xref: /kernel/linux/linux-6.6/fs/btrfs/scrub.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4 */
5
6#include <linux/blkdev.h>
7#include <linux/ratelimit.h>
8#include <linux/sched/mm.h>
9#include <crypto/hash.h>
10#include "ctree.h"
11#include "discard.h"
12#include "volumes.h"
13#include "disk-io.h"
14#include "ordered-data.h"
15#include "transaction.h"
16#include "backref.h"
17#include "extent_io.h"
18#include "dev-replace.h"
19#include "check-integrity.h"
20#include "raid56.h"
21#include "block-group.h"
22#include "zoned.h"
23#include "fs.h"
24#include "accessors.h"
25#include "file-item.h"
26#include "scrub.h"
27
28/*
29 * This is only the first step towards a full-features scrub. It reads all
30 * extent and super block and verifies the checksums. In case a bad checksum
31 * is found or the extent cannot be read, good data will be written back if
32 * any can be found.
33 *
34 * Future enhancements:
35 *  - In case an unrepairable extent is encountered, track which files are
36 *    affected and report them
37 *  - track and record media errors, throw out bad devices
38 *  - add a mode to also read unallocated space
39 */
40
41struct scrub_ctx;
42
43/*
44 * The following value only influences the performance.
45 *
46 * This detemines how many stripes would be submitted in one go,
47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48 */
49#define SCRUB_STRIPES_PER_GROUP		8
50
51/*
52 * How many groups we have for each sctx.
53 *
54 * This would be 8M per device, the same value as the old scrub in-flight bios
55 * size limit.
56 */
57#define SCRUB_GROUPS_PER_SCTX		16
58
59#define SCRUB_TOTAL_STRIPES		(SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60
61/*
62 * The following value times PAGE_SIZE needs to be large enough to match the
63 * largest node/leaf/sector size that shall be supported.
64 */
65#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66
67/* Represent one sector and its needed info to verify the content. */
68struct scrub_sector_verification {
69	bool is_metadata;
70
71	union {
72		/*
73		 * Csum pointer for data csum verification.  Should point to a
74		 * sector csum inside scrub_stripe::csums.
75		 *
76		 * NULL if this data sector has no csum.
77		 */
78		u8 *csum;
79
80		/*
81		 * Extra info for metadata verification.  All sectors inside a
82		 * tree block share the same generation.
83		 */
84		u64 generation;
85	};
86};
87
88enum scrub_stripe_flags {
89	/* Set when @mirror_num, @dev, @physical and @logical are set. */
90	SCRUB_STRIPE_FLAG_INITIALIZED,
91
92	/* Set when the read-repair is finished. */
93	SCRUB_STRIPE_FLAG_REPAIR_DONE,
94
95	/*
96	 * Set for data stripes if it's triggered from P/Q stripe.
97	 * During such scrub, we should not report errors in data stripes, nor
98	 * update the accounting.
99	 */
100	SCRUB_STRIPE_FLAG_NO_REPORT,
101};
102
103#define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
104
105/*
106 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
107 */
108struct scrub_stripe {
109	struct scrub_ctx *sctx;
110	struct btrfs_block_group *bg;
111
112	struct page *pages[SCRUB_STRIPE_PAGES];
113	struct scrub_sector_verification *sectors;
114
115	struct btrfs_device *dev;
116	u64 logical;
117	u64 physical;
118
119	u16 mirror_num;
120
121	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
122	u16 nr_sectors;
123
124	/*
125	 * How many data/meta extents are in this stripe.  Only for scrub status
126	 * reporting purposes.
127	 */
128	u16 nr_data_extents;
129	u16 nr_meta_extents;
130
131	atomic_t pending_io;
132	wait_queue_head_t io_wait;
133	wait_queue_head_t repair_wait;
134
135	/*
136	 * Indicate the states of the stripe.  Bits are defined in
137	 * scrub_stripe_flags enum.
138	 */
139	unsigned long state;
140
141	/* Indicate which sectors are covered by extent items. */
142	unsigned long extent_sector_bitmap;
143
144	/*
145	 * The errors hit during the initial read of the stripe.
146	 *
147	 * Would be utilized for error reporting and repair.
148	 *
149	 * The remaining init_nr_* records the number of errors hit, only used
150	 * by error reporting.
151	 */
152	unsigned long init_error_bitmap;
153	unsigned int init_nr_io_errors;
154	unsigned int init_nr_csum_errors;
155	unsigned int init_nr_meta_errors;
156
157	/*
158	 * The following error bitmaps are all for the current status.
159	 * Every time we submit a new read, these bitmaps may be updated.
160	 *
161	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
162	 *
163	 * IO and csum errors can happen for both metadata and data.
164	 */
165	unsigned long error_bitmap;
166	unsigned long io_error_bitmap;
167	unsigned long csum_error_bitmap;
168	unsigned long meta_error_bitmap;
169
170	/* For writeback (repair or replace) error reporting. */
171	unsigned long write_error_bitmap;
172
173	/* Writeback can be concurrent, thus we need to protect the bitmap. */
174	spinlock_t write_error_lock;
175
176	/*
177	 * Checksum for the whole stripe if this stripe is inside a data block
178	 * group.
179	 */
180	u8 *csums;
181
182	struct work_struct work;
183};
184
185struct scrub_ctx {
186	struct scrub_stripe	stripes[SCRUB_TOTAL_STRIPES];
187	struct scrub_stripe	*raid56_data_stripes;
188	struct btrfs_fs_info	*fs_info;
189	struct btrfs_path	extent_path;
190	struct btrfs_path	csum_path;
191	int			first_free;
192	int			cur_stripe;
193	atomic_t		cancel_req;
194	int			readonly;
195	int			sectors_per_bio;
196
197	/* State of IO submission throttling affecting the associated device */
198	ktime_t			throttle_deadline;
199	u64			throttle_sent;
200
201	int			is_dev_replace;
202	u64			write_pointer;
203
204	struct mutex            wr_lock;
205	struct btrfs_device     *wr_tgtdev;
206
207	/*
208	 * statistics
209	 */
210	struct btrfs_scrub_progress stat;
211	spinlock_t		stat_lock;
212
213	/*
214	 * Use a ref counter to avoid use-after-free issues. Scrub workers
215	 * decrement bios_in_flight and workers_pending and then do a wakeup
216	 * on the list_wait wait queue. We must ensure the main scrub task
217	 * doesn't free the scrub context before or while the workers are
218	 * doing the wakeup() call.
219	 */
220	refcount_t              refs;
221};
222
223struct scrub_warning {
224	struct btrfs_path	*path;
225	u64			extent_item_size;
226	const char		*errstr;
227	u64			physical;
228	u64			logical;
229	struct btrfs_device	*dev;
230};
231
232static void release_scrub_stripe(struct scrub_stripe *stripe)
233{
234	if (!stripe)
235		return;
236
237	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
238		if (stripe->pages[i])
239			__free_page(stripe->pages[i]);
240		stripe->pages[i] = NULL;
241	}
242	kfree(stripe->sectors);
243	kfree(stripe->csums);
244	stripe->sectors = NULL;
245	stripe->csums = NULL;
246	stripe->sctx = NULL;
247	stripe->state = 0;
248}
249
250static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
251			     struct scrub_stripe *stripe)
252{
253	int ret;
254
255	memset(stripe, 0, sizeof(*stripe));
256
257	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
258	stripe->state = 0;
259
260	init_waitqueue_head(&stripe->io_wait);
261	init_waitqueue_head(&stripe->repair_wait);
262	atomic_set(&stripe->pending_io, 0);
263	spin_lock_init(&stripe->write_error_lock);
264
265	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages);
266	if (ret < 0)
267		goto error;
268
269	stripe->sectors = kcalloc(stripe->nr_sectors,
270				  sizeof(struct scrub_sector_verification),
271				  GFP_KERNEL);
272	if (!stripe->sectors)
273		goto error;
274
275	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
276				fs_info->csum_size, GFP_KERNEL);
277	if (!stripe->csums)
278		goto error;
279	return 0;
280error:
281	release_scrub_stripe(stripe);
282	return -ENOMEM;
283}
284
285static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
286{
287	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
288}
289
290static void scrub_put_ctx(struct scrub_ctx *sctx);
291
292static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
293{
294	while (atomic_read(&fs_info->scrub_pause_req)) {
295		mutex_unlock(&fs_info->scrub_lock);
296		wait_event(fs_info->scrub_pause_wait,
297		   atomic_read(&fs_info->scrub_pause_req) == 0);
298		mutex_lock(&fs_info->scrub_lock);
299	}
300}
301
302static void scrub_pause_on(struct btrfs_fs_info *fs_info)
303{
304	atomic_inc(&fs_info->scrubs_paused);
305	wake_up(&fs_info->scrub_pause_wait);
306}
307
308static void scrub_pause_off(struct btrfs_fs_info *fs_info)
309{
310	mutex_lock(&fs_info->scrub_lock);
311	__scrub_blocked_if_needed(fs_info);
312	atomic_dec(&fs_info->scrubs_paused);
313	mutex_unlock(&fs_info->scrub_lock);
314
315	wake_up(&fs_info->scrub_pause_wait);
316}
317
318static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
319{
320	scrub_pause_on(fs_info);
321	scrub_pause_off(fs_info);
322}
323
324static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
325{
326	int i;
327
328	if (!sctx)
329		return;
330
331	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
332		release_scrub_stripe(&sctx->stripes[i]);
333
334	kvfree(sctx);
335}
336
337static void scrub_put_ctx(struct scrub_ctx *sctx)
338{
339	if (refcount_dec_and_test(&sctx->refs))
340		scrub_free_ctx(sctx);
341}
342
343static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
344		struct btrfs_fs_info *fs_info, int is_dev_replace)
345{
346	struct scrub_ctx *sctx;
347	int		i;
348
349	/* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
350	 * kvzalloc().
351	 */
352	sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
353	if (!sctx)
354		goto nomem;
355	refcount_set(&sctx->refs, 1);
356	sctx->is_dev_replace = is_dev_replace;
357	sctx->fs_info = fs_info;
358	sctx->extent_path.search_commit_root = 1;
359	sctx->extent_path.skip_locking = 1;
360	sctx->csum_path.search_commit_root = 1;
361	sctx->csum_path.skip_locking = 1;
362	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
363		int ret;
364
365		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
366		if (ret < 0)
367			goto nomem;
368		sctx->stripes[i].sctx = sctx;
369	}
370	sctx->first_free = 0;
371	atomic_set(&sctx->cancel_req, 0);
372
373	spin_lock_init(&sctx->stat_lock);
374	sctx->throttle_deadline = 0;
375
376	mutex_init(&sctx->wr_lock);
377	if (is_dev_replace) {
378		WARN_ON(!fs_info->dev_replace.tgtdev);
379		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
380	}
381
382	return sctx;
383
384nomem:
385	scrub_free_ctx(sctx);
386	return ERR_PTR(-ENOMEM);
387}
388
389static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
390				     u64 root, void *warn_ctx)
391{
392	u32 nlink;
393	int ret;
394	int i;
395	unsigned nofs_flag;
396	struct extent_buffer *eb;
397	struct btrfs_inode_item *inode_item;
398	struct scrub_warning *swarn = warn_ctx;
399	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
400	struct inode_fs_paths *ipath = NULL;
401	struct btrfs_root *local_root;
402	struct btrfs_key key;
403
404	local_root = btrfs_get_fs_root(fs_info, root, true);
405	if (IS_ERR(local_root)) {
406		ret = PTR_ERR(local_root);
407		goto err;
408	}
409
410	/*
411	 * this makes the path point to (inum INODE_ITEM ioff)
412	 */
413	key.objectid = inum;
414	key.type = BTRFS_INODE_ITEM_KEY;
415	key.offset = 0;
416
417	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
418	if (ret) {
419		btrfs_put_root(local_root);
420		btrfs_release_path(swarn->path);
421		goto err;
422	}
423
424	eb = swarn->path->nodes[0];
425	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
426					struct btrfs_inode_item);
427	nlink = btrfs_inode_nlink(eb, inode_item);
428	btrfs_release_path(swarn->path);
429
430	/*
431	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
432	 * uses GFP_NOFS in this context, so we keep it consistent but it does
433	 * not seem to be strictly necessary.
434	 */
435	nofs_flag = memalloc_nofs_save();
436	ipath = init_ipath(4096, local_root, swarn->path);
437	memalloc_nofs_restore(nofs_flag);
438	if (IS_ERR(ipath)) {
439		btrfs_put_root(local_root);
440		ret = PTR_ERR(ipath);
441		ipath = NULL;
442		goto err;
443	}
444	ret = paths_from_inode(inum, ipath);
445
446	if (ret < 0)
447		goto err;
448
449	/*
450	 * we deliberately ignore the bit ipath might have been too small to
451	 * hold all of the paths here
452	 */
453	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
454		btrfs_warn_in_rcu(fs_info,
455"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
456				  swarn->errstr, swarn->logical,
457				  btrfs_dev_name(swarn->dev),
458				  swarn->physical,
459				  root, inum, offset,
460				  fs_info->sectorsize, nlink,
461				  (char *)(unsigned long)ipath->fspath->val[i]);
462
463	btrfs_put_root(local_root);
464	free_ipath(ipath);
465	return 0;
466
467err:
468	btrfs_warn_in_rcu(fs_info,
469			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
470			  swarn->errstr, swarn->logical,
471			  btrfs_dev_name(swarn->dev),
472			  swarn->physical,
473			  root, inum, offset, ret);
474
475	free_ipath(ipath);
476	return 0;
477}
478
479static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
480				       bool is_super, u64 logical, u64 physical)
481{
482	struct btrfs_fs_info *fs_info = dev->fs_info;
483	struct btrfs_path *path;
484	struct btrfs_key found_key;
485	struct extent_buffer *eb;
486	struct btrfs_extent_item *ei;
487	struct scrub_warning swarn;
488	u64 flags = 0;
489	u32 item_size;
490	int ret;
491
492	/* Super block error, no need to search extent tree. */
493	if (is_super) {
494		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
495				  errstr, btrfs_dev_name(dev), physical);
496		return;
497	}
498	path = btrfs_alloc_path();
499	if (!path)
500		return;
501
502	swarn.physical = physical;
503	swarn.logical = logical;
504	swarn.errstr = errstr;
505	swarn.dev = NULL;
506
507	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
508				  &flags);
509	if (ret < 0)
510		goto out;
511
512	swarn.extent_item_size = found_key.offset;
513
514	eb = path->nodes[0];
515	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
516	item_size = btrfs_item_size(eb, path->slots[0]);
517
518	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
519		unsigned long ptr = 0;
520		u8 ref_level;
521		u64 ref_root;
522
523		while (true) {
524			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
525						      item_size, &ref_root,
526						      &ref_level);
527			if (ret < 0) {
528				btrfs_warn(fs_info,
529				"failed to resolve tree backref for logical %llu: %d",
530						  swarn.logical, ret);
531				break;
532			}
533			if (ret > 0)
534				break;
535			btrfs_warn_in_rcu(fs_info,
536"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
537				errstr, swarn.logical, btrfs_dev_name(dev),
538				swarn.physical, (ref_level ? "node" : "leaf"),
539				ref_level, ref_root);
540		}
541		btrfs_release_path(path);
542	} else {
543		struct btrfs_backref_walk_ctx ctx = { 0 };
544
545		btrfs_release_path(path);
546
547		ctx.bytenr = found_key.objectid;
548		ctx.extent_item_pos = swarn.logical - found_key.objectid;
549		ctx.fs_info = fs_info;
550
551		swarn.path = path;
552		swarn.dev = dev;
553
554		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
555	}
556
557out:
558	btrfs_free_path(path);
559}
560
561static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
562{
563	int ret = 0;
564	u64 length;
565
566	if (!btrfs_is_zoned(sctx->fs_info))
567		return 0;
568
569	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
570		return 0;
571
572	if (sctx->write_pointer < physical) {
573		length = physical - sctx->write_pointer;
574
575		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
576						sctx->write_pointer, length);
577		if (!ret)
578			sctx->write_pointer = physical;
579	}
580	return ret;
581}
582
583static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
584{
585	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
586	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
587
588	return stripe->pages[page_index];
589}
590
591static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
592						 int sector_nr)
593{
594	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
595
596	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
597}
598
599static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
600{
601	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
602	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
603	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
604	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
605	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
606	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
607	u8 on_disk_csum[BTRFS_CSUM_SIZE];
608	u8 calculated_csum[BTRFS_CSUM_SIZE];
609	struct btrfs_header *header;
610
611	/*
612	 * Here we don't have a good way to attach the pages (and subpages)
613	 * to a dummy extent buffer, thus we have to directly grab the members
614	 * from pages.
615	 */
616	header = (struct btrfs_header *)(page_address(first_page) + first_off);
617	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
618
619	if (logical != btrfs_stack_header_bytenr(header)) {
620		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
621		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
622		btrfs_warn_rl(fs_info,
623		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
624			      logical, stripe->mirror_num,
625			      btrfs_stack_header_bytenr(header), logical);
626		return;
627	}
628	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
629		   BTRFS_FSID_SIZE) != 0) {
630		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
631		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
632		btrfs_warn_rl(fs_info,
633		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
634			      logical, stripe->mirror_num,
635			      header->fsid, fs_info->fs_devices->fsid);
636		return;
637	}
638	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
639		   BTRFS_UUID_SIZE) != 0) {
640		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
641		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
642		btrfs_warn_rl(fs_info,
643		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
644			      logical, stripe->mirror_num,
645			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
646		return;
647	}
648
649	/* Now check tree block csum. */
650	shash->tfm = fs_info->csum_shash;
651	crypto_shash_init(shash);
652	crypto_shash_update(shash, page_address(first_page) + first_off +
653			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
654
655	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
656		struct page *page = scrub_stripe_get_page(stripe, i);
657		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
658
659		crypto_shash_update(shash, page_address(page) + page_off,
660				    fs_info->sectorsize);
661	}
662
663	crypto_shash_final(shash, calculated_csum);
664	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
665		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
666		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
667		btrfs_warn_rl(fs_info,
668		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
669			      logical, stripe->mirror_num,
670			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
671			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
672		return;
673	}
674	if (stripe->sectors[sector_nr].generation !=
675	    btrfs_stack_header_generation(header)) {
676		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
677		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
678		btrfs_warn_rl(fs_info,
679		"tree block %llu mirror %u has bad generation, has %llu want %llu",
680			      logical, stripe->mirror_num,
681			      btrfs_stack_header_generation(header),
682			      stripe->sectors[sector_nr].generation);
683		return;
684	}
685	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
686	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
687	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
688}
689
690static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
691{
692	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
693	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
694	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
695	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
696	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
697	u8 csum_buf[BTRFS_CSUM_SIZE];
698	int ret;
699
700	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
701
702	/* Sector not utilized, skip it. */
703	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
704		return;
705
706	/* IO error, no need to check. */
707	if (test_bit(sector_nr, &stripe->io_error_bitmap))
708		return;
709
710	/* Metadata, verify the full tree block. */
711	if (sector->is_metadata) {
712		/*
713		 * Check if the tree block crosses the stripe boudary.  If
714		 * crossed the boundary, we cannot verify it but only give a
715		 * warning.
716		 *
717		 * This can only happen on a very old filesystem where chunks
718		 * are not ensured to be stripe aligned.
719		 */
720		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
721			btrfs_warn_rl(fs_info,
722			"tree block at %llu crosses stripe boundary %llu",
723				      stripe->logical +
724				      (sector_nr << fs_info->sectorsize_bits),
725				      stripe->logical);
726			return;
727		}
728		scrub_verify_one_metadata(stripe, sector_nr);
729		return;
730	}
731
732	/*
733	 * Data is easier, we just verify the data csum (if we have it).  For
734	 * cases without csum, we have no other choice but to trust it.
735	 */
736	if (!sector->csum) {
737		clear_bit(sector_nr, &stripe->error_bitmap);
738		return;
739	}
740
741	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
742	if (ret < 0) {
743		set_bit(sector_nr, &stripe->csum_error_bitmap);
744		set_bit(sector_nr, &stripe->error_bitmap);
745	} else {
746		clear_bit(sector_nr, &stripe->csum_error_bitmap);
747		clear_bit(sector_nr, &stripe->error_bitmap);
748	}
749}
750
751/* Verify specified sectors of a stripe. */
752static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
753{
754	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
755	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
756	int sector_nr;
757
758	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
759		scrub_verify_one_sector(stripe, sector_nr);
760		if (stripe->sectors[sector_nr].is_metadata)
761			sector_nr += sectors_per_tree - 1;
762	}
763}
764
765static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
766{
767	int i;
768
769	for (i = 0; i < stripe->nr_sectors; i++) {
770		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
771		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
772			break;
773	}
774	ASSERT(i < stripe->nr_sectors);
775	return i;
776}
777
778/*
779 * Repair read is different to the regular read:
780 *
781 * - Only reads the failed sectors
782 * - May have extra blocksize limits
783 */
784static void scrub_repair_read_endio(struct btrfs_bio *bbio)
785{
786	struct scrub_stripe *stripe = bbio->private;
787	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
788	struct bio_vec *bvec;
789	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
790	u32 bio_size = 0;
791	int i;
792
793	ASSERT(sector_nr < stripe->nr_sectors);
794
795	bio_for_each_bvec_all(bvec, &bbio->bio, i)
796		bio_size += bvec->bv_len;
797
798	if (bbio->bio.bi_status) {
799		bitmap_set(&stripe->io_error_bitmap, sector_nr,
800			   bio_size >> fs_info->sectorsize_bits);
801		bitmap_set(&stripe->error_bitmap, sector_nr,
802			   bio_size >> fs_info->sectorsize_bits);
803	} else {
804		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
805			     bio_size >> fs_info->sectorsize_bits);
806	}
807	bio_put(&bbio->bio);
808	if (atomic_dec_and_test(&stripe->pending_io))
809		wake_up(&stripe->io_wait);
810}
811
812static int calc_next_mirror(int mirror, int num_copies)
813{
814	ASSERT(mirror <= num_copies);
815	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
816}
817
818static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
819					    int mirror, int blocksize, bool wait)
820{
821	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
822	struct btrfs_bio *bbio = NULL;
823	const unsigned long old_error_bitmap = stripe->error_bitmap;
824	int i;
825
826	ASSERT(stripe->mirror_num >= 1);
827	ASSERT(atomic_read(&stripe->pending_io) == 0);
828
829	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
830		struct page *page;
831		int pgoff;
832		int ret;
833
834		page = scrub_stripe_get_page(stripe, i);
835		pgoff = scrub_stripe_get_page_offset(stripe, i);
836
837		/* The current sector cannot be merged, submit the bio. */
838		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
839			     bbio->bio.bi_iter.bi_size >= blocksize)) {
840			ASSERT(bbio->bio.bi_iter.bi_size);
841			atomic_inc(&stripe->pending_io);
842			btrfs_submit_bio(bbio, mirror);
843			if (wait)
844				wait_scrub_stripe_io(stripe);
845			bbio = NULL;
846		}
847
848		if (!bbio) {
849			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
850				fs_info, scrub_repair_read_endio, stripe);
851			bbio->bio.bi_iter.bi_sector = (stripe->logical +
852				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
853		}
854
855		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
856		ASSERT(ret == fs_info->sectorsize);
857	}
858	if (bbio) {
859		ASSERT(bbio->bio.bi_iter.bi_size);
860		atomic_inc(&stripe->pending_io);
861		btrfs_submit_bio(bbio, mirror);
862		if (wait)
863			wait_scrub_stripe_io(stripe);
864	}
865}
866
867static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
868				       struct scrub_stripe *stripe)
869{
870	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
871				      DEFAULT_RATELIMIT_BURST);
872	struct btrfs_fs_info *fs_info = sctx->fs_info;
873	struct btrfs_device *dev = NULL;
874	u64 physical = 0;
875	int nr_data_sectors = 0;
876	int nr_meta_sectors = 0;
877	int nr_nodatacsum_sectors = 0;
878	int nr_repaired_sectors = 0;
879	int sector_nr;
880
881	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
882		return;
883
884	/*
885	 * Init needed infos for error reporting.
886	 *
887	 * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio()
888	 * thus no need for dev/physical, error reporting still needs dev and physical.
889	 */
890	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
891		u64 mapped_len = fs_info->sectorsize;
892		struct btrfs_io_context *bioc = NULL;
893		int stripe_index = stripe->mirror_num - 1;
894		int ret;
895
896		/* For scrub, our mirror_num should always start at 1. */
897		ASSERT(stripe->mirror_num >= 1);
898		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
899				      stripe->logical, &mapped_len, &bioc,
900				      NULL, NULL, 1);
901		/*
902		 * If we failed, dev will be NULL, and later detailed reports
903		 * will just be skipped.
904		 */
905		if (ret < 0)
906			goto skip;
907		physical = bioc->stripes[stripe_index].physical;
908		dev = bioc->stripes[stripe_index].dev;
909		btrfs_put_bioc(bioc);
910	}
911
912skip:
913	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
914		bool repaired = false;
915
916		if (stripe->sectors[sector_nr].is_metadata) {
917			nr_meta_sectors++;
918		} else {
919			nr_data_sectors++;
920			if (!stripe->sectors[sector_nr].csum)
921				nr_nodatacsum_sectors++;
922		}
923
924		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
925		    !test_bit(sector_nr, &stripe->error_bitmap)) {
926			nr_repaired_sectors++;
927			repaired = true;
928		}
929
930		/* Good sector from the beginning, nothing need to be done. */
931		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
932			continue;
933
934		/*
935		 * Report error for the corrupted sectors.  If repaired, just
936		 * output the message of repaired message.
937		 */
938		if (repaired) {
939			if (dev) {
940				btrfs_err_rl_in_rcu(fs_info,
941			"fixed up error at logical %llu on dev %s physical %llu",
942					    stripe->logical, btrfs_dev_name(dev),
943					    physical);
944			} else {
945				btrfs_err_rl_in_rcu(fs_info,
946			"fixed up error at logical %llu on mirror %u",
947					    stripe->logical, stripe->mirror_num);
948			}
949			continue;
950		}
951
952		/* The remaining are all for unrepaired. */
953		if (dev) {
954			btrfs_err_rl_in_rcu(fs_info,
955	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
956					    stripe->logical, btrfs_dev_name(dev),
957					    physical);
958		} else {
959			btrfs_err_rl_in_rcu(fs_info,
960	"unable to fixup (regular) error at logical %llu on mirror %u",
961					    stripe->logical, stripe->mirror_num);
962		}
963
964		if (test_bit(sector_nr, &stripe->io_error_bitmap))
965			if (__ratelimit(&rs) && dev)
966				scrub_print_common_warning("i/o error", dev, false,
967						     stripe->logical, physical);
968		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
969			if (__ratelimit(&rs) && dev)
970				scrub_print_common_warning("checksum error", dev, false,
971						     stripe->logical, physical);
972		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
973			if (__ratelimit(&rs) && dev)
974				scrub_print_common_warning("header error", dev, false,
975						     stripe->logical, physical);
976	}
977
978	spin_lock(&sctx->stat_lock);
979	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
980	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
981	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
982	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
983	sctx->stat.no_csum += nr_nodatacsum_sectors;
984	sctx->stat.read_errors += stripe->init_nr_io_errors;
985	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
986	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
987	sctx->stat.uncorrectable_errors +=
988		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
989	sctx->stat.corrected_errors += nr_repaired_sectors;
990	spin_unlock(&sctx->stat_lock);
991}
992
993static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
994				unsigned long write_bitmap, bool dev_replace);
995
996/*
997 * The main entrance for all read related scrub work, including:
998 *
999 * - Wait for the initial read to finish
1000 * - Verify and locate any bad sectors
1001 * - Go through the remaining mirrors and try to read as large blocksize as
1002 *   possible
1003 * - Go through all mirrors (including the failed mirror) sector-by-sector
1004 * - Submit writeback for repaired sectors
1005 *
1006 * Writeback for dev-replace does not happen here, it needs extra
1007 * synchronization for zoned devices.
1008 */
1009static void scrub_stripe_read_repair_worker(struct work_struct *work)
1010{
1011	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1012	struct scrub_ctx *sctx = stripe->sctx;
1013	struct btrfs_fs_info *fs_info = sctx->fs_info;
1014	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1015					  stripe->bg->length);
1016	int mirror;
1017	int i;
1018
1019	ASSERT(stripe->mirror_num > 0);
1020
1021	wait_scrub_stripe_io(stripe);
1022	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1023	/* Save the initial failed bitmap for later repair and report usage. */
1024	stripe->init_error_bitmap = stripe->error_bitmap;
1025	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1026						  stripe->nr_sectors);
1027	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1028						    stripe->nr_sectors);
1029	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1030						    stripe->nr_sectors);
1031
1032	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1033		goto out;
1034
1035	/*
1036	 * Try all remaining mirrors.
1037	 *
1038	 * Here we still try to read as large block as possible, as this is
1039	 * faster and we have extra safety nets to rely on.
1040	 */
1041	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1042	     mirror != stripe->mirror_num;
1043	     mirror = calc_next_mirror(mirror, num_copies)) {
1044		const unsigned long old_error_bitmap = stripe->error_bitmap;
1045
1046		scrub_stripe_submit_repair_read(stripe, mirror,
1047						BTRFS_STRIPE_LEN, false);
1048		wait_scrub_stripe_io(stripe);
1049		scrub_verify_one_stripe(stripe, old_error_bitmap);
1050		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1051			goto out;
1052	}
1053
1054	/*
1055	 * Last safety net, try re-checking all mirrors, including the failed
1056	 * one, sector-by-sector.
1057	 *
1058	 * As if one sector failed the drive's internal csum, the whole read
1059	 * containing the offending sector would be marked as error.
1060	 * Thus here we do sector-by-sector read.
1061	 *
1062	 * This can be slow, thus we only try it as the last resort.
1063	 */
1064
1065	for (i = 0, mirror = stripe->mirror_num;
1066	     i < num_copies;
1067	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1068		const unsigned long old_error_bitmap = stripe->error_bitmap;
1069
1070		scrub_stripe_submit_repair_read(stripe, mirror,
1071						fs_info->sectorsize, true);
1072		wait_scrub_stripe_io(stripe);
1073		scrub_verify_one_stripe(stripe, old_error_bitmap);
1074		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1075			goto out;
1076	}
1077out:
1078	/*
1079	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1080	 * in-place, but queue the bg to be relocated.
1081	 */
1082	if (btrfs_is_zoned(fs_info)) {
1083		if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1084			btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1085	} else if (!sctx->readonly) {
1086		unsigned long repaired;
1087
1088		bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1089			      &stripe->error_bitmap, stripe->nr_sectors);
1090		scrub_write_sectors(sctx, stripe, repaired, false);
1091		wait_scrub_stripe_io(stripe);
1092	}
1093
1094	scrub_stripe_report_errors(sctx, stripe);
1095	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1096	wake_up(&stripe->repair_wait);
1097}
1098
1099static void scrub_read_endio(struct btrfs_bio *bbio)
1100{
1101	struct scrub_stripe *stripe = bbio->private;
1102	struct bio_vec *bvec;
1103	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1104	int num_sectors;
1105	u32 bio_size = 0;
1106	int i;
1107
1108	ASSERT(sector_nr < stripe->nr_sectors);
1109	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1110		bio_size += bvec->bv_len;
1111	num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1112
1113	if (bbio->bio.bi_status) {
1114		bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1115		bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
1116	} else {
1117		bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
1118	}
1119	bio_put(&bbio->bio);
1120	if (atomic_dec_and_test(&stripe->pending_io)) {
1121		wake_up(&stripe->io_wait);
1122		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1123		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1124	}
1125}
1126
1127static void scrub_write_endio(struct btrfs_bio *bbio)
1128{
1129	struct scrub_stripe *stripe = bbio->private;
1130	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1131	struct bio_vec *bvec;
1132	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1133	u32 bio_size = 0;
1134	int i;
1135
1136	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1137		bio_size += bvec->bv_len;
1138
1139	if (bbio->bio.bi_status) {
1140		unsigned long flags;
1141
1142		spin_lock_irqsave(&stripe->write_error_lock, flags);
1143		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1144			   bio_size >> fs_info->sectorsize_bits);
1145		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1146	}
1147	bio_put(&bbio->bio);
1148
1149	if (atomic_dec_and_test(&stripe->pending_io))
1150		wake_up(&stripe->io_wait);
1151}
1152
1153static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1154				   struct scrub_stripe *stripe,
1155				   struct btrfs_bio *bbio, bool dev_replace)
1156{
1157	struct btrfs_fs_info *fs_info = sctx->fs_info;
1158	u32 bio_len = bbio->bio.bi_iter.bi_size;
1159	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1160		      stripe->logical;
1161
1162	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1163	atomic_inc(&stripe->pending_io);
1164	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1165	if (!btrfs_is_zoned(fs_info))
1166		return;
1167	/*
1168	 * For zoned writeback, queue depth must be 1, thus we must wait for
1169	 * the write to finish before the next write.
1170	 */
1171	wait_scrub_stripe_io(stripe);
1172
1173	/*
1174	 * And also need to update the write pointer if write finished
1175	 * successfully.
1176	 */
1177	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1178		      &stripe->write_error_bitmap))
1179		sctx->write_pointer += bio_len;
1180}
1181
1182/*
1183 * Submit the write bio(s) for the sectors specified by @write_bitmap.
1184 *
1185 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1186 *
1187 * - Only needs logical bytenr and mirror_num
1188 *   Just like the scrub read path
1189 *
1190 * - Would only result in writes to the specified mirror
1191 *   Unlike the regular writeback path, which would write back to all stripes
1192 *
1193 * - Handle dev-replace and read-repair writeback differently
1194 */
1195static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1196				unsigned long write_bitmap, bool dev_replace)
1197{
1198	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1199	struct btrfs_bio *bbio = NULL;
1200	int sector_nr;
1201
1202	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1203		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1204		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1205		int ret;
1206
1207		/* We should only writeback sectors covered by an extent. */
1208		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1209
1210		/* Cannot merge with previous sector, submit the current one. */
1211		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1212			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1213			bbio = NULL;
1214		}
1215		if (!bbio) {
1216			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1217					       fs_info, scrub_write_endio, stripe);
1218			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1219				(sector_nr << fs_info->sectorsize_bits)) >>
1220				SECTOR_SHIFT;
1221		}
1222		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1223		ASSERT(ret == fs_info->sectorsize);
1224	}
1225	if (bbio)
1226		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1227}
1228
1229/*
1230 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1231 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1232 */
1233static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1234				  unsigned int bio_size)
1235{
1236	const int time_slice = 1000;
1237	s64 delta;
1238	ktime_t now;
1239	u32 div;
1240	u64 bwlimit;
1241
1242	bwlimit = READ_ONCE(device->scrub_speed_max);
1243	if (bwlimit == 0)
1244		return;
1245
1246	/*
1247	 * Slice is divided into intervals when the IO is submitted, adjust by
1248	 * bwlimit and maximum of 64 intervals.
1249	 */
1250	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1251	div = min_t(u32, 64, div);
1252
1253	/* Start new epoch, set deadline */
1254	now = ktime_get();
1255	if (sctx->throttle_deadline == 0) {
1256		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1257		sctx->throttle_sent = 0;
1258	}
1259
1260	/* Still in the time to send? */
1261	if (ktime_before(now, sctx->throttle_deadline)) {
1262		/* If current bio is within the limit, send it */
1263		sctx->throttle_sent += bio_size;
1264		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1265			return;
1266
1267		/* We're over the limit, sleep until the rest of the slice */
1268		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1269	} else {
1270		/* New request after deadline, start new epoch */
1271		delta = 0;
1272	}
1273
1274	if (delta) {
1275		long timeout;
1276
1277		timeout = div_u64(delta * HZ, 1000);
1278		schedule_timeout_interruptible(timeout);
1279	}
1280
1281	/* Next call will start the deadline period */
1282	sctx->throttle_deadline = 0;
1283}
1284
1285/*
1286 * Given a physical address, this will calculate it's
1287 * logical offset. if this is a parity stripe, it will return
1288 * the most left data stripe's logical offset.
1289 *
1290 * return 0 if it is a data stripe, 1 means parity stripe.
1291 */
1292static int get_raid56_logic_offset(u64 physical, int num,
1293				   struct map_lookup *map, u64 *offset,
1294				   u64 *stripe_start)
1295{
1296	int i;
1297	int j = 0;
1298	u64 last_offset;
1299	const int data_stripes = nr_data_stripes(map);
1300
1301	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1302	if (stripe_start)
1303		*stripe_start = last_offset;
1304
1305	*offset = last_offset;
1306	for (i = 0; i < data_stripes; i++) {
1307		u32 stripe_nr;
1308		u32 stripe_index;
1309		u32 rot;
1310
1311		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
1312
1313		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1314
1315		/* Work out the disk rotation on this stripe-set */
1316		rot = stripe_nr % map->num_stripes;
1317		/* calculate which stripe this data locates */
1318		rot += i;
1319		stripe_index = rot % map->num_stripes;
1320		if (stripe_index == num)
1321			return 0;
1322		if (stripe_index < num)
1323			j++;
1324	}
1325	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1326	return 1;
1327}
1328
1329/*
1330 * Return 0 if the extent item range covers any byte of the range.
1331 * Return <0 if the extent item is before @search_start.
1332 * Return >0 if the extent item is after @start_start + @search_len.
1333 */
1334static int compare_extent_item_range(struct btrfs_path *path,
1335				     u64 search_start, u64 search_len)
1336{
1337	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1338	u64 len;
1339	struct btrfs_key key;
1340
1341	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1342	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1343	       key.type == BTRFS_METADATA_ITEM_KEY);
1344	if (key.type == BTRFS_METADATA_ITEM_KEY)
1345		len = fs_info->nodesize;
1346	else
1347		len = key.offset;
1348
1349	if (key.objectid + len <= search_start)
1350		return -1;
1351	if (key.objectid >= search_start + search_len)
1352		return 1;
1353	return 0;
1354}
1355
1356/*
1357 * Locate one extent item which covers any byte in range
1358 * [@search_start, @search_start + @search_length)
1359 *
1360 * If the path is not initialized, we will initialize the search by doing
1361 * a btrfs_search_slot().
1362 * If the path is already initialized, we will use the path as the initial
1363 * slot, to avoid duplicated btrfs_search_slot() calls.
1364 *
1365 * NOTE: If an extent item starts before @search_start, we will still
1366 * return the extent item. This is for data extent crossing stripe boundary.
1367 *
1368 * Return 0 if we found such extent item, and @path will point to the extent item.
1369 * Return >0 if no such extent item can be found, and @path will be released.
1370 * Return <0 if hit fatal error, and @path will be released.
1371 */
1372static int find_first_extent_item(struct btrfs_root *extent_root,
1373				  struct btrfs_path *path,
1374				  u64 search_start, u64 search_len)
1375{
1376	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1377	struct btrfs_key key;
1378	int ret;
1379
1380	/* Continue using the existing path */
1381	if (path->nodes[0])
1382		goto search_forward;
1383
1384	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1385		key.type = BTRFS_METADATA_ITEM_KEY;
1386	else
1387		key.type = BTRFS_EXTENT_ITEM_KEY;
1388	key.objectid = search_start;
1389	key.offset = (u64)-1;
1390
1391	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1392	if (ret < 0)
1393		return ret;
1394
1395	ASSERT(ret > 0);
1396	/*
1397	 * Here we intentionally pass 0 as @min_objectid, as there could be
1398	 * an extent item starting before @search_start.
1399	 */
1400	ret = btrfs_previous_extent_item(extent_root, path, 0);
1401	if (ret < 0)
1402		return ret;
1403	/*
1404	 * No matter whether we have found an extent item, the next loop will
1405	 * properly do every check on the key.
1406	 */
1407search_forward:
1408	while (true) {
1409		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1410		if (key.objectid >= search_start + search_len)
1411			break;
1412		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1413		    key.type != BTRFS_EXTENT_ITEM_KEY)
1414			goto next;
1415
1416		ret = compare_extent_item_range(path, search_start, search_len);
1417		if (ret == 0)
1418			return ret;
1419		if (ret > 0)
1420			break;
1421next:
1422		path->slots[0]++;
1423		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
1424			ret = btrfs_next_leaf(extent_root, path);
1425			if (ret) {
1426				/* Either no more item or fatal error */
1427				btrfs_release_path(path);
1428				return ret;
1429			}
1430		}
1431	}
1432	btrfs_release_path(path);
1433	return 1;
1434}
1435
1436static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1437			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1438{
1439	struct btrfs_key key;
1440	struct btrfs_extent_item *ei;
1441
1442	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1443	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1444	       key.type == BTRFS_EXTENT_ITEM_KEY);
1445	*extent_start_ret = key.objectid;
1446	if (key.type == BTRFS_METADATA_ITEM_KEY)
1447		*size_ret = path->nodes[0]->fs_info->nodesize;
1448	else
1449		*size_ret = key.offset;
1450	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1451	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1452	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1453}
1454
1455static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1456					u64 physical, u64 physical_end)
1457{
1458	struct btrfs_fs_info *fs_info = sctx->fs_info;
1459	int ret = 0;
1460
1461	if (!btrfs_is_zoned(fs_info))
1462		return 0;
1463
1464	mutex_lock(&sctx->wr_lock);
1465	if (sctx->write_pointer < physical_end) {
1466		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1467						    physical,
1468						    sctx->write_pointer);
1469		if (ret)
1470			btrfs_err(fs_info,
1471				  "zoned: failed to recover write pointer");
1472	}
1473	mutex_unlock(&sctx->wr_lock);
1474	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1475
1476	return ret;
1477}
1478
1479static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1480				 struct scrub_stripe *stripe,
1481				 u64 extent_start, u64 extent_len,
1482				 u64 extent_flags, u64 extent_gen)
1483{
1484	for (u64 cur_logical = max(stripe->logical, extent_start);
1485	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1486			       extent_start + extent_len);
1487	     cur_logical += fs_info->sectorsize) {
1488		const int nr_sector = (cur_logical - stripe->logical) >>
1489				      fs_info->sectorsize_bits;
1490		struct scrub_sector_verification *sector =
1491						&stripe->sectors[nr_sector];
1492
1493		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1494		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1495			sector->is_metadata = true;
1496			sector->generation = extent_gen;
1497		}
1498	}
1499}
1500
1501static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1502{
1503	stripe->extent_sector_bitmap = 0;
1504	stripe->init_error_bitmap = 0;
1505	stripe->init_nr_io_errors = 0;
1506	stripe->init_nr_csum_errors = 0;
1507	stripe->init_nr_meta_errors = 0;
1508	stripe->error_bitmap = 0;
1509	stripe->io_error_bitmap = 0;
1510	stripe->csum_error_bitmap = 0;
1511	stripe->meta_error_bitmap = 0;
1512}
1513
1514/*
1515 * Locate one stripe which has at least one extent in its range.
1516 *
1517 * Return 0 if found such stripe, and store its info into @stripe.
1518 * Return >0 if there is no such stripe in the specified range.
1519 * Return <0 for error.
1520 */
1521static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1522					struct btrfs_path *extent_path,
1523					struct btrfs_path *csum_path,
1524					struct btrfs_device *dev, u64 physical,
1525					int mirror_num, u64 logical_start,
1526					u32 logical_len,
1527					struct scrub_stripe *stripe)
1528{
1529	struct btrfs_fs_info *fs_info = bg->fs_info;
1530	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1531	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1532	const u64 logical_end = logical_start + logical_len;
1533	u64 cur_logical = logical_start;
1534	u64 stripe_end;
1535	u64 extent_start;
1536	u64 extent_len;
1537	u64 extent_flags;
1538	u64 extent_gen;
1539	int ret;
1540
1541	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1542				   stripe->nr_sectors);
1543	scrub_stripe_reset_bitmaps(stripe);
1544
1545	/* The range must be inside the bg. */
1546	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1547
1548	ret = find_first_extent_item(extent_root, extent_path, logical_start,
1549				     logical_len);
1550	/* Either error or not found. */
1551	if (ret)
1552		goto out;
1553	get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1554			&extent_gen);
1555	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1556		stripe->nr_meta_extents++;
1557	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1558		stripe->nr_data_extents++;
1559	cur_logical = max(extent_start, cur_logical);
1560
1561	/*
1562	 * Round down to stripe boundary.
1563	 *
1564	 * The extra calculation against bg->start is to handle block groups
1565	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1566	 */
1567	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1568			  bg->start;
1569	stripe->physical = physical + stripe->logical - logical_start;
1570	stripe->dev = dev;
1571	stripe->bg = bg;
1572	stripe->mirror_num = mirror_num;
1573	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1574
1575	/* Fill the first extent info into stripe->sectors[] array. */
1576	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1577			     extent_flags, extent_gen);
1578	cur_logical = extent_start + extent_len;
1579
1580	/* Fill the extent info for the remaining sectors. */
1581	while (cur_logical <= stripe_end) {
1582		ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1583					     stripe_end - cur_logical + 1);
1584		if (ret < 0)
1585			goto out;
1586		if (ret > 0) {
1587			ret = 0;
1588			break;
1589		}
1590		get_extent_info(extent_path, &extent_start, &extent_len,
1591				&extent_flags, &extent_gen);
1592		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1593			stripe->nr_meta_extents++;
1594		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1595			stripe->nr_data_extents++;
1596		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1597				     extent_flags, extent_gen);
1598		cur_logical = extent_start + extent_len;
1599	}
1600
1601	/* Now fill the data csum. */
1602	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1603		int sector_nr;
1604		unsigned long csum_bitmap = 0;
1605
1606		/* Csum space should have already been allocated. */
1607		ASSERT(stripe->csums);
1608
1609		/*
1610		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1611		 * should contain at most 16 sectors.
1612		 */
1613		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1614
1615		ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1616						stripe->logical, stripe_end,
1617						stripe->csums, &csum_bitmap);
1618		if (ret < 0)
1619			goto out;
1620		if (ret > 0)
1621			ret = 0;
1622
1623		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1624			stripe->sectors[sector_nr].csum = stripe->csums +
1625				sector_nr * fs_info->csum_size;
1626		}
1627	}
1628	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1629out:
1630	return ret;
1631}
1632
1633static void scrub_reset_stripe(struct scrub_stripe *stripe)
1634{
1635	scrub_stripe_reset_bitmaps(stripe);
1636
1637	stripe->nr_meta_extents = 0;
1638	stripe->nr_data_extents = 0;
1639	stripe->state = 0;
1640
1641	for (int i = 0; i < stripe->nr_sectors; i++) {
1642		stripe->sectors[i].is_metadata = false;
1643		stripe->sectors[i].csum = NULL;
1644		stripe->sectors[i].generation = 0;
1645	}
1646}
1647
1648static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1649				      struct scrub_stripe *stripe)
1650{
1651	struct btrfs_fs_info *fs_info = sctx->fs_info;
1652	struct btrfs_bio *bbio;
1653	unsigned int nr_sectors = min_t(u64, BTRFS_STRIPE_LEN, stripe->bg->start +
1654				      stripe->bg->length - stripe->logical) >>
1655				  fs_info->sectorsize_bits;
1656	int mirror = stripe->mirror_num;
1657
1658	ASSERT(stripe->bg);
1659	ASSERT(stripe->mirror_num > 0);
1660	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1661
1662	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1663			       scrub_read_endio, stripe);
1664
1665	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1666	/* Read the whole range inside the chunk boundary. */
1667	for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1668		struct page *page = scrub_stripe_get_page(stripe, cur);
1669		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
1670		int ret;
1671
1672		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1673		/* We should have allocated enough bio vectors. */
1674		ASSERT(ret == fs_info->sectorsize);
1675	}
1676	atomic_inc(&stripe->pending_io);
1677
1678	/*
1679	 * For dev-replace, either user asks to avoid the source dev, or
1680	 * the device is missing, we try the next mirror instead.
1681	 */
1682	if (sctx->is_dev_replace &&
1683	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1684	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1685	     !stripe->dev->bdev)) {
1686		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1687						  stripe->bg->length);
1688
1689		mirror = calc_next_mirror(mirror, num_copies);
1690	}
1691	btrfs_submit_bio(bbio, mirror);
1692}
1693
1694static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1695{
1696	int i;
1697
1698	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1699		if (stripe->sectors[i].is_metadata) {
1700			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1701
1702			btrfs_err(fs_info,
1703			"stripe %llu has unrepaired metadata sector at %llu",
1704				  stripe->logical,
1705				  stripe->logical + (i << fs_info->sectorsize_bits));
1706			return true;
1707		}
1708	}
1709	return false;
1710}
1711
1712static void submit_initial_group_read(struct scrub_ctx *sctx,
1713				      unsigned int first_slot,
1714				      unsigned int nr_stripes)
1715{
1716	struct blk_plug plug;
1717
1718	ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1719	ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1720
1721	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1722			      btrfs_stripe_nr_to_offset(nr_stripes));
1723	blk_start_plug(&plug);
1724	for (int i = 0; i < nr_stripes; i++) {
1725		struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1726
1727		/* Those stripes should be initialized. */
1728		ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1729		scrub_submit_initial_read(sctx, stripe);
1730	}
1731	blk_finish_plug(&plug);
1732}
1733
1734static int flush_scrub_stripes(struct scrub_ctx *sctx)
1735{
1736	struct btrfs_fs_info *fs_info = sctx->fs_info;
1737	struct scrub_stripe *stripe;
1738	const int nr_stripes = sctx->cur_stripe;
1739	int ret = 0;
1740
1741	if (!nr_stripes)
1742		return 0;
1743
1744	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1745
1746	/* Submit the stripes which are populated but not submitted. */
1747	if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1748		const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1749
1750		submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1751	}
1752
1753	for (int i = 0; i < nr_stripes; i++) {
1754		stripe = &sctx->stripes[i];
1755
1756		wait_event(stripe->repair_wait,
1757			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1758	}
1759
1760	/* Submit for dev-replace. */
1761	if (sctx->is_dev_replace) {
1762		/*
1763		 * For dev-replace, if we know there is something wrong with
1764		 * metadata, we should immedately abort.
1765		 */
1766		for (int i = 0; i < nr_stripes; i++) {
1767			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1768				ret = -EIO;
1769				goto out;
1770			}
1771		}
1772		for (int i = 0; i < nr_stripes; i++) {
1773			unsigned long good;
1774
1775			stripe = &sctx->stripes[i];
1776
1777			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1778
1779			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1780				      &stripe->error_bitmap, stripe->nr_sectors);
1781			scrub_write_sectors(sctx, stripe, good, true);
1782		}
1783	}
1784
1785	/* Wait for the above writebacks to finish. */
1786	for (int i = 0; i < nr_stripes; i++) {
1787		stripe = &sctx->stripes[i];
1788
1789		wait_scrub_stripe_io(stripe);
1790		scrub_reset_stripe(stripe);
1791	}
1792out:
1793	sctx->cur_stripe = 0;
1794	return ret;
1795}
1796
1797static void raid56_scrub_wait_endio(struct bio *bio)
1798{
1799	complete(bio->bi_private);
1800}
1801
1802static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1803			      struct btrfs_device *dev, int mirror_num,
1804			      u64 logical, u32 length, u64 physical,
1805			      u64 *found_logical_ret)
1806{
1807	struct scrub_stripe *stripe;
1808	int ret;
1809
1810	/*
1811	 * There should always be one slot left, as caller filling the last
1812	 * slot should flush them all.
1813	 */
1814	ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1815
1816	/* @found_logical_ret must be specified. */
1817	ASSERT(found_logical_ret);
1818
1819	stripe = &sctx->stripes[sctx->cur_stripe];
1820	scrub_reset_stripe(stripe);
1821	ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1822					   &sctx->csum_path, dev, physical,
1823					   mirror_num, logical, length, stripe);
1824	/* Either >0 as no more extents or <0 for error. */
1825	if (ret)
1826		return ret;
1827	*found_logical_ret = stripe->logical;
1828	sctx->cur_stripe++;
1829
1830	/* We filled one group, submit it. */
1831	if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1832		const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1833
1834		submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1835	}
1836
1837	/* Last slot used, flush them all. */
1838	if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1839		return flush_scrub_stripes(sctx);
1840	return 0;
1841}
1842
1843static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1844				      struct btrfs_device *scrub_dev,
1845				      struct btrfs_block_group *bg,
1846				      struct map_lookup *map,
1847				      u64 full_stripe_start)
1848{
1849	DECLARE_COMPLETION_ONSTACK(io_done);
1850	struct btrfs_fs_info *fs_info = sctx->fs_info;
1851	struct btrfs_raid_bio *rbio;
1852	struct btrfs_io_context *bioc = NULL;
1853	struct btrfs_path extent_path = { 0 };
1854	struct btrfs_path csum_path = { 0 };
1855	struct bio *bio;
1856	struct scrub_stripe *stripe;
1857	bool all_empty = true;
1858	const int data_stripes = nr_data_stripes(map);
1859	unsigned long extent_bitmap = 0;
1860	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1861	int ret;
1862
1863	ASSERT(sctx->raid56_data_stripes);
1864
1865	/*
1866	 * For data stripe search, we cannot re-use the same extent/csum paths,
1867	 * as the data stripe bytenr may be smaller than previous extent.  Thus
1868	 * we have to use our own extent/csum paths.
1869	 */
1870	extent_path.search_commit_root = 1;
1871	extent_path.skip_locking = 1;
1872	csum_path.search_commit_root = 1;
1873	csum_path.skip_locking = 1;
1874
1875	for (int i = 0; i < data_stripes; i++) {
1876		int stripe_index;
1877		int rot;
1878		u64 physical;
1879
1880		stripe = &sctx->raid56_data_stripes[i];
1881		rot = div_u64(full_stripe_start - bg->start,
1882			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1883		stripe_index = (i + rot) % map->num_stripes;
1884		physical = map->stripes[stripe_index].physical +
1885			   btrfs_stripe_nr_to_offset(rot);
1886
1887		scrub_reset_stripe(stripe);
1888		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1889		ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1890				map->stripes[stripe_index].dev, physical, 1,
1891				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1892				BTRFS_STRIPE_LEN, stripe);
1893		if (ret < 0)
1894			goto out;
1895		/*
1896		 * No extent in this data stripe, need to manually mark them
1897		 * initialized to make later read submission happy.
1898		 */
1899		if (ret > 0) {
1900			stripe->logical = full_stripe_start +
1901					  btrfs_stripe_nr_to_offset(i);
1902			stripe->dev = map->stripes[stripe_index].dev;
1903			stripe->mirror_num = 1;
1904			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1905		}
1906	}
1907
1908	/* Check if all data stripes are empty. */
1909	for (int i = 0; i < data_stripes; i++) {
1910		stripe = &sctx->raid56_data_stripes[i];
1911		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1912			all_empty = false;
1913			break;
1914		}
1915	}
1916	if (all_empty) {
1917		ret = 0;
1918		goto out;
1919	}
1920
1921	for (int i = 0; i < data_stripes; i++) {
1922		stripe = &sctx->raid56_data_stripes[i];
1923		scrub_submit_initial_read(sctx, stripe);
1924	}
1925	for (int i = 0; i < data_stripes; i++) {
1926		stripe = &sctx->raid56_data_stripes[i];
1927
1928		wait_event(stripe->repair_wait,
1929			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1930	}
1931	/* For now, no zoned support for RAID56. */
1932	ASSERT(!btrfs_is_zoned(sctx->fs_info));
1933
1934	/*
1935	 * Now all data stripes are properly verified. Check if we have any
1936	 * unrepaired, if so abort immediately or we could further corrupt the
1937	 * P/Q stripes.
1938	 *
1939	 * During the loop, also populate extent_bitmap.
1940	 */
1941	for (int i = 0; i < data_stripes; i++) {
1942		unsigned long error;
1943
1944		stripe = &sctx->raid56_data_stripes[i];
1945
1946		/*
1947		 * We should only check the errors where there is an extent.
1948		 * As we may hit an empty data stripe while it's missing.
1949		 */
1950		bitmap_and(&error, &stripe->error_bitmap,
1951			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
1952		if (!bitmap_empty(&error, stripe->nr_sectors)) {
1953			btrfs_err(fs_info,
1954"unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
1955				  full_stripe_start, i, stripe->nr_sectors,
1956				  &error);
1957			ret = -EIO;
1958			goto out;
1959		}
1960		bitmap_or(&extent_bitmap, &extent_bitmap,
1961			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
1962	}
1963
1964	/* Now we can check and regenerate the P/Q stripe. */
1965	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
1966	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
1967	bio->bi_private = &io_done;
1968	bio->bi_end_io = raid56_scrub_wait_endio;
1969
1970	btrfs_bio_counter_inc_blocked(fs_info);
1971	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
1972			      &length, &bioc, NULL, NULL, 1);
1973	if (ret < 0) {
1974		btrfs_put_bioc(bioc);
1975		btrfs_bio_counter_dec(fs_info);
1976		goto out;
1977	}
1978	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
1979				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1980	btrfs_put_bioc(bioc);
1981	if (!rbio) {
1982		ret = -ENOMEM;
1983		btrfs_bio_counter_dec(fs_info);
1984		goto out;
1985	}
1986	/* Use the recovered stripes as cache to avoid read them from disk again. */
1987	for (int i = 0; i < data_stripes; i++) {
1988		stripe = &sctx->raid56_data_stripes[i];
1989
1990		raid56_parity_cache_data_pages(rbio, stripe->pages,
1991				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
1992	}
1993	raid56_parity_submit_scrub_rbio(rbio);
1994	wait_for_completion_io(&io_done);
1995	ret = blk_status_to_errno(bio->bi_status);
1996	bio_put(bio);
1997	btrfs_bio_counter_dec(fs_info);
1998
1999	btrfs_release_path(&extent_path);
2000	btrfs_release_path(&csum_path);
2001out:
2002	return ret;
2003}
2004
2005/*
2006 * Scrub one range which can only has simple mirror based profile.
2007 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2008 *  RAID0/RAID10).
2009 *
2010 * Since we may need to handle a subset of block group, we need @logical_start
2011 * and @logical_length parameter.
2012 */
2013static int scrub_simple_mirror(struct scrub_ctx *sctx,
2014			       struct btrfs_block_group *bg,
2015			       struct map_lookup *map,
2016			       u64 logical_start, u64 logical_length,
2017			       struct btrfs_device *device,
2018			       u64 physical, int mirror_num)
2019{
2020	struct btrfs_fs_info *fs_info = sctx->fs_info;
2021	const u64 logical_end = logical_start + logical_length;
2022	u64 cur_logical = logical_start;
2023	int ret;
2024
2025	/* The range must be inside the bg */
2026	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2027
2028	/* Go through each extent items inside the logical range */
2029	while (cur_logical < logical_end) {
2030		u64 found_logical = U64_MAX;
2031		u64 cur_physical = physical + cur_logical - logical_start;
2032
2033		/* Canceled? */
2034		if (atomic_read(&fs_info->scrub_cancel_req) ||
2035		    atomic_read(&sctx->cancel_req)) {
2036			ret = -ECANCELED;
2037			break;
2038		}
2039		/* Paused? */
2040		if (atomic_read(&fs_info->scrub_pause_req)) {
2041			/* Push queued extents */
2042			scrub_blocked_if_needed(fs_info);
2043		}
2044		/* Block group removed? */
2045		spin_lock(&bg->lock);
2046		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2047			spin_unlock(&bg->lock);
2048			ret = 0;
2049			break;
2050		}
2051		spin_unlock(&bg->lock);
2052
2053		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2054					 cur_logical, logical_end - cur_logical,
2055					 cur_physical, &found_logical);
2056		if (ret > 0) {
2057			/* No more extent, just update the accounting */
2058			sctx->stat.last_physical = physical + logical_length;
2059			ret = 0;
2060			break;
2061		}
2062		if (ret < 0)
2063			break;
2064
2065		/* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2066		ASSERT(found_logical != U64_MAX);
2067		cur_logical = found_logical + BTRFS_STRIPE_LEN;
2068
2069		/* Don't hold CPU for too long time */
2070		cond_resched();
2071	}
2072	return ret;
2073}
2074
2075/* Calculate the full stripe length for simple stripe based profiles */
2076static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
2077{
2078	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2079			    BTRFS_BLOCK_GROUP_RAID10));
2080
2081	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2082}
2083
2084/* Get the logical bytenr for the stripe */
2085static u64 simple_stripe_get_logical(struct map_lookup *map,
2086				     struct btrfs_block_group *bg,
2087				     int stripe_index)
2088{
2089	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2090			    BTRFS_BLOCK_GROUP_RAID10));
2091	ASSERT(stripe_index < map->num_stripes);
2092
2093	/*
2094	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2095	 * skip.
2096	 */
2097	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2098	       bg->start;
2099}
2100
2101/* Get the mirror number for the stripe */
2102static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
2103{
2104	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2105			    BTRFS_BLOCK_GROUP_RAID10));
2106	ASSERT(stripe_index < map->num_stripes);
2107
2108	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2109	return stripe_index % map->sub_stripes + 1;
2110}
2111
2112static int scrub_simple_stripe(struct scrub_ctx *sctx,
2113			       struct btrfs_block_group *bg,
2114			       struct map_lookup *map,
2115			       struct btrfs_device *device,
2116			       int stripe_index)
2117{
2118	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2119	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2120	const u64 orig_physical = map->stripes[stripe_index].physical;
2121	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2122	u64 cur_logical = orig_logical;
2123	u64 cur_physical = orig_physical;
2124	int ret = 0;
2125
2126	while (cur_logical < bg->start + bg->length) {
2127		/*
2128		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2129		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2130		 * this stripe.
2131		 */
2132		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2133					  BTRFS_STRIPE_LEN, device, cur_physical,
2134					  mirror_num);
2135		if (ret)
2136			return ret;
2137		/* Skip to next stripe which belongs to the target device */
2138		cur_logical += logical_increment;
2139		/* For physical offset, we just go to next stripe */
2140		cur_physical += BTRFS_STRIPE_LEN;
2141	}
2142	return ret;
2143}
2144
2145static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2146					   struct btrfs_block_group *bg,
2147					   struct extent_map *em,
2148					   struct btrfs_device *scrub_dev,
2149					   int stripe_index)
2150{
2151	struct btrfs_fs_info *fs_info = sctx->fs_info;
2152	struct map_lookup *map = em->map_lookup;
2153	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2154	const u64 chunk_logical = bg->start;
2155	int ret;
2156	int ret2;
2157	u64 physical = map->stripes[stripe_index].physical;
2158	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
2159	const u64 physical_end = physical + dev_stripe_len;
2160	u64 logical;
2161	u64 logic_end;
2162	/* The logical increment after finishing one stripe */
2163	u64 increment;
2164	/* Offset inside the chunk */
2165	u64 offset;
2166	u64 stripe_logical;
2167	int stop_loop = 0;
2168
2169	/* Extent_path should be released by now. */
2170	ASSERT(sctx->extent_path.nodes[0] == NULL);
2171
2172	scrub_blocked_if_needed(fs_info);
2173
2174	if (sctx->is_dev_replace &&
2175	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2176		mutex_lock(&sctx->wr_lock);
2177		sctx->write_pointer = physical;
2178		mutex_unlock(&sctx->wr_lock);
2179	}
2180
2181	/* Prepare the extra data stripes used by RAID56. */
2182	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2183		ASSERT(sctx->raid56_data_stripes == NULL);
2184
2185		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2186						    sizeof(struct scrub_stripe),
2187						    GFP_KERNEL);
2188		if (!sctx->raid56_data_stripes) {
2189			ret = -ENOMEM;
2190			goto out;
2191		}
2192		for (int i = 0; i < nr_data_stripes(map); i++) {
2193			ret = init_scrub_stripe(fs_info,
2194						&sctx->raid56_data_stripes[i]);
2195			if (ret < 0)
2196				goto out;
2197			sctx->raid56_data_stripes[i].bg = bg;
2198			sctx->raid56_data_stripes[i].sctx = sctx;
2199		}
2200	}
2201	/*
2202	 * There used to be a big double loop to handle all profiles using the
2203	 * same routine, which grows larger and more gross over time.
2204	 *
2205	 * So here we handle each profile differently, so simpler profiles
2206	 * have simpler scrubbing function.
2207	 */
2208	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2209			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2210		/*
2211		 * Above check rules out all complex profile, the remaining
2212		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2213		 * mirrored duplication without stripe.
2214		 *
2215		 * Only @physical and @mirror_num needs to calculated using
2216		 * @stripe_index.
2217		 */
2218		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2219				scrub_dev, map->stripes[stripe_index].physical,
2220				stripe_index + 1);
2221		offset = 0;
2222		goto out;
2223	}
2224	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2225		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2226		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2227		goto out;
2228	}
2229
2230	/* Only RAID56 goes through the old code */
2231	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2232	ret = 0;
2233
2234	/* Calculate the logical end of the stripe */
2235	get_raid56_logic_offset(physical_end, stripe_index,
2236				map, &logic_end, NULL);
2237	logic_end += chunk_logical;
2238
2239	/* Initialize @offset in case we need to go to out: label */
2240	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2241	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2242
2243	/*
2244	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2245	 * using their physical offset.
2246	 */
2247	while (physical < physical_end) {
2248		ret = get_raid56_logic_offset(physical, stripe_index, map,
2249					      &logical, &stripe_logical);
2250		logical += chunk_logical;
2251		if (ret) {
2252			/* it is parity strip */
2253			stripe_logical += chunk_logical;
2254			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2255							 map, stripe_logical);
2256			if (ret)
2257				goto out;
2258			goto next;
2259		}
2260
2261		/*
2262		 * Now we're at a data stripe, scrub each extents in the range.
2263		 *
2264		 * At this stage, if we ignore the repair part, inside each data
2265		 * stripe it is no different than SINGLE profile.
2266		 * We can reuse scrub_simple_mirror() here, as the repair part
2267		 * is still based on @mirror_num.
2268		 */
2269		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2270					  scrub_dev, physical, 1);
2271		if (ret < 0)
2272			goto out;
2273next:
2274		logical += increment;
2275		physical += BTRFS_STRIPE_LEN;
2276		spin_lock(&sctx->stat_lock);
2277		if (stop_loop)
2278			sctx->stat.last_physical =
2279				map->stripes[stripe_index].physical + dev_stripe_len;
2280		else
2281			sctx->stat.last_physical = physical;
2282		spin_unlock(&sctx->stat_lock);
2283		if (stop_loop)
2284			break;
2285	}
2286out:
2287	ret2 = flush_scrub_stripes(sctx);
2288	if (!ret)
2289		ret = ret2;
2290	btrfs_release_path(&sctx->extent_path);
2291	btrfs_release_path(&sctx->csum_path);
2292
2293	if (sctx->raid56_data_stripes) {
2294		for (int i = 0; i < nr_data_stripes(map); i++)
2295			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2296		kfree(sctx->raid56_data_stripes);
2297		sctx->raid56_data_stripes = NULL;
2298	}
2299
2300	if (sctx->is_dev_replace && ret >= 0) {
2301		int ret2;
2302
2303		ret2 = sync_write_pointer_for_zoned(sctx,
2304				chunk_logical + offset,
2305				map->stripes[stripe_index].physical,
2306				physical_end);
2307		if (ret2)
2308			ret = ret2;
2309	}
2310
2311	return ret < 0 ? ret : 0;
2312}
2313
2314static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2315					  struct btrfs_block_group *bg,
2316					  struct btrfs_device *scrub_dev,
2317					  u64 dev_offset,
2318					  u64 dev_extent_len)
2319{
2320	struct btrfs_fs_info *fs_info = sctx->fs_info;
2321	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2322	struct map_lookup *map;
2323	struct extent_map *em;
2324	int i;
2325	int ret = 0;
2326
2327	read_lock(&map_tree->lock);
2328	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
2329	read_unlock(&map_tree->lock);
2330
2331	if (!em) {
2332		/*
2333		 * Might have been an unused block group deleted by the cleaner
2334		 * kthread or relocation.
2335		 */
2336		spin_lock(&bg->lock);
2337		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2338			ret = -EINVAL;
2339		spin_unlock(&bg->lock);
2340
2341		return ret;
2342	}
2343	if (em->start != bg->start)
2344		goto out;
2345	if (em->len < dev_extent_len)
2346		goto out;
2347
2348	map = em->map_lookup;
2349	for (i = 0; i < map->num_stripes; ++i) {
2350		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2351		    map->stripes[i].physical == dev_offset) {
2352			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
2353			if (ret)
2354				goto out;
2355		}
2356	}
2357out:
2358	free_extent_map(em);
2359
2360	return ret;
2361}
2362
2363static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2364					  struct btrfs_block_group *cache)
2365{
2366	struct btrfs_fs_info *fs_info = cache->fs_info;
2367	struct btrfs_trans_handle *trans;
2368
2369	if (!btrfs_is_zoned(fs_info))
2370		return 0;
2371
2372	btrfs_wait_block_group_reservations(cache);
2373	btrfs_wait_nocow_writers(cache);
2374	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2375
2376	trans = btrfs_join_transaction(root);
2377	if (IS_ERR(trans))
2378		return PTR_ERR(trans);
2379	return btrfs_commit_transaction(trans);
2380}
2381
2382static noinline_for_stack
2383int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2384			   struct btrfs_device *scrub_dev, u64 start, u64 end)
2385{
2386	struct btrfs_dev_extent *dev_extent = NULL;
2387	struct btrfs_path *path;
2388	struct btrfs_fs_info *fs_info = sctx->fs_info;
2389	struct btrfs_root *root = fs_info->dev_root;
2390	u64 chunk_offset;
2391	int ret = 0;
2392	int ro_set;
2393	int slot;
2394	struct extent_buffer *l;
2395	struct btrfs_key key;
2396	struct btrfs_key found_key;
2397	struct btrfs_block_group *cache;
2398	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2399
2400	path = btrfs_alloc_path();
2401	if (!path)
2402		return -ENOMEM;
2403
2404	path->reada = READA_FORWARD;
2405	path->search_commit_root = 1;
2406	path->skip_locking = 1;
2407
2408	key.objectid = scrub_dev->devid;
2409	key.offset = 0ull;
2410	key.type = BTRFS_DEV_EXTENT_KEY;
2411
2412	while (1) {
2413		u64 dev_extent_len;
2414
2415		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2416		if (ret < 0)
2417			break;
2418		if (ret > 0) {
2419			if (path->slots[0] >=
2420			    btrfs_header_nritems(path->nodes[0])) {
2421				ret = btrfs_next_leaf(root, path);
2422				if (ret < 0)
2423					break;
2424				if (ret > 0) {
2425					ret = 0;
2426					break;
2427				}
2428			} else {
2429				ret = 0;
2430			}
2431		}
2432
2433		l = path->nodes[0];
2434		slot = path->slots[0];
2435
2436		btrfs_item_key_to_cpu(l, &found_key, slot);
2437
2438		if (found_key.objectid != scrub_dev->devid)
2439			break;
2440
2441		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2442			break;
2443
2444		if (found_key.offset >= end)
2445			break;
2446
2447		if (found_key.offset < key.offset)
2448			break;
2449
2450		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2451		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2452
2453		if (found_key.offset + dev_extent_len <= start)
2454			goto skip;
2455
2456		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2457
2458		/*
2459		 * get a reference on the corresponding block group to prevent
2460		 * the chunk from going away while we scrub it
2461		 */
2462		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2463
2464		/* some chunks are removed but not committed to disk yet,
2465		 * continue scrubbing */
2466		if (!cache)
2467			goto skip;
2468
2469		ASSERT(cache->start <= chunk_offset);
2470		/*
2471		 * We are using the commit root to search for device extents, so
2472		 * that means we could have found a device extent item from a
2473		 * block group that was deleted in the current transaction. The
2474		 * logical start offset of the deleted block group, stored at
2475		 * @chunk_offset, might be part of the logical address range of
2476		 * a new block group (which uses different physical extents).
2477		 * In this case btrfs_lookup_block_group() has returned the new
2478		 * block group, and its start address is less than @chunk_offset.
2479		 *
2480		 * We skip such new block groups, because it's pointless to
2481		 * process them, as we won't find their extents because we search
2482		 * for them using the commit root of the extent tree. For a device
2483		 * replace it's also fine to skip it, we won't miss copying them
2484		 * to the target device because we have the write duplication
2485		 * setup through the regular write path (by btrfs_map_block()),
2486		 * and we have committed a transaction when we started the device
2487		 * replace, right after setting up the device replace state.
2488		 */
2489		if (cache->start < chunk_offset) {
2490			btrfs_put_block_group(cache);
2491			goto skip;
2492		}
2493
2494		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2495			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2496				btrfs_put_block_group(cache);
2497				goto skip;
2498			}
2499		}
2500
2501		/*
2502		 * Make sure that while we are scrubbing the corresponding block
2503		 * group doesn't get its logical address and its device extents
2504		 * reused for another block group, which can possibly be of a
2505		 * different type and different profile. We do this to prevent
2506		 * false error detections and crashes due to bogus attempts to
2507		 * repair extents.
2508		 */
2509		spin_lock(&cache->lock);
2510		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2511			spin_unlock(&cache->lock);
2512			btrfs_put_block_group(cache);
2513			goto skip;
2514		}
2515		btrfs_freeze_block_group(cache);
2516		spin_unlock(&cache->lock);
2517
2518		/*
2519		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2520		 * to avoid deadlock caused by:
2521		 * btrfs_inc_block_group_ro()
2522		 * -> btrfs_wait_for_commit()
2523		 * -> btrfs_commit_transaction()
2524		 * -> btrfs_scrub_pause()
2525		 */
2526		scrub_pause_on(fs_info);
2527
2528		/*
2529		 * Don't do chunk preallocation for scrub.
2530		 *
2531		 * This is especially important for SYSTEM bgs, or we can hit
2532		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2533		 * 1. The only SYSTEM bg is marked RO.
2534		 *    Since SYSTEM bg is small, that's pretty common.
2535		 * 2. New SYSTEM bg will be allocated
2536		 *    Due to regular version will allocate new chunk.
2537		 * 3. New SYSTEM bg is empty and will get cleaned up
2538		 *    Before cleanup really happens, it's marked RO again.
2539		 * 4. Empty SYSTEM bg get scrubbed
2540		 *    We go back to 2.
2541		 *
2542		 * This can easily boost the amount of SYSTEM chunks if cleaner
2543		 * thread can't be triggered fast enough, and use up all space
2544		 * of btrfs_super_block::sys_chunk_array
2545		 *
2546		 * While for dev replace, we need to try our best to mark block
2547		 * group RO, to prevent race between:
2548		 * - Write duplication
2549		 *   Contains latest data
2550		 * - Scrub copy
2551		 *   Contains data from commit tree
2552		 *
2553		 * If target block group is not marked RO, nocow writes can
2554		 * be overwritten by scrub copy, causing data corruption.
2555		 * So for dev-replace, it's not allowed to continue if a block
2556		 * group is not RO.
2557		 */
2558		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2559		if (!ret && sctx->is_dev_replace) {
2560			ret = finish_extent_writes_for_zoned(root, cache);
2561			if (ret) {
2562				btrfs_dec_block_group_ro(cache);
2563				scrub_pause_off(fs_info);
2564				btrfs_put_block_group(cache);
2565				break;
2566			}
2567		}
2568
2569		if (ret == 0) {
2570			ro_set = 1;
2571		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2572			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2573			/*
2574			 * btrfs_inc_block_group_ro return -ENOSPC when it
2575			 * failed in creating new chunk for metadata.
2576			 * It is not a problem for scrub, because
2577			 * metadata are always cowed, and our scrub paused
2578			 * commit_transactions.
2579			 *
2580			 * For RAID56 chunks, we have to mark them read-only
2581			 * for scrub, as later we would use our own cache
2582			 * out of RAID56 realm.
2583			 * Thus we want the RAID56 bg to be marked RO to
2584			 * prevent RMW from screwing up out cache.
2585			 */
2586			ro_set = 0;
2587		} else if (ret == -ETXTBSY) {
2588			btrfs_warn(fs_info,
2589		   "skipping scrub of block group %llu due to active swapfile",
2590				   cache->start);
2591			scrub_pause_off(fs_info);
2592			ret = 0;
2593			goto skip_unfreeze;
2594		} else {
2595			btrfs_warn(fs_info,
2596				   "failed setting block group ro: %d", ret);
2597			btrfs_unfreeze_block_group(cache);
2598			btrfs_put_block_group(cache);
2599			scrub_pause_off(fs_info);
2600			break;
2601		}
2602
2603		/*
2604		 * Now the target block is marked RO, wait for nocow writes to
2605		 * finish before dev-replace.
2606		 * COW is fine, as COW never overwrites extents in commit tree.
2607		 */
2608		if (sctx->is_dev_replace) {
2609			btrfs_wait_nocow_writers(cache);
2610			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2611					cache->length);
2612		}
2613
2614		scrub_pause_off(fs_info);
2615		down_write(&dev_replace->rwsem);
2616		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2617		dev_replace->cursor_left = found_key.offset;
2618		dev_replace->item_needs_writeback = 1;
2619		up_write(&dev_replace->rwsem);
2620
2621		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2622				  dev_extent_len);
2623		if (sctx->is_dev_replace &&
2624		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2625						      cache, found_key.offset))
2626			ro_set = 0;
2627
2628		down_write(&dev_replace->rwsem);
2629		dev_replace->cursor_left = dev_replace->cursor_right;
2630		dev_replace->item_needs_writeback = 1;
2631		up_write(&dev_replace->rwsem);
2632
2633		if (ro_set)
2634			btrfs_dec_block_group_ro(cache);
2635
2636		/*
2637		 * We might have prevented the cleaner kthread from deleting
2638		 * this block group if it was already unused because we raced
2639		 * and set it to RO mode first. So add it back to the unused
2640		 * list, otherwise it might not ever be deleted unless a manual
2641		 * balance is triggered or it becomes used and unused again.
2642		 */
2643		spin_lock(&cache->lock);
2644		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2645		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2646			spin_unlock(&cache->lock);
2647			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2648				btrfs_discard_queue_work(&fs_info->discard_ctl,
2649							 cache);
2650			else
2651				btrfs_mark_bg_unused(cache);
2652		} else {
2653			spin_unlock(&cache->lock);
2654		}
2655skip_unfreeze:
2656		btrfs_unfreeze_block_group(cache);
2657		btrfs_put_block_group(cache);
2658		if (ret)
2659			break;
2660		if (sctx->is_dev_replace &&
2661		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2662			ret = -EIO;
2663			break;
2664		}
2665		if (sctx->stat.malloc_errors > 0) {
2666			ret = -ENOMEM;
2667			break;
2668		}
2669skip:
2670		key.offset = found_key.offset + dev_extent_len;
2671		btrfs_release_path(path);
2672	}
2673
2674	btrfs_free_path(path);
2675
2676	return ret;
2677}
2678
2679static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2680			   struct page *page, u64 physical, u64 generation)
2681{
2682	struct btrfs_fs_info *fs_info = sctx->fs_info;
2683	struct bio_vec bvec;
2684	struct bio bio;
2685	struct btrfs_super_block *sb = page_address(page);
2686	int ret;
2687
2688	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2689	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2690	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2691	ret = submit_bio_wait(&bio);
2692	bio_uninit(&bio);
2693
2694	if (ret < 0)
2695		return ret;
2696	ret = btrfs_check_super_csum(fs_info, sb);
2697	if (ret != 0) {
2698		btrfs_err_rl(fs_info,
2699			"super block at physical %llu devid %llu has bad csum",
2700			physical, dev->devid);
2701		return -EIO;
2702	}
2703	if (btrfs_super_generation(sb) != generation) {
2704		btrfs_err_rl(fs_info,
2705"super block at physical %llu devid %llu has bad generation %llu expect %llu",
2706			     physical, dev->devid,
2707			     btrfs_super_generation(sb), generation);
2708		return -EUCLEAN;
2709	}
2710
2711	return btrfs_validate_super(fs_info, sb, -1);
2712}
2713
2714static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2715					   struct btrfs_device *scrub_dev)
2716{
2717	int	i;
2718	u64	bytenr;
2719	u64	gen;
2720	int ret = 0;
2721	struct page *page;
2722	struct btrfs_fs_info *fs_info = sctx->fs_info;
2723
2724	if (BTRFS_FS_ERROR(fs_info))
2725		return -EROFS;
2726
2727	page = alloc_page(GFP_KERNEL);
2728	if (!page) {
2729		spin_lock(&sctx->stat_lock);
2730		sctx->stat.malloc_errors++;
2731		spin_unlock(&sctx->stat_lock);
2732		return -ENOMEM;
2733	}
2734
2735	/* Seed devices of a new filesystem has their own generation. */
2736	if (scrub_dev->fs_devices != fs_info->fs_devices)
2737		gen = scrub_dev->generation;
2738	else
2739		gen = fs_info->last_trans_committed;
2740
2741	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2742		bytenr = btrfs_sb_offset(i);
2743		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2744		    scrub_dev->commit_total_bytes)
2745			break;
2746		if (!btrfs_check_super_location(scrub_dev, bytenr))
2747			continue;
2748
2749		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2750		if (ret) {
2751			spin_lock(&sctx->stat_lock);
2752			sctx->stat.super_errors++;
2753			spin_unlock(&sctx->stat_lock);
2754		}
2755	}
2756	__free_page(page);
2757	return 0;
2758}
2759
2760static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2761{
2762	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2763					&fs_info->scrub_lock)) {
2764		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2765
2766		fs_info->scrub_workers = NULL;
2767		mutex_unlock(&fs_info->scrub_lock);
2768
2769		if (scrub_workers)
2770			destroy_workqueue(scrub_workers);
2771	}
2772}
2773
2774/*
2775 * get a reference count on fs_info->scrub_workers. start worker if necessary
2776 */
2777static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2778{
2779	struct workqueue_struct *scrub_workers = NULL;
2780	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2781	int max_active = fs_info->thread_pool_size;
2782	int ret = -ENOMEM;
2783
2784	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2785		return 0;
2786
2787	scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2788	if (!scrub_workers)
2789		return -ENOMEM;
2790
2791	mutex_lock(&fs_info->scrub_lock);
2792	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2793		ASSERT(fs_info->scrub_workers == NULL);
2794		fs_info->scrub_workers = scrub_workers;
2795		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2796		mutex_unlock(&fs_info->scrub_lock);
2797		return 0;
2798	}
2799	/* Other thread raced in and created the workers for us */
2800	refcount_inc(&fs_info->scrub_workers_refcnt);
2801	mutex_unlock(&fs_info->scrub_lock);
2802
2803	ret = 0;
2804
2805	destroy_workqueue(scrub_workers);
2806	return ret;
2807}
2808
2809int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2810		    u64 end, struct btrfs_scrub_progress *progress,
2811		    int readonly, int is_dev_replace)
2812{
2813	struct btrfs_dev_lookup_args args = { .devid = devid };
2814	struct scrub_ctx *sctx;
2815	int ret;
2816	struct btrfs_device *dev;
2817	unsigned int nofs_flag;
2818	bool need_commit = false;
2819
2820	if (btrfs_fs_closing(fs_info))
2821		return -EAGAIN;
2822
2823	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2824	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2825
2826	/*
2827	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2828	 * value (max nodesize / min sectorsize), thus nodesize should always
2829	 * be fine.
2830	 */
2831	ASSERT(fs_info->nodesize <=
2832	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2833
2834	/* Allocate outside of device_list_mutex */
2835	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2836	if (IS_ERR(sctx))
2837		return PTR_ERR(sctx);
2838
2839	ret = scrub_workers_get(fs_info);
2840	if (ret)
2841		goto out_free_ctx;
2842
2843	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2844	dev = btrfs_find_device(fs_info->fs_devices, &args);
2845	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2846		     !is_dev_replace)) {
2847		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2848		ret = -ENODEV;
2849		goto out;
2850	}
2851
2852	if (!is_dev_replace && !readonly &&
2853	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2854		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2855		btrfs_err_in_rcu(fs_info,
2856			"scrub on devid %llu: filesystem on %s is not writable",
2857				 devid, btrfs_dev_name(dev));
2858		ret = -EROFS;
2859		goto out;
2860	}
2861
2862	mutex_lock(&fs_info->scrub_lock);
2863	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2864	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2865		mutex_unlock(&fs_info->scrub_lock);
2866		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2867		ret = -EIO;
2868		goto out;
2869	}
2870
2871	down_read(&fs_info->dev_replace.rwsem);
2872	if (dev->scrub_ctx ||
2873	    (!is_dev_replace &&
2874	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2875		up_read(&fs_info->dev_replace.rwsem);
2876		mutex_unlock(&fs_info->scrub_lock);
2877		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2878		ret = -EINPROGRESS;
2879		goto out;
2880	}
2881	up_read(&fs_info->dev_replace.rwsem);
2882
2883	sctx->readonly = readonly;
2884	dev->scrub_ctx = sctx;
2885	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2886
2887	/*
2888	 * checking @scrub_pause_req here, we can avoid
2889	 * race between committing transaction and scrubbing.
2890	 */
2891	__scrub_blocked_if_needed(fs_info);
2892	atomic_inc(&fs_info->scrubs_running);
2893	mutex_unlock(&fs_info->scrub_lock);
2894
2895	/*
2896	 * In order to avoid deadlock with reclaim when there is a transaction
2897	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2898	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2899	 * invoked by our callees. The pausing request is done when the
2900	 * transaction commit starts, and it blocks the transaction until scrub
2901	 * is paused (done at specific points at scrub_stripe() or right above
2902	 * before incrementing fs_info->scrubs_running).
2903	 */
2904	nofs_flag = memalloc_nofs_save();
2905	if (!is_dev_replace) {
2906		u64 old_super_errors;
2907
2908		spin_lock(&sctx->stat_lock);
2909		old_super_errors = sctx->stat.super_errors;
2910		spin_unlock(&sctx->stat_lock);
2911
2912		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2913		/*
2914		 * by holding device list mutex, we can
2915		 * kick off writing super in log tree sync.
2916		 */
2917		mutex_lock(&fs_info->fs_devices->device_list_mutex);
2918		ret = scrub_supers(sctx, dev);
2919		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2920
2921		spin_lock(&sctx->stat_lock);
2922		/*
2923		 * Super block errors found, but we can not commit transaction
2924		 * at current context, since btrfs_commit_transaction() needs
2925		 * to pause the current running scrub (hold by ourselves).
2926		 */
2927		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2928			need_commit = true;
2929		spin_unlock(&sctx->stat_lock);
2930	}
2931
2932	if (!ret)
2933		ret = scrub_enumerate_chunks(sctx, dev, start, end);
2934	memalloc_nofs_restore(nofs_flag);
2935
2936	atomic_dec(&fs_info->scrubs_running);
2937	wake_up(&fs_info->scrub_pause_wait);
2938
2939	if (progress)
2940		memcpy(progress, &sctx->stat, sizeof(*progress));
2941
2942	if (!is_dev_replace)
2943		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
2944			ret ? "not finished" : "finished", devid, ret);
2945
2946	mutex_lock(&fs_info->scrub_lock);
2947	dev->scrub_ctx = NULL;
2948	mutex_unlock(&fs_info->scrub_lock);
2949
2950	scrub_workers_put(fs_info);
2951	scrub_put_ctx(sctx);
2952
2953	/*
2954	 * We found some super block errors before, now try to force a
2955	 * transaction commit, as scrub has finished.
2956	 */
2957	if (need_commit) {
2958		struct btrfs_trans_handle *trans;
2959
2960		trans = btrfs_start_transaction(fs_info->tree_root, 0);
2961		if (IS_ERR(trans)) {
2962			ret = PTR_ERR(trans);
2963			btrfs_err(fs_info,
2964	"scrub: failed to start transaction to fix super block errors: %d", ret);
2965			return ret;
2966		}
2967		ret = btrfs_commit_transaction(trans);
2968		if (ret < 0)
2969			btrfs_err(fs_info,
2970	"scrub: failed to commit transaction to fix super block errors: %d", ret);
2971	}
2972	return ret;
2973out:
2974	scrub_workers_put(fs_info);
2975out_free_ctx:
2976	scrub_free_ctx(sctx);
2977
2978	return ret;
2979}
2980
2981void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
2982{
2983	mutex_lock(&fs_info->scrub_lock);
2984	atomic_inc(&fs_info->scrub_pause_req);
2985	while (atomic_read(&fs_info->scrubs_paused) !=
2986	       atomic_read(&fs_info->scrubs_running)) {
2987		mutex_unlock(&fs_info->scrub_lock);
2988		wait_event(fs_info->scrub_pause_wait,
2989			   atomic_read(&fs_info->scrubs_paused) ==
2990			   atomic_read(&fs_info->scrubs_running));
2991		mutex_lock(&fs_info->scrub_lock);
2992	}
2993	mutex_unlock(&fs_info->scrub_lock);
2994}
2995
2996void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
2997{
2998	atomic_dec(&fs_info->scrub_pause_req);
2999	wake_up(&fs_info->scrub_pause_wait);
3000}
3001
3002int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3003{
3004	mutex_lock(&fs_info->scrub_lock);
3005	if (!atomic_read(&fs_info->scrubs_running)) {
3006		mutex_unlock(&fs_info->scrub_lock);
3007		return -ENOTCONN;
3008	}
3009
3010	atomic_inc(&fs_info->scrub_cancel_req);
3011	while (atomic_read(&fs_info->scrubs_running)) {
3012		mutex_unlock(&fs_info->scrub_lock);
3013		wait_event(fs_info->scrub_pause_wait,
3014			   atomic_read(&fs_info->scrubs_running) == 0);
3015		mutex_lock(&fs_info->scrub_lock);
3016	}
3017	atomic_dec(&fs_info->scrub_cancel_req);
3018	mutex_unlock(&fs_info->scrub_lock);
3019
3020	return 0;
3021}
3022
3023int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3024{
3025	struct btrfs_fs_info *fs_info = dev->fs_info;
3026	struct scrub_ctx *sctx;
3027
3028	mutex_lock(&fs_info->scrub_lock);
3029	sctx = dev->scrub_ctx;
3030	if (!sctx) {
3031		mutex_unlock(&fs_info->scrub_lock);
3032		return -ENOTCONN;
3033	}
3034	atomic_inc(&sctx->cancel_req);
3035	while (dev->scrub_ctx) {
3036		mutex_unlock(&fs_info->scrub_lock);
3037		wait_event(fs_info->scrub_pause_wait,
3038			   dev->scrub_ctx == NULL);
3039		mutex_lock(&fs_info->scrub_lock);
3040	}
3041	mutex_unlock(&fs_info->scrub_lock);
3042
3043	return 0;
3044}
3045
3046int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3047			 struct btrfs_scrub_progress *progress)
3048{
3049	struct btrfs_dev_lookup_args args = { .devid = devid };
3050	struct btrfs_device *dev;
3051	struct scrub_ctx *sctx = NULL;
3052
3053	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3054	dev = btrfs_find_device(fs_info->fs_devices, &args);
3055	if (dev)
3056		sctx = dev->scrub_ctx;
3057	if (sctx)
3058		memcpy(progress, &sctx->stat, sizeof(*progress));
3059	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3060
3061	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3062}
3063