xref: /kernel/linux/linux-6.6/fs/btrfs/relocation.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2009 Oracle.  All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/pagemap.h>
8#include <linux/writeback.h>
9#include <linux/blkdev.h>
10#include <linux/rbtree.h>
11#include <linux/slab.h>
12#include <linux/error-injection.h>
13#include "ctree.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "volumes.h"
17#include "locking.h"
18#include "btrfs_inode.h"
19#include "async-thread.h"
20#include "free-space-cache.h"
21#include "qgroup.h"
22#include "print-tree.h"
23#include "delalloc-space.h"
24#include "block-group.h"
25#include "backref.h"
26#include "misc.h"
27#include "subpage.h"
28#include "zoned.h"
29#include "inode-item.h"
30#include "space-info.h"
31#include "fs.h"
32#include "accessors.h"
33#include "extent-tree.h"
34#include "root-tree.h"
35#include "file-item.h"
36#include "relocation.h"
37#include "super.h"
38#include "tree-checker.h"
39
40/*
41 * Relocation overview
42 *
43 * [What does relocation do]
44 *
45 * The objective of relocation is to relocate all extents of the target block
46 * group to other block groups.
47 * This is utilized by resize (shrink only), profile converting, compacting
48 * space, or balance routine to spread chunks over devices.
49 *
50 * 		Before		|		After
51 * ------------------------------------------------------------------
52 *  BG A: 10 data extents	| BG A: deleted
53 *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
54 *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
55 *
56 * [How does relocation work]
57 *
58 * 1.   Mark the target block group read-only
59 *      New extents won't be allocated from the target block group.
60 *
61 * 2.1  Record each extent in the target block group
62 *      To build a proper map of extents to be relocated.
63 *
64 * 2.2  Build data reloc tree and reloc trees
65 *      Data reloc tree will contain an inode, recording all newly relocated
66 *      data extents.
67 *      There will be only one data reloc tree for one data block group.
68 *
69 *      Reloc tree will be a special snapshot of its source tree, containing
70 *      relocated tree blocks.
71 *      Each tree referring to a tree block in target block group will get its
72 *      reloc tree built.
73 *
74 * 2.3  Swap source tree with its corresponding reloc tree
75 *      Each involved tree only refers to new extents after swap.
76 *
77 * 3.   Cleanup reloc trees and data reloc tree.
78 *      As old extents in the target block group are still referenced by reloc
79 *      trees, we need to clean them up before really freeing the target block
80 *      group.
81 *
82 * The main complexity is in steps 2.2 and 2.3.
83 *
84 * The entry point of relocation is relocate_block_group() function.
85 */
86
87#define RELOCATION_RESERVED_NODES	256
88/*
89 * map address of tree root to tree
90 */
91struct mapping_node {
92	struct {
93		struct rb_node rb_node;
94		u64 bytenr;
95	}; /* Use rb_simle_node for search/insert */
96	void *data;
97};
98
99struct mapping_tree {
100	struct rb_root rb_root;
101	spinlock_t lock;
102};
103
104/*
105 * present a tree block to process
106 */
107struct tree_block {
108	struct {
109		struct rb_node rb_node;
110		u64 bytenr;
111	}; /* Use rb_simple_node for search/insert */
112	u64 owner;
113	struct btrfs_key key;
114	unsigned int level:8;
115	unsigned int key_ready:1;
116};
117
118#define MAX_EXTENTS 128
119
120struct file_extent_cluster {
121	u64 start;
122	u64 end;
123	u64 boundary[MAX_EXTENTS];
124	unsigned int nr;
125};
126
127struct reloc_control {
128	/* block group to relocate */
129	struct btrfs_block_group *block_group;
130	/* extent tree */
131	struct btrfs_root *extent_root;
132	/* inode for moving data */
133	struct inode *data_inode;
134
135	struct btrfs_block_rsv *block_rsv;
136
137	struct btrfs_backref_cache backref_cache;
138
139	struct file_extent_cluster cluster;
140	/* tree blocks have been processed */
141	struct extent_io_tree processed_blocks;
142	/* map start of tree root to corresponding reloc tree */
143	struct mapping_tree reloc_root_tree;
144	/* list of reloc trees */
145	struct list_head reloc_roots;
146	/* list of subvolume trees that get relocated */
147	struct list_head dirty_subvol_roots;
148	/* size of metadata reservation for merging reloc trees */
149	u64 merging_rsv_size;
150	/* size of relocated tree nodes */
151	u64 nodes_relocated;
152	/* reserved size for block group relocation*/
153	u64 reserved_bytes;
154
155	u64 search_start;
156	u64 extents_found;
157
158	unsigned int stage:8;
159	unsigned int create_reloc_tree:1;
160	unsigned int merge_reloc_tree:1;
161	unsigned int found_file_extent:1;
162};
163
164/* stages of data relocation */
165#define MOVE_DATA_EXTENTS	0
166#define UPDATE_DATA_PTRS	1
167
168static void mark_block_processed(struct reloc_control *rc,
169				 struct btrfs_backref_node *node)
170{
171	u32 blocksize;
172
173	if (node->level == 0 ||
174	    in_range(node->bytenr, rc->block_group->start,
175		     rc->block_group->length)) {
176		blocksize = rc->extent_root->fs_info->nodesize;
177		set_extent_bit(&rc->processed_blocks, node->bytenr,
178			       node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
179	}
180	node->processed = 1;
181}
182
183
184static void mapping_tree_init(struct mapping_tree *tree)
185{
186	tree->rb_root = RB_ROOT;
187	spin_lock_init(&tree->lock);
188}
189
190/*
191 * walk up backref nodes until reach node presents tree root
192 */
193static struct btrfs_backref_node *walk_up_backref(
194		struct btrfs_backref_node *node,
195		struct btrfs_backref_edge *edges[], int *index)
196{
197	struct btrfs_backref_edge *edge;
198	int idx = *index;
199
200	while (!list_empty(&node->upper)) {
201		edge = list_entry(node->upper.next,
202				  struct btrfs_backref_edge, list[LOWER]);
203		edges[idx++] = edge;
204		node = edge->node[UPPER];
205	}
206	BUG_ON(node->detached);
207	*index = idx;
208	return node;
209}
210
211/*
212 * walk down backref nodes to find start of next reference path
213 */
214static struct btrfs_backref_node *walk_down_backref(
215		struct btrfs_backref_edge *edges[], int *index)
216{
217	struct btrfs_backref_edge *edge;
218	struct btrfs_backref_node *lower;
219	int idx = *index;
220
221	while (idx > 0) {
222		edge = edges[idx - 1];
223		lower = edge->node[LOWER];
224		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
225			idx--;
226			continue;
227		}
228		edge = list_entry(edge->list[LOWER].next,
229				  struct btrfs_backref_edge, list[LOWER]);
230		edges[idx - 1] = edge;
231		*index = idx;
232		return edge->node[UPPER];
233	}
234	*index = 0;
235	return NULL;
236}
237
238static void update_backref_node(struct btrfs_backref_cache *cache,
239				struct btrfs_backref_node *node, u64 bytenr)
240{
241	struct rb_node *rb_node;
242	rb_erase(&node->rb_node, &cache->rb_root);
243	node->bytenr = bytenr;
244	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
245	if (rb_node)
246		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
247}
248
249/*
250 * update backref cache after a transaction commit
251 */
252static int update_backref_cache(struct btrfs_trans_handle *trans,
253				struct btrfs_backref_cache *cache)
254{
255	struct btrfs_backref_node *node;
256	int level = 0;
257
258	if (cache->last_trans == 0) {
259		cache->last_trans = trans->transid;
260		return 0;
261	}
262
263	if (cache->last_trans == trans->transid)
264		return 0;
265
266	/*
267	 * detached nodes are used to avoid unnecessary backref
268	 * lookup. transaction commit changes the extent tree.
269	 * so the detached nodes are no longer useful.
270	 */
271	while (!list_empty(&cache->detached)) {
272		node = list_entry(cache->detached.next,
273				  struct btrfs_backref_node, list);
274		btrfs_backref_cleanup_node(cache, node);
275	}
276
277	while (!list_empty(&cache->changed)) {
278		node = list_entry(cache->changed.next,
279				  struct btrfs_backref_node, list);
280		list_del_init(&node->list);
281		BUG_ON(node->pending);
282		update_backref_node(cache, node, node->new_bytenr);
283	}
284
285	/*
286	 * some nodes can be left in the pending list if there were
287	 * errors during processing the pending nodes.
288	 */
289	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
290		list_for_each_entry(node, &cache->pending[level], list) {
291			BUG_ON(!node->pending);
292			if (node->bytenr == node->new_bytenr)
293				continue;
294			update_backref_node(cache, node, node->new_bytenr);
295		}
296	}
297
298	cache->last_trans = 0;
299	return 1;
300}
301
302static bool reloc_root_is_dead(struct btrfs_root *root)
303{
304	/*
305	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
306	 * btrfs_update_reloc_root. We need to see the updated bit before
307	 * trying to access reloc_root
308	 */
309	smp_rmb();
310	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
311		return true;
312	return false;
313}
314
315/*
316 * Check if this subvolume tree has valid reloc tree.
317 *
318 * Reloc tree after swap is considered dead, thus not considered as valid.
319 * This is enough for most callers, as they don't distinguish dead reloc root
320 * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
321 * special case.
322 */
323static bool have_reloc_root(struct btrfs_root *root)
324{
325	if (reloc_root_is_dead(root))
326		return false;
327	if (!root->reloc_root)
328		return false;
329	return true;
330}
331
332int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
333{
334	struct btrfs_root *reloc_root;
335
336	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
337		return 0;
338
339	/* This root has been merged with its reloc tree, we can ignore it */
340	if (reloc_root_is_dead(root))
341		return 1;
342
343	reloc_root = root->reloc_root;
344	if (!reloc_root)
345		return 0;
346
347	if (btrfs_header_generation(reloc_root->commit_root) ==
348	    root->fs_info->running_transaction->transid)
349		return 0;
350	/*
351	 * if there is reloc tree and it was created in previous
352	 * transaction backref lookup can find the reloc tree,
353	 * so backref node for the fs tree root is useless for
354	 * relocation.
355	 */
356	return 1;
357}
358
359/*
360 * find reloc tree by address of tree root
361 */
362struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
363{
364	struct reloc_control *rc = fs_info->reloc_ctl;
365	struct rb_node *rb_node;
366	struct mapping_node *node;
367	struct btrfs_root *root = NULL;
368
369	ASSERT(rc);
370	spin_lock(&rc->reloc_root_tree.lock);
371	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
372	if (rb_node) {
373		node = rb_entry(rb_node, struct mapping_node, rb_node);
374		root = node->data;
375	}
376	spin_unlock(&rc->reloc_root_tree.lock);
377	return btrfs_grab_root(root);
378}
379
380/*
381 * For useless nodes, do two major clean ups:
382 *
383 * - Cleanup the children edges and nodes
384 *   If child node is also orphan (no parent) during cleanup, then the child
385 *   node will also be cleaned up.
386 *
387 * - Freeing up leaves (level 0), keeps nodes detached
388 *   For nodes, the node is still cached as "detached"
389 *
390 * Return false if @node is not in the @useless_nodes list.
391 * Return true if @node is in the @useless_nodes list.
392 */
393static bool handle_useless_nodes(struct reloc_control *rc,
394				 struct btrfs_backref_node *node)
395{
396	struct btrfs_backref_cache *cache = &rc->backref_cache;
397	struct list_head *useless_node = &cache->useless_node;
398	bool ret = false;
399
400	while (!list_empty(useless_node)) {
401		struct btrfs_backref_node *cur;
402
403		cur = list_first_entry(useless_node, struct btrfs_backref_node,
404				 list);
405		list_del_init(&cur->list);
406
407		/* Only tree root nodes can be added to @useless_nodes */
408		ASSERT(list_empty(&cur->upper));
409
410		if (cur == node)
411			ret = true;
412
413		/* The node is the lowest node */
414		if (cur->lowest) {
415			list_del_init(&cur->lower);
416			cur->lowest = 0;
417		}
418
419		/* Cleanup the lower edges */
420		while (!list_empty(&cur->lower)) {
421			struct btrfs_backref_edge *edge;
422			struct btrfs_backref_node *lower;
423
424			edge = list_entry(cur->lower.next,
425					struct btrfs_backref_edge, list[UPPER]);
426			list_del(&edge->list[UPPER]);
427			list_del(&edge->list[LOWER]);
428			lower = edge->node[LOWER];
429			btrfs_backref_free_edge(cache, edge);
430
431			/* Child node is also orphan, queue for cleanup */
432			if (list_empty(&lower->upper))
433				list_add(&lower->list, useless_node);
434		}
435		/* Mark this block processed for relocation */
436		mark_block_processed(rc, cur);
437
438		/*
439		 * Backref nodes for tree leaves are deleted from the cache.
440		 * Backref nodes for upper level tree blocks are left in the
441		 * cache to avoid unnecessary backref lookup.
442		 */
443		if (cur->level > 0) {
444			list_add(&cur->list, &cache->detached);
445			cur->detached = 1;
446		} else {
447			rb_erase(&cur->rb_node, &cache->rb_root);
448			btrfs_backref_free_node(cache, cur);
449		}
450	}
451	return ret;
452}
453
454/*
455 * Build backref tree for a given tree block. Root of the backref tree
456 * corresponds the tree block, leaves of the backref tree correspond roots of
457 * b-trees that reference the tree block.
458 *
459 * The basic idea of this function is check backrefs of a given block to find
460 * upper level blocks that reference the block, and then check backrefs of
461 * these upper level blocks recursively. The recursion stops when tree root is
462 * reached or backrefs for the block is cached.
463 *
464 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
465 * all upper level blocks that directly/indirectly reference the block are also
466 * cached.
467 */
468static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
469			struct btrfs_trans_handle *trans,
470			struct reloc_control *rc, struct btrfs_key *node_key,
471			int level, u64 bytenr)
472{
473	struct btrfs_backref_iter *iter;
474	struct btrfs_backref_cache *cache = &rc->backref_cache;
475	/* For searching parent of TREE_BLOCK_REF */
476	struct btrfs_path *path;
477	struct btrfs_backref_node *cur;
478	struct btrfs_backref_node *node = NULL;
479	struct btrfs_backref_edge *edge;
480	int ret;
481	int err = 0;
482
483	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
484	if (!iter)
485		return ERR_PTR(-ENOMEM);
486	path = btrfs_alloc_path();
487	if (!path) {
488		err = -ENOMEM;
489		goto out;
490	}
491
492	node = btrfs_backref_alloc_node(cache, bytenr, level);
493	if (!node) {
494		err = -ENOMEM;
495		goto out;
496	}
497
498	node->lowest = 1;
499	cur = node;
500
501	/* Breadth-first search to build backref cache */
502	do {
503		ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
504						  node_key, cur);
505		if (ret < 0) {
506			err = ret;
507			goto out;
508		}
509		edge = list_first_entry_or_null(&cache->pending_edge,
510				struct btrfs_backref_edge, list[UPPER]);
511		/*
512		 * The pending list isn't empty, take the first block to
513		 * process
514		 */
515		if (edge) {
516			list_del_init(&edge->list[UPPER]);
517			cur = edge->node[UPPER];
518		}
519	} while (edge);
520
521	/* Finish the upper linkage of newly added edges/nodes */
522	ret = btrfs_backref_finish_upper_links(cache, node);
523	if (ret < 0) {
524		err = ret;
525		goto out;
526	}
527
528	if (handle_useless_nodes(rc, node))
529		node = NULL;
530out:
531	btrfs_backref_iter_free(iter);
532	btrfs_free_path(path);
533	if (err) {
534		btrfs_backref_error_cleanup(cache, node);
535		return ERR_PTR(err);
536	}
537	ASSERT(!node || !node->detached);
538	ASSERT(list_empty(&cache->useless_node) &&
539	       list_empty(&cache->pending_edge));
540	return node;
541}
542
543/*
544 * helper to add backref node for the newly created snapshot.
545 * the backref node is created by cloning backref node that
546 * corresponds to root of source tree
547 */
548static int clone_backref_node(struct btrfs_trans_handle *trans,
549			      struct reloc_control *rc,
550			      struct btrfs_root *src,
551			      struct btrfs_root *dest)
552{
553	struct btrfs_root *reloc_root = src->reloc_root;
554	struct btrfs_backref_cache *cache = &rc->backref_cache;
555	struct btrfs_backref_node *node = NULL;
556	struct btrfs_backref_node *new_node;
557	struct btrfs_backref_edge *edge;
558	struct btrfs_backref_edge *new_edge;
559	struct rb_node *rb_node;
560
561	if (cache->last_trans > 0)
562		update_backref_cache(trans, cache);
563
564	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
565	if (rb_node) {
566		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
567		if (node->detached)
568			node = NULL;
569		else
570			BUG_ON(node->new_bytenr != reloc_root->node->start);
571	}
572
573	if (!node) {
574		rb_node = rb_simple_search(&cache->rb_root,
575					   reloc_root->commit_root->start);
576		if (rb_node) {
577			node = rb_entry(rb_node, struct btrfs_backref_node,
578					rb_node);
579			BUG_ON(node->detached);
580		}
581	}
582
583	if (!node)
584		return 0;
585
586	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
587					    node->level);
588	if (!new_node)
589		return -ENOMEM;
590
591	new_node->lowest = node->lowest;
592	new_node->checked = 1;
593	new_node->root = btrfs_grab_root(dest);
594	ASSERT(new_node->root);
595
596	if (!node->lowest) {
597		list_for_each_entry(edge, &node->lower, list[UPPER]) {
598			new_edge = btrfs_backref_alloc_edge(cache);
599			if (!new_edge)
600				goto fail;
601
602			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
603						new_node, LINK_UPPER);
604		}
605	} else {
606		list_add_tail(&new_node->lower, &cache->leaves);
607	}
608
609	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
610				   &new_node->rb_node);
611	if (rb_node)
612		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
613
614	if (!new_node->lowest) {
615		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
616			list_add_tail(&new_edge->list[LOWER],
617				      &new_edge->node[LOWER]->upper);
618		}
619	}
620	return 0;
621fail:
622	while (!list_empty(&new_node->lower)) {
623		new_edge = list_entry(new_node->lower.next,
624				      struct btrfs_backref_edge, list[UPPER]);
625		list_del(&new_edge->list[UPPER]);
626		btrfs_backref_free_edge(cache, new_edge);
627	}
628	btrfs_backref_free_node(cache, new_node);
629	return -ENOMEM;
630}
631
632/*
633 * helper to add 'address of tree root -> reloc tree' mapping
634 */
635static int __must_check __add_reloc_root(struct btrfs_root *root)
636{
637	struct btrfs_fs_info *fs_info = root->fs_info;
638	struct rb_node *rb_node;
639	struct mapping_node *node;
640	struct reloc_control *rc = fs_info->reloc_ctl;
641
642	node = kmalloc(sizeof(*node), GFP_NOFS);
643	if (!node)
644		return -ENOMEM;
645
646	node->bytenr = root->commit_root->start;
647	node->data = root;
648
649	spin_lock(&rc->reloc_root_tree.lock);
650	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
651				   node->bytenr, &node->rb_node);
652	spin_unlock(&rc->reloc_root_tree.lock);
653	if (rb_node) {
654		btrfs_err(fs_info,
655			    "Duplicate root found for start=%llu while inserting into relocation tree",
656			    node->bytenr);
657		return -EEXIST;
658	}
659
660	list_add_tail(&root->root_list, &rc->reloc_roots);
661	return 0;
662}
663
664/*
665 * helper to delete the 'address of tree root -> reloc tree'
666 * mapping
667 */
668static void __del_reloc_root(struct btrfs_root *root)
669{
670	struct btrfs_fs_info *fs_info = root->fs_info;
671	struct rb_node *rb_node;
672	struct mapping_node *node = NULL;
673	struct reloc_control *rc = fs_info->reloc_ctl;
674	bool put_ref = false;
675
676	if (rc && root->node) {
677		spin_lock(&rc->reloc_root_tree.lock);
678		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
679					   root->commit_root->start);
680		if (rb_node) {
681			node = rb_entry(rb_node, struct mapping_node, rb_node);
682			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
683			RB_CLEAR_NODE(&node->rb_node);
684		}
685		spin_unlock(&rc->reloc_root_tree.lock);
686		ASSERT(!node || (struct btrfs_root *)node->data == root);
687	}
688
689	/*
690	 * We only put the reloc root here if it's on the list.  There's a lot
691	 * of places where the pattern is to splice the rc->reloc_roots, process
692	 * the reloc roots, and then add the reloc root back onto
693	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
694	 * list we don't want the reference being dropped, because the guy
695	 * messing with the list is in charge of the reference.
696	 */
697	spin_lock(&fs_info->trans_lock);
698	if (!list_empty(&root->root_list)) {
699		put_ref = true;
700		list_del_init(&root->root_list);
701	}
702	spin_unlock(&fs_info->trans_lock);
703	if (put_ref)
704		btrfs_put_root(root);
705	kfree(node);
706}
707
708/*
709 * helper to update the 'address of tree root -> reloc tree'
710 * mapping
711 */
712static int __update_reloc_root(struct btrfs_root *root)
713{
714	struct btrfs_fs_info *fs_info = root->fs_info;
715	struct rb_node *rb_node;
716	struct mapping_node *node = NULL;
717	struct reloc_control *rc = fs_info->reloc_ctl;
718
719	spin_lock(&rc->reloc_root_tree.lock);
720	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
721				   root->commit_root->start);
722	if (rb_node) {
723		node = rb_entry(rb_node, struct mapping_node, rb_node);
724		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
725	}
726	spin_unlock(&rc->reloc_root_tree.lock);
727
728	if (!node)
729		return 0;
730	BUG_ON((struct btrfs_root *)node->data != root);
731
732	spin_lock(&rc->reloc_root_tree.lock);
733	node->bytenr = root->node->start;
734	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
735				   node->bytenr, &node->rb_node);
736	spin_unlock(&rc->reloc_root_tree.lock);
737	if (rb_node)
738		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
739	return 0;
740}
741
742static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
743					struct btrfs_root *root, u64 objectid)
744{
745	struct btrfs_fs_info *fs_info = root->fs_info;
746	struct btrfs_root *reloc_root;
747	struct extent_buffer *eb;
748	struct btrfs_root_item *root_item;
749	struct btrfs_key root_key;
750	int ret = 0;
751	bool must_abort = false;
752
753	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
754	if (!root_item)
755		return ERR_PTR(-ENOMEM);
756
757	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
758	root_key.type = BTRFS_ROOT_ITEM_KEY;
759	root_key.offset = objectid;
760
761	if (root->root_key.objectid == objectid) {
762		u64 commit_root_gen;
763
764		/* called by btrfs_init_reloc_root */
765		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
766				      BTRFS_TREE_RELOC_OBJECTID);
767		if (ret)
768			goto fail;
769
770		/*
771		 * Set the last_snapshot field to the generation of the commit
772		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
773		 * correctly (returns true) when the relocation root is created
774		 * either inside the critical section of a transaction commit
775		 * (through transaction.c:qgroup_account_snapshot()) and when
776		 * it's created before the transaction commit is started.
777		 */
778		commit_root_gen = btrfs_header_generation(root->commit_root);
779		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
780	} else {
781		/*
782		 * called by btrfs_reloc_post_snapshot_hook.
783		 * the source tree is a reloc tree, all tree blocks
784		 * modified after it was created have RELOC flag
785		 * set in their headers. so it's OK to not update
786		 * the 'last_snapshot'.
787		 */
788		ret = btrfs_copy_root(trans, root, root->node, &eb,
789				      BTRFS_TREE_RELOC_OBJECTID);
790		if (ret)
791			goto fail;
792	}
793
794	/*
795	 * We have changed references at this point, we must abort the
796	 * transaction if anything fails.
797	 */
798	must_abort = true;
799
800	memcpy(root_item, &root->root_item, sizeof(*root_item));
801	btrfs_set_root_bytenr(root_item, eb->start);
802	btrfs_set_root_level(root_item, btrfs_header_level(eb));
803	btrfs_set_root_generation(root_item, trans->transid);
804
805	if (root->root_key.objectid == objectid) {
806		btrfs_set_root_refs(root_item, 0);
807		memset(&root_item->drop_progress, 0,
808		       sizeof(struct btrfs_disk_key));
809		btrfs_set_root_drop_level(root_item, 0);
810	}
811
812	btrfs_tree_unlock(eb);
813	free_extent_buffer(eb);
814
815	ret = btrfs_insert_root(trans, fs_info->tree_root,
816				&root_key, root_item);
817	if (ret)
818		goto fail;
819
820	kfree(root_item);
821
822	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
823	if (IS_ERR(reloc_root)) {
824		ret = PTR_ERR(reloc_root);
825		goto abort;
826	}
827	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
828	reloc_root->last_trans = trans->transid;
829	return reloc_root;
830fail:
831	kfree(root_item);
832abort:
833	if (must_abort)
834		btrfs_abort_transaction(trans, ret);
835	return ERR_PTR(ret);
836}
837
838/*
839 * create reloc tree for a given fs tree. reloc tree is just a
840 * snapshot of the fs tree with special root objectid.
841 *
842 * The reloc_root comes out of here with two references, one for
843 * root->reloc_root, and another for being on the rc->reloc_roots list.
844 */
845int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
846			  struct btrfs_root *root)
847{
848	struct btrfs_fs_info *fs_info = root->fs_info;
849	struct btrfs_root *reloc_root;
850	struct reloc_control *rc = fs_info->reloc_ctl;
851	struct btrfs_block_rsv *rsv;
852	int clear_rsv = 0;
853	int ret;
854
855	if (!rc)
856		return 0;
857
858	/*
859	 * The subvolume has reloc tree but the swap is finished, no need to
860	 * create/update the dead reloc tree
861	 */
862	if (reloc_root_is_dead(root))
863		return 0;
864
865	/*
866	 * This is subtle but important.  We do not do
867	 * record_root_in_transaction for reloc roots, instead we record their
868	 * corresponding fs root, and then here we update the last trans for the
869	 * reloc root.  This means that we have to do this for the entire life
870	 * of the reloc root, regardless of which stage of the relocation we are
871	 * in.
872	 */
873	if (root->reloc_root) {
874		reloc_root = root->reloc_root;
875		reloc_root->last_trans = trans->transid;
876		return 0;
877	}
878
879	/*
880	 * We are merging reloc roots, we do not need new reloc trees.  Also
881	 * reloc trees never need their own reloc tree.
882	 */
883	if (!rc->create_reloc_tree ||
884	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
885		return 0;
886
887	if (!trans->reloc_reserved) {
888		rsv = trans->block_rsv;
889		trans->block_rsv = rc->block_rsv;
890		clear_rsv = 1;
891	}
892	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
893	if (clear_rsv)
894		trans->block_rsv = rsv;
895	if (IS_ERR(reloc_root))
896		return PTR_ERR(reloc_root);
897
898	ret = __add_reloc_root(reloc_root);
899	ASSERT(ret != -EEXIST);
900	if (ret) {
901		/* Pairs with create_reloc_root */
902		btrfs_put_root(reloc_root);
903		return ret;
904	}
905	root->reloc_root = btrfs_grab_root(reloc_root);
906	return 0;
907}
908
909/*
910 * update root item of reloc tree
911 */
912int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
913			    struct btrfs_root *root)
914{
915	struct btrfs_fs_info *fs_info = root->fs_info;
916	struct btrfs_root *reloc_root;
917	struct btrfs_root_item *root_item;
918	int ret;
919
920	if (!have_reloc_root(root))
921		return 0;
922
923	reloc_root = root->reloc_root;
924	root_item = &reloc_root->root_item;
925
926	/*
927	 * We are probably ok here, but __del_reloc_root() will drop its ref of
928	 * the root.  We have the ref for root->reloc_root, but just in case
929	 * hold it while we update the reloc root.
930	 */
931	btrfs_grab_root(reloc_root);
932
933	/* root->reloc_root will stay until current relocation finished */
934	if (fs_info->reloc_ctl->merge_reloc_tree &&
935	    btrfs_root_refs(root_item) == 0) {
936		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
937		/*
938		 * Mark the tree as dead before we change reloc_root so
939		 * have_reloc_root will not touch it from now on.
940		 */
941		smp_wmb();
942		__del_reloc_root(reloc_root);
943	}
944
945	if (reloc_root->commit_root != reloc_root->node) {
946		__update_reloc_root(reloc_root);
947		btrfs_set_root_node(root_item, reloc_root->node);
948		free_extent_buffer(reloc_root->commit_root);
949		reloc_root->commit_root = btrfs_root_node(reloc_root);
950	}
951
952	ret = btrfs_update_root(trans, fs_info->tree_root,
953				&reloc_root->root_key, root_item);
954	btrfs_put_root(reloc_root);
955	return ret;
956}
957
958/*
959 * helper to find first cached inode with inode number >= objectid
960 * in a subvolume
961 */
962static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
963{
964	struct rb_node *node;
965	struct rb_node *prev;
966	struct btrfs_inode *entry;
967	struct inode *inode;
968
969	spin_lock(&root->inode_lock);
970again:
971	node = root->inode_tree.rb_node;
972	prev = NULL;
973	while (node) {
974		prev = node;
975		entry = rb_entry(node, struct btrfs_inode, rb_node);
976
977		if (objectid < btrfs_ino(entry))
978			node = node->rb_left;
979		else if (objectid > btrfs_ino(entry))
980			node = node->rb_right;
981		else
982			break;
983	}
984	if (!node) {
985		while (prev) {
986			entry = rb_entry(prev, struct btrfs_inode, rb_node);
987			if (objectid <= btrfs_ino(entry)) {
988				node = prev;
989				break;
990			}
991			prev = rb_next(prev);
992		}
993	}
994	while (node) {
995		entry = rb_entry(node, struct btrfs_inode, rb_node);
996		inode = igrab(&entry->vfs_inode);
997		if (inode) {
998			spin_unlock(&root->inode_lock);
999			return inode;
1000		}
1001
1002		objectid = btrfs_ino(entry) + 1;
1003		if (cond_resched_lock(&root->inode_lock))
1004			goto again;
1005
1006		node = rb_next(node);
1007	}
1008	spin_unlock(&root->inode_lock);
1009	return NULL;
1010}
1011
1012/*
1013 * get new location of data
1014 */
1015static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1016			    u64 bytenr, u64 num_bytes)
1017{
1018	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1019	struct btrfs_path *path;
1020	struct btrfs_file_extent_item *fi;
1021	struct extent_buffer *leaf;
1022	int ret;
1023
1024	path = btrfs_alloc_path();
1025	if (!path)
1026		return -ENOMEM;
1027
1028	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1029	ret = btrfs_lookup_file_extent(NULL, root, path,
1030			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1031	if (ret < 0)
1032		goto out;
1033	if (ret > 0) {
1034		ret = -ENOENT;
1035		goto out;
1036	}
1037
1038	leaf = path->nodes[0];
1039	fi = btrfs_item_ptr(leaf, path->slots[0],
1040			    struct btrfs_file_extent_item);
1041
1042	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1043	       btrfs_file_extent_compression(leaf, fi) ||
1044	       btrfs_file_extent_encryption(leaf, fi) ||
1045	       btrfs_file_extent_other_encoding(leaf, fi));
1046
1047	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1048		ret = -EINVAL;
1049		goto out;
1050	}
1051
1052	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1053	ret = 0;
1054out:
1055	btrfs_free_path(path);
1056	return ret;
1057}
1058
1059/*
1060 * update file extent items in the tree leaf to point to
1061 * the new locations.
1062 */
1063static noinline_for_stack
1064int replace_file_extents(struct btrfs_trans_handle *trans,
1065			 struct reloc_control *rc,
1066			 struct btrfs_root *root,
1067			 struct extent_buffer *leaf)
1068{
1069	struct btrfs_fs_info *fs_info = root->fs_info;
1070	struct btrfs_key key;
1071	struct btrfs_file_extent_item *fi;
1072	struct inode *inode = NULL;
1073	u64 parent;
1074	u64 bytenr;
1075	u64 new_bytenr = 0;
1076	u64 num_bytes;
1077	u64 end;
1078	u32 nritems;
1079	u32 i;
1080	int ret = 0;
1081	int first = 1;
1082	int dirty = 0;
1083
1084	if (rc->stage != UPDATE_DATA_PTRS)
1085		return 0;
1086
1087	/* reloc trees always use full backref */
1088	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1089		parent = leaf->start;
1090	else
1091		parent = 0;
1092
1093	nritems = btrfs_header_nritems(leaf);
1094	for (i = 0; i < nritems; i++) {
1095		struct btrfs_ref ref = { 0 };
1096
1097		cond_resched();
1098		btrfs_item_key_to_cpu(leaf, &key, i);
1099		if (key.type != BTRFS_EXTENT_DATA_KEY)
1100			continue;
1101		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1102		if (btrfs_file_extent_type(leaf, fi) ==
1103		    BTRFS_FILE_EXTENT_INLINE)
1104			continue;
1105		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1106		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1107		if (bytenr == 0)
1108			continue;
1109		if (!in_range(bytenr, rc->block_group->start,
1110			      rc->block_group->length))
1111			continue;
1112
1113		/*
1114		 * if we are modifying block in fs tree, wait for read_folio
1115		 * to complete and drop the extent cache
1116		 */
1117		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1118			if (first) {
1119				inode = find_next_inode(root, key.objectid);
1120				first = 0;
1121			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1122				btrfs_add_delayed_iput(BTRFS_I(inode));
1123				inode = find_next_inode(root, key.objectid);
1124			}
1125			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1126				struct extent_state *cached_state = NULL;
1127
1128				end = key.offset +
1129				      btrfs_file_extent_num_bytes(leaf, fi);
1130				WARN_ON(!IS_ALIGNED(key.offset,
1131						    fs_info->sectorsize));
1132				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1133				end--;
1134				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1135						      key.offset, end,
1136						      &cached_state);
1137				if (!ret)
1138					continue;
1139
1140				btrfs_drop_extent_map_range(BTRFS_I(inode),
1141							    key.offset, end, true);
1142				unlock_extent(&BTRFS_I(inode)->io_tree,
1143					      key.offset, end, &cached_state);
1144			}
1145		}
1146
1147		ret = get_new_location(rc->data_inode, &new_bytenr,
1148				       bytenr, num_bytes);
1149		if (ret) {
1150			/*
1151			 * Don't have to abort since we've not changed anything
1152			 * in the file extent yet.
1153			 */
1154			break;
1155		}
1156
1157		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1158		dirty = 1;
1159
1160		key.offset -= btrfs_file_extent_offset(leaf, fi);
1161		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1162				       num_bytes, parent);
1163		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1164				    key.objectid, key.offset,
1165				    root->root_key.objectid, false);
1166		ret = btrfs_inc_extent_ref(trans, &ref);
1167		if (ret) {
1168			btrfs_abort_transaction(trans, ret);
1169			break;
1170		}
1171
1172		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1173				       num_bytes, parent);
1174		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1175				    key.objectid, key.offset,
1176				    root->root_key.objectid, false);
1177		ret = btrfs_free_extent(trans, &ref);
1178		if (ret) {
1179			btrfs_abort_transaction(trans, ret);
1180			break;
1181		}
1182	}
1183	if (dirty)
1184		btrfs_mark_buffer_dirty(trans, leaf);
1185	if (inode)
1186		btrfs_add_delayed_iput(BTRFS_I(inode));
1187	return ret;
1188}
1189
1190static noinline_for_stack
1191int memcmp_node_keys(struct extent_buffer *eb, int slot,
1192		     struct btrfs_path *path, int level)
1193{
1194	struct btrfs_disk_key key1;
1195	struct btrfs_disk_key key2;
1196	btrfs_node_key(eb, &key1, slot);
1197	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1198	return memcmp(&key1, &key2, sizeof(key1));
1199}
1200
1201/*
1202 * try to replace tree blocks in fs tree with the new blocks
1203 * in reloc tree. tree blocks haven't been modified since the
1204 * reloc tree was create can be replaced.
1205 *
1206 * if a block was replaced, level of the block + 1 is returned.
1207 * if no block got replaced, 0 is returned. if there are other
1208 * errors, a negative error number is returned.
1209 */
1210static noinline_for_stack
1211int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1212		 struct btrfs_root *dest, struct btrfs_root *src,
1213		 struct btrfs_path *path, struct btrfs_key *next_key,
1214		 int lowest_level, int max_level)
1215{
1216	struct btrfs_fs_info *fs_info = dest->fs_info;
1217	struct extent_buffer *eb;
1218	struct extent_buffer *parent;
1219	struct btrfs_ref ref = { 0 };
1220	struct btrfs_key key;
1221	u64 old_bytenr;
1222	u64 new_bytenr;
1223	u64 old_ptr_gen;
1224	u64 new_ptr_gen;
1225	u64 last_snapshot;
1226	u32 blocksize;
1227	int cow = 0;
1228	int level;
1229	int ret;
1230	int slot;
1231
1232	ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1233	ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1234
1235	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1236again:
1237	slot = path->slots[lowest_level];
1238	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1239
1240	eb = btrfs_lock_root_node(dest);
1241	level = btrfs_header_level(eb);
1242
1243	if (level < lowest_level) {
1244		btrfs_tree_unlock(eb);
1245		free_extent_buffer(eb);
1246		return 0;
1247	}
1248
1249	if (cow) {
1250		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1251				      BTRFS_NESTING_COW);
1252		if (ret) {
1253			btrfs_tree_unlock(eb);
1254			free_extent_buffer(eb);
1255			return ret;
1256		}
1257	}
1258
1259	if (next_key) {
1260		next_key->objectid = (u64)-1;
1261		next_key->type = (u8)-1;
1262		next_key->offset = (u64)-1;
1263	}
1264
1265	parent = eb;
1266	while (1) {
1267		level = btrfs_header_level(parent);
1268		ASSERT(level >= lowest_level);
1269
1270		ret = btrfs_bin_search(parent, 0, &key, &slot);
1271		if (ret < 0)
1272			break;
1273		if (ret && slot > 0)
1274			slot--;
1275
1276		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1277			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1278
1279		old_bytenr = btrfs_node_blockptr(parent, slot);
1280		blocksize = fs_info->nodesize;
1281		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1282
1283		if (level <= max_level) {
1284			eb = path->nodes[level];
1285			new_bytenr = btrfs_node_blockptr(eb,
1286							path->slots[level]);
1287			new_ptr_gen = btrfs_node_ptr_generation(eb,
1288							path->slots[level]);
1289		} else {
1290			new_bytenr = 0;
1291			new_ptr_gen = 0;
1292		}
1293
1294		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1295			ret = level;
1296			break;
1297		}
1298
1299		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1300		    memcmp_node_keys(parent, slot, path, level)) {
1301			if (level <= lowest_level) {
1302				ret = 0;
1303				break;
1304			}
1305
1306			eb = btrfs_read_node_slot(parent, slot);
1307			if (IS_ERR(eb)) {
1308				ret = PTR_ERR(eb);
1309				break;
1310			}
1311			btrfs_tree_lock(eb);
1312			if (cow) {
1313				ret = btrfs_cow_block(trans, dest, eb, parent,
1314						      slot, &eb,
1315						      BTRFS_NESTING_COW);
1316				if (ret) {
1317					btrfs_tree_unlock(eb);
1318					free_extent_buffer(eb);
1319					break;
1320				}
1321			}
1322
1323			btrfs_tree_unlock(parent);
1324			free_extent_buffer(parent);
1325
1326			parent = eb;
1327			continue;
1328		}
1329
1330		if (!cow) {
1331			btrfs_tree_unlock(parent);
1332			free_extent_buffer(parent);
1333			cow = 1;
1334			goto again;
1335		}
1336
1337		btrfs_node_key_to_cpu(path->nodes[level], &key,
1338				      path->slots[level]);
1339		btrfs_release_path(path);
1340
1341		path->lowest_level = level;
1342		set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1343		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1344		clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1345		path->lowest_level = 0;
1346		if (ret) {
1347			if (ret > 0)
1348				ret = -ENOENT;
1349			break;
1350		}
1351
1352		/*
1353		 * Info qgroup to trace both subtrees.
1354		 *
1355		 * We must trace both trees.
1356		 * 1) Tree reloc subtree
1357		 *    If not traced, we will leak data numbers
1358		 * 2) Fs subtree
1359		 *    If not traced, we will double count old data
1360		 *
1361		 * We don't scan the subtree right now, but only record
1362		 * the swapped tree blocks.
1363		 * The real subtree rescan is delayed until we have new
1364		 * CoW on the subtree root node before transaction commit.
1365		 */
1366		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1367				rc->block_group, parent, slot,
1368				path->nodes[level], path->slots[level],
1369				last_snapshot);
1370		if (ret < 0)
1371			break;
1372		/*
1373		 * swap blocks in fs tree and reloc tree.
1374		 */
1375		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1376		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1377		btrfs_mark_buffer_dirty(trans, parent);
1378
1379		btrfs_set_node_blockptr(path->nodes[level],
1380					path->slots[level], old_bytenr);
1381		btrfs_set_node_ptr_generation(path->nodes[level],
1382					      path->slots[level], old_ptr_gen);
1383		btrfs_mark_buffer_dirty(trans, path->nodes[level]);
1384
1385		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1386				       blocksize, path->nodes[level]->start);
1387		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1388				    0, true);
1389		ret = btrfs_inc_extent_ref(trans, &ref);
1390		if (ret) {
1391			btrfs_abort_transaction(trans, ret);
1392			break;
1393		}
1394		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1395				       blocksize, 0);
1396		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1397				    true);
1398		ret = btrfs_inc_extent_ref(trans, &ref);
1399		if (ret) {
1400			btrfs_abort_transaction(trans, ret);
1401			break;
1402		}
1403
1404		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1405				       blocksize, path->nodes[level]->start);
1406		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1407				    0, true);
1408		ret = btrfs_free_extent(trans, &ref);
1409		if (ret) {
1410			btrfs_abort_transaction(trans, ret);
1411			break;
1412		}
1413
1414		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1415				       blocksize, 0);
1416		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1417				    0, true);
1418		ret = btrfs_free_extent(trans, &ref);
1419		if (ret) {
1420			btrfs_abort_transaction(trans, ret);
1421			break;
1422		}
1423
1424		btrfs_unlock_up_safe(path, 0);
1425
1426		ret = level;
1427		break;
1428	}
1429	btrfs_tree_unlock(parent);
1430	free_extent_buffer(parent);
1431	return ret;
1432}
1433
1434/*
1435 * helper to find next relocated block in reloc tree
1436 */
1437static noinline_for_stack
1438int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1439		       int *level)
1440{
1441	struct extent_buffer *eb;
1442	int i;
1443	u64 last_snapshot;
1444	u32 nritems;
1445
1446	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1447
1448	for (i = 0; i < *level; i++) {
1449		free_extent_buffer(path->nodes[i]);
1450		path->nodes[i] = NULL;
1451	}
1452
1453	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1454		eb = path->nodes[i];
1455		nritems = btrfs_header_nritems(eb);
1456		while (path->slots[i] + 1 < nritems) {
1457			path->slots[i]++;
1458			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1459			    last_snapshot)
1460				continue;
1461
1462			*level = i;
1463			return 0;
1464		}
1465		free_extent_buffer(path->nodes[i]);
1466		path->nodes[i] = NULL;
1467	}
1468	return 1;
1469}
1470
1471/*
1472 * walk down reloc tree to find relocated block of lowest level
1473 */
1474static noinline_for_stack
1475int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1476			 int *level)
1477{
1478	struct extent_buffer *eb = NULL;
1479	int i;
1480	u64 ptr_gen = 0;
1481	u64 last_snapshot;
1482	u32 nritems;
1483
1484	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1485
1486	for (i = *level; i > 0; i--) {
1487		eb = path->nodes[i];
1488		nritems = btrfs_header_nritems(eb);
1489		while (path->slots[i] < nritems) {
1490			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1491			if (ptr_gen > last_snapshot)
1492				break;
1493			path->slots[i]++;
1494		}
1495		if (path->slots[i] >= nritems) {
1496			if (i == *level)
1497				break;
1498			*level = i + 1;
1499			return 0;
1500		}
1501		if (i == 1) {
1502			*level = i;
1503			return 0;
1504		}
1505
1506		eb = btrfs_read_node_slot(eb, path->slots[i]);
1507		if (IS_ERR(eb))
1508			return PTR_ERR(eb);
1509		BUG_ON(btrfs_header_level(eb) != i - 1);
1510		path->nodes[i - 1] = eb;
1511		path->slots[i - 1] = 0;
1512	}
1513	return 1;
1514}
1515
1516/*
1517 * invalidate extent cache for file extents whose key in range of
1518 * [min_key, max_key)
1519 */
1520static int invalidate_extent_cache(struct btrfs_root *root,
1521				   struct btrfs_key *min_key,
1522				   struct btrfs_key *max_key)
1523{
1524	struct btrfs_fs_info *fs_info = root->fs_info;
1525	struct inode *inode = NULL;
1526	u64 objectid;
1527	u64 start, end;
1528	u64 ino;
1529
1530	objectid = min_key->objectid;
1531	while (1) {
1532		struct extent_state *cached_state = NULL;
1533
1534		cond_resched();
1535		iput(inode);
1536
1537		if (objectid > max_key->objectid)
1538			break;
1539
1540		inode = find_next_inode(root, objectid);
1541		if (!inode)
1542			break;
1543		ino = btrfs_ino(BTRFS_I(inode));
1544
1545		if (ino > max_key->objectid) {
1546			iput(inode);
1547			break;
1548		}
1549
1550		objectid = ino + 1;
1551		if (!S_ISREG(inode->i_mode))
1552			continue;
1553
1554		if (unlikely(min_key->objectid == ino)) {
1555			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1556				continue;
1557			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1558				start = 0;
1559			else {
1560				start = min_key->offset;
1561				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1562			}
1563		} else {
1564			start = 0;
1565		}
1566
1567		if (unlikely(max_key->objectid == ino)) {
1568			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1569				continue;
1570			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1571				end = (u64)-1;
1572			} else {
1573				if (max_key->offset == 0)
1574					continue;
1575				end = max_key->offset;
1576				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1577				end--;
1578			}
1579		} else {
1580			end = (u64)-1;
1581		}
1582
1583		/* the lock_extent waits for read_folio to complete */
1584		lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1585		btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true);
1586		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1587	}
1588	return 0;
1589}
1590
1591static int find_next_key(struct btrfs_path *path, int level,
1592			 struct btrfs_key *key)
1593
1594{
1595	while (level < BTRFS_MAX_LEVEL) {
1596		if (!path->nodes[level])
1597			break;
1598		if (path->slots[level] + 1 <
1599		    btrfs_header_nritems(path->nodes[level])) {
1600			btrfs_node_key_to_cpu(path->nodes[level], key,
1601					      path->slots[level] + 1);
1602			return 0;
1603		}
1604		level++;
1605	}
1606	return 1;
1607}
1608
1609/*
1610 * Insert current subvolume into reloc_control::dirty_subvol_roots
1611 */
1612static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1613			       struct reloc_control *rc,
1614			       struct btrfs_root *root)
1615{
1616	struct btrfs_root *reloc_root = root->reloc_root;
1617	struct btrfs_root_item *reloc_root_item;
1618	int ret;
1619
1620	/* @root must be a subvolume tree root with a valid reloc tree */
1621	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1622	ASSERT(reloc_root);
1623
1624	reloc_root_item = &reloc_root->root_item;
1625	memset(&reloc_root_item->drop_progress, 0,
1626		sizeof(reloc_root_item->drop_progress));
1627	btrfs_set_root_drop_level(reloc_root_item, 0);
1628	btrfs_set_root_refs(reloc_root_item, 0);
1629	ret = btrfs_update_reloc_root(trans, root);
1630	if (ret)
1631		return ret;
1632
1633	if (list_empty(&root->reloc_dirty_list)) {
1634		btrfs_grab_root(root);
1635		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1636	}
1637
1638	return 0;
1639}
1640
1641static int clean_dirty_subvols(struct reloc_control *rc)
1642{
1643	struct btrfs_root *root;
1644	struct btrfs_root *next;
1645	int ret = 0;
1646	int ret2;
1647
1648	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1649				 reloc_dirty_list) {
1650		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1651			/* Merged subvolume, cleanup its reloc root */
1652			struct btrfs_root *reloc_root = root->reloc_root;
1653
1654			list_del_init(&root->reloc_dirty_list);
1655			root->reloc_root = NULL;
1656			/*
1657			 * Need barrier to ensure clear_bit() only happens after
1658			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1659			 */
1660			smp_wmb();
1661			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1662			if (reloc_root) {
1663				/*
1664				 * btrfs_drop_snapshot drops our ref we hold for
1665				 * ->reloc_root.  If it fails however we must
1666				 * drop the ref ourselves.
1667				 */
1668				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1669				if (ret2 < 0) {
1670					btrfs_put_root(reloc_root);
1671					if (!ret)
1672						ret = ret2;
1673				}
1674			}
1675			btrfs_put_root(root);
1676		} else {
1677			/* Orphan reloc tree, just clean it up */
1678			ret2 = btrfs_drop_snapshot(root, 0, 1);
1679			if (ret2 < 0) {
1680				btrfs_put_root(root);
1681				if (!ret)
1682					ret = ret2;
1683			}
1684		}
1685	}
1686	return ret;
1687}
1688
1689/*
1690 * merge the relocated tree blocks in reloc tree with corresponding
1691 * fs tree.
1692 */
1693static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1694					       struct btrfs_root *root)
1695{
1696	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1697	struct btrfs_key key;
1698	struct btrfs_key next_key;
1699	struct btrfs_trans_handle *trans = NULL;
1700	struct btrfs_root *reloc_root;
1701	struct btrfs_root_item *root_item;
1702	struct btrfs_path *path;
1703	struct extent_buffer *leaf;
1704	int reserve_level;
1705	int level;
1706	int max_level;
1707	int replaced = 0;
1708	int ret = 0;
1709	u32 min_reserved;
1710
1711	path = btrfs_alloc_path();
1712	if (!path)
1713		return -ENOMEM;
1714	path->reada = READA_FORWARD;
1715
1716	reloc_root = root->reloc_root;
1717	root_item = &reloc_root->root_item;
1718
1719	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1720		level = btrfs_root_level(root_item);
1721		atomic_inc(&reloc_root->node->refs);
1722		path->nodes[level] = reloc_root->node;
1723		path->slots[level] = 0;
1724	} else {
1725		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1726
1727		level = btrfs_root_drop_level(root_item);
1728		BUG_ON(level == 0);
1729		path->lowest_level = level;
1730		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1731		path->lowest_level = 0;
1732		if (ret < 0) {
1733			btrfs_free_path(path);
1734			return ret;
1735		}
1736
1737		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1738				      path->slots[level]);
1739		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1740
1741		btrfs_unlock_up_safe(path, 0);
1742	}
1743
1744	/*
1745	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1746	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1747	 * block COW, we COW at most from level 1 to root level for each tree.
1748	 *
1749	 * Thus the needed metadata size is at most root_level * nodesize,
1750	 * and * 2 since we have two trees to COW.
1751	 */
1752	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1753	min_reserved = fs_info->nodesize * reserve_level * 2;
1754	memset(&next_key, 0, sizeof(next_key));
1755
1756	while (1) {
1757		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1758					     min_reserved,
1759					     BTRFS_RESERVE_FLUSH_LIMIT);
1760		if (ret)
1761			goto out;
1762		trans = btrfs_start_transaction(root, 0);
1763		if (IS_ERR(trans)) {
1764			ret = PTR_ERR(trans);
1765			trans = NULL;
1766			goto out;
1767		}
1768
1769		/*
1770		 * At this point we no longer have a reloc_control, so we can't
1771		 * depend on btrfs_init_reloc_root to update our last_trans.
1772		 *
1773		 * But that's ok, we started the trans handle on our
1774		 * corresponding fs_root, which means it's been added to the
1775		 * dirty list.  At commit time we'll still call
1776		 * btrfs_update_reloc_root() and update our root item
1777		 * appropriately.
1778		 */
1779		reloc_root->last_trans = trans->transid;
1780		trans->block_rsv = rc->block_rsv;
1781
1782		replaced = 0;
1783		max_level = level;
1784
1785		ret = walk_down_reloc_tree(reloc_root, path, &level);
1786		if (ret < 0)
1787			goto out;
1788		if (ret > 0)
1789			break;
1790
1791		if (!find_next_key(path, level, &key) &&
1792		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1793			ret = 0;
1794		} else {
1795			ret = replace_path(trans, rc, root, reloc_root, path,
1796					   &next_key, level, max_level);
1797		}
1798		if (ret < 0)
1799			goto out;
1800		if (ret > 0) {
1801			level = ret;
1802			btrfs_node_key_to_cpu(path->nodes[level], &key,
1803					      path->slots[level]);
1804			replaced = 1;
1805		}
1806
1807		ret = walk_up_reloc_tree(reloc_root, path, &level);
1808		if (ret > 0)
1809			break;
1810
1811		BUG_ON(level == 0);
1812		/*
1813		 * save the merging progress in the drop_progress.
1814		 * this is OK since root refs == 1 in this case.
1815		 */
1816		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1817			       path->slots[level]);
1818		btrfs_set_root_drop_level(root_item, level);
1819
1820		btrfs_end_transaction_throttle(trans);
1821		trans = NULL;
1822
1823		btrfs_btree_balance_dirty(fs_info);
1824
1825		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1826			invalidate_extent_cache(root, &key, &next_key);
1827	}
1828
1829	/*
1830	 * handle the case only one block in the fs tree need to be
1831	 * relocated and the block is tree root.
1832	 */
1833	leaf = btrfs_lock_root_node(root);
1834	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1835			      BTRFS_NESTING_COW);
1836	btrfs_tree_unlock(leaf);
1837	free_extent_buffer(leaf);
1838out:
1839	btrfs_free_path(path);
1840
1841	if (ret == 0) {
1842		ret = insert_dirty_subvol(trans, rc, root);
1843		if (ret)
1844			btrfs_abort_transaction(trans, ret);
1845	}
1846
1847	if (trans)
1848		btrfs_end_transaction_throttle(trans);
1849
1850	btrfs_btree_balance_dirty(fs_info);
1851
1852	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1853		invalidate_extent_cache(root, &key, &next_key);
1854
1855	return ret;
1856}
1857
1858static noinline_for_stack
1859int prepare_to_merge(struct reloc_control *rc, int err)
1860{
1861	struct btrfs_root *root = rc->extent_root;
1862	struct btrfs_fs_info *fs_info = root->fs_info;
1863	struct btrfs_root *reloc_root;
1864	struct btrfs_trans_handle *trans;
1865	LIST_HEAD(reloc_roots);
1866	u64 num_bytes = 0;
1867	int ret;
1868
1869	mutex_lock(&fs_info->reloc_mutex);
1870	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1871	rc->merging_rsv_size += rc->nodes_relocated * 2;
1872	mutex_unlock(&fs_info->reloc_mutex);
1873
1874again:
1875	if (!err) {
1876		num_bytes = rc->merging_rsv_size;
1877		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1878					  BTRFS_RESERVE_FLUSH_ALL);
1879		if (ret)
1880			err = ret;
1881	}
1882
1883	trans = btrfs_join_transaction(rc->extent_root);
1884	if (IS_ERR(trans)) {
1885		if (!err)
1886			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1887						num_bytes, NULL);
1888		return PTR_ERR(trans);
1889	}
1890
1891	if (!err) {
1892		if (num_bytes != rc->merging_rsv_size) {
1893			btrfs_end_transaction(trans);
1894			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1895						num_bytes, NULL);
1896			goto again;
1897		}
1898	}
1899
1900	rc->merge_reloc_tree = 1;
1901
1902	while (!list_empty(&rc->reloc_roots)) {
1903		reloc_root = list_entry(rc->reloc_roots.next,
1904					struct btrfs_root, root_list);
1905		list_del_init(&reloc_root->root_list);
1906
1907		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1908				false);
1909		if (IS_ERR(root)) {
1910			/*
1911			 * Even if we have an error we need this reloc root
1912			 * back on our list so we can clean up properly.
1913			 */
1914			list_add(&reloc_root->root_list, &reloc_roots);
1915			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1916			if (!err)
1917				err = PTR_ERR(root);
1918			break;
1919		}
1920
1921		if (unlikely(root->reloc_root != reloc_root)) {
1922			if (root->reloc_root) {
1923				btrfs_err(fs_info,
1924"reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1925					  root->root_key.objectid,
1926					  root->reloc_root->root_key.objectid,
1927					  root->reloc_root->root_key.type,
1928					  root->reloc_root->root_key.offset,
1929					  btrfs_root_generation(
1930						  &root->reloc_root->root_item),
1931					  reloc_root->root_key.objectid,
1932					  reloc_root->root_key.type,
1933					  reloc_root->root_key.offset,
1934					  btrfs_root_generation(
1935						  &reloc_root->root_item));
1936			} else {
1937				btrfs_err(fs_info,
1938"reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1939					  root->root_key.objectid,
1940					  reloc_root->root_key.objectid,
1941					  reloc_root->root_key.type,
1942					  reloc_root->root_key.offset,
1943					  btrfs_root_generation(
1944						  &reloc_root->root_item));
1945			}
1946			list_add(&reloc_root->root_list, &reloc_roots);
1947			btrfs_put_root(root);
1948			btrfs_abort_transaction(trans, -EUCLEAN);
1949			if (!err)
1950				err = -EUCLEAN;
1951			break;
1952		}
1953
1954		/*
1955		 * set reference count to 1, so btrfs_recover_relocation
1956		 * knows it should resumes merging
1957		 */
1958		if (!err)
1959			btrfs_set_root_refs(&reloc_root->root_item, 1);
1960		ret = btrfs_update_reloc_root(trans, root);
1961
1962		/*
1963		 * Even if we have an error we need this reloc root back on our
1964		 * list so we can clean up properly.
1965		 */
1966		list_add(&reloc_root->root_list, &reloc_roots);
1967		btrfs_put_root(root);
1968
1969		if (ret) {
1970			btrfs_abort_transaction(trans, ret);
1971			if (!err)
1972				err = ret;
1973			break;
1974		}
1975	}
1976
1977	list_splice(&reloc_roots, &rc->reloc_roots);
1978
1979	if (!err)
1980		err = btrfs_commit_transaction(trans);
1981	else
1982		btrfs_end_transaction(trans);
1983	return err;
1984}
1985
1986static noinline_for_stack
1987void free_reloc_roots(struct list_head *list)
1988{
1989	struct btrfs_root *reloc_root, *tmp;
1990
1991	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1992		__del_reloc_root(reloc_root);
1993}
1994
1995static noinline_for_stack
1996void merge_reloc_roots(struct reloc_control *rc)
1997{
1998	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1999	struct btrfs_root *root;
2000	struct btrfs_root *reloc_root;
2001	LIST_HEAD(reloc_roots);
2002	int found = 0;
2003	int ret = 0;
2004again:
2005	root = rc->extent_root;
2006
2007	/*
2008	 * this serializes us with btrfs_record_root_in_transaction,
2009	 * we have to make sure nobody is in the middle of
2010	 * adding their roots to the list while we are
2011	 * doing this splice
2012	 */
2013	mutex_lock(&fs_info->reloc_mutex);
2014	list_splice_init(&rc->reloc_roots, &reloc_roots);
2015	mutex_unlock(&fs_info->reloc_mutex);
2016
2017	while (!list_empty(&reloc_roots)) {
2018		found = 1;
2019		reloc_root = list_entry(reloc_roots.next,
2020					struct btrfs_root, root_list);
2021
2022		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
2023					 false);
2024		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2025			if (WARN_ON(IS_ERR(root))) {
2026				/*
2027				 * For recovery we read the fs roots on mount,
2028				 * and if we didn't find the root then we marked
2029				 * the reloc root as a garbage root.  For normal
2030				 * relocation obviously the root should exist in
2031				 * memory.  However there's no reason we can't
2032				 * handle the error properly here just in case.
2033				 */
2034				ret = PTR_ERR(root);
2035				goto out;
2036			}
2037			if (WARN_ON(root->reloc_root != reloc_root)) {
2038				/*
2039				 * This can happen if on-disk metadata has some
2040				 * corruption, e.g. bad reloc tree key offset.
2041				 */
2042				ret = -EINVAL;
2043				goto out;
2044			}
2045			ret = merge_reloc_root(rc, root);
2046			btrfs_put_root(root);
2047			if (ret) {
2048				if (list_empty(&reloc_root->root_list))
2049					list_add_tail(&reloc_root->root_list,
2050						      &reloc_roots);
2051				goto out;
2052			}
2053		} else {
2054			if (!IS_ERR(root)) {
2055				if (root->reloc_root == reloc_root) {
2056					root->reloc_root = NULL;
2057					btrfs_put_root(reloc_root);
2058				}
2059				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2060					  &root->state);
2061				btrfs_put_root(root);
2062			}
2063
2064			list_del_init(&reloc_root->root_list);
2065			/* Don't forget to queue this reloc root for cleanup */
2066			list_add_tail(&reloc_root->reloc_dirty_list,
2067				      &rc->dirty_subvol_roots);
2068		}
2069	}
2070
2071	if (found) {
2072		found = 0;
2073		goto again;
2074	}
2075out:
2076	if (ret) {
2077		btrfs_handle_fs_error(fs_info, ret, NULL);
2078		free_reloc_roots(&reloc_roots);
2079
2080		/* new reloc root may be added */
2081		mutex_lock(&fs_info->reloc_mutex);
2082		list_splice_init(&rc->reloc_roots, &reloc_roots);
2083		mutex_unlock(&fs_info->reloc_mutex);
2084		free_reloc_roots(&reloc_roots);
2085	}
2086
2087	/*
2088	 * We used to have
2089	 *
2090	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2091	 *
2092	 * here, but it's wrong.  If we fail to start the transaction in
2093	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2094	 * have actually been removed from the reloc_root_tree rb tree.  This is
2095	 * fine because we're bailing here, and we hold a reference on the root
2096	 * for the list that holds it, so these roots will be cleaned up when we
2097	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2098	 * will be cleaned up on unmount.
2099	 *
2100	 * The remaining nodes will be cleaned up by free_reloc_control.
2101	 */
2102}
2103
2104static void free_block_list(struct rb_root *blocks)
2105{
2106	struct tree_block *block;
2107	struct rb_node *rb_node;
2108	while ((rb_node = rb_first(blocks))) {
2109		block = rb_entry(rb_node, struct tree_block, rb_node);
2110		rb_erase(rb_node, blocks);
2111		kfree(block);
2112	}
2113}
2114
2115static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2116				      struct btrfs_root *reloc_root)
2117{
2118	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2119	struct btrfs_root *root;
2120	int ret;
2121
2122	if (reloc_root->last_trans == trans->transid)
2123		return 0;
2124
2125	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2126
2127	/*
2128	 * This should succeed, since we can't have a reloc root without having
2129	 * already looked up the actual root and created the reloc root for this
2130	 * root.
2131	 *
2132	 * However if there's some sort of corruption where we have a ref to a
2133	 * reloc root without a corresponding root this could return ENOENT.
2134	 */
2135	if (IS_ERR(root)) {
2136		ASSERT(0);
2137		return PTR_ERR(root);
2138	}
2139	if (root->reloc_root != reloc_root) {
2140		ASSERT(0);
2141		btrfs_err(fs_info,
2142			  "root %llu has two reloc roots associated with it",
2143			  reloc_root->root_key.offset);
2144		btrfs_put_root(root);
2145		return -EUCLEAN;
2146	}
2147	ret = btrfs_record_root_in_trans(trans, root);
2148	btrfs_put_root(root);
2149
2150	return ret;
2151}
2152
2153static noinline_for_stack
2154struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2155				     struct reloc_control *rc,
2156				     struct btrfs_backref_node *node,
2157				     struct btrfs_backref_edge *edges[])
2158{
2159	struct btrfs_backref_node *next;
2160	struct btrfs_root *root;
2161	int index = 0;
2162	int ret;
2163
2164	next = node;
2165	while (1) {
2166		cond_resched();
2167		next = walk_up_backref(next, edges, &index);
2168		root = next->root;
2169
2170		/*
2171		 * If there is no root, then our references for this block are
2172		 * incomplete, as we should be able to walk all the way up to a
2173		 * block that is owned by a root.
2174		 *
2175		 * This path is only for SHAREABLE roots, so if we come upon a
2176		 * non-SHAREABLE root then we have backrefs that resolve
2177		 * improperly.
2178		 *
2179		 * Both of these cases indicate file system corruption, or a bug
2180		 * in the backref walking code.
2181		 */
2182		if (!root) {
2183			ASSERT(0);
2184			btrfs_err(trans->fs_info,
2185		"bytenr %llu doesn't have a backref path ending in a root",
2186				  node->bytenr);
2187			return ERR_PTR(-EUCLEAN);
2188		}
2189		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2190			ASSERT(0);
2191			btrfs_err(trans->fs_info,
2192	"bytenr %llu has multiple refs with one ending in a non-shareable root",
2193				  node->bytenr);
2194			return ERR_PTR(-EUCLEAN);
2195		}
2196
2197		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2198			ret = record_reloc_root_in_trans(trans, root);
2199			if (ret)
2200				return ERR_PTR(ret);
2201			break;
2202		}
2203
2204		ret = btrfs_record_root_in_trans(trans, root);
2205		if (ret)
2206			return ERR_PTR(ret);
2207		root = root->reloc_root;
2208
2209		/*
2210		 * We could have raced with another thread which failed, so
2211		 * root->reloc_root may not be set, return ENOENT in this case.
2212		 */
2213		if (!root)
2214			return ERR_PTR(-ENOENT);
2215
2216		if (next->new_bytenr != root->node->start) {
2217			/*
2218			 * We just created the reloc root, so we shouldn't have
2219			 * ->new_bytenr set and this shouldn't be in the changed
2220			 *  list.  If it is then we have multiple roots pointing
2221			 *  at the same bytenr which indicates corruption, or
2222			 *  we've made a mistake in the backref walking code.
2223			 */
2224			ASSERT(next->new_bytenr == 0);
2225			ASSERT(list_empty(&next->list));
2226			if (next->new_bytenr || !list_empty(&next->list)) {
2227				btrfs_err(trans->fs_info,
2228	"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2229					  node->bytenr, next->bytenr);
2230				return ERR_PTR(-EUCLEAN);
2231			}
2232
2233			next->new_bytenr = root->node->start;
2234			btrfs_put_root(next->root);
2235			next->root = btrfs_grab_root(root);
2236			ASSERT(next->root);
2237			list_add_tail(&next->list,
2238				      &rc->backref_cache.changed);
2239			mark_block_processed(rc, next);
2240			break;
2241		}
2242
2243		WARN_ON(1);
2244		root = NULL;
2245		next = walk_down_backref(edges, &index);
2246		if (!next || next->level <= node->level)
2247			break;
2248	}
2249	if (!root) {
2250		/*
2251		 * This can happen if there's fs corruption or if there's a bug
2252		 * in the backref lookup code.
2253		 */
2254		ASSERT(0);
2255		return ERR_PTR(-ENOENT);
2256	}
2257
2258	next = node;
2259	/* setup backref node path for btrfs_reloc_cow_block */
2260	while (1) {
2261		rc->backref_cache.path[next->level] = next;
2262		if (--index < 0)
2263			break;
2264		next = edges[index]->node[UPPER];
2265	}
2266	return root;
2267}
2268
2269/*
2270 * Select a tree root for relocation.
2271 *
2272 * Return NULL if the block is not shareable. We should use do_relocation() in
2273 * this case.
2274 *
2275 * Return a tree root pointer if the block is shareable.
2276 * Return -ENOENT if the block is root of reloc tree.
2277 */
2278static noinline_for_stack
2279struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2280{
2281	struct btrfs_backref_node *next;
2282	struct btrfs_root *root;
2283	struct btrfs_root *fs_root = NULL;
2284	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2285	int index = 0;
2286
2287	next = node;
2288	while (1) {
2289		cond_resched();
2290		next = walk_up_backref(next, edges, &index);
2291		root = next->root;
2292
2293		/*
2294		 * This can occur if we have incomplete extent refs leading all
2295		 * the way up a particular path, in this case return -EUCLEAN.
2296		 */
2297		if (!root)
2298			return ERR_PTR(-EUCLEAN);
2299
2300		/* No other choice for non-shareable tree */
2301		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2302			return root;
2303
2304		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2305			fs_root = root;
2306
2307		if (next != node)
2308			return NULL;
2309
2310		next = walk_down_backref(edges, &index);
2311		if (!next || next->level <= node->level)
2312			break;
2313	}
2314
2315	if (!fs_root)
2316		return ERR_PTR(-ENOENT);
2317	return fs_root;
2318}
2319
2320static noinline_for_stack
2321u64 calcu_metadata_size(struct reloc_control *rc,
2322			struct btrfs_backref_node *node, int reserve)
2323{
2324	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2325	struct btrfs_backref_node *next = node;
2326	struct btrfs_backref_edge *edge;
2327	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2328	u64 num_bytes = 0;
2329	int index = 0;
2330
2331	BUG_ON(reserve && node->processed);
2332
2333	while (next) {
2334		cond_resched();
2335		while (1) {
2336			if (next->processed && (reserve || next != node))
2337				break;
2338
2339			num_bytes += fs_info->nodesize;
2340
2341			if (list_empty(&next->upper))
2342				break;
2343
2344			edge = list_entry(next->upper.next,
2345					struct btrfs_backref_edge, list[LOWER]);
2346			edges[index++] = edge;
2347			next = edge->node[UPPER];
2348		}
2349		next = walk_down_backref(edges, &index);
2350	}
2351	return num_bytes;
2352}
2353
2354static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2355				  struct reloc_control *rc,
2356				  struct btrfs_backref_node *node)
2357{
2358	struct btrfs_root *root = rc->extent_root;
2359	struct btrfs_fs_info *fs_info = root->fs_info;
2360	u64 num_bytes;
2361	int ret;
2362	u64 tmp;
2363
2364	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2365
2366	trans->block_rsv = rc->block_rsv;
2367	rc->reserved_bytes += num_bytes;
2368
2369	/*
2370	 * We are under a transaction here so we can only do limited flushing.
2371	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2372	 * transaction and try to refill when we can flush all the things.
2373	 */
2374	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2375				     BTRFS_RESERVE_FLUSH_LIMIT);
2376	if (ret) {
2377		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2378		while (tmp <= rc->reserved_bytes)
2379			tmp <<= 1;
2380		/*
2381		 * only one thread can access block_rsv at this point,
2382		 * so we don't need hold lock to protect block_rsv.
2383		 * we expand more reservation size here to allow enough
2384		 * space for relocation and we will return earlier in
2385		 * enospc case.
2386		 */
2387		rc->block_rsv->size = tmp + fs_info->nodesize *
2388				      RELOCATION_RESERVED_NODES;
2389		return -EAGAIN;
2390	}
2391
2392	return 0;
2393}
2394
2395/*
2396 * relocate a block tree, and then update pointers in upper level
2397 * blocks that reference the block to point to the new location.
2398 *
2399 * if called by link_to_upper, the block has already been relocated.
2400 * in that case this function just updates pointers.
2401 */
2402static int do_relocation(struct btrfs_trans_handle *trans,
2403			 struct reloc_control *rc,
2404			 struct btrfs_backref_node *node,
2405			 struct btrfs_key *key,
2406			 struct btrfs_path *path, int lowest)
2407{
2408	struct btrfs_backref_node *upper;
2409	struct btrfs_backref_edge *edge;
2410	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2411	struct btrfs_root *root;
2412	struct extent_buffer *eb;
2413	u32 blocksize;
2414	u64 bytenr;
2415	int slot;
2416	int ret = 0;
2417
2418	/*
2419	 * If we are lowest then this is the first time we're processing this
2420	 * block, and thus shouldn't have an eb associated with it yet.
2421	 */
2422	ASSERT(!lowest || !node->eb);
2423
2424	path->lowest_level = node->level + 1;
2425	rc->backref_cache.path[node->level] = node;
2426	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2427		struct btrfs_ref ref = { 0 };
2428
2429		cond_resched();
2430
2431		upper = edge->node[UPPER];
2432		root = select_reloc_root(trans, rc, upper, edges);
2433		if (IS_ERR(root)) {
2434			ret = PTR_ERR(root);
2435			goto next;
2436		}
2437
2438		if (upper->eb && !upper->locked) {
2439			if (!lowest) {
2440				ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2441				if (ret < 0)
2442					goto next;
2443				BUG_ON(ret);
2444				bytenr = btrfs_node_blockptr(upper->eb, slot);
2445				if (node->eb->start == bytenr)
2446					goto next;
2447			}
2448			btrfs_backref_drop_node_buffer(upper);
2449		}
2450
2451		if (!upper->eb) {
2452			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2453			if (ret) {
2454				if (ret > 0)
2455					ret = -ENOENT;
2456
2457				btrfs_release_path(path);
2458				break;
2459			}
2460
2461			if (!upper->eb) {
2462				upper->eb = path->nodes[upper->level];
2463				path->nodes[upper->level] = NULL;
2464			} else {
2465				BUG_ON(upper->eb != path->nodes[upper->level]);
2466			}
2467
2468			upper->locked = 1;
2469			path->locks[upper->level] = 0;
2470
2471			slot = path->slots[upper->level];
2472			btrfs_release_path(path);
2473		} else {
2474			ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2475			if (ret < 0)
2476				goto next;
2477			BUG_ON(ret);
2478		}
2479
2480		bytenr = btrfs_node_blockptr(upper->eb, slot);
2481		if (lowest) {
2482			if (bytenr != node->bytenr) {
2483				btrfs_err(root->fs_info,
2484		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2485					  bytenr, node->bytenr, slot,
2486					  upper->eb->start);
2487				ret = -EIO;
2488				goto next;
2489			}
2490		} else {
2491			if (node->eb->start == bytenr)
2492				goto next;
2493		}
2494
2495		blocksize = root->fs_info->nodesize;
2496		eb = btrfs_read_node_slot(upper->eb, slot);
2497		if (IS_ERR(eb)) {
2498			ret = PTR_ERR(eb);
2499			goto next;
2500		}
2501		btrfs_tree_lock(eb);
2502
2503		if (!node->eb) {
2504			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2505					      slot, &eb, BTRFS_NESTING_COW);
2506			btrfs_tree_unlock(eb);
2507			free_extent_buffer(eb);
2508			if (ret < 0)
2509				goto next;
2510			/*
2511			 * We've just COWed this block, it should have updated
2512			 * the correct backref node entry.
2513			 */
2514			ASSERT(node->eb == eb);
2515		} else {
2516			btrfs_set_node_blockptr(upper->eb, slot,
2517						node->eb->start);
2518			btrfs_set_node_ptr_generation(upper->eb, slot,
2519						      trans->transid);
2520			btrfs_mark_buffer_dirty(trans, upper->eb);
2521
2522			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2523					       node->eb->start, blocksize,
2524					       upper->eb->start);
2525			btrfs_init_tree_ref(&ref, node->level,
2526					    btrfs_header_owner(upper->eb),
2527					    root->root_key.objectid, false);
2528			ret = btrfs_inc_extent_ref(trans, &ref);
2529			if (!ret)
2530				ret = btrfs_drop_subtree(trans, root, eb,
2531							 upper->eb);
2532			if (ret)
2533				btrfs_abort_transaction(trans, ret);
2534		}
2535next:
2536		if (!upper->pending)
2537			btrfs_backref_drop_node_buffer(upper);
2538		else
2539			btrfs_backref_unlock_node_buffer(upper);
2540		if (ret)
2541			break;
2542	}
2543
2544	if (!ret && node->pending) {
2545		btrfs_backref_drop_node_buffer(node);
2546		list_move_tail(&node->list, &rc->backref_cache.changed);
2547		node->pending = 0;
2548	}
2549
2550	path->lowest_level = 0;
2551
2552	/*
2553	 * We should have allocated all of our space in the block rsv and thus
2554	 * shouldn't ENOSPC.
2555	 */
2556	ASSERT(ret != -ENOSPC);
2557	return ret;
2558}
2559
2560static int link_to_upper(struct btrfs_trans_handle *trans,
2561			 struct reloc_control *rc,
2562			 struct btrfs_backref_node *node,
2563			 struct btrfs_path *path)
2564{
2565	struct btrfs_key key;
2566
2567	btrfs_node_key_to_cpu(node->eb, &key, 0);
2568	return do_relocation(trans, rc, node, &key, path, 0);
2569}
2570
2571static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2572				struct reloc_control *rc,
2573				struct btrfs_path *path, int err)
2574{
2575	LIST_HEAD(list);
2576	struct btrfs_backref_cache *cache = &rc->backref_cache;
2577	struct btrfs_backref_node *node;
2578	int level;
2579	int ret;
2580
2581	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2582		while (!list_empty(&cache->pending[level])) {
2583			node = list_entry(cache->pending[level].next,
2584					  struct btrfs_backref_node, list);
2585			list_move_tail(&node->list, &list);
2586			BUG_ON(!node->pending);
2587
2588			if (!err) {
2589				ret = link_to_upper(trans, rc, node, path);
2590				if (ret < 0)
2591					err = ret;
2592			}
2593		}
2594		list_splice_init(&list, &cache->pending[level]);
2595	}
2596	return err;
2597}
2598
2599/*
2600 * mark a block and all blocks directly/indirectly reference the block
2601 * as processed.
2602 */
2603static void update_processed_blocks(struct reloc_control *rc,
2604				    struct btrfs_backref_node *node)
2605{
2606	struct btrfs_backref_node *next = node;
2607	struct btrfs_backref_edge *edge;
2608	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2609	int index = 0;
2610
2611	while (next) {
2612		cond_resched();
2613		while (1) {
2614			if (next->processed)
2615				break;
2616
2617			mark_block_processed(rc, next);
2618
2619			if (list_empty(&next->upper))
2620				break;
2621
2622			edge = list_entry(next->upper.next,
2623					struct btrfs_backref_edge, list[LOWER]);
2624			edges[index++] = edge;
2625			next = edge->node[UPPER];
2626		}
2627		next = walk_down_backref(edges, &index);
2628	}
2629}
2630
2631static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2632{
2633	u32 blocksize = rc->extent_root->fs_info->nodesize;
2634
2635	if (test_range_bit(&rc->processed_blocks, bytenr,
2636			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2637		return 1;
2638	return 0;
2639}
2640
2641static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2642			      struct tree_block *block)
2643{
2644	struct btrfs_tree_parent_check check = {
2645		.level = block->level,
2646		.owner_root = block->owner,
2647		.transid = block->key.offset
2648	};
2649	struct extent_buffer *eb;
2650
2651	eb = read_tree_block(fs_info, block->bytenr, &check);
2652	if (IS_ERR(eb))
2653		return PTR_ERR(eb);
2654	if (!extent_buffer_uptodate(eb)) {
2655		free_extent_buffer(eb);
2656		return -EIO;
2657	}
2658	if (block->level == 0)
2659		btrfs_item_key_to_cpu(eb, &block->key, 0);
2660	else
2661		btrfs_node_key_to_cpu(eb, &block->key, 0);
2662	free_extent_buffer(eb);
2663	block->key_ready = 1;
2664	return 0;
2665}
2666
2667/*
2668 * helper function to relocate a tree block
2669 */
2670static int relocate_tree_block(struct btrfs_trans_handle *trans,
2671				struct reloc_control *rc,
2672				struct btrfs_backref_node *node,
2673				struct btrfs_key *key,
2674				struct btrfs_path *path)
2675{
2676	struct btrfs_root *root;
2677	int ret = 0;
2678
2679	if (!node)
2680		return 0;
2681
2682	/*
2683	 * If we fail here we want to drop our backref_node because we are going
2684	 * to start over and regenerate the tree for it.
2685	 */
2686	ret = reserve_metadata_space(trans, rc, node);
2687	if (ret)
2688		goto out;
2689
2690	BUG_ON(node->processed);
2691	root = select_one_root(node);
2692	if (IS_ERR(root)) {
2693		ret = PTR_ERR(root);
2694
2695		/* See explanation in select_one_root for the -EUCLEAN case. */
2696		ASSERT(ret == -ENOENT);
2697		if (ret == -ENOENT) {
2698			ret = 0;
2699			update_processed_blocks(rc, node);
2700		}
2701		goto out;
2702	}
2703
2704	if (root) {
2705		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2706			/*
2707			 * This block was the root block of a root, and this is
2708			 * the first time we're processing the block and thus it
2709			 * should not have had the ->new_bytenr modified and
2710			 * should have not been included on the changed list.
2711			 *
2712			 * However in the case of corruption we could have
2713			 * multiple refs pointing to the same block improperly,
2714			 * and thus we would trip over these checks.  ASSERT()
2715			 * for the developer case, because it could indicate a
2716			 * bug in the backref code, however error out for a
2717			 * normal user in the case of corruption.
2718			 */
2719			ASSERT(node->new_bytenr == 0);
2720			ASSERT(list_empty(&node->list));
2721			if (node->new_bytenr || !list_empty(&node->list)) {
2722				btrfs_err(root->fs_info,
2723				  "bytenr %llu has improper references to it",
2724					  node->bytenr);
2725				ret = -EUCLEAN;
2726				goto out;
2727			}
2728			ret = btrfs_record_root_in_trans(trans, root);
2729			if (ret)
2730				goto out;
2731			/*
2732			 * Another thread could have failed, need to check if we
2733			 * have reloc_root actually set.
2734			 */
2735			if (!root->reloc_root) {
2736				ret = -ENOENT;
2737				goto out;
2738			}
2739			root = root->reloc_root;
2740			node->new_bytenr = root->node->start;
2741			btrfs_put_root(node->root);
2742			node->root = btrfs_grab_root(root);
2743			ASSERT(node->root);
2744			list_add_tail(&node->list, &rc->backref_cache.changed);
2745		} else {
2746			path->lowest_level = node->level;
2747			if (root == root->fs_info->chunk_root)
2748				btrfs_reserve_chunk_metadata(trans, false);
2749			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2750			btrfs_release_path(path);
2751			if (root == root->fs_info->chunk_root)
2752				btrfs_trans_release_chunk_metadata(trans);
2753			if (ret > 0)
2754				ret = 0;
2755		}
2756		if (!ret)
2757			update_processed_blocks(rc, node);
2758	} else {
2759		ret = do_relocation(trans, rc, node, key, path, 1);
2760	}
2761out:
2762	if (ret || node->level == 0 || node->cowonly)
2763		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2764	return ret;
2765}
2766
2767/*
2768 * relocate a list of blocks
2769 */
2770static noinline_for_stack
2771int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2772			 struct reloc_control *rc, struct rb_root *blocks)
2773{
2774	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2775	struct btrfs_backref_node *node;
2776	struct btrfs_path *path;
2777	struct tree_block *block;
2778	struct tree_block *next;
2779	int ret;
2780	int err = 0;
2781
2782	path = btrfs_alloc_path();
2783	if (!path) {
2784		err = -ENOMEM;
2785		goto out_free_blocks;
2786	}
2787
2788	/* Kick in readahead for tree blocks with missing keys */
2789	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2790		if (!block->key_ready)
2791			btrfs_readahead_tree_block(fs_info, block->bytenr,
2792						   block->owner, 0,
2793						   block->level);
2794	}
2795
2796	/* Get first keys */
2797	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2798		if (!block->key_ready) {
2799			err = get_tree_block_key(fs_info, block);
2800			if (err)
2801				goto out_free_path;
2802		}
2803	}
2804
2805	/* Do tree relocation */
2806	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2807		node = build_backref_tree(trans, rc, &block->key,
2808					  block->level, block->bytenr);
2809		if (IS_ERR(node)) {
2810			err = PTR_ERR(node);
2811			goto out;
2812		}
2813
2814		ret = relocate_tree_block(trans, rc, node, &block->key,
2815					  path);
2816		if (ret < 0) {
2817			err = ret;
2818			break;
2819		}
2820	}
2821out:
2822	err = finish_pending_nodes(trans, rc, path, err);
2823
2824out_free_path:
2825	btrfs_free_path(path);
2826out_free_blocks:
2827	free_block_list(blocks);
2828	return err;
2829}
2830
2831static noinline_for_stack int prealloc_file_extent_cluster(
2832				struct btrfs_inode *inode,
2833				struct file_extent_cluster *cluster)
2834{
2835	u64 alloc_hint = 0;
2836	u64 start;
2837	u64 end;
2838	u64 offset = inode->index_cnt;
2839	u64 num_bytes;
2840	int nr;
2841	int ret = 0;
2842	u64 i_size = i_size_read(&inode->vfs_inode);
2843	u64 prealloc_start = cluster->start - offset;
2844	u64 prealloc_end = cluster->end - offset;
2845	u64 cur_offset = prealloc_start;
2846
2847	/*
2848	 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2849	 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2850	 * btrfs_do_readpage() call of previously relocated file cluster.
2851	 *
2852	 * If the current cluster starts in the above range, btrfs_do_readpage()
2853	 * will skip the read, and relocate_one_page() will later writeback
2854	 * the padding zeros as new data, causing data corruption.
2855	 *
2856	 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2857	 */
2858	if (!PAGE_ALIGNED(i_size)) {
2859		struct address_space *mapping = inode->vfs_inode.i_mapping;
2860		struct btrfs_fs_info *fs_info = inode->root->fs_info;
2861		const u32 sectorsize = fs_info->sectorsize;
2862		struct page *page;
2863
2864		ASSERT(sectorsize < PAGE_SIZE);
2865		ASSERT(IS_ALIGNED(i_size, sectorsize));
2866
2867		/*
2868		 * Subpage can't handle page with DIRTY but without UPTODATE
2869		 * bit as it can lead to the following deadlock:
2870		 *
2871		 * btrfs_read_folio()
2872		 * | Page already *locked*
2873		 * |- btrfs_lock_and_flush_ordered_range()
2874		 *    |- btrfs_start_ordered_extent()
2875		 *       |- extent_write_cache_pages()
2876		 *          |- lock_page()
2877		 *             We try to lock the page we already hold.
2878		 *
2879		 * Here we just writeback the whole data reloc inode, so that
2880		 * we will be ensured to have no dirty range in the page, and
2881		 * are safe to clear the uptodate bits.
2882		 *
2883		 * This shouldn't cause too much overhead, as we need to write
2884		 * the data back anyway.
2885		 */
2886		ret = filemap_write_and_wait(mapping);
2887		if (ret < 0)
2888			return ret;
2889
2890		clear_extent_bits(&inode->io_tree, i_size,
2891				  round_up(i_size, PAGE_SIZE) - 1,
2892				  EXTENT_UPTODATE);
2893		page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2894		/*
2895		 * If page is freed we don't need to do anything then, as we
2896		 * will re-read the whole page anyway.
2897		 */
2898		if (page) {
2899			btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2900					round_up(i_size, PAGE_SIZE) - i_size);
2901			unlock_page(page);
2902			put_page(page);
2903		}
2904	}
2905
2906	BUG_ON(cluster->start != cluster->boundary[0]);
2907	ret = btrfs_alloc_data_chunk_ondemand(inode,
2908					      prealloc_end + 1 - prealloc_start);
2909	if (ret)
2910		return ret;
2911
2912	btrfs_inode_lock(inode, 0);
2913	for (nr = 0; nr < cluster->nr; nr++) {
2914		struct extent_state *cached_state = NULL;
2915
2916		start = cluster->boundary[nr] - offset;
2917		if (nr + 1 < cluster->nr)
2918			end = cluster->boundary[nr + 1] - 1 - offset;
2919		else
2920			end = cluster->end - offset;
2921
2922		lock_extent(&inode->io_tree, start, end, &cached_state);
2923		num_bytes = end + 1 - start;
2924		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2925						num_bytes, num_bytes,
2926						end + 1, &alloc_hint);
2927		cur_offset = end + 1;
2928		unlock_extent(&inode->io_tree, start, end, &cached_state);
2929		if (ret)
2930			break;
2931	}
2932	btrfs_inode_unlock(inode, 0);
2933
2934	if (cur_offset < prealloc_end)
2935		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2936					       prealloc_end + 1 - cur_offset);
2937	return ret;
2938}
2939
2940static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2941				u64 start, u64 end, u64 block_start)
2942{
2943	struct extent_map *em;
2944	struct extent_state *cached_state = NULL;
2945	int ret = 0;
2946
2947	em = alloc_extent_map();
2948	if (!em)
2949		return -ENOMEM;
2950
2951	em->start = start;
2952	em->len = end + 1 - start;
2953	em->block_len = em->len;
2954	em->block_start = block_start;
2955	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2956
2957	lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2958	ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false);
2959	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2960	free_extent_map(em);
2961
2962	return ret;
2963}
2964
2965/*
2966 * Allow error injection to test balance/relocation cancellation
2967 */
2968noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2969{
2970	return atomic_read(&fs_info->balance_cancel_req) ||
2971		atomic_read(&fs_info->reloc_cancel_req) ||
2972		fatal_signal_pending(current);
2973}
2974ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2975
2976static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2977				    int cluster_nr)
2978{
2979	/* Last extent, use cluster end directly */
2980	if (cluster_nr >= cluster->nr - 1)
2981		return cluster->end;
2982
2983	/* Use next boundary start*/
2984	return cluster->boundary[cluster_nr + 1] - 1;
2985}
2986
2987static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2988			     struct file_extent_cluster *cluster,
2989			     int *cluster_nr, unsigned long page_index)
2990{
2991	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2992	u64 offset = BTRFS_I(inode)->index_cnt;
2993	const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2994	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2995	struct page *page;
2996	u64 page_start;
2997	u64 page_end;
2998	u64 cur;
2999	int ret;
3000
3001	ASSERT(page_index <= last_index);
3002	page = find_lock_page(inode->i_mapping, page_index);
3003	if (!page) {
3004		page_cache_sync_readahead(inode->i_mapping, ra, NULL,
3005				page_index, last_index + 1 - page_index);
3006		page = find_or_create_page(inode->i_mapping, page_index, mask);
3007		if (!page)
3008			return -ENOMEM;
3009	}
3010
3011	if (PageReadahead(page))
3012		page_cache_async_readahead(inode->i_mapping, ra, NULL,
3013				page_folio(page), page_index,
3014				last_index + 1 - page_index);
3015
3016	if (!PageUptodate(page)) {
3017		btrfs_read_folio(NULL, page_folio(page));
3018		lock_page(page);
3019		if (!PageUptodate(page)) {
3020			ret = -EIO;
3021			goto release_page;
3022		}
3023	}
3024
3025	/*
3026	 * We could have lost page private when we dropped the lock to read the
3027	 * page above, make sure we set_page_extent_mapped here so we have any
3028	 * of the subpage blocksize stuff we need in place.
3029	 */
3030	ret = set_page_extent_mapped(page);
3031	if (ret < 0)
3032		goto release_page;
3033
3034	page_start = page_offset(page);
3035	page_end = page_start + PAGE_SIZE - 1;
3036
3037	/*
3038	 * Start from the cluster, as for subpage case, the cluster can start
3039	 * inside the page.
3040	 */
3041	cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3042	while (cur <= page_end) {
3043		struct extent_state *cached_state = NULL;
3044		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3045		u64 extent_end = get_cluster_boundary_end(cluster,
3046						*cluster_nr) - offset;
3047		u64 clamped_start = max(page_start, extent_start);
3048		u64 clamped_end = min(page_end, extent_end);
3049		u32 clamped_len = clamped_end + 1 - clamped_start;
3050
3051		/* Reserve metadata for this range */
3052		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3053						      clamped_len, clamped_len,
3054						      false);
3055		if (ret)
3056			goto release_page;
3057
3058		/* Mark the range delalloc and dirty for later writeback */
3059		lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3060			    &cached_state);
3061		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3062						clamped_end, 0, &cached_state);
3063		if (ret) {
3064			clear_extent_bit(&BTRFS_I(inode)->io_tree,
3065					 clamped_start, clamped_end,
3066					 EXTENT_LOCKED | EXTENT_BOUNDARY,
3067					 &cached_state);
3068			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3069							clamped_len, true);
3070			btrfs_delalloc_release_extents(BTRFS_I(inode),
3071						       clamped_len);
3072			goto release_page;
3073		}
3074		btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3075
3076		/*
3077		 * Set the boundary if it's inside the page.
3078		 * Data relocation requires the destination extents to have the
3079		 * same size as the source.
3080		 * EXTENT_BOUNDARY bit prevents current extent from being merged
3081		 * with previous extent.
3082		 */
3083		if (in_range(cluster->boundary[*cluster_nr] - offset,
3084			     page_start, PAGE_SIZE)) {
3085			u64 boundary_start = cluster->boundary[*cluster_nr] -
3086						offset;
3087			u64 boundary_end = boundary_start +
3088					   fs_info->sectorsize - 1;
3089
3090			set_extent_bit(&BTRFS_I(inode)->io_tree,
3091				       boundary_start, boundary_end,
3092				       EXTENT_BOUNDARY, NULL);
3093		}
3094		unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3095			      &cached_state);
3096		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3097		cur += clamped_len;
3098
3099		/* Crossed extent end, go to next extent */
3100		if (cur >= extent_end) {
3101			(*cluster_nr)++;
3102			/* Just finished the last extent of the cluster, exit. */
3103			if (*cluster_nr >= cluster->nr)
3104				break;
3105		}
3106	}
3107	unlock_page(page);
3108	put_page(page);
3109
3110	balance_dirty_pages_ratelimited(inode->i_mapping);
3111	btrfs_throttle(fs_info);
3112	if (btrfs_should_cancel_balance(fs_info))
3113		ret = -ECANCELED;
3114	return ret;
3115
3116release_page:
3117	unlock_page(page);
3118	put_page(page);
3119	return ret;
3120}
3121
3122static int relocate_file_extent_cluster(struct inode *inode,
3123					struct file_extent_cluster *cluster)
3124{
3125	u64 offset = BTRFS_I(inode)->index_cnt;
3126	unsigned long index;
3127	unsigned long last_index;
3128	struct file_ra_state *ra;
3129	int cluster_nr = 0;
3130	int ret = 0;
3131
3132	if (!cluster->nr)
3133		return 0;
3134
3135	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3136	if (!ra)
3137		return -ENOMEM;
3138
3139	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3140	if (ret)
3141		goto out;
3142
3143	file_ra_state_init(ra, inode->i_mapping);
3144
3145	ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3146				   cluster->end - offset, cluster->start);
3147	if (ret)
3148		goto out;
3149
3150	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3151	for (index = (cluster->start - offset) >> PAGE_SHIFT;
3152	     index <= last_index && !ret; index++)
3153		ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3154	if (ret == 0)
3155		WARN_ON(cluster_nr != cluster->nr);
3156out:
3157	kfree(ra);
3158	return ret;
3159}
3160
3161static noinline_for_stack
3162int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3163			 struct file_extent_cluster *cluster)
3164{
3165	int ret;
3166
3167	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3168		ret = relocate_file_extent_cluster(inode, cluster);
3169		if (ret)
3170			return ret;
3171		cluster->nr = 0;
3172	}
3173
3174	if (!cluster->nr)
3175		cluster->start = extent_key->objectid;
3176	else
3177		BUG_ON(cluster->nr >= MAX_EXTENTS);
3178	cluster->end = extent_key->objectid + extent_key->offset - 1;
3179	cluster->boundary[cluster->nr] = extent_key->objectid;
3180	cluster->nr++;
3181
3182	if (cluster->nr >= MAX_EXTENTS) {
3183		ret = relocate_file_extent_cluster(inode, cluster);
3184		if (ret)
3185			return ret;
3186		cluster->nr = 0;
3187	}
3188	return 0;
3189}
3190
3191/*
3192 * helper to add a tree block to the list.
3193 * the major work is getting the generation and level of the block
3194 */
3195static int add_tree_block(struct reloc_control *rc,
3196			  struct btrfs_key *extent_key,
3197			  struct btrfs_path *path,
3198			  struct rb_root *blocks)
3199{
3200	struct extent_buffer *eb;
3201	struct btrfs_extent_item *ei;
3202	struct btrfs_tree_block_info *bi;
3203	struct tree_block *block;
3204	struct rb_node *rb_node;
3205	u32 item_size;
3206	int level = -1;
3207	u64 generation;
3208	u64 owner = 0;
3209
3210	eb =  path->nodes[0];
3211	item_size = btrfs_item_size(eb, path->slots[0]);
3212
3213	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3214	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3215		unsigned long ptr = 0, end;
3216
3217		ei = btrfs_item_ptr(eb, path->slots[0],
3218				struct btrfs_extent_item);
3219		end = (unsigned long)ei + item_size;
3220		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3221			bi = (struct btrfs_tree_block_info *)(ei + 1);
3222			level = btrfs_tree_block_level(eb, bi);
3223			ptr = (unsigned long)(bi + 1);
3224		} else {
3225			level = (int)extent_key->offset;
3226			ptr = (unsigned long)(ei + 1);
3227		}
3228		generation = btrfs_extent_generation(eb, ei);
3229
3230		/*
3231		 * We're reading random blocks without knowing their owner ahead
3232		 * of time.  This is ok most of the time, as all reloc roots and
3233		 * fs roots have the same lock type.  However normal trees do
3234		 * not, and the only way to know ahead of time is to read the
3235		 * inline ref offset.  We know it's an fs root if
3236		 *
3237		 * 1. There's more than one ref.
3238		 * 2. There's a SHARED_DATA_REF_KEY set.
3239		 * 3. FULL_BACKREF is set on the flags.
3240		 *
3241		 * Otherwise it's safe to assume that the ref offset == the
3242		 * owner of this block, so we can use that when calling
3243		 * read_tree_block.
3244		 */
3245		if (btrfs_extent_refs(eb, ei) == 1 &&
3246		    !(btrfs_extent_flags(eb, ei) &
3247		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3248		    ptr < end) {
3249			struct btrfs_extent_inline_ref *iref;
3250			int type;
3251
3252			iref = (struct btrfs_extent_inline_ref *)ptr;
3253			type = btrfs_get_extent_inline_ref_type(eb, iref,
3254							BTRFS_REF_TYPE_BLOCK);
3255			if (type == BTRFS_REF_TYPE_INVALID)
3256				return -EINVAL;
3257			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3258				owner = btrfs_extent_inline_ref_offset(eb, iref);
3259		}
3260	} else {
3261		btrfs_print_leaf(eb);
3262		btrfs_err(rc->block_group->fs_info,
3263			  "unrecognized tree backref at tree block %llu slot %u",
3264			  eb->start, path->slots[0]);
3265		btrfs_release_path(path);
3266		return -EUCLEAN;
3267	}
3268
3269	btrfs_release_path(path);
3270
3271	BUG_ON(level == -1);
3272
3273	block = kmalloc(sizeof(*block), GFP_NOFS);
3274	if (!block)
3275		return -ENOMEM;
3276
3277	block->bytenr = extent_key->objectid;
3278	block->key.objectid = rc->extent_root->fs_info->nodesize;
3279	block->key.offset = generation;
3280	block->level = level;
3281	block->key_ready = 0;
3282	block->owner = owner;
3283
3284	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3285	if (rb_node)
3286		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3287				    -EEXIST);
3288
3289	return 0;
3290}
3291
3292/*
3293 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3294 */
3295static int __add_tree_block(struct reloc_control *rc,
3296			    u64 bytenr, u32 blocksize,
3297			    struct rb_root *blocks)
3298{
3299	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3300	struct btrfs_path *path;
3301	struct btrfs_key key;
3302	int ret;
3303	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3304
3305	if (tree_block_processed(bytenr, rc))
3306		return 0;
3307
3308	if (rb_simple_search(blocks, bytenr))
3309		return 0;
3310
3311	path = btrfs_alloc_path();
3312	if (!path)
3313		return -ENOMEM;
3314again:
3315	key.objectid = bytenr;
3316	if (skinny) {
3317		key.type = BTRFS_METADATA_ITEM_KEY;
3318		key.offset = (u64)-1;
3319	} else {
3320		key.type = BTRFS_EXTENT_ITEM_KEY;
3321		key.offset = blocksize;
3322	}
3323
3324	path->search_commit_root = 1;
3325	path->skip_locking = 1;
3326	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3327	if (ret < 0)
3328		goto out;
3329
3330	if (ret > 0 && skinny) {
3331		if (path->slots[0]) {
3332			path->slots[0]--;
3333			btrfs_item_key_to_cpu(path->nodes[0], &key,
3334					      path->slots[0]);
3335			if (key.objectid == bytenr &&
3336			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3337			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3338			      key.offset == blocksize)))
3339				ret = 0;
3340		}
3341
3342		if (ret) {
3343			skinny = false;
3344			btrfs_release_path(path);
3345			goto again;
3346		}
3347	}
3348	if (ret) {
3349		ASSERT(ret == 1);
3350		btrfs_print_leaf(path->nodes[0]);
3351		btrfs_err(fs_info,
3352	     "tree block extent item (%llu) is not found in extent tree",
3353		     bytenr);
3354		WARN_ON(1);
3355		ret = -EINVAL;
3356		goto out;
3357	}
3358
3359	ret = add_tree_block(rc, &key, path, blocks);
3360out:
3361	btrfs_free_path(path);
3362	return ret;
3363}
3364
3365static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3366				    struct btrfs_block_group *block_group,
3367				    struct inode *inode,
3368				    u64 ino)
3369{
3370	struct btrfs_root *root = fs_info->tree_root;
3371	struct btrfs_trans_handle *trans;
3372	int ret = 0;
3373
3374	if (inode)
3375		goto truncate;
3376
3377	inode = btrfs_iget(fs_info->sb, ino, root);
3378	if (IS_ERR(inode))
3379		return -ENOENT;
3380
3381truncate:
3382	ret = btrfs_check_trunc_cache_free_space(fs_info,
3383						 &fs_info->global_block_rsv);
3384	if (ret)
3385		goto out;
3386
3387	trans = btrfs_join_transaction(root);
3388	if (IS_ERR(trans)) {
3389		ret = PTR_ERR(trans);
3390		goto out;
3391	}
3392
3393	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3394
3395	btrfs_end_transaction(trans);
3396	btrfs_btree_balance_dirty(fs_info);
3397out:
3398	iput(inode);
3399	return ret;
3400}
3401
3402/*
3403 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3404 * cache inode, to avoid free space cache data extent blocking data relocation.
3405 */
3406static int delete_v1_space_cache(struct extent_buffer *leaf,
3407				 struct btrfs_block_group *block_group,
3408				 u64 data_bytenr)
3409{
3410	u64 space_cache_ino;
3411	struct btrfs_file_extent_item *ei;
3412	struct btrfs_key key;
3413	bool found = false;
3414	int i;
3415	int ret;
3416
3417	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3418		return 0;
3419
3420	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3421		u8 type;
3422
3423		btrfs_item_key_to_cpu(leaf, &key, i);
3424		if (key.type != BTRFS_EXTENT_DATA_KEY)
3425			continue;
3426		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3427		type = btrfs_file_extent_type(leaf, ei);
3428
3429		if ((type == BTRFS_FILE_EXTENT_REG ||
3430		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3431		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3432			found = true;
3433			space_cache_ino = key.objectid;
3434			break;
3435		}
3436	}
3437	if (!found)
3438		return -ENOENT;
3439	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3440					space_cache_ino);
3441	return ret;
3442}
3443
3444/*
3445 * helper to find all tree blocks that reference a given data extent
3446 */
3447static noinline_for_stack
3448int add_data_references(struct reloc_control *rc,
3449			struct btrfs_key *extent_key,
3450			struct btrfs_path *path,
3451			struct rb_root *blocks)
3452{
3453	struct btrfs_backref_walk_ctx ctx = { 0 };
3454	struct ulist_iterator leaf_uiter;
3455	struct ulist_node *ref_node = NULL;
3456	const u32 blocksize = rc->extent_root->fs_info->nodesize;
3457	int ret = 0;
3458
3459	btrfs_release_path(path);
3460
3461	ctx.bytenr = extent_key->objectid;
3462	ctx.skip_inode_ref_list = true;
3463	ctx.fs_info = rc->extent_root->fs_info;
3464
3465	ret = btrfs_find_all_leafs(&ctx);
3466	if (ret < 0)
3467		return ret;
3468
3469	ULIST_ITER_INIT(&leaf_uiter);
3470	while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3471		struct btrfs_tree_parent_check check = { 0 };
3472		struct extent_buffer *eb;
3473
3474		eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3475		if (IS_ERR(eb)) {
3476			ret = PTR_ERR(eb);
3477			break;
3478		}
3479		ret = delete_v1_space_cache(eb, rc->block_group,
3480					    extent_key->objectid);
3481		free_extent_buffer(eb);
3482		if (ret < 0)
3483			break;
3484		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3485		if (ret < 0)
3486			break;
3487	}
3488	if (ret < 0)
3489		free_block_list(blocks);
3490	ulist_free(ctx.refs);
3491	return ret;
3492}
3493
3494/*
3495 * helper to find next unprocessed extent
3496 */
3497static noinline_for_stack
3498int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3499		     struct btrfs_key *extent_key)
3500{
3501	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3502	struct btrfs_key key;
3503	struct extent_buffer *leaf;
3504	u64 start, end, last;
3505	int ret;
3506
3507	last = rc->block_group->start + rc->block_group->length;
3508	while (1) {
3509		bool block_found;
3510
3511		cond_resched();
3512		if (rc->search_start >= last) {
3513			ret = 1;
3514			break;
3515		}
3516
3517		key.objectid = rc->search_start;
3518		key.type = BTRFS_EXTENT_ITEM_KEY;
3519		key.offset = 0;
3520
3521		path->search_commit_root = 1;
3522		path->skip_locking = 1;
3523		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3524					0, 0);
3525		if (ret < 0)
3526			break;
3527next:
3528		leaf = path->nodes[0];
3529		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3530			ret = btrfs_next_leaf(rc->extent_root, path);
3531			if (ret != 0)
3532				break;
3533			leaf = path->nodes[0];
3534		}
3535
3536		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3537		if (key.objectid >= last) {
3538			ret = 1;
3539			break;
3540		}
3541
3542		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3543		    key.type != BTRFS_METADATA_ITEM_KEY) {
3544			path->slots[0]++;
3545			goto next;
3546		}
3547
3548		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3549		    key.objectid + key.offset <= rc->search_start) {
3550			path->slots[0]++;
3551			goto next;
3552		}
3553
3554		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3555		    key.objectid + fs_info->nodesize <=
3556		    rc->search_start) {
3557			path->slots[0]++;
3558			goto next;
3559		}
3560
3561		block_found = find_first_extent_bit(&rc->processed_blocks,
3562						    key.objectid, &start, &end,
3563						    EXTENT_DIRTY, NULL);
3564
3565		if (block_found && start <= key.objectid) {
3566			btrfs_release_path(path);
3567			rc->search_start = end + 1;
3568		} else {
3569			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3570				rc->search_start = key.objectid + key.offset;
3571			else
3572				rc->search_start = key.objectid +
3573					fs_info->nodesize;
3574			memcpy(extent_key, &key, sizeof(key));
3575			return 0;
3576		}
3577	}
3578	btrfs_release_path(path);
3579	return ret;
3580}
3581
3582static void set_reloc_control(struct reloc_control *rc)
3583{
3584	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3585
3586	mutex_lock(&fs_info->reloc_mutex);
3587	fs_info->reloc_ctl = rc;
3588	mutex_unlock(&fs_info->reloc_mutex);
3589}
3590
3591static void unset_reloc_control(struct reloc_control *rc)
3592{
3593	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3594
3595	mutex_lock(&fs_info->reloc_mutex);
3596	fs_info->reloc_ctl = NULL;
3597	mutex_unlock(&fs_info->reloc_mutex);
3598}
3599
3600static noinline_for_stack
3601int prepare_to_relocate(struct reloc_control *rc)
3602{
3603	struct btrfs_trans_handle *trans;
3604	int ret;
3605
3606	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3607					      BTRFS_BLOCK_RSV_TEMP);
3608	if (!rc->block_rsv)
3609		return -ENOMEM;
3610
3611	memset(&rc->cluster, 0, sizeof(rc->cluster));
3612	rc->search_start = rc->block_group->start;
3613	rc->extents_found = 0;
3614	rc->nodes_relocated = 0;
3615	rc->merging_rsv_size = 0;
3616	rc->reserved_bytes = 0;
3617	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3618			      RELOCATION_RESERVED_NODES;
3619	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3620				     rc->block_rsv, rc->block_rsv->size,
3621				     BTRFS_RESERVE_FLUSH_ALL);
3622	if (ret)
3623		return ret;
3624
3625	rc->create_reloc_tree = 1;
3626	set_reloc_control(rc);
3627
3628	trans = btrfs_join_transaction(rc->extent_root);
3629	if (IS_ERR(trans)) {
3630		unset_reloc_control(rc);
3631		/*
3632		 * extent tree is not a ref_cow tree and has no reloc_root to
3633		 * cleanup.  And callers are responsible to free the above
3634		 * block rsv.
3635		 */
3636		return PTR_ERR(trans);
3637	}
3638
3639	ret = btrfs_commit_transaction(trans);
3640	if (ret)
3641		unset_reloc_control(rc);
3642
3643	return ret;
3644}
3645
3646static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3647{
3648	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3649	struct rb_root blocks = RB_ROOT;
3650	struct btrfs_key key;
3651	struct btrfs_trans_handle *trans = NULL;
3652	struct btrfs_path *path;
3653	struct btrfs_extent_item *ei;
3654	u64 flags;
3655	int ret;
3656	int err = 0;
3657	int progress = 0;
3658
3659	path = btrfs_alloc_path();
3660	if (!path)
3661		return -ENOMEM;
3662	path->reada = READA_FORWARD;
3663
3664	ret = prepare_to_relocate(rc);
3665	if (ret) {
3666		err = ret;
3667		goto out_free;
3668	}
3669
3670	while (1) {
3671		rc->reserved_bytes = 0;
3672		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3673					     rc->block_rsv->size,
3674					     BTRFS_RESERVE_FLUSH_ALL);
3675		if (ret) {
3676			err = ret;
3677			break;
3678		}
3679		progress++;
3680		trans = btrfs_start_transaction(rc->extent_root, 0);
3681		if (IS_ERR(trans)) {
3682			err = PTR_ERR(trans);
3683			trans = NULL;
3684			break;
3685		}
3686restart:
3687		if (update_backref_cache(trans, &rc->backref_cache)) {
3688			btrfs_end_transaction(trans);
3689			trans = NULL;
3690			continue;
3691		}
3692
3693		ret = find_next_extent(rc, path, &key);
3694		if (ret < 0)
3695			err = ret;
3696		if (ret != 0)
3697			break;
3698
3699		rc->extents_found++;
3700
3701		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3702				    struct btrfs_extent_item);
3703		flags = btrfs_extent_flags(path->nodes[0], ei);
3704
3705		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3706			ret = add_tree_block(rc, &key, path, &blocks);
3707		} else if (rc->stage == UPDATE_DATA_PTRS &&
3708			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3709			ret = add_data_references(rc, &key, path, &blocks);
3710		} else {
3711			btrfs_release_path(path);
3712			ret = 0;
3713		}
3714		if (ret < 0) {
3715			err = ret;
3716			break;
3717		}
3718
3719		if (!RB_EMPTY_ROOT(&blocks)) {
3720			ret = relocate_tree_blocks(trans, rc, &blocks);
3721			if (ret < 0) {
3722				if (ret != -EAGAIN) {
3723					err = ret;
3724					break;
3725				}
3726				rc->extents_found--;
3727				rc->search_start = key.objectid;
3728			}
3729		}
3730
3731		btrfs_end_transaction_throttle(trans);
3732		btrfs_btree_balance_dirty(fs_info);
3733		trans = NULL;
3734
3735		if (rc->stage == MOVE_DATA_EXTENTS &&
3736		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3737			rc->found_file_extent = 1;
3738			ret = relocate_data_extent(rc->data_inode,
3739						   &key, &rc->cluster);
3740			if (ret < 0) {
3741				err = ret;
3742				break;
3743			}
3744		}
3745		if (btrfs_should_cancel_balance(fs_info)) {
3746			err = -ECANCELED;
3747			break;
3748		}
3749	}
3750	if (trans && progress && err == -ENOSPC) {
3751		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3752		if (ret == 1) {
3753			err = 0;
3754			progress = 0;
3755			goto restart;
3756		}
3757	}
3758
3759	btrfs_release_path(path);
3760	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3761
3762	if (trans) {
3763		btrfs_end_transaction_throttle(trans);
3764		btrfs_btree_balance_dirty(fs_info);
3765	}
3766
3767	if (!err) {
3768		ret = relocate_file_extent_cluster(rc->data_inode,
3769						   &rc->cluster);
3770		if (ret < 0)
3771			err = ret;
3772	}
3773
3774	rc->create_reloc_tree = 0;
3775	set_reloc_control(rc);
3776
3777	btrfs_backref_release_cache(&rc->backref_cache);
3778	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3779
3780	/*
3781	 * Even in the case when the relocation is cancelled, we should all go
3782	 * through prepare_to_merge() and merge_reloc_roots().
3783	 *
3784	 * For error (including cancelled balance), prepare_to_merge() will
3785	 * mark all reloc trees orphan, then queue them for cleanup in
3786	 * merge_reloc_roots()
3787	 */
3788	err = prepare_to_merge(rc, err);
3789
3790	merge_reloc_roots(rc);
3791
3792	rc->merge_reloc_tree = 0;
3793	unset_reloc_control(rc);
3794	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3795
3796	/* get rid of pinned extents */
3797	trans = btrfs_join_transaction(rc->extent_root);
3798	if (IS_ERR(trans)) {
3799		err = PTR_ERR(trans);
3800		goto out_free;
3801	}
3802	ret = btrfs_commit_transaction(trans);
3803	if (ret && !err)
3804		err = ret;
3805out_free:
3806	ret = clean_dirty_subvols(rc);
3807	if (ret < 0 && !err)
3808		err = ret;
3809	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3810	btrfs_free_path(path);
3811	return err;
3812}
3813
3814static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3815				 struct btrfs_root *root, u64 objectid)
3816{
3817	struct btrfs_path *path;
3818	struct btrfs_inode_item *item;
3819	struct extent_buffer *leaf;
3820	int ret;
3821
3822	path = btrfs_alloc_path();
3823	if (!path)
3824		return -ENOMEM;
3825
3826	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3827	if (ret)
3828		goto out;
3829
3830	leaf = path->nodes[0];
3831	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3832	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3833	btrfs_set_inode_generation(leaf, item, 1);
3834	btrfs_set_inode_size(leaf, item, 0);
3835	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3836	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3837					  BTRFS_INODE_PREALLOC);
3838	btrfs_mark_buffer_dirty(trans, leaf);
3839out:
3840	btrfs_free_path(path);
3841	return ret;
3842}
3843
3844static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3845				struct btrfs_root *root, u64 objectid)
3846{
3847	struct btrfs_path *path;
3848	struct btrfs_key key;
3849	int ret = 0;
3850
3851	path = btrfs_alloc_path();
3852	if (!path) {
3853		ret = -ENOMEM;
3854		goto out;
3855	}
3856
3857	key.objectid = objectid;
3858	key.type = BTRFS_INODE_ITEM_KEY;
3859	key.offset = 0;
3860	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3861	if (ret) {
3862		if (ret > 0)
3863			ret = -ENOENT;
3864		goto out;
3865	}
3866	ret = btrfs_del_item(trans, root, path);
3867out:
3868	if (ret)
3869		btrfs_abort_transaction(trans, ret);
3870	btrfs_free_path(path);
3871}
3872
3873/*
3874 * helper to create inode for data relocation.
3875 * the inode is in data relocation tree and its link count is 0
3876 */
3877static noinline_for_stack
3878struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3879				 struct btrfs_block_group *group)
3880{
3881	struct inode *inode = NULL;
3882	struct btrfs_trans_handle *trans;
3883	struct btrfs_root *root;
3884	u64 objectid;
3885	int err = 0;
3886
3887	root = btrfs_grab_root(fs_info->data_reloc_root);
3888	trans = btrfs_start_transaction(root, 6);
3889	if (IS_ERR(trans)) {
3890		btrfs_put_root(root);
3891		return ERR_CAST(trans);
3892	}
3893
3894	err = btrfs_get_free_objectid(root, &objectid);
3895	if (err)
3896		goto out;
3897
3898	err = __insert_orphan_inode(trans, root, objectid);
3899	if (err)
3900		goto out;
3901
3902	inode = btrfs_iget(fs_info->sb, objectid, root);
3903	if (IS_ERR(inode)) {
3904		delete_orphan_inode(trans, root, objectid);
3905		err = PTR_ERR(inode);
3906		inode = NULL;
3907		goto out;
3908	}
3909	BTRFS_I(inode)->index_cnt = group->start;
3910
3911	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3912out:
3913	btrfs_put_root(root);
3914	btrfs_end_transaction(trans);
3915	btrfs_btree_balance_dirty(fs_info);
3916	if (err) {
3917		iput(inode);
3918		inode = ERR_PTR(err);
3919	}
3920	return inode;
3921}
3922
3923/*
3924 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3925 * has been requested meanwhile and don't start in that case.
3926 *
3927 * Return:
3928 *   0             success
3929 *   -EINPROGRESS  operation is already in progress, that's probably a bug
3930 *   -ECANCELED    cancellation request was set before the operation started
3931 */
3932static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3933{
3934	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3935		/* This should not happen */
3936		btrfs_err(fs_info, "reloc already running, cannot start");
3937		return -EINPROGRESS;
3938	}
3939
3940	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3941		btrfs_info(fs_info, "chunk relocation canceled on start");
3942		/*
3943		 * On cancel, clear all requests but let the caller mark
3944		 * the end after cleanup operations.
3945		 */
3946		atomic_set(&fs_info->reloc_cancel_req, 0);
3947		return -ECANCELED;
3948	}
3949	return 0;
3950}
3951
3952/*
3953 * Mark end of chunk relocation that is cancellable and wake any waiters.
3954 */
3955static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3956{
3957	/* Requested after start, clear bit first so any waiters can continue */
3958	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3959		btrfs_info(fs_info, "chunk relocation canceled during operation");
3960	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3961	atomic_set(&fs_info->reloc_cancel_req, 0);
3962}
3963
3964static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3965{
3966	struct reloc_control *rc;
3967
3968	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3969	if (!rc)
3970		return NULL;
3971
3972	INIT_LIST_HEAD(&rc->reloc_roots);
3973	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3974	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3975	mapping_tree_init(&rc->reloc_root_tree);
3976	extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3977	return rc;
3978}
3979
3980static void free_reloc_control(struct reloc_control *rc)
3981{
3982	struct mapping_node *node, *tmp;
3983
3984	free_reloc_roots(&rc->reloc_roots);
3985	rbtree_postorder_for_each_entry_safe(node, tmp,
3986			&rc->reloc_root_tree.rb_root, rb_node)
3987		kfree(node);
3988
3989	kfree(rc);
3990}
3991
3992/*
3993 * Print the block group being relocated
3994 */
3995static void describe_relocation(struct btrfs_fs_info *fs_info,
3996				struct btrfs_block_group *block_group)
3997{
3998	char buf[128] = {'\0'};
3999
4000	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4001
4002	btrfs_info(fs_info,
4003		   "relocating block group %llu flags %s",
4004		   block_group->start, buf);
4005}
4006
4007static const char *stage_to_string(int stage)
4008{
4009	if (stage == MOVE_DATA_EXTENTS)
4010		return "move data extents";
4011	if (stage == UPDATE_DATA_PTRS)
4012		return "update data pointers";
4013	return "unknown";
4014}
4015
4016/*
4017 * function to relocate all extents in a block group.
4018 */
4019int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4020{
4021	struct btrfs_block_group *bg;
4022	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
4023	struct reloc_control *rc;
4024	struct inode *inode;
4025	struct btrfs_path *path;
4026	int ret;
4027	int rw = 0;
4028	int err = 0;
4029
4030	/*
4031	 * This only gets set if we had a half-deleted snapshot on mount.  We
4032	 * cannot allow relocation to start while we're still trying to clean up
4033	 * these pending deletions.
4034	 */
4035	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
4036	if (ret)
4037		return ret;
4038
4039	/* We may have been woken up by close_ctree, so bail if we're closing. */
4040	if (btrfs_fs_closing(fs_info))
4041		return -EINTR;
4042
4043	bg = btrfs_lookup_block_group(fs_info, group_start);
4044	if (!bg)
4045		return -ENOENT;
4046
4047	/*
4048	 * Relocation of a data block group creates ordered extents.  Without
4049	 * sb_start_write(), we can freeze the filesystem while unfinished
4050	 * ordered extents are left. Such ordered extents can cause a deadlock
4051	 * e.g. when syncfs() is waiting for their completion but they can't
4052	 * finish because they block when joining a transaction, due to the
4053	 * fact that the freeze locks are being held in write mode.
4054	 */
4055	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4056		ASSERT(sb_write_started(fs_info->sb));
4057
4058	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4059		btrfs_put_block_group(bg);
4060		return -ETXTBSY;
4061	}
4062
4063	rc = alloc_reloc_control(fs_info);
4064	if (!rc) {
4065		btrfs_put_block_group(bg);
4066		return -ENOMEM;
4067	}
4068
4069	ret = reloc_chunk_start(fs_info);
4070	if (ret < 0) {
4071		err = ret;
4072		goto out_put_bg;
4073	}
4074
4075	rc->extent_root = extent_root;
4076	rc->block_group = bg;
4077
4078	ret = btrfs_inc_block_group_ro(rc->block_group, true);
4079	if (ret) {
4080		err = ret;
4081		goto out;
4082	}
4083	rw = 1;
4084
4085	path = btrfs_alloc_path();
4086	if (!path) {
4087		err = -ENOMEM;
4088		goto out;
4089	}
4090
4091	inode = lookup_free_space_inode(rc->block_group, path);
4092	btrfs_free_path(path);
4093
4094	if (!IS_ERR(inode))
4095		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4096	else
4097		ret = PTR_ERR(inode);
4098
4099	if (ret && ret != -ENOENT) {
4100		err = ret;
4101		goto out;
4102	}
4103
4104	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4105	if (IS_ERR(rc->data_inode)) {
4106		err = PTR_ERR(rc->data_inode);
4107		rc->data_inode = NULL;
4108		goto out;
4109	}
4110
4111	describe_relocation(fs_info, rc->block_group);
4112
4113	btrfs_wait_block_group_reservations(rc->block_group);
4114	btrfs_wait_nocow_writers(rc->block_group);
4115	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4116				 rc->block_group->start,
4117				 rc->block_group->length);
4118
4119	ret = btrfs_zone_finish(rc->block_group);
4120	WARN_ON(ret && ret != -EAGAIN);
4121
4122	while (1) {
4123		int finishes_stage;
4124
4125		mutex_lock(&fs_info->cleaner_mutex);
4126		ret = relocate_block_group(rc);
4127		mutex_unlock(&fs_info->cleaner_mutex);
4128		if (ret < 0)
4129			err = ret;
4130
4131		finishes_stage = rc->stage;
4132		/*
4133		 * We may have gotten ENOSPC after we already dirtied some
4134		 * extents.  If writeout happens while we're relocating a
4135		 * different block group we could end up hitting the
4136		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4137		 * btrfs_reloc_cow_block.  Make sure we write everything out
4138		 * properly so we don't trip over this problem, and then break
4139		 * out of the loop if we hit an error.
4140		 */
4141		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4142			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4143						       (u64)-1);
4144			if (ret)
4145				err = ret;
4146			invalidate_mapping_pages(rc->data_inode->i_mapping,
4147						 0, -1);
4148			rc->stage = UPDATE_DATA_PTRS;
4149		}
4150
4151		if (err < 0)
4152			goto out;
4153
4154		if (rc->extents_found == 0)
4155			break;
4156
4157		btrfs_info(fs_info, "found %llu extents, stage: %s",
4158			   rc->extents_found, stage_to_string(finishes_stage));
4159	}
4160
4161	WARN_ON(rc->block_group->pinned > 0);
4162	WARN_ON(rc->block_group->reserved > 0);
4163	WARN_ON(rc->block_group->used > 0);
4164out:
4165	if (err && rw)
4166		btrfs_dec_block_group_ro(rc->block_group);
4167	iput(rc->data_inode);
4168out_put_bg:
4169	btrfs_put_block_group(bg);
4170	reloc_chunk_end(fs_info);
4171	free_reloc_control(rc);
4172	return err;
4173}
4174
4175static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4176{
4177	struct btrfs_fs_info *fs_info = root->fs_info;
4178	struct btrfs_trans_handle *trans;
4179	int ret, err;
4180
4181	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4182	if (IS_ERR(trans))
4183		return PTR_ERR(trans);
4184
4185	memset(&root->root_item.drop_progress, 0,
4186		sizeof(root->root_item.drop_progress));
4187	btrfs_set_root_drop_level(&root->root_item, 0);
4188	btrfs_set_root_refs(&root->root_item, 0);
4189	ret = btrfs_update_root(trans, fs_info->tree_root,
4190				&root->root_key, &root->root_item);
4191
4192	err = btrfs_end_transaction(trans);
4193	if (err)
4194		return err;
4195	return ret;
4196}
4197
4198/*
4199 * recover relocation interrupted by system crash.
4200 *
4201 * this function resumes merging reloc trees with corresponding fs trees.
4202 * this is important for keeping the sharing of tree blocks
4203 */
4204int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4205{
4206	LIST_HEAD(reloc_roots);
4207	struct btrfs_key key;
4208	struct btrfs_root *fs_root;
4209	struct btrfs_root *reloc_root;
4210	struct btrfs_path *path;
4211	struct extent_buffer *leaf;
4212	struct reloc_control *rc = NULL;
4213	struct btrfs_trans_handle *trans;
4214	int ret;
4215	int err = 0;
4216
4217	path = btrfs_alloc_path();
4218	if (!path)
4219		return -ENOMEM;
4220	path->reada = READA_BACK;
4221
4222	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4223	key.type = BTRFS_ROOT_ITEM_KEY;
4224	key.offset = (u64)-1;
4225
4226	while (1) {
4227		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4228					path, 0, 0);
4229		if (ret < 0) {
4230			err = ret;
4231			goto out;
4232		}
4233		if (ret > 0) {
4234			if (path->slots[0] == 0)
4235				break;
4236			path->slots[0]--;
4237		}
4238		leaf = path->nodes[0];
4239		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4240		btrfs_release_path(path);
4241
4242		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4243		    key.type != BTRFS_ROOT_ITEM_KEY)
4244			break;
4245
4246		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4247		if (IS_ERR(reloc_root)) {
4248			err = PTR_ERR(reloc_root);
4249			goto out;
4250		}
4251
4252		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4253		list_add(&reloc_root->root_list, &reloc_roots);
4254
4255		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4256			fs_root = btrfs_get_fs_root(fs_info,
4257					reloc_root->root_key.offset, false);
4258			if (IS_ERR(fs_root)) {
4259				ret = PTR_ERR(fs_root);
4260				if (ret != -ENOENT) {
4261					err = ret;
4262					goto out;
4263				}
4264				ret = mark_garbage_root(reloc_root);
4265				if (ret < 0) {
4266					err = ret;
4267					goto out;
4268				}
4269			} else {
4270				btrfs_put_root(fs_root);
4271			}
4272		}
4273
4274		if (key.offset == 0)
4275			break;
4276
4277		key.offset--;
4278	}
4279	btrfs_release_path(path);
4280
4281	if (list_empty(&reloc_roots))
4282		goto out;
4283
4284	rc = alloc_reloc_control(fs_info);
4285	if (!rc) {
4286		err = -ENOMEM;
4287		goto out;
4288	}
4289
4290	ret = reloc_chunk_start(fs_info);
4291	if (ret < 0) {
4292		err = ret;
4293		goto out_end;
4294	}
4295
4296	rc->extent_root = btrfs_extent_root(fs_info, 0);
4297
4298	set_reloc_control(rc);
4299
4300	trans = btrfs_join_transaction(rc->extent_root);
4301	if (IS_ERR(trans)) {
4302		err = PTR_ERR(trans);
4303		goto out_unset;
4304	}
4305
4306	rc->merge_reloc_tree = 1;
4307
4308	while (!list_empty(&reloc_roots)) {
4309		reloc_root = list_entry(reloc_roots.next,
4310					struct btrfs_root, root_list);
4311		list_del(&reloc_root->root_list);
4312
4313		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4314			list_add_tail(&reloc_root->root_list,
4315				      &rc->reloc_roots);
4316			continue;
4317		}
4318
4319		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4320					    false);
4321		if (IS_ERR(fs_root)) {
4322			err = PTR_ERR(fs_root);
4323			list_add_tail(&reloc_root->root_list, &reloc_roots);
4324			btrfs_end_transaction(trans);
4325			goto out_unset;
4326		}
4327
4328		err = __add_reloc_root(reloc_root);
4329		ASSERT(err != -EEXIST);
4330		if (err) {
4331			list_add_tail(&reloc_root->root_list, &reloc_roots);
4332			btrfs_put_root(fs_root);
4333			btrfs_end_transaction(trans);
4334			goto out_unset;
4335		}
4336		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4337		btrfs_put_root(fs_root);
4338	}
4339
4340	err = btrfs_commit_transaction(trans);
4341	if (err)
4342		goto out_unset;
4343
4344	merge_reloc_roots(rc);
4345
4346	unset_reloc_control(rc);
4347
4348	trans = btrfs_join_transaction(rc->extent_root);
4349	if (IS_ERR(trans)) {
4350		err = PTR_ERR(trans);
4351		goto out_clean;
4352	}
4353	err = btrfs_commit_transaction(trans);
4354out_clean:
4355	ret = clean_dirty_subvols(rc);
4356	if (ret < 0 && !err)
4357		err = ret;
4358out_unset:
4359	unset_reloc_control(rc);
4360out_end:
4361	reloc_chunk_end(fs_info);
4362	free_reloc_control(rc);
4363out:
4364	free_reloc_roots(&reloc_roots);
4365
4366	btrfs_free_path(path);
4367
4368	if (err == 0) {
4369		/* cleanup orphan inode in data relocation tree */
4370		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4371		ASSERT(fs_root);
4372		err = btrfs_orphan_cleanup(fs_root);
4373		btrfs_put_root(fs_root);
4374	}
4375	return err;
4376}
4377
4378/*
4379 * helper to add ordered checksum for data relocation.
4380 *
4381 * cloning checksum properly handles the nodatasum extents.
4382 * it also saves CPU time to re-calculate the checksum.
4383 */
4384int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4385{
4386	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
4387	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4388	u64 disk_bytenr = ordered->file_offset + inode->index_cnt;
4389	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4390	LIST_HEAD(list);
4391	int ret;
4392
4393	ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4394				      disk_bytenr + ordered->num_bytes - 1,
4395				      &list, 0, false);
4396	if (ret)
4397		return ret;
4398
4399	while (!list_empty(&list)) {
4400		struct btrfs_ordered_sum *sums =
4401			list_entry(list.next, struct btrfs_ordered_sum, list);
4402
4403		list_del_init(&sums->list);
4404
4405		/*
4406		 * We need to offset the new_bytenr based on where the csum is.
4407		 * We need to do this because we will read in entire prealloc
4408		 * extents but we may have written to say the middle of the
4409		 * prealloc extent, so we need to make sure the csum goes with
4410		 * the right disk offset.
4411		 *
4412		 * We can do this because the data reloc inode refers strictly
4413		 * to the on disk bytes, so we don't have to worry about
4414		 * disk_len vs real len like with real inodes since it's all
4415		 * disk length.
4416		 */
4417		sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4418		btrfs_add_ordered_sum(ordered, sums);
4419	}
4420
4421	return 0;
4422}
4423
4424int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4425			  struct btrfs_root *root, struct extent_buffer *buf,
4426			  struct extent_buffer *cow)
4427{
4428	struct btrfs_fs_info *fs_info = root->fs_info;
4429	struct reloc_control *rc;
4430	struct btrfs_backref_node *node;
4431	int first_cow = 0;
4432	int level;
4433	int ret = 0;
4434
4435	rc = fs_info->reloc_ctl;
4436	if (!rc)
4437		return 0;
4438
4439	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4440
4441	level = btrfs_header_level(buf);
4442	if (btrfs_header_generation(buf) <=
4443	    btrfs_root_last_snapshot(&root->root_item))
4444		first_cow = 1;
4445
4446	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4447	    rc->create_reloc_tree) {
4448		WARN_ON(!first_cow && level == 0);
4449
4450		node = rc->backref_cache.path[level];
4451		BUG_ON(node->bytenr != buf->start &&
4452		       node->new_bytenr != buf->start);
4453
4454		btrfs_backref_drop_node_buffer(node);
4455		atomic_inc(&cow->refs);
4456		node->eb = cow;
4457		node->new_bytenr = cow->start;
4458
4459		if (!node->pending) {
4460			list_move_tail(&node->list,
4461				       &rc->backref_cache.pending[level]);
4462			node->pending = 1;
4463		}
4464
4465		if (first_cow)
4466			mark_block_processed(rc, node);
4467
4468		if (first_cow && level > 0)
4469			rc->nodes_relocated += buf->len;
4470	}
4471
4472	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4473		ret = replace_file_extents(trans, rc, root, cow);
4474	return ret;
4475}
4476
4477/*
4478 * called before creating snapshot. it calculates metadata reservation
4479 * required for relocating tree blocks in the snapshot
4480 */
4481void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4482			      u64 *bytes_to_reserve)
4483{
4484	struct btrfs_root *root = pending->root;
4485	struct reloc_control *rc = root->fs_info->reloc_ctl;
4486
4487	if (!rc || !have_reloc_root(root))
4488		return;
4489
4490	if (!rc->merge_reloc_tree)
4491		return;
4492
4493	root = root->reloc_root;
4494	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4495	/*
4496	 * relocation is in the stage of merging trees. the space
4497	 * used by merging a reloc tree is twice the size of
4498	 * relocated tree nodes in the worst case. half for cowing
4499	 * the reloc tree, half for cowing the fs tree. the space
4500	 * used by cowing the reloc tree will be freed after the
4501	 * tree is dropped. if we create snapshot, cowing the fs
4502	 * tree may use more space than it frees. so we need
4503	 * reserve extra space.
4504	 */
4505	*bytes_to_reserve += rc->nodes_relocated;
4506}
4507
4508/*
4509 * called after snapshot is created. migrate block reservation
4510 * and create reloc root for the newly created snapshot
4511 *
4512 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4513 * references held on the reloc_root, one for root->reloc_root and one for
4514 * rc->reloc_roots.
4515 */
4516int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4517			       struct btrfs_pending_snapshot *pending)
4518{
4519	struct btrfs_root *root = pending->root;
4520	struct btrfs_root *reloc_root;
4521	struct btrfs_root *new_root;
4522	struct reloc_control *rc = root->fs_info->reloc_ctl;
4523	int ret;
4524
4525	if (!rc || !have_reloc_root(root))
4526		return 0;
4527
4528	rc = root->fs_info->reloc_ctl;
4529	rc->merging_rsv_size += rc->nodes_relocated;
4530
4531	if (rc->merge_reloc_tree) {
4532		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4533					      rc->block_rsv,
4534					      rc->nodes_relocated, true);
4535		if (ret)
4536			return ret;
4537	}
4538
4539	new_root = pending->snap;
4540	reloc_root = create_reloc_root(trans, root->reloc_root,
4541				       new_root->root_key.objectid);
4542	if (IS_ERR(reloc_root))
4543		return PTR_ERR(reloc_root);
4544
4545	ret = __add_reloc_root(reloc_root);
4546	ASSERT(ret != -EEXIST);
4547	if (ret) {
4548		/* Pairs with create_reloc_root */
4549		btrfs_put_root(reloc_root);
4550		return ret;
4551	}
4552	new_root->reloc_root = btrfs_grab_root(reloc_root);
4553
4554	if (rc->create_reloc_tree)
4555		ret = clone_backref_node(trans, rc, root, reloc_root);
4556	return ret;
4557}
4558
4559/*
4560 * Get the current bytenr for the block group which is being relocated.
4561 *
4562 * Return U64_MAX if no running relocation.
4563 */
4564u64 btrfs_get_reloc_bg_bytenr(struct btrfs_fs_info *fs_info)
4565{
4566	u64 logical = U64_MAX;
4567
4568	lockdep_assert_held(&fs_info->reloc_mutex);
4569
4570	if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4571		logical = fs_info->reloc_ctl->block_group->start;
4572	return logical;
4573}
4574