xref: /kernel/linux/linux-6.6/fs/btrfs/reflink.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/blkdev.h>
4#include <linux/iversion.h>
5#include "ctree.h"
6#include "fs.h"
7#include "messages.h"
8#include "compression.h"
9#include "delalloc-space.h"
10#include "disk-io.h"
11#include "reflink.h"
12#include "transaction.h"
13#include "subpage.h"
14#include "accessors.h"
15#include "file-item.h"
16#include "file.h"
17#include "super.h"
18
19#define BTRFS_MAX_DEDUPE_LEN	SZ_16M
20
21static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
22				     struct inode *inode,
23				     u64 endoff,
24				     const u64 destoff,
25				     const u64 olen,
26				     int no_time_update)
27{
28	struct btrfs_root *root = BTRFS_I(inode)->root;
29	int ret;
30
31	inode_inc_iversion(inode);
32	if (!no_time_update) {
33		inode->i_mtime = inode_set_ctime_current(inode);
34	}
35	/*
36	 * We round up to the block size at eof when determining which
37	 * extents to clone above, but shouldn't round up the file size.
38	 */
39	if (endoff > destoff + olen)
40		endoff = destoff + olen;
41	if (endoff > inode->i_size) {
42		i_size_write(inode, endoff);
43		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
44	}
45
46	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
47	if (ret) {
48		btrfs_abort_transaction(trans, ret);
49		btrfs_end_transaction(trans);
50		goto out;
51	}
52	ret = btrfs_end_transaction(trans);
53out:
54	return ret;
55}
56
57static int copy_inline_to_page(struct btrfs_inode *inode,
58			       const u64 file_offset,
59			       char *inline_data,
60			       const u64 size,
61			       const u64 datal,
62			       const u8 comp_type)
63{
64	struct btrfs_fs_info *fs_info = inode->root->fs_info;
65	const u32 block_size = fs_info->sectorsize;
66	const u64 range_end = file_offset + block_size - 1;
67	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
68	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
69	struct extent_changeset *data_reserved = NULL;
70	struct page *page = NULL;
71	struct address_space *mapping = inode->vfs_inode.i_mapping;
72	int ret;
73
74	ASSERT(IS_ALIGNED(file_offset, block_size));
75
76	/*
77	 * We have flushed and locked the ranges of the source and destination
78	 * inodes, we also have locked the inodes, so we are safe to do a
79	 * reservation here. Also we must not do the reservation while holding
80	 * a transaction open, otherwise we would deadlock.
81	 */
82	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
83					   block_size);
84	if (ret)
85		goto out;
86
87	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
88				   btrfs_alloc_write_mask(mapping));
89	if (!page) {
90		ret = -ENOMEM;
91		goto out_unlock;
92	}
93
94	ret = set_page_extent_mapped(page);
95	if (ret < 0)
96		goto out_unlock;
97
98	clear_extent_bit(&inode->io_tree, file_offset, range_end,
99			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
100			 NULL);
101	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
102	if (ret)
103		goto out_unlock;
104
105	/*
106	 * After dirtying the page our caller will need to start a transaction,
107	 * and if we are low on metadata free space, that can cause flushing of
108	 * delalloc for all inodes in order to get metadata space released.
109	 * However we are holding the range locked for the whole duration of
110	 * the clone/dedupe operation, so we may deadlock if that happens and no
111	 * other task releases enough space. So mark this inode as not being
112	 * possible to flush to avoid such deadlock. We will clear that flag
113	 * when we finish cloning all extents, since a transaction is started
114	 * after finding each extent to clone.
115	 */
116	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
117
118	if (comp_type == BTRFS_COMPRESS_NONE) {
119		memcpy_to_page(page, offset_in_page(file_offset), data_start,
120			       datal);
121	} else {
122		ret = btrfs_decompress(comp_type, data_start, page,
123				       offset_in_page(file_offset),
124				       inline_size, datal);
125		if (ret)
126			goto out_unlock;
127		flush_dcache_page(page);
128	}
129
130	/*
131	 * If our inline data is smaller then the block/page size, then the
132	 * remaining of the block/page is equivalent to zeroes. We had something
133	 * like the following done:
134	 *
135	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
136	 * $ sync  # (or fsync)
137	 * $ xfs_io -c "falloc 0 4K" file
138	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
139	 *
140	 * So what's in the range [500, 4095] corresponds to zeroes.
141	 */
142	if (datal < block_size)
143		memzero_page(page, datal, block_size - datal);
144
145	btrfs_page_set_uptodate(fs_info, page, file_offset, block_size);
146	btrfs_page_clear_checked(fs_info, page, file_offset, block_size);
147	btrfs_page_set_dirty(fs_info, page, file_offset, block_size);
148out_unlock:
149	if (page) {
150		unlock_page(page);
151		put_page(page);
152	}
153	if (ret)
154		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
155					     block_size, true);
156	btrfs_delalloc_release_extents(inode, block_size);
157out:
158	extent_changeset_free(data_reserved);
159
160	return ret;
161}
162
163/*
164 * Deal with cloning of inline extents. We try to copy the inline extent from
165 * the source inode to destination inode when possible. When not possible we
166 * copy the inline extent's data into the respective page of the inode.
167 */
168static int clone_copy_inline_extent(struct inode *dst,
169				    struct btrfs_path *path,
170				    struct btrfs_key *new_key,
171				    const u64 drop_start,
172				    const u64 datal,
173				    const u64 size,
174				    const u8 comp_type,
175				    char *inline_data,
176				    struct btrfs_trans_handle **trans_out)
177{
178	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
179	struct btrfs_root *root = BTRFS_I(dst)->root;
180	const u64 aligned_end = ALIGN(new_key->offset + datal,
181				      fs_info->sectorsize);
182	struct btrfs_trans_handle *trans = NULL;
183	struct btrfs_drop_extents_args drop_args = { 0 };
184	int ret;
185	struct btrfs_key key;
186
187	if (new_key->offset > 0) {
188		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
189					  inline_data, size, datal, comp_type);
190		goto out;
191	}
192
193	key.objectid = btrfs_ino(BTRFS_I(dst));
194	key.type = BTRFS_EXTENT_DATA_KEY;
195	key.offset = 0;
196	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
197	if (ret < 0) {
198		return ret;
199	} else if (ret > 0) {
200		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
201			ret = btrfs_next_leaf(root, path);
202			if (ret < 0)
203				return ret;
204			else if (ret > 0)
205				goto copy_inline_extent;
206		}
207		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
208		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
209		    key.type == BTRFS_EXTENT_DATA_KEY) {
210			/*
211			 * There's an implicit hole at file offset 0, copy the
212			 * inline extent's data to the page.
213			 */
214			ASSERT(key.offset > 0);
215			goto copy_to_page;
216		}
217	} else if (i_size_read(dst) <= datal) {
218		struct btrfs_file_extent_item *ei;
219
220		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
221				    struct btrfs_file_extent_item);
222		/*
223		 * If it's an inline extent replace it with the source inline
224		 * extent, otherwise copy the source inline extent data into
225		 * the respective page at the destination inode.
226		 */
227		if (btrfs_file_extent_type(path->nodes[0], ei) ==
228		    BTRFS_FILE_EXTENT_INLINE)
229			goto copy_inline_extent;
230
231		goto copy_to_page;
232	}
233
234copy_inline_extent:
235	/*
236	 * We have no extent items, or we have an extent at offset 0 which may
237	 * or may not be inlined. All these cases are dealt the same way.
238	 */
239	if (i_size_read(dst) > datal) {
240		/*
241		 * At the destination offset 0 we have either a hole, a regular
242		 * extent or an inline extent larger then the one we want to
243		 * clone. Deal with all these cases by copying the inline extent
244		 * data into the respective page at the destination inode.
245		 */
246		goto copy_to_page;
247	}
248
249	/*
250	 * Release path before starting a new transaction so we don't hold locks
251	 * that would confuse lockdep.
252	 */
253	btrfs_release_path(path);
254	/*
255	 * If we end up here it means were copy the inline extent into a leaf
256	 * of the destination inode. We know we will drop or adjust at most one
257	 * extent item in the destination root.
258	 *
259	 * 1 unit - adjusting old extent (we may have to split it)
260	 * 1 unit - add new extent
261	 * 1 unit - inode update
262	 */
263	trans = btrfs_start_transaction(root, 3);
264	if (IS_ERR(trans)) {
265		ret = PTR_ERR(trans);
266		trans = NULL;
267		goto out;
268	}
269	drop_args.path = path;
270	drop_args.start = drop_start;
271	drop_args.end = aligned_end;
272	drop_args.drop_cache = true;
273	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
274	if (ret)
275		goto out;
276	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
277	if (ret)
278		goto out;
279
280	write_extent_buffer(path->nodes[0], inline_data,
281			    btrfs_item_ptr_offset(path->nodes[0],
282						  path->slots[0]),
283			    size);
284	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
285	btrfs_set_inode_full_sync(BTRFS_I(dst));
286	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
287out:
288	if (!ret && !trans) {
289		/*
290		 * No transaction here means we copied the inline extent into a
291		 * page of the destination inode.
292		 *
293		 * 1 unit to update inode item
294		 */
295		trans = btrfs_start_transaction(root, 1);
296		if (IS_ERR(trans)) {
297			ret = PTR_ERR(trans);
298			trans = NULL;
299		}
300	}
301	if (ret && trans) {
302		btrfs_abort_transaction(trans, ret);
303		btrfs_end_transaction(trans);
304	}
305	if (!ret)
306		*trans_out = trans;
307
308	return ret;
309
310copy_to_page:
311	/*
312	 * Release our path because we don't need it anymore and also because
313	 * copy_inline_to_page() needs to reserve data and metadata, which may
314	 * need to flush delalloc when we are low on available space and
315	 * therefore cause a deadlock if writeback of an inline extent needs to
316	 * write to the same leaf or an ordered extent completion needs to write
317	 * to the same leaf.
318	 */
319	btrfs_release_path(path);
320
321	ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
322				  inline_data, size, datal, comp_type);
323	goto out;
324}
325
326/*
327 * Clone a range from inode file to another.
328 *
329 * @src:             Inode to clone from
330 * @inode:           Inode to clone to
331 * @off:             Offset within source to start clone from
332 * @olen:            Original length, passed by user, of range to clone
333 * @olen_aligned:    Block-aligned value of olen
334 * @destoff:         Offset within @inode to start clone
335 * @no_time_update:  Whether to update mtime/ctime on the target inode
336 */
337static int btrfs_clone(struct inode *src, struct inode *inode,
338		       const u64 off, const u64 olen, const u64 olen_aligned,
339		       const u64 destoff, int no_time_update)
340{
341	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
342	struct btrfs_path *path = NULL;
343	struct extent_buffer *leaf;
344	struct btrfs_trans_handle *trans;
345	char *buf = NULL;
346	struct btrfs_key key;
347	u32 nritems;
348	int slot;
349	int ret;
350	const u64 len = olen_aligned;
351	u64 last_dest_end = destoff;
352	u64 prev_extent_end = off;
353
354	ret = -ENOMEM;
355	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
356	if (!buf)
357		return ret;
358
359	path = btrfs_alloc_path();
360	if (!path) {
361		kvfree(buf);
362		return ret;
363	}
364
365	path->reada = READA_FORWARD;
366	/* Clone data */
367	key.objectid = btrfs_ino(BTRFS_I(src));
368	key.type = BTRFS_EXTENT_DATA_KEY;
369	key.offset = off;
370
371	while (1) {
372		struct btrfs_file_extent_item *extent;
373		u64 extent_gen;
374		int type;
375		u32 size;
376		struct btrfs_key new_key;
377		u64 disko = 0, diskl = 0;
378		u64 datao = 0, datal = 0;
379		u8 comp;
380		u64 drop_start;
381
382		/* Note the key will change type as we walk through the tree */
383		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
384				0, 0);
385		if (ret < 0)
386			goto out;
387		/*
388		 * First search, if no extent item that starts at offset off was
389		 * found but the previous item is an extent item, it's possible
390		 * it might overlap our target range, therefore process it.
391		 */
392		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
393			btrfs_item_key_to_cpu(path->nodes[0], &key,
394					      path->slots[0] - 1);
395			if (key.type == BTRFS_EXTENT_DATA_KEY)
396				path->slots[0]--;
397		}
398
399		nritems = btrfs_header_nritems(path->nodes[0]);
400process_slot:
401		if (path->slots[0] >= nritems) {
402			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
403			if (ret < 0)
404				goto out;
405			if (ret > 0)
406				break;
407			nritems = btrfs_header_nritems(path->nodes[0]);
408		}
409		leaf = path->nodes[0];
410		slot = path->slots[0];
411
412		btrfs_item_key_to_cpu(leaf, &key, slot);
413		if (key.type > BTRFS_EXTENT_DATA_KEY ||
414		    key.objectid != btrfs_ino(BTRFS_I(src)))
415			break;
416
417		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
418
419		extent = btrfs_item_ptr(leaf, slot,
420					struct btrfs_file_extent_item);
421		extent_gen = btrfs_file_extent_generation(leaf, extent);
422		comp = btrfs_file_extent_compression(leaf, extent);
423		type = btrfs_file_extent_type(leaf, extent);
424		if (type == BTRFS_FILE_EXTENT_REG ||
425		    type == BTRFS_FILE_EXTENT_PREALLOC) {
426			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
427			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
428			datao = btrfs_file_extent_offset(leaf, extent);
429			datal = btrfs_file_extent_num_bytes(leaf, extent);
430		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
431			/* Take upper bound, may be compressed */
432			datal = btrfs_file_extent_ram_bytes(leaf, extent);
433		}
434
435		/*
436		 * The first search might have left us at an extent item that
437		 * ends before our target range's start, can happen if we have
438		 * holes and NO_HOLES feature enabled.
439		 *
440		 * Subsequent searches may leave us on a file range we have
441		 * processed before - this happens due to a race with ordered
442		 * extent completion for a file range that is outside our source
443		 * range, but that range was part of a file extent item that
444		 * also covered a leading part of our source range.
445		 */
446		if (key.offset + datal <= prev_extent_end) {
447			path->slots[0]++;
448			goto process_slot;
449		} else if (key.offset >= off + len) {
450			break;
451		}
452
453		prev_extent_end = key.offset + datal;
454		size = btrfs_item_size(leaf, slot);
455		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
456				   size);
457
458		btrfs_release_path(path);
459
460		memcpy(&new_key, &key, sizeof(new_key));
461		new_key.objectid = btrfs_ino(BTRFS_I(inode));
462		if (off <= key.offset)
463			new_key.offset = key.offset + destoff - off;
464		else
465			new_key.offset = destoff;
466
467		/*
468		 * Deal with a hole that doesn't have an extent item that
469		 * represents it (NO_HOLES feature enabled).
470		 * This hole is either in the middle of the cloning range or at
471		 * the beginning (fully overlaps it or partially overlaps it).
472		 */
473		if (new_key.offset != last_dest_end)
474			drop_start = last_dest_end;
475		else
476			drop_start = new_key.offset;
477
478		if (type == BTRFS_FILE_EXTENT_REG ||
479		    type == BTRFS_FILE_EXTENT_PREALLOC) {
480			struct btrfs_replace_extent_info clone_info;
481
482			/*
483			 *    a  | --- range to clone ---|  b
484			 * | ------------- extent ------------- |
485			 */
486
487			/* Subtract range b */
488			if (key.offset + datal > off + len)
489				datal = off + len - key.offset;
490
491			/* Subtract range a */
492			if (off > key.offset) {
493				datao += off - key.offset;
494				datal -= off - key.offset;
495			}
496
497			clone_info.disk_offset = disko;
498			clone_info.disk_len = diskl;
499			clone_info.data_offset = datao;
500			clone_info.data_len = datal;
501			clone_info.file_offset = new_key.offset;
502			clone_info.extent_buf = buf;
503			clone_info.is_new_extent = false;
504			clone_info.update_times = !no_time_update;
505			ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
506					drop_start, new_key.offset + datal - 1,
507					&clone_info, &trans);
508			if (ret)
509				goto out;
510		} else {
511			ASSERT(type == BTRFS_FILE_EXTENT_INLINE);
512			/*
513			 * Inline extents always have to start at file offset 0
514			 * and can never be bigger then the sector size. We can
515			 * never clone only parts of an inline extent, since all
516			 * reflink operations must start at a sector size aligned
517			 * offset, and the length must be aligned too or end at
518			 * the i_size (which implies the whole inlined data).
519			 */
520			ASSERT(key.offset == 0);
521			ASSERT(datal <= fs_info->sectorsize);
522			if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) ||
523			    WARN_ON(key.offset != 0) ||
524			    WARN_ON(datal > fs_info->sectorsize)) {
525				ret = -EUCLEAN;
526				goto out;
527			}
528
529			ret = clone_copy_inline_extent(inode, path, &new_key,
530						       drop_start, datal, size,
531						       comp, buf, &trans);
532			if (ret)
533				goto out;
534		}
535
536		btrfs_release_path(path);
537
538		/*
539		 * Whenever we share an extent we update the last_reflink_trans
540		 * of each inode to the current transaction. This is needed to
541		 * make sure fsync does not log multiple checksum items with
542		 * overlapping ranges (because some extent items might refer
543		 * only to sections of the original extent). For the destination
544		 * inode we do this regardless of the generation of the extents
545		 * or even if they are inline extents or explicit holes, to make
546		 * sure a full fsync does not skip them. For the source inode,
547		 * we only need to update last_reflink_trans in case it's a new
548		 * extent that is not a hole or an inline extent, to deal with
549		 * the checksums problem on fsync.
550		 */
551		if (extent_gen == trans->transid && disko > 0)
552			BTRFS_I(src)->last_reflink_trans = trans->transid;
553
554		BTRFS_I(inode)->last_reflink_trans = trans->transid;
555
556		last_dest_end = ALIGN(new_key.offset + datal,
557				      fs_info->sectorsize);
558		ret = clone_finish_inode_update(trans, inode, last_dest_end,
559						destoff, olen, no_time_update);
560		if (ret)
561			goto out;
562		if (new_key.offset + datal >= destoff + len)
563			break;
564
565		btrfs_release_path(path);
566		key.offset = prev_extent_end;
567
568		if (fatal_signal_pending(current)) {
569			ret = -EINTR;
570			goto out;
571		}
572
573		cond_resched();
574	}
575	ret = 0;
576
577	if (last_dest_end < destoff + len) {
578		/*
579		 * We have an implicit hole that fully or partially overlaps our
580		 * cloning range at its end. This means that we either have the
581		 * NO_HOLES feature enabled or the implicit hole happened due to
582		 * mixing buffered and direct IO writes against this file.
583		 */
584		btrfs_release_path(path);
585
586		/*
587		 * When using NO_HOLES and we are cloning a range that covers
588		 * only a hole (no extents) into a range beyond the current
589		 * i_size, punching a hole in the target range will not create
590		 * an extent map defining a hole, because the range starts at or
591		 * beyond current i_size. If the file previously had an i_size
592		 * greater than the new i_size set by this clone operation, we
593		 * need to make sure the next fsync is a full fsync, so that it
594		 * detects and logs a hole covering a range from the current
595		 * i_size to the new i_size. If the clone range covers extents,
596		 * besides a hole, then we know the full sync flag was already
597		 * set by previous calls to btrfs_replace_file_extents() that
598		 * replaced file extent items.
599		 */
600		if (last_dest_end >= i_size_read(inode))
601			btrfs_set_inode_full_sync(BTRFS_I(inode));
602
603		ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
604				last_dest_end, destoff + len - 1, NULL, &trans);
605		if (ret)
606			goto out;
607
608		ret = clone_finish_inode_update(trans, inode, destoff + len,
609						destoff, olen, no_time_update);
610	}
611
612out:
613	btrfs_free_path(path);
614	kvfree(buf);
615	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
616
617	return ret;
618}
619
620static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
621				       struct inode *inode2, u64 loff2, u64 len)
622{
623	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1, NULL);
624	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1, NULL);
625}
626
627static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
628				     struct inode *inode2, u64 loff2, u64 len)
629{
630	u64 range1_end = loff1 + len - 1;
631	u64 range2_end = loff2 + len - 1;
632
633	if (inode1 < inode2) {
634		swap(inode1, inode2);
635		swap(loff1, loff2);
636		swap(range1_end, range2_end);
637	} else if (inode1 == inode2 && loff2 < loff1) {
638		swap(loff1, loff2);
639		swap(range1_end, range2_end);
640	}
641
642	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, range1_end, NULL);
643	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, range2_end, NULL);
644
645	btrfs_assert_inode_range_clean(BTRFS_I(inode1), loff1, range1_end);
646	btrfs_assert_inode_range_clean(BTRFS_I(inode2), loff2, range2_end);
647}
648
649static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
650{
651	if (inode1 < inode2)
652		swap(inode1, inode2);
653	down_write(&BTRFS_I(inode1)->i_mmap_lock);
654	down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
655}
656
657static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
658{
659	up_write(&BTRFS_I(inode1)->i_mmap_lock);
660	up_write(&BTRFS_I(inode2)->i_mmap_lock);
661}
662
663static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
664				   struct inode *dst, u64 dst_loff)
665{
666	struct btrfs_fs_info *fs_info = BTRFS_I(src)->root->fs_info;
667	const u64 bs = fs_info->sb->s_blocksize;
668	int ret;
669
670	/*
671	 * Lock destination range to serialize with concurrent readahead() and
672	 * source range to serialize with relocation.
673	 */
674	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
675	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
676	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
677
678	btrfs_btree_balance_dirty(fs_info);
679
680	return ret;
681}
682
683static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
684			     struct inode *dst, u64 dst_loff)
685{
686	int ret = 0;
687	u64 i, tail_len, chunk_count;
688	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
689
690	spin_lock(&root_dst->root_item_lock);
691	if (root_dst->send_in_progress) {
692		btrfs_warn_rl(root_dst->fs_info,
693"cannot deduplicate to root %llu while send operations are using it (%d in progress)",
694			      root_dst->root_key.objectid,
695			      root_dst->send_in_progress);
696		spin_unlock(&root_dst->root_item_lock);
697		return -EAGAIN;
698	}
699	root_dst->dedupe_in_progress++;
700	spin_unlock(&root_dst->root_item_lock);
701
702	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
703	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
704
705	for (i = 0; i < chunk_count; i++) {
706		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
707					      dst, dst_loff);
708		if (ret)
709			goto out;
710
711		loff += BTRFS_MAX_DEDUPE_LEN;
712		dst_loff += BTRFS_MAX_DEDUPE_LEN;
713	}
714
715	if (tail_len > 0)
716		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
717out:
718	spin_lock(&root_dst->root_item_lock);
719	root_dst->dedupe_in_progress--;
720	spin_unlock(&root_dst->root_item_lock);
721
722	return ret;
723}
724
725static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
726					u64 off, u64 olen, u64 destoff)
727{
728	struct inode *inode = file_inode(file);
729	struct inode *src = file_inode(file_src);
730	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
731	int ret;
732	int wb_ret;
733	u64 len = olen;
734	u64 bs = fs_info->sb->s_blocksize;
735
736	/*
737	 * VFS's generic_remap_file_range_prep() protects us from cloning the
738	 * eof block into the middle of a file, which would result in corruption
739	 * if the file size is not blocksize aligned. So we don't need to check
740	 * for that case here.
741	 */
742	if (off + len == src->i_size)
743		len = ALIGN(src->i_size, bs) - off;
744
745	if (destoff > inode->i_size) {
746		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
747
748		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
749		if (ret)
750			return ret;
751		/*
752		 * We may have truncated the last block if the inode's size is
753		 * not sector size aligned, so we need to wait for writeback to
754		 * complete before proceeding further, otherwise we can race
755		 * with cloning and attempt to increment a reference to an
756		 * extent that no longer exists (writeback completed right after
757		 * we found the previous extent covering eof and before we
758		 * attempted to increment its reference count).
759		 */
760		ret = btrfs_wait_ordered_range(inode, wb_start,
761					       destoff - wb_start);
762		if (ret)
763			return ret;
764	}
765
766	/*
767	 * Lock destination range to serialize with concurrent readahead() and
768	 * source range to serialize with relocation.
769	 */
770	btrfs_double_extent_lock(src, off, inode, destoff, len);
771	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
772	btrfs_double_extent_unlock(src, off, inode, destoff, len);
773
774	/*
775	 * We may have copied an inline extent into a page of the destination
776	 * range, so wait for writeback to complete before truncating pages
777	 * from the page cache. This is a rare case.
778	 */
779	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
780	ret = ret ? ret : wb_ret;
781	/*
782	 * Truncate page cache pages so that future reads will see the cloned
783	 * data immediately and not the previous data.
784	 */
785	truncate_inode_pages_range(&inode->i_data,
786				round_down(destoff, PAGE_SIZE),
787				round_up(destoff + len, PAGE_SIZE) - 1);
788
789	btrfs_btree_balance_dirty(fs_info);
790
791	return ret;
792}
793
794static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
795				       struct file *file_out, loff_t pos_out,
796				       loff_t *len, unsigned int remap_flags)
797{
798	struct inode *inode_in = file_inode(file_in);
799	struct inode *inode_out = file_inode(file_out);
800	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
801	u64 wb_len;
802	int ret;
803
804	if (!(remap_flags & REMAP_FILE_DEDUP)) {
805		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
806
807		if (btrfs_root_readonly(root_out))
808			return -EROFS;
809
810		ASSERT(inode_in->i_sb == inode_out->i_sb);
811	}
812
813	/* Don't make the dst file partly checksummed */
814	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
815	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
816		return -EINVAL;
817	}
818
819	/*
820	 * Now that the inodes are locked, we need to start writeback ourselves
821	 * and can not rely on the writeback from the VFS's generic helper
822	 * generic_remap_file_range_prep() because:
823	 *
824	 * 1) For compression we must call filemap_fdatawrite_range() range
825	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
826	 *    helper only calls it once;
827	 *
828	 * 2) filemap_fdatawrite_range(), called by the generic helper only
829	 *    waits for the writeback to complete, i.e. for IO to be done, and
830	 *    not for the ordered extents to complete. We need to wait for them
831	 *    to complete so that new file extent items are in the fs tree.
832	 */
833	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
834		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
835	else
836		wb_len = ALIGN(*len, bs);
837
838	/*
839	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
840	 *
841	 * Btrfs' back references do not have a block level granularity, they
842	 * work at the whole extent level.
843	 * NOCOW buffered write without data space reserved may not be able
844	 * to fall back to CoW due to lack of data space, thus could cause
845	 * data loss.
846	 *
847	 * Here we take a shortcut by flushing the whole inode, so that all
848	 * nocow write should reach disk as nocow before we increase the
849	 * reference of the extent. We could do better by only flushing NOCOW
850	 * data, but that needs extra accounting.
851	 *
852	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
853	 * CoWed anyway, not affecting nocow part.
854	 */
855	ret = filemap_flush(inode_in->i_mapping);
856	if (ret < 0)
857		return ret;
858
859	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
860				       wb_len);
861	if (ret < 0)
862		return ret;
863	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
864				       wb_len);
865	if (ret < 0)
866		return ret;
867
868	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
869					    len, remap_flags);
870}
871
872static bool file_sync_write(const struct file *file)
873{
874	if (file->f_flags & (__O_SYNC | O_DSYNC))
875		return true;
876	if (IS_SYNC(file_inode(file)))
877		return true;
878
879	return false;
880}
881
882loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
883		struct file *dst_file, loff_t destoff, loff_t len,
884		unsigned int remap_flags)
885{
886	struct inode *src_inode = file_inode(src_file);
887	struct inode *dst_inode = file_inode(dst_file);
888	bool same_inode = dst_inode == src_inode;
889	int ret;
890
891	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
892		return -EINVAL;
893
894	if (same_inode) {
895		btrfs_inode_lock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP);
896	} else {
897		lock_two_nondirectories(src_inode, dst_inode);
898		btrfs_double_mmap_lock(src_inode, dst_inode);
899	}
900
901	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
902					  &len, remap_flags);
903	if (ret < 0 || len == 0)
904		goto out_unlock;
905
906	if (remap_flags & REMAP_FILE_DEDUP)
907		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
908	else
909		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
910
911out_unlock:
912	if (same_inode) {
913		btrfs_inode_unlock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP);
914	} else {
915		btrfs_double_mmap_unlock(src_inode, dst_inode);
916		unlock_two_nondirectories(src_inode, dst_inode);
917	}
918
919	/*
920	 * If either the source or the destination file was opened with O_SYNC,
921	 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
922	 * source files/ranges, so that after a successful return (0) followed
923	 * by a power failure results in the reflinked data to be readable from
924	 * both files/ranges.
925	 */
926	if (ret == 0 && len > 0 &&
927	    (file_sync_write(src_file) || file_sync_write(dst_file))) {
928		ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
929		if (ret == 0)
930			ret = btrfs_sync_file(dst_file, destoff,
931					      destoff + len - 1, 0);
932	}
933
934	return ret < 0 ? ret : len;
935}
936