERR_PTR(error);
1547}
1548
1549/*
1550 * Mount function which is called by VFS layer.
1551 *
1552 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1553 * which needs vfsmount* of device's root (/).  This means device's root has to
1554 * be mounted internally in any case.
1555 *
1556 * Operation flow:
1557 *   1. Parse subvol id related options for later use in mount_subvol().
1558 *
1559 *   2. Mount device's root (/) by calling vfs_kern_mount().
1560 *
1561 *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1562 *      first place. In order to avoid calling btrfs_mount() again, we use
1563 *      different file_system_type which is not registered to VFS by
1564 *      register_filesystem() (btrfs_root_fs_type). As a result,
1565 *      btrfs_mount_root() is called. The return value will be used by
1566 *      mount_subtree() in mount_subvol().
1567 *
1568 *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1569 *      "btrfs subvolume set-default", mount_subvol() is called always.
1570 */
1571static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1572		const char *device_name, void *data)
1573{
1574	struct vfsmount *mnt_root;
1575	struct dentry *root;
1576	char *subvol_name = NULL;
1577	u64 subvol_objectid = 0;
1578	int error = 0;
1579
1580	error = btrfs_parse_subvol_options(data, &subvol_name,
1581					&subvol_objectid);
1582	if (error) {
1583		kfree(subvol_name);
1584		return ERR_PTR(error);
1585	}
1586
1587	/* mount device's root (/) */
1588	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1589	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1590		if (flags & SB_RDONLY) {
1591			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1592				flags & ~SB_RDONLY, device_name, data);
1593		} else {
1594			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1595				flags | SB_RDONLY, device_name, data);
1596			if (IS_ERR(mnt_root)) {
1597				root = ERR_CAST(mnt_root);
1598				kfree(subvol_name);
1599				goto out;
1600			}
1601
1602			down_write(&mnt_root->mnt_sb->s_umount);
1603			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1604			up_write(&mnt_root->mnt_sb->s_umount);
1605			if (error < 0) {
1606				root = ERR_PTR(error);
1607				mntput(mnt_root);
1608				kfree(subvol_name);
1609				goto out;
1610			}
1611		}
1612	}
1613	if (IS_ERR(mnt_root)) {
1614		root = ERR_CAST(mnt_root);
1615		kfree(subvol_name);
1616		goto out;
1617	}
1618
1619	/* mount_subvol() will free subvol_name and mnt_root */
1620	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1621
1622out:
1623	return root;
1624}
1625
1626static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1627				     u32 new_pool_size, u32 old_pool_size)
1628{
1629	if (new_pool_size == old_pool_size)
1630		return;
1631
1632	fs_info->thread_pool_size = new_pool_size;
1633
1634	btrfs_info(fs_info, "resize thread pool %d -> %d",
1635	       old_pool_size, new_pool_size);
1636
1637	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1638	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1639	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1640	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1641	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1642	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1643	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1644	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1645}
1646
1647static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1648				       unsigned long old_opts, int flags)
1649{
1650	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1651	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1652	     (flags & SB_RDONLY))) {
1653		/* wait for any defraggers to finish */
1654		wait_event(fs_info->transaction_wait,
1655			   (atomic_read(&fs_info->defrag_running) == 0));
1656		if (flags & SB_RDONLY)
1657			sync_filesystem(fs_info->sb);
1658	}
1659}
1660
1661static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1662					 unsigned long old_opts)
1663{
1664	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1665
1666	/*
1667	 * We need to cleanup all defragable inodes if the autodefragment is
1668	 * close or the filesystem is read only.
1669	 */
1670	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1671	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1672		btrfs_cleanup_defrag_inodes(fs_info);
1673	}
1674
1675	/* If we toggled discard async */
1676	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1677	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1678		btrfs_discard_resume(fs_info);
1679	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1680		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1681		btrfs_discard_cleanup(fs_info);
1682
1683	/* If we toggled space cache */
1684	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1685		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1686}
1687
1688static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1689{
1690	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1691	unsigned old_flags = sb->s_flags;
1692	unsigned long old_opts = fs_info->mount_opt;
1693	unsigned long old_compress_type = fs_info->compress_type;
1694	u64 old_max_inline = fs_info->max_inline;
1695	u32 old_thread_pool_size = fs_info->thread_pool_size;
1696	u32 old_metadata_ratio = fs_info->metadata_ratio;
1697	int ret;
1698
1699	sync_filesystem(sb);
1700	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1701
1702	if (data) {
1703		void *new_sec_opts = NULL;
1704
1705		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1706		if (!ret)
1707			ret = security_sb_remount(sb, new_sec_opts);
1708		security_free_mnt_opts(&new_sec_opts);
1709		if (ret)
1710			goto restore;
1711	}
1712
1713	ret = btrfs_parse_options(fs_info, data, *flags);
1714	if (ret)
1715		goto restore;
1716
1717	ret = btrfs_check_features(fs_info, !(*flags & SB_RDONLY));
1718	if (ret < 0)
1719		goto restore;
1720
1721	btrfs_remount_begin(fs_info, old_opts, *flags);
1722	btrfs_resize_thread_pool(fs_info,
1723		fs_info->thread_pool_size, old_thread_pool_size);
1724
1725	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1726	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1727	    (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1728		btrfs_warn(fs_info,
1729		"remount supports changing free space tree only from ro to rw");
1730		/* Make sure free space cache options match the state on disk */
1731		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1732			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1733			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1734		}
1735		if (btrfs_free_space_cache_v1_active(fs_info)) {
1736			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1737			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1738		}
1739	}
1740
1741	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1742		goto out;
1743
1744	if (*flags & SB_RDONLY) {
1745		/*
1746		 * this also happens on 'umount -rf' or on shutdown, when
1747		 * the filesystem is busy.
1748		 */
1749		cancel_work_sync(&fs_info->async_reclaim_work);
1750		cancel_work_sync(&fs_info->async_data_reclaim_work);
1751
1752		btrfs_discard_cleanup(fs_info);
1753
1754		/* wait for the uuid_scan task to finish */
1755		down(&fs_info->uuid_tree_rescan_sem);
1756		/* avoid complains from lockdep et al. */
1757		up(&fs_info->uuid_tree_rescan_sem);
1758
1759		btrfs_set_sb_rdonly(sb);
1760
1761		/*
1762		 * Setting SB_RDONLY will put the cleaner thread to
1763		 * sleep at the next loop if it's already active.
1764		 * If it's already asleep, we'll leave unused block
1765		 * groups on disk until we're mounted read-write again
1766		 * unless we clean them up here.
1767		 */
1768		btrfs_delete_unused_bgs(fs_info);
1769
1770		/*
1771		 * The cleaner task could be already running before we set the
1772		 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
1773		 * We must make sure that after we finish the remount, i.e. after
1774		 * we call btrfs_commit_super(), the cleaner can no longer start
1775		 * a transaction - either because it was dropping a dead root,
1776		 * running delayed iputs or deleting an unused block group (the
1777		 * cleaner picked a block group from the list of unused block
1778		 * groups before we were able to in the previous call to
1779		 * btrfs_delete_unused_bgs()).
1780		 */
1781		wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
1782			    TASK_UNINTERRUPTIBLE);
1783
1784		/*
1785		 * We've set the superblock to RO mode, so we might have made
1786		 * the cleaner task sleep without running all pending delayed
1787		 * iputs. Go through all the delayed iputs here, so that if an
1788		 * unmount happens without remounting RW we don't end up at
1789		 * finishing close_ctree() with a non-empty list of delayed
1790		 * iputs.
1791		 */
1792		btrfs_run_delayed_iputs(fs_info);
1793
1794		btrfs_dev_replace_suspend_for_unmount(fs_info);
1795		btrfs_scrub_cancel(fs_info);
1796		btrfs_pause_balance(fs_info);
1797
1798		/*
1799		 * Pause the qgroup rescan worker if it is running. We don't want
1800		 * it to be still running after we are in RO mode, as after that,
1801		 * by the time we unmount, it might have left a transaction open,
1802		 * so we would leak the transaction and/or crash.
1803		 */
1804		btrfs_qgroup_wait_for_completion(fs_info, false);
1805
1806		ret = btrfs_commit_super(fs_info);
1807		if (ret)
1808			goto restore;
1809	} else {
1810		if (BTRFS_FS_ERROR(fs_info)) {
1811			btrfs_err(fs_info,
1812				"Remounting read-write after error is not allowed");
1813			ret = -EINVAL;
1814			goto restore;
1815		}
1816		if (fs_info->fs_devices->rw_devices == 0) {
1817			ret = -EACCES;
1818			goto restore;
1819		}
1820
1821		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1822			btrfs_warn(fs_info,
1823		"too many missing devices, writable remount is not allowed");
1824			ret = -EACCES;
1825			goto restore;
1826		}
1827
1828		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1829			btrfs_warn(fs_info,
1830		"mount required to replay tree-log, cannot remount read-write");
1831			ret = -EINVAL;
1832			goto restore;
1833		}
1834
1835		/*
1836		 * NOTE: when remounting with a change that does writes, don't
1837		 * put it anywhere above this point, as we are not sure to be
1838		 * safe to write until we pass the above checks.
1839		 */
1840		ret = btrfs_start_pre_rw_mount(fs_info);
1841		if (ret)
1842			goto restore;
1843
1844		btrfs_clear_sb_rdonly(sb);
1845
1846		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1847
1848		/*
1849		 * If we've gone from readonly -> read/write, we need to get
1850		 * our sync/async discard lists in the right state.
1851		 */
1852		btrfs_discard_resume(fs_info);
1853	}
1854out:
1855	/*
1856	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
1857	 * since the absence of the flag means it can be toggled off by remount.
1858	 */
1859	*flags |= SB_I_VERSION;
1860
1861	wake_up_process(fs_info->transaction_kthread);
1862	btrfs_remount_cleanup(fs_info, old_opts);
1863	btrfs_clear_oneshot_options(fs_info);
1864	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1865
1866	return 0;
1867
1868restore:
1869	/* We've hit an error - don't reset SB_RDONLY */
1870	if (sb_rdonly(sb))
1871		old_flags |= SB_RDONLY;
1872	if (!(old_flags & SB_RDONLY))
1873		clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
1874	sb->s_flags = old_flags;
1875	fs_info->mount_opt = old_opts;
1876	fs_info->compress_type = old_compress_type;
1877	fs_info->max_inline = old_max_inline;
1878	btrfs_resize_thread_pool(fs_info,
1879		old_thread_pool_size, fs_info->thread_pool_size);
1880	fs_info->metadata_ratio = old_metadata_ratio;
1881	btrfs_remount_cleanup(fs_info, old_opts);
1882	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1883
1884	return ret;
1885}
1886
1887/* Used to sort the devices by max_avail(descending sort) */
1888static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1889{
1890	const struct btrfs_device_info *dev_info1 = a;
1891	const struct btrfs_device_info *dev_info2 = b;
1892
1893	if (dev_info1->max_avail > dev_info2->max_avail)
1894		return -1;
1895	else if (dev_info1->max_avail < dev_info2->max_avail)
1896		return 1;
1897	return 0;
1898}
1899
1900/*
1901 * sort the devices by max_avail, in which max free extent size of each device
1902 * is stored.(Descending Sort)
1903 */
1904static inline void btrfs_descending_sort_devices(
1905					struct btrfs_device_info *devices,
1906					size_t nr_devices)
1907{
1908	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1909	     btrfs_cmp_device_free_bytes, NULL);
1910}
1911
1912/*
1913 * The helper to calc the free space on the devices that can be used to store
1914 * file data.
1915 */
1916static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1917					      u64 *free_bytes)
1918{
1919	struct btrfs_device_info *devices_info;
1920	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1921	struct btrfs_device *device;
1922	u64 type;
1923	u64 avail_space;
1924	u64 min_stripe_size;
1925	int num_stripes = 1;
1926	int i = 0, nr_devices;
1927	const struct btrfs_raid_attr *rattr;
1928
1929	/*
1930	 * We aren't under the device list lock, so this is racy-ish, but good
1931	 * enough for our purposes.
1932	 */
1933	nr_devices = fs_info->fs_devices->open_devices;
1934	if (!nr_devices) {
1935		smp_mb();
1936		nr_devices = fs_info->fs_devices->open_devices;
1937		ASSERT(nr_devices);
1938		if (!nr_devices) {
1939			*free_bytes = 0;
1940			return 0;
1941		}
1942	}
1943
1944	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1945			       GFP_KERNEL);
1946	if (!devices_info)
1947		return -ENOMEM;
1948
1949	/* calc min stripe number for data space allocation */
1950	type = btrfs_data_alloc_profile(fs_info);
1951	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1952
1953	if (type & BTRFS_BLOCK_GROUP_RAID0)
1954		num_stripes = nr_devices;
1955	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1956		num_stripes = rattr->ncopies;
1957	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1958		num_stripes = 4;
1959
1960	/* Adjust for more than 1 stripe per device */
1961	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1962
1963	rcu_read_lock();
1964	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1965		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1966						&device->dev_state) ||
1967		    !device->bdev ||
1968		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1969			continue;
1970
1971		if (i >= nr_devices)
1972			break;
1973
1974		avail_space = device->total_bytes - device->bytes_used;
1975
1976		/* align with stripe_len */
1977		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1978
1979		/*
1980		 * Ensure we have at least min_stripe_size on top of the
1981		 * reserved space on the device.
1982		 */
1983		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1984			continue;
1985
1986		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1987
1988		devices_info[i].dev = device;
1989		devices_info[i].max_avail = avail_space;
1990
1991		i++;
1992	}
1993	rcu_read_unlock();
1994
1995	nr_devices = i;
1996
1997	btrfs_descending_sort_devices(devices_info, nr_devices);
1998
1999	i = nr_devices - 1;
2000	avail_space = 0;
2001	while (nr_devices >= rattr->devs_min) {
2002		num_stripes = min(num_stripes, nr_devices);
2003
2004		if (devices_info[i].max_avail >= min_stripe_size) {
2005			int j;
2006			u64 alloc_size;
2007
2008			avail_space += devices_info[i].max_avail * num_stripes;
2009			alloc_size = devices_info[i].max_avail;
2010			for (j = i + 1 - num_stripes; j <= i; j++)
2011				devices_info[j].max_avail -= alloc_size;
2012		}
2013		i--;
2014		nr_devices--;
2015	}
2016
2017	kfree(devices_info);
2018	*free_bytes = avail_space;
2019	return 0;
2020}
2021
2022/*
2023 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2024 *
2025 * If there's a redundant raid level at DATA block groups, use the respective
2026 * multiplier to scale the sizes.
2027 *
2028 * Unused device space usage is based on simulating the chunk allocator
2029 * algorithm that respects the device sizes and order of allocations.  This is
2030 * a close approximation of the actual use but there are other factors that may
2031 * change the result (like a new metadata chunk).
2032 *
2033 * If metadata is exhausted, f_bavail will be 0.
2034 */
2035static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2036{
2037	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2038	struct btrfs_super_block *disk_super = fs_info->super_copy;
2039	struct btrfs_space_info *found;
2040	u64 total_used = 0;
2041	u64 total_free_data = 0;
2042	u64 total_free_meta = 0;
2043	u32 bits = fs_info->sectorsize_bits;
2044	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2045	unsigned factor = 1;
2046	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2047	int ret;
2048	u64 thresh = 0;
2049	int mixed = 0;
2050
2051	list_for_each_entry(found, &fs_info->space_info, list) {
2052		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2053			int i;
2054
2055			total_free_data += found->disk_total - found->disk_used;
2056			total_free_data -=
2057				btrfs_account_ro_block_groups_free_space(found);
2058
2059			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2060				if (!list_empty(&found->block_groups[i]))
2061					factor = btrfs_bg_type_to_factor(
2062						btrfs_raid_array[i].bg_flag);
2063			}
2064		}
2065
2066		/*
2067		 * Metadata in mixed block group profiles are accounted in data
2068		 */
2069		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2070			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2071				mixed = 1;
2072			else
2073				total_free_meta += found->disk_total -
2074					found->disk_used;
2075		}
2076
2077		total_used += found->disk_used;
2078	}
2079
2080	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2081	buf->f_blocks >>= bits;
2082	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2083
2084	/* Account global block reserve as used, it's in logical size already */
2085	spin_lock(&block_rsv->lock);
2086	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2087	if (buf->f_bfree >= block_rsv->size >> bits)
2088		buf->f_bfree -= block_rsv->size >> bits;
2089	else
2090		buf->f_bfree = 0;
2091	spin_unlock(&block_rsv->lock);
2092
2093	buf->f_bavail = div_u64(total_free_data, factor);
2094	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2095	if (ret)
2096		return ret;
2097	buf->f_bavail += div_u64(total_free_data, factor);
2098	buf->f_bavail = buf->f_bavail >> bits;
2099
2100	/*
2101	 * We calculate the remaining metadata space minus global reserve. If
2102	 * this is (supposedly) smaller than zero, there's no space. But this
2103	 * does not hold in practice, the exhausted state happens where's still
2104	 * some positive delta. So we apply some guesswork and compare the
2105	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2106	 *
2107	 * We probably cannot calculate the exact threshold value because this
2108	 * depends on the internal reservations requested by various
2109	 * operations, so some operations that consume a few metadata will
2110	 * succeed even if the Avail is zero. But this is better than the other
2111	 * way around.
2112	 */
2113	thresh = SZ_4M;
2114
2115	/*
2116	 * We only want to claim there's no available space if we can no longer
2117	 * allocate chunks for our metadata profile and our global reserve will
2118	 * not fit in the free metadata space.  If we aren't ->full then we
2119	 * still can allocate chunks and thus are fine using the currently
2120	 * calculated f_bavail.
2121	 */
2122	if (!mixed && block_rsv->space_info->full &&
2123	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
2124		buf->f_bavail = 0;
2125
2126	buf->f_type = BTRFS_SUPER_MAGIC;
2127	buf->f_bsize = dentry->d_sb->s_blocksize;
2128	buf->f_namelen = BTRFS_NAME_LEN;
2129
2130	/* We treat it as constant endianness (it doesn't matter _which_)
2131	   because we want the fsid to come out the same whether mounted
2132	   on a big-endian or little-endian host */
2133	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2134	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2135	/* Mask in the root object ID too, to disambiguate subvols */
2136	buf->f_fsid.val[0] ^=
2137		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2138	buf->f_fsid.val[1] ^=
2139		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2140
2141	return 0;
2142}
2143
2144static void btrfs_kill_super(struct super_block *sb)
2145{
2146	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2147	kill_anon_super(sb);
2148	btrfs_free_fs_info(fs_info);
2149}
2150
2151static struct file_system_type btrfs_fs_type = {
2152	.owner		= THIS_MODULE,
2153	.name		= "btrfs",
2154	.mount		= btrfs_mount,
2155	.kill_sb	= btrfs_kill_super,
2156	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2157};
2158
2159static struct file_system_type btrfs_root_fs_type = {
2160	.owner		= THIS_MODULE,
2161	.name		= "btrfs",
2162	.mount		= btrfs_mount_root,
2163	.kill_sb	= btrfs_kill_super,
2164	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2165};
2166
2167MODULE_ALIAS_FS("btrfs");
2168
2169static int btrfs_control_open(struct inode *inode, struct file *file)
2170{
2171	/*
2172	 * The control file's private_data is used to hold the
2173	 * transaction when it is started and is used to keep
2174	 * track of whether a transaction is already in progress.
2175	 */
2176	file->private_data = NULL;
2177	return 0;
2178}
2179
2180/*
2181 * Used by /dev/btrfs-control for devices ioctls.
2182 */
2183static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2184				unsigned long arg)
2185{
2186	struct btrfs_ioctl_vol_args *vol;
2187	struct btrfs_device *device = NULL;
2188	dev_t devt = 0;
2189	int ret = -ENOTTY;
2190
2191	if (!capable(CAP_SYS_ADMIN))
2192		return -EPERM;
2193
2194	vol = memdup_user((void __user *)arg, sizeof(*vol));
2195	if (IS_ERR(vol))
2196		return PTR_ERR(vol);
2197	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2198
2199	switch (cmd) {
2200	case BTRFS_IOC_SCAN_DEV:
2201		mutex_lock(&uuid_mutex);
2202		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ);
2203		ret = PTR_ERR_OR_ZERO(device);
2204		mutex_unlock(&uuid_mutex);
2205		break;
2206	case BTRFS_IOC_FORGET_DEV:
2207		if (vol->name[0] != 0) {
2208			ret = lookup_bdev(vol->name, &devt);
2209			if (ret)
2210				break;
2211		}
2212		ret = btrfs_forget_devices(devt);
2213		break;
2214	case BTRFS_IOC_DEVICES_READY:
2215		mutex_lock(&uuid_mutex);
2216		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ);
2217		if (IS_ERR(device)) {
2218			mutex_unlock(&uuid_mutex);
2219			ret = PTR_ERR(device);
2220			break;
2221		}
2222		ret = !(device->fs_devices->num_devices ==
2223			device->fs_devices->total_devices);
2224		mutex_unlock(&uuid_mutex);
2225		break;
2226	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2227		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2228		break;
2229	}
2230
2231	kfree(vol);
2232	return ret;
2233}
2234
2235static int btrfs_freeze(struct super_block *sb)
2236{
2237	struct btrfs_trans_handle *trans;
2238	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2239	struct btrfs_root *root = fs_info->tree_root;
2240
2241	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2242	/*
2243	 * We don't need a barrier here, we'll wait for any transaction that
2244	 * could be in progress on other threads (and do delayed iputs that
2245	 * we want to avoid on a frozen filesystem), or do the commit
2246	 * ourselves.
2247	 */
2248	trans = btrfs_attach_transaction_barrier(root);
2249	if (IS_ERR(trans)) {
2250		/* no transaction, don't bother */
2251		if (PTR_ERR(trans) == -ENOENT)
2252			return 0;
2253		return PTR_ERR(trans);
2254	}
2255	return btrfs_commit_transaction(trans);
2256}
2257
2258static int check_dev_super(struct btrfs_device *dev)
2259{
2260	struct btrfs_fs_info *fs_info = dev->fs_info;
2261	struct btrfs_super_block *sb;
2262	u16 csum_type;
2263	int ret = 0;
2264
2265	/* This should be called with fs still frozen. */
2266	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2267
2268	/* Missing dev, no need to check. */
2269	if (!dev->bdev)
2270		return 0;
2271
2272	/* Only need to check the primary super block. */
2273	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2274	if (IS_ERR(sb))
2275		return PTR_ERR(sb);
2276
2277	/* Verify the checksum. */
2278	csum_type = btrfs_super_csum_type(sb);
2279	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2280		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2281			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2282		ret = -EUCLEAN;
2283		goto out;
2284	}
2285
2286	if (btrfs_check_super_csum(fs_info, sb)) {
2287		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2288		ret = -EUCLEAN;
2289		goto out;
2290	}
2291
2292	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2293	ret = btrfs_validate_super(fs_info, sb, 0);
2294	if (ret < 0)
2295		goto out;
2296
2297	if (btrfs_super_generation(sb) != fs_info->last_trans_committed) {
2298		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2299			btrfs_super_generation(sb),
2300			fs_info->last_trans_committed);
2301		ret = -EUCLEAN;
2302		goto out;
2303	}
2304out:
2305	btrfs_release_disk_super(sb);
2306	return ret;
2307}
2308
2309static int btrfs_unfreeze(struct super_block *sb)
2310{
2311	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2312	struct btrfs_device *device;
2313	int ret = 0;
2314
2315	/*
2316	 * Make sure the fs is not changed by accident (like hibernation then
2317	 * modified by other OS).
2318	 * If we found anything wrong, we mark the fs error immediately.
2319	 *
2320	 * And since the fs is frozen, no one can modify the fs yet, thus
2321	 * we don't need to hold device_list_mutex.
2322	 */
2323	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2324		ret = check_dev_super(device);
2325		if (ret < 0) {
2326			btrfs_handle_fs_error(fs_info, ret,
2327				"super block on devid %llu got modified unexpectedly",
2328				device->devid);
2329			break;
2330		}
2331	}
2332	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2333
2334	/*
2335	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2336	 * above checks failed. Since the fs is either fine or read-only, we're
2337	 * safe to continue, without causing further damage.
2338	 */
2339	return 0;
2340}
2341
2342static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2343{
2344	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2345
2346	/*
2347	 * There should be always a valid pointer in latest_dev, it may be stale
2348	 * for a short moment in case it's being deleted but still valid until
2349	 * the end of RCU grace period.
2350	 */
2351	rcu_read_lock();
2352	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2353	rcu_read_unlock();
2354
2355	return 0;
2356}
2357
2358static const struct super_operations btrfs_super_ops = {
2359	.drop_inode	= btrfs_drop_inode,
2360	.evict_inode	= btrfs_evict_inode,
2361	.put_super	= btrfs_put_super,
2362	.sync_fs	= btrfs_sync_fs,
2363	.show_options	= btrfs_show_options,
2364	.show_devname	= btrfs_show_devname,
2365	.alloc_inode	= btrfs_alloc_inode,
2366	.destroy_inode	= btrfs_destroy_inode,
2367	.free_inode	= btrfs_free_inode,
2368	.statfs		= btrfs_statfs,
2369	.remount_fs	= btrfs_remount,
2370	.freeze_fs	= btrfs_freeze,
2371	.unfreeze_fs	= btrfs_unfreeze,
2372};
2373
2374static const struct file_operations btrfs_ctl_fops = {
2375	.open = btrfs_control_open,
2376	.unlocked_ioctl	 = btrfs_control_ioctl,
2377	.compat_ioctl = compat_ptr_ioctl,
2378	.owner	 = THIS_MODULE,
2379	.llseek = noop_llseek,
2380};
2381
2382static struct miscdevice btrfs_misc = {
2383	.minor		= BTRFS_MINOR,
2384	.name		= "btrfs-control",
2385	.fops		= &btrfs_ctl_fops
2386};
2387
2388MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2389MODULE_ALIAS("devname:btrfs-control");
2390
2391static int __init btrfs_interface_init(void)
2392{
2393	return misc_register(&btrfs_misc);
2394}
2395
2396static __cold void btrfs_interface_exit(void)
2397{
2398	misc_deregister(&btrfs_misc);
2399}
2400
2401static int __init btrfs_print_mod_info(void)
2402{
2403	static const char options[] = ""
2404#ifdef CONFIG_BTRFS_DEBUG
2405			", debug=on"
2406#endif
2407#ifdef CONFIG_BTRFS_ASSERT
2408			", assert=on"
2409#endif
2410#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2411			", integrity-checker=on"
2412#endif
2413#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2414			", ref-verify=on"
2415#endif
2416#ifdef CONFIG_BLK_DEV_ZONED
2417			", zoned=yes"
2418#else
2419			", zoned=no"
2420#endif
2421#ifdef CONFIG_FS_VERITY
2422			", fsverity=yes"
2423#else
2424			", fsverity=no"
2425#endif
2426			;
2427	pr_info("Btrfs loaded%s\n", options);
2428	return 0;
2429}
2430
2431static int register_btrfs(void)
2432{
2433	return register_filesystem(&btrfs_fs_type);
2434}
2435
2436static void unregister_btrfs(void)
2437{
2438	unregister_filesystem(&btrfs_fs_type);
2439}
2440
2441/* Helper structure for long init/exit functions. */
2442struct init_sequence {
2443	int (*init_func)(void);
2444	/* Can be NULL if the init_func doesn't need cleanup. */
2445	void (*exit_func)(void);
2446};
2447
2448static const struct init_sequence mod_init_seq[] = {
2449	{
2450		.init_func = btrfs_props_init,
2451		.exit_func = NULL,
2452	}, {
2453		.init_func = btrfs_init_sysfs,
2454		.exit_func = btrfs_exit_sysfs,
2455	}, {
2456		.init_func = btrfs_init_compress,
2457		.exit_func = btrfs_exit_compress,
2458	}, {
2459		.init_func = btrfs_init_cachep,
2460		.exit_func = btrfs_destroy_cachep,
2461	}, {
2462		.init_func = btrfs_transaction_init,
2463		.exit_func = btrfs_transaction_exit,
2464	}, {
2465		.init_func = btrfs_ctree_init,
2466		.exit_func = btrfs_ctree_exit,
2467	}, {
2468		.init_func = btrfs_free_space_init,
2469		.exit_func = btrfs_free_space_exit,
2470	}, {
2471		.init_func = extent_state_init_cachep,
2472		.exit_func = extent_state_free_cachep,
2473	}, {
2474		.init_func = extent_buffer_init_cachep,
2475		.exit_func = extent_buffer_free_cachep,
2476	}, {
2477		.init_func = btrfs_bioset_init,
2478		.exit_func = btrfs_bioset_exit,
2479	}, {
2480		.init_func = extent_map_init,
2481		.exit_func = extent_map_exit,
2482	}, {
2483		.init_func = ordered_data_init,
2484		.exit_func = ordered_data_exit,
2485	}, {
2486		.init_func = btrfs_delayed_inode_init,
2487		.exit_func = btrfs_delayed_inode_exit,
2488	}, {
2489		.init_func = btrfs_auto_defrag_init,
2490		.exit_func = btrfs_auto_defrag_exit,
2491	}, {
2492		.init_func = btrfs_delayed_ref_init,
2493		.exit_func = btrfs_delayed_ref_exit,
2494	}, {
2495		.init_func = btrfs_prelim_ref_init,
2496		.exit_func = btrfs_prelim_ref_exit,
2497	}, {
2498		.init_func = btrfs_interface_init,
2499		.exit_func = btrfs_interface_exit,
2500	}, {
2501		.init_func = btrfs_print_mod_info,
2502		.exit_func = NULL,
2503	}, {
2504		.init_func = btrfs_run_sanity_tests,
2505		.exit_func = NULL,
2506	}, {
2507		.init_func = register_btrfs,
2508		.exit_func = unregister_btrfs,
2509	}
2510};
2511
2512static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2513
2514static __always_inline void btrfs_exit_btrfs_fs(void)
2515{
2516	int i;
2517
2518	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2519		if (!mod_init_result[i])
2520			continue;
2521		if (mod_init_seq[i].exit_func)
2522			mod_init_seq[i].exit_func();
2523		mod_init_result[i] = false;
2524	}
2525}
2526
2527static void __exit exit_btrfs_fs(void)
2528{
2529	btrfs_exit_btrfs_fs();
2530	btrfs_cleanup_fs_uuids();
2531}
2532
2533static int __init init_btrfs_fs(void)
2534{
2535	int ret;
2536	int i;
2537
2538	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2539		ASSERT(!mod_init_result[i]);
2540		ret = mod_init_seq[i].init_func();
2541		if (ret < 0) {
2542			btrfs_exit_btrfs_fs();
2543			return ret;
2544		}
2545		mod_init_result[i] = true;
2546	}
2547	return 0;
2548}
2549
2550late_initcall(init_btrfs_fs);
2551module_exit(exit_btrfs_fs)
2552
2553MODULE_LICENSE("GPL");
2554MODULE_SOFTDEP("pre: crc32c");
2555MODULE_SOFTDEP("pre: xxhash64");
2556MODULE_SOFTDEP("pre: sha256");
2557MODULE_SOFTDEP("pre: blake2b-256");
2558