xref: /kernel/linux/linux-6.6/fs/btrfs/ref-verify.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2014 Facebook.  All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/stacktrace.h>
8#include "messages.h"
9#include "ctree.h"
10#include "disk-io.h"
11#include "locking.h"
12#include "delayed-ref.h"
13#include "ref-verify.h"
14#include "fs.h"
15#include "accessors.h"
16
17/*
18 * Used to keep track the roots and number of refs each root has for a given
19 * bytenr.  This just tracks the number of direct references, no shared
20 * references.
21 */
22struct root_entry {
23	u64 root_objectid;
24	u64 num_refs;
25	struct rb_node node;
26};
27
28/*
29 * These are meant to represent what should exist in the extent tree, these can
30 * be used to verify the extent tree is consistent as these should all match
31 * what the extent tree says.
32 */
33struct ref_entry {
34	u64 root_objectid;
35	u64 parent;
36	u64 owner;
37	u64 offset;
38	u64 num_refs;
39	struct rb_node node;
40};
41
42#define MAX_TRACE	16
43
44/*
45 * Whenever we add/remove a reference we record the action.  The action maps
46 * back to the delayed ref action.  We hold the ref we are changing in the
47 * action so we can account for the history properly, and we record the root we
48 * were called with since it could be different from ref_root.  We also store
49 * stack traces because that's how I roll.
50 */
51struct ref_action {
52	int action;
53	u64 root;
54	struct ref_entry ref;
55	struct list_head list;
56	unsigned long trace[MAX_TRACE];
57	unsigned int trace_len;
58};
59
60/*
61 * One of these for every block we reference, it holds the roots and references
62 * to it as well as all of the ref actions that have occurred to it.  We never
63 * free it until we unmount the file system in order to make sure re-allocations
64 * are happening properly.
65 */
66struct block_entry {
67	u64 bytenr;
68	u64 len;
69	u64 num_refs;
70	int metadata;
71	int from_disk;
72	struct rb_root roots;
73	struct rb_root refs;
74	struct rb_node node;
75	struct list_head actions;
76};
77
78static struct block_entry *insert_block_entry(struct rb_root *root,
79					      struct block_entry *be)
80{
81	struct rb_node **p = &root->rb_node;
82	struct rb_node *parent_node = NULL;
83	struct block_entry *entry;
84
85	while (*p) {
86		parent_node = *p;
87		entry = rb_entry(parent_node, struct block_entry, node);
88		if (entry->bytenr > be->bytenr)
89			p = &(*p)->rb_left;
90		else if (entry->bytenr < be->bytenr)
91			p = &(*p)->rb_right;
92		else
93			return entry;
94	}
95
96	rb_link_node(&be->node, parent_node, p);
97	rb_insert_color(&be->node, root);
98	return NULL;
99}
100
101static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr)
102{
103	struct rb_node *n;
104	struct block_entry *entry = NULL;
105
106	n = root->rb_node;
107	while (n) {
108		entry = rb_entry(n, struct block_entry, node);
109		if (entry->bytenr < bytenr)
110			n = n->rb_right;
111		else if (entry->bytenr > bytenr)
112			n = n->rb_left;
113		else
114			return entry;
115	}
116	return NULL;
117}
118
119static struct root_entry *insert_root_entry(struct rb_root *root,
120					    struct root_entry *re)
121{
122	struct rb_node **p = &root->rb_node;
123	struct rb_node *parent_node = NULL;
124	struct root_entry *entry;
125
126	while (*p) {
127		parent_node = *p;
128		entry = rb_entry(parent_node, struct root_entry, node);
129		if (entry->root_objectid > re->root_objectid)
130			p = &(*p)->rb_left;
131		else if (entry->root_objectid < re->root_objectid)
132			p = &(*p)->rb_right;
133		else
134			return entry;
135	}
136
137	rb_link_node(&re->node, parent_node, p);
138	rb_insert_color(&re->node, root);
139	return NULL;
140
141}
142
143static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2)
144{
145	if (ref1->root_objectid < ref2->root_objectid)
146		return -1;
147	if (ref1->root_objectid > ref2->root_objectid)
148		return 1;
149	if (ref1->parent < ref2->parent)
150		return -1;
151	if (ref1->parent > ref2->parent)
152		return 1;
153	if (ref1->owner < ref2->owner)
154		return -1;
155	if (ref1->owner > ref2->owner)
156		return 1;
157	if (ref1->offset < ref2->offset)
158		return -1;
159	if (ref1->offset > ref2->offset)
160		return 1;
161	return 0;
162}
163
164static struct ref_entry *insert_ref_entry(struct rb_root *root,
165					  struct ref_entry *ref)
166{
167	struct rb_node **p = &root->rb_node;
168	struct rb_node *parent_node = NULL;
169	struct ref_entry *entry;
170	int cmp;
171
172	while (*p) {
173		parent_node = *p;
174		entry = rb_entry(parent_node, struct ref_entry, node);
175		cmp = comp_refs(entry, ref);
176		if (cmp > 0)
177			p = &(*p)->rb_left;
178		else if (cmp < 0)
179			p = &(*p)->rb_right;
180		else
181			return entry;
182	}
183
184	rb_link_node(&ref->node, parent_node, p);
185	rb_insert_color(&ref->node, root);
186	return NULL;
187
188}
189
190static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid)
191{
192	struct rb_node *n;
193	struct root_entry *entry = NULL;
194
195	n = root->rb_node;
196	while (n) {
197		entry = rb_entry(n, struct root_entry, node);
198		if (entry->root_objectid < objectid)
199			n = n->rb_right;
200		else if (entry->root_objectid > objectid)
201			n = n->rb_left;
202		else
203			return entry;
204	}
205	return NULL;
206}
207
208#ifdef CONFIG_STACKTRACE
209static void __save_stack_trace(struct ref_action *ra)
210{
211	ra->trace_len = stack_trace_save(ra->trace, MAX_TRACE, 2);
212}
213
214static void __print_stack_trace(struct btrfs_fs_info *fs_info,
215				struct ref_action *ra)
216{
217	if (ra->trace_len == 0) {
218		btrfs_err(fs_info, "  ref-verify: no stacktrace");
219		return;
220	}
221	stack_trace_print(ra->trace, ra->trace_len, 2);
222}
223#else
224static inline void __save_stack_trace(struct ref_action *ra)
225{
226}
227
228static inline void __print_stack_trace(struct btrfs_fs_info *fs_info,
229				       struct ref_action *ra)
230{
231	btrfs_err(fs_info, "  ref-verify: no stacktrace support");
232}
233#endif
234
235static void free_block_entry(struct block_entry *be)
236{
237	struct root_entry *re;
238	struct ref_entry *ref;
239	struct ref_action *ra;
240	struct rb_node *n;
241
242	while ((n = rb_first(&be->roots))) {
243		re = rb_entry(n, struct root_entry, node);
244		rb_erase(&re->node, &be->roots);
245		kfree(re);
246	}
247
248	while((n = rb_first(&be->refs))) {
249		ref = rb_entry(n, struct ref_entry, node);
250		rb_erase(&ref->node, &be->refs);
251		kfree(ref);
252	}
253
254	while (!list_empty(&be->actions)) {
255		ra = list_first_entry(&be->actions, struct ref_action,
256				      list);
257		list_del(&ra->list);
258		kfree(ra);
259	}
260	kfree(be);
261}
262
263static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info,
264					   u64 bytenr, u64 len,
265					   u64 root_objectid)
266{
267	struct block_entry *be = NULL, *exist;
268	struct root_entry *re = NULL;
269
270	re = kzalloc(sizeof(struct root_entry), GFP_NOFS);
271	be = kzalloc(sizeof(struct block_entry), GFP_NOFS);
272	if (!be || !re) {
273		kfree(re);
274		kfree(be);
275		return ERR_PTR(-ENOMEM);
276	}
277	be->bytenr = bytenr;
278	be->len = len;
279
280	re->root_objectid = root_objectid;
281	re->num_refs = 0;
282
283	spin_lock(&fs_info->ref_verify_lock);
284	exist = insert_block_entry(&fs_info->block_tree, be);
285	if (exist) {
286		if (root_objectid) {
287			struct root_entry *exist_re;
288
289			exist_re = insert_root_entry(&exist->roots, re);
290			if (exist_re)
291				kfree(re);
292		} else {
293			kfree(re);
294		}
295		kfree(be);
296		return exist;
297	}
298
299	be->num_refs = 0;
300	be->metadata = 0;
301	be->from_disk = 0;
302	be->roots = RB_ROOT;
303	be->refs = RB_ROOT;
304	INIT_LIST_HEAD(&be->actions);
305	if (root_objectid)
306		insert_root_entry(&be->roots, re);
307	else
308		kfree(re);
309	return be;
310}
311
312static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root,
313			  u64 parent, u64 bytenr, int level)
314{
315	struct block_entry *be;
316	struct root_entry *re;
317	struct ref_entry *ref = NULL, *exist;
318
319	ref = kmalloc(sizeof(struct ref_entry), GFP_NOFS);
320	if (!ref)
321		return -ENOMEM;
322
323	if (parent)
324		ref->root_objectid = 0;
325	else
326		ref->root_objectid = ref_root;
327	ref->parent = parent;
328	ref->owner = level;
329	ref->offset = 0;
330	ref->num_refs = 1;
331
332	be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root);
333	if (IS_ERR(be)) {
334		kfree(ref);
335		return PTR_ERR(be);
336	}
337	be->num_refs++;
338	be->from_disk = 1;
339	be->metadata = 1;
340
341	if (!parent) {
342		ASSERT(ref_root);
343		re = lookup_root_entry(&be->roots, ref_root);
344		ASSERT(re);
345		re->num_refs++;
346	}
347	exist = insert_ref_entry(&be->refs, ref);
348	if (exist) {
349		exist->num_refs++;
350		kfree(ref);
351	}
352	spin_unlock(&fs_info->ref_verify_lock);
353
354	return 0;
355}
356
357static int add_shared_data_ref(struct btrfs_fs_info *fs_info,
358			       u64 parent, u32 num_refs, u64 bytenr,
359			       u64 num_bytes)
360{
361	struct block_entry *be;
362	struct ref_entry *ref;
363
364	ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
365	if (!ref)
366		return -ENOMEM;
367	be = add_block_entry(fs_info, bytenr, num_bytes, 0);
368	if (IS_ERR(be)) {
369		kfree(ref);
370		return PTR_ERR(be);
371	}
372	be->num_refs += num_refs;
373
374	ref->parent = parent;
375	ref->num_refs = num_refs;
376	if (insert_ref_entry(&be->refs, ref)) {
377		spin_unlock(&fs_info->ref_verify_lock);
378		btrfs_err(fs_info, "existing shared ref when reading from disk?");
379		kfree(ref);
380		return -EINVAL;
381	}
382	spin_unlock(&fs_info->ref_verify_lock);
383	return 0;
384}
385
386static int add_extent_data_ref(struct btrfs_fs_info *fs_info,
387			       struct extent_buffer *leaf,
388			       struct btrfs_extent_data_ref *dref,
389			       u64 bytenr, u64 num_bytes)
390{
391	struct block_entry *be;
392	struct ref_entry *ref;
393	struct root_entry *re;
394	u64 ref_root = btrfs_extent_data_ref_root(leaf, dref);
395	u64 owner = btrfs_extent_data_ref_objectid(leaf, dref);
396	u64 offset = btrfs_extent_data_ref_offset(leaf, dref);
397	u32 num_refs = btrfs_extent_data_ref_count(leaf, dref);
398
399	ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
400	if (!ref)
401		return -ENOMEM;
402	be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
403	if (IS_ERR(be)) {
404		kfree(ref);
405		return PTR_ERR(be);
406	}
407	be->num_refs += num_refs;
408
409	ref->parent = 0;
410	ref->owner = owner;
411	ref->root_objectid = ref_root;
412	ref->offset = offset;
413	ref->num_refs = num_refs;
414	if (insert_ref_entry(&be->refs, ref)) {
415		spin_unlock(&fs_info->ref_verify_lock);
416		btrfs_err(fs_info, "existing ref when reading from disk?");
417		kfree(ref);
418		return -EINVAL;
419	}
420
421	re = lookup_root_entry(&be->roots, ref_root);
422	if (!re) {
423		spin_unlock(&fs_info->ref_verify_lock);
424		btrfs_err(fs_info, "missing root in new block entry?");
425		return -EINVAL;
426	}
427	re->num_refs += num_refs;
428	spin_unlock(&fs_info->ref_verify_lock);
429	return 0;
430}
431
432static int process_extent_item(struct btrfs_fs_info *fs_info,
433			       struct btrfs_path *path, struct btrfs_key *key,
434			       int slot, int *tree_block_level)
435{
436	struct btrfs_extent_item *ei;
437	struct btrfs_extent_inline_ref *iref;
438	struct btrfs_extent_data_ref *dref;
439	struct btrfs_shared_data_ref *sref;
440	struct extent_buffer *leaf = path->nodes[0];
441	u32 item_size = btrfs_item_size(leaf, slot);
442	unsigned long end, ptr;
443	u64 offset, flags, count;
444	int type, ret;
445
446	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
447	flags = btrfs_extent_flags(leaf, ei);
448
449	if ((key->type == BTRFS_EXTENT_ITEM_KEY) &&
450	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
451		struct btrfs_tree_block_info *info;
452
453		info = (struct btrfs_tree_block_info *)(ei + 1);
454		*tree_block_level = btrfs_tree_block_level(leaf, info);
455		iref = (struct btrfs_extent_inline_ref *)(info + 1);
456	} else {
457		if (key->type == BTRFS_METADATA_ITEM_KEY)
458			*tree_block_level = key->offset;
459		iref = (struct btrfs_extent_inline_ref *)(ei + 1);
460	}
461
462	ptr = (unsigned long)iref;
463	end = (unsigned long)ei + item_size;
464	while (ptr < end) {
465		iref = (struct btrfs_extent_inline_ref *)ptr;
466		type = btrfs_extent_inline_ref_type(leaf, iref);
467		offset = btrfs_extent_inline_ref_offset(leaf, iref);
468		switch (type) {
469		case BTRFS_TREE_BLOCK_REF_KEY:
470			ret = add_tree_block(fs_info, offset, 0, key->objectid,
471					     *tree_block_level);
472			break;
473		case BTRFS_SHARED_BLOCK_REF_KEY:
474			ret = add_tree_block(fs_info, 0, offset, key->objectid,
475					     *tree_block_level);
476			break;
477		case BTRFS_EXTENT_DATA_REF_KEY:
478			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
479			ret = add_extent_data_ref(fs_info, leaf, dref,
480						  key->objectid, key->offset);
481			break;
482		case BTRFS_SHARED_DATA_REF_KEY:
483			sref = (struct btrfs_shared_data_ref *)(iref + 1);
484			count = btrfs_shared_data_ref_count(leaf, sref);
485			ret = add_shared_data_ref(fs_info, offset, count,
486						  key->objectid, key->offset);
487			break;
488		default:
489			btrfs_err(fs_info, "invalid key type in iref");
490			ret = -EINVAL;
491			break;
492		}
493		if (ret)
494			break;
495		ptr += btrfs_extent_inline_ref_size(type);
496	}
497	return ret;
498}
499
500static int process_leaf(struct btrfs_root *root,
501			struct btrfs_path *path, u64 *bytenr, u64 *num_bytes,
502			int *tree_block_level)
503{
504	struct btrfs_fs_info *fs_info = root->fs_info;
505	struct extent_buffer *leaf = path->nodes[0];
506	struct btrfs_extent_data_ref *dref;
507	struct btrfs_shared_data_ref *sref;
508	u32 count;
509	int i = 0, ret = 0;
510	struct btrfs_key key;
511	int nritems = btrfs_header_nritems(leaf);
512
513	for (i = 0; i < nritems; i++) {
514		btrfs_item_key_to_cpu(leaf, &key, i);
515		switch (key.type) {
516		case BTRFS_EXTENT_ITEM_KEY:
517			*num_bytes = key.offset;
518			fallthrough;
519		case BTRFS_METADATA_ITEM_KEY:
520			*bytenr = key.objectid;
521			ret = process_extent_item(fs_info, path, &key, i,
522						  tree_block_level);
523			break;
524		case BTRFS_TREE_BLOCK_REF_KEY:
525			ret = add_tree_block(fs_info, key.offset, 0,
526					     key.objectid, *tree_block_level);
527			break;
528		case BTRFS_SHARED_BLOCK_REF_KEY:
529			ret = add_tree_block(fs_info, 0, key.offset,
530					     key.objectid, *tree_block_level);
531			break;
532		case BTRFS_EXTENT_DATA_REF_KEY:
533			dref = btrfs_item_ptr(leaf, i,
534					      struct btrfs_extent_data_ref);
535			ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr,
536						  *num_bytes);
537			break;
538		case BTRFS_SHARED_DATA_REF_KEY:
539			sref = btrfs_item_ptr(leaf, i,
540					      struct btrfs_shared_data_ref);
541			count = btrfs_shared_data_ref_count(leaf, sref);
542			ret = add_shared_data_ref(fs_info, key.offset, count,
543						  *bytenr, *num_bytes);
544			break;
545		default:
546			break;
547		}
548		if (ret)
549			break;
550	}
551	return ret;
552}
553
554/* Walk down to the leaf from the given level */
555static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path,
556			  int level, u64 *bytenr, u64 *num_bytes,
557			  int *tree_block_level)
558{
559	struct extent_buffer *eb;
560	int ret = 0;
561
562	while (level >= 0) {
563		if (level) {
564			eb = btrfs_read_node_slot(path->nodes[level],
565						  path->slots[level]);
566			if (IS_ERR(eb))
567				return PTR_ERR(eb);
568			btrfs_tree_read_lock(eb);
569			path->nodes[level-1] = eb;
570			path->slots[level-1] = 0;
571			path->locks[level-1] = BTRFS_READ_LOCK;
572		} else {
573			ret = process_leaf(root, path, bytenr, num_bytes,
574					   tree_block_level);
575			if (ret)
576				break;
577		}
578		level--;
579	}
580	return ret;
581}
582
583/* Walk up to the next node that needs to be processed */
584static int walk_up_tree(struct btrfs_path *path, int *level)
585{
586	int l;
587
588	for (l = 0; l < BTRFS_MAX_LEVEL; l++) {
589		if (!path->nodes[l])
590			continue;
591		if (l) {
592			path->slots[l]++;
593			if (path->slots[l] <
594			    btrfs_header_nritems(path->nodes[l])) {
595				*level = l;
596				return 0;
597			}
598		}
599		btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]);
600		free_extent_buffer(path->nodes[l]);
601		path->nodes[l] = NULL;
602		path->slots[l] = 0;
603		path->locks[l] = 0;
604	}
605
606	return 1;
607}
608
609static void dump_ref_action(struct btrfs_fs_info *fs_info,
610			    struct ref_action *ra)
611{
612	btrfs_err(fs_info,
613"  Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
614		  ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent,
615		  ra->ref.owner, ra->ref.offset, ra->ref.num_refs);
616	__print_stack_trace(fs_info, ra);
617}
618
619/*
620 * Dumps all the information from the block entry to printk, it's going to be
621 * awesome.
622 */
623static void dump_block_entry(struct btrfs_fs_info *fs_info,
624			     struct block_entry *be)
625{
626	struct ref_entry *ref;
627	struct root_entry *re;
628	struct ref_action *ra;
629	struct rb_node *n;
630
631	btrfs_err(fs_info,
632"dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d",
633		  be->bytenr, be->len, be->num_refs, be->metadata,
634		  be->from_disk);
635
636	for (n = rb_first(&be->refs); n; n = rb_next(n)) {
637		ref = rb_entry(n, struct ref_entry, node);
638		btrfs_err(fs_info,
639"  ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
640			  ref->root_objectid, ref->parent, ref->owner,
641			  ref->offset, ref->num_refs);
642	}
643
644	for (n = rb_first(&be->roots); n; n = rb_next(n)) {
645		re = rb_entry(n, struct root_entry, node);
646		btrfs_err(fs_info, "  root entry %llu, num_refs %llu",
647			  re->root_objectid, re->num_refs);
648	}
649
650	list_for_each_entry(ra, &be->actions, list)
651		dump_ref_action(fs_info, ra);
652}
653
654/*
655 * btrfs_ref_tree_mod: called when we modify a ref for a bytenr
656 *
657 * This will add an action item to the given bytenr and do sanity checks to make
658 * sure we haven't messed something up.  If we are making a new allocation and
659 * this block entry has history we will delete all previous actions as long as
660 * our sanity checks pass as they are no longer needed.
661 */
662int btrfs_ref_tree_mod(struct btrfs_fs_info *fs_info,
663		       struct btrfs_ref *generic_ref)
664{
665	struct ref_entry *ref = NULL, *exist;
666	struct ref_action *ra = NULL;
667	struct block_entry *be = NULL;
668	struct root_entry *re = NULL;
669	int action = generic_ref->action;
670	int ret = 0;
671	bool metadata;
672	u64 bytenr = generic_ref->bytenr;
673	u64 num_bytes = generic_ref->len;
674	u64 parent = generic_ref->parent;
675	u64 ref_root = 0;
676	u64 owner = 0;
677	u64 offset = 0;
678
679	if (!btrfs_test_opt(fs_info, REF_VERIFY))
680		return 0;
681
682	if (generic_ref->type == BTRFS_REF_METADATA) {
683		if (!parent)
684			ref_root = generic_ref->tree_ref.owning_root;
685		owner = generic_ref->tree_ref.level;
686	} else if (!parent) {
687		ref_root = generic_ref->data_ref.owning_root;
688		owner = generic_ref->data_ref.ino;
689		offset = generic_ref->data_ref.offset;
690	}
691	metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
692
693	ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
694	ra = kmalloc(sizeof(struct ref_action), GFP_NOFS);
695	if (!ra || !ref) {
696		kfree(ref);
697		kfree(ra);
698		ret = -ENOMEM;
699		goto out;
700	}
701
702	ref->parent = parent;
703	ref->owner = owner;
704	ref->root_objectid = ref_root;
705	ref->offset = offset;
706	ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1;
707
708	memcpy(&ra->ref, ref, sizeof(struct ref_entry));
709	/*
710	 * Save the extra info from the delayed ref in the ref action to make it
711	 * easier to figure out what is happening.  The real ref's we add to the
712	 * ref tree need to reflect what we save on disk so it matches any
713	 * on-disk refs we pre-loaded.
714	 */
715	ra->ref.owner = owner;
716	ra->ref.offset = offset;
717	ra->ref.root_objectid = ref_root;
718	__save_stack_trace(ra);
719
720	INIT_LIST_HEAD(&ra->list);
721	ra->action = action;
722	ra->root = generic_ref->real_root;
723
724	/*
725	 * This is an allocation, preallocate the block_entry in case we haven't
726	 * used it before.
727	 */
728	ret = -EINVAL;
729	if (action == BTRFS_ADD_DELAYED_EXTENT) {
730		/*
731		 * For subvol_create we'll just pass in whatever the parent root
732		 * is and the new root objectid, so let's not treat the passed
733		 * in root as if it really has a ref for this bytenr.
734		 */
735		be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
736		if (IS_ERR(be)) {
737			kfree(ref);
738			kfree(ra);
739			ret = PTR_ERR(be);
740			goto out;
741		}
742		be->num_refs++;
743		if (metadata)
744			be->metadata = 1;
745
746		if (be->num_refs != 1) {
747			btrfs_err(fs_info,
748			"re-allocated a block that still has references to it!");
749			dump_block_entry(fs_info, be);
750			dump_ref_action(fs_info, ra);
751			kfree(ref);
752			kfree(ra);
753			goto out_unlock;
754		}
755
756		while (!list_empty(&be->actions)) {
757			struct ref_action *tmp;
758
759			tmp = list_first_entry(&be->actions, struct ref_action,
760					       list);
761			list_del(&tmp->list);
762			kfree(tmp);
763		}
764	} else {
765		struct root_entry *tmp;
766
767		if (!parent) {
768			re = kmalloc(sizeof(struct root_entry), GFP_NOFS);
769			if (!re) {
770				kfree(ref);
771				kfree(ra);
772				ret = -ENOMEM;
773				goto out;
774			}
775			/*
776			 * This is the root that is modifying us, so it's the
777			 * one we want to lookup below when we modify the
778			 * re->num_refs.
779			 */
780			ref_root = generic_ref->real_root;
781			re->root_objectid = generic_ref->real_root;
782			re->num_refs = 0;
783		}
784
785		spin_lock(&fs_info->ref_verify_lock);
786		be = lookup_block_entry(&fs_info->block_tree, bytenr);
787		if (!be) {
788			btrfs_err(fs_info,
789"trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!",
790				  action, bytenr, num_bytes);
791			dump_ref_action(fs_info, ra);
792			kfree(ref);
793			kfree(ra);
794			kfree(re);
795			goto out_unlock;
796		} else if (be->num_refs == 0) {
797			btrfs_err(fs_info,
798		"trying to do action %d for a bytenr that has 0 total references",
799				action);
800			dump_block_entry(fs_info, be);
801			dump_ref_action(fs_info, ra);
802			kfree(ref);
803			kfree(ra);
804			kfree(re);
805			goto out_unlock;
806		}
807
808		if (!parent) {
809			tmp = insert_root_entry(&be->roots, re);
810			if (tmp) {
811				kfree(re);
812				re = tmp;
813			}
814		}
815	}
816
817	exist = insert_ref_entry(&be->refs, ref);
818	if (exist) {
819		if (action == BTRFS_DROP_DELAYED_REF) {
820			if (exist->num_refs == 0) {
821				btrfs_err(fs_info,
822"dropping a ref for a existing root that doesn't have a ref on the block");
823				dump_block_entry(fs_info, be);
824				dump_ref_action(fs_info, ra);
825				kfree(ref);
826				kfree(ra);
827				goto out_unlock;
828			}
829			exist->num_refs--;
830			if (exist->num_refs == 0) {
831				rb_erase(&exist->node, &be->refs);
832				kfree(exist);
833			}
834		} else if (!be->metadata) {
835			exist->num_refs++;
836		} else {
837			btrfs_err(fs_info,
838"attempting to add another ref for an existing ref on a tree block");
839			dump_block_entry(fs_info, be);
840			dump_ref_action(fs_info, ra);
841			kfree(ref);
842			kfree(ra);
843			goto out_unlock;
844		}
845		kfree(ref);
846	} else {
847		if (action == BTRFS_DROP_DELAYED_REF) {
848			btrfs_err(fs_info,
849"dropping a ref for a root that doesn't have a ref on the block");
850			dump_block_entry(fs_info, be);
851			dump_ref_action(fs_info, ra);
852			kfree(ref);
853			kfree(ra);
854			goto out_unlock;
855		}
856	}
857
858	if (!parent && !re) {
859		re = lookup_root_entry(&be->roots, ref_root);
860		if (!re) {
861			/*
862			 * This shouldn't happen because we will add our re
863			 * above when we lookup the be with !parent, but just in
864			 * case catch this case so we don't panic because I
865			 * didn't think of some other corner case.
866			 */
867			btrfs_err(fs_info, "failed to find root %llu for %llu",
868				  generic_ref->real_root, be->bytenr);
869			dump_block_entry(fs_info, be);
870			dump_ref_action(fs_info, ra);
871			kfree(ra);
872			goto out_unlock;
873		}
874	}
875	if (action == BTRFS_DROP_DELAYED_REF) {
876		if (re)
877			re->num_refs--;
878		be->num_refs--;
879	} else if (action == BTRFS_ADD_DELAYED_REF) {
880		be->num_refs++;
881		if (re)
882			re->num_refs++;
883	}
884	list_add_tail(&ra->list, &be->actions);
885	ret = 0;
886out_unlock:
887	spin_unlock(&fs_info->ref_verify_lock);
888out:
889	if (ret) {
890		btrfs_free_ref_cache(fs_info);
891		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
892	}
893	return ret;
894}
895
896/* Free up the ref cache */
897void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info)
898{
899	struct block_entry *be;
900	struct rb_node *n;
901
902	if (!btrfs_test_opt(fs_info, REF_VERIFY))
903		return;
904
905	spin_lock(&fs_info->ref_verify_lock);
906	while ((n = rb_first(&fs_info->block_tree))) {
907		be = rb_entry(n, struct block_entry, node);
908		rb_erase(&be->node, &fs_info->block_tree);
909		free_block_entry(be);
910		cond_resched_lock(&fs_info->ref_verify_lock);
911	}
912	spin_unlock(&fs_info->ref_verify_lock);
913}
914
915void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start,
916			       u64 len)
917{
918	struct block_entry *be = NULL, *entry;
919	struct rb_node *n;
920
921	if (!btrfs_test_opt(fs_info, REF_VERIFY))
922		return;
923
924	spin_lock(&fs_info->ref_verify_lock);
925	n = fs_info->block_tree.rb_node;
926	while (n) {
927		entry = rb_entry(n, struct block_entry, node);
928		if (entry->bytenr < start) {
929			n = n->rb_right;
930		} else if (entry->bytenr > start) {
931			n = n->rb_left;
932		} else {
933			be = entry;
934			break;
935		}
936		/* We want to get as close to start as possible */
937		if (be == NULL ||
938		    (entry->bytenr < start && be->bytenr > start) ||
939		    (entry->bytenr < start && entry->bytenr > be->bytenr))
940			be = entry;
941	}
942
943	/*
944	 * Could have an empty block group, maybe have something to check for
945	 * this case to verify we were actually empty?
946	 */
947	if (!be) {
948		spin_unlock(&fs_info->ref_verify_lock);
949		return;
950	}
951
952	n = &be->node;
953	while (n) {
954		be = rb_entry(n, struct block_entry, node);
955		n = rb_next(n);
956		if (be->bytenr < start && be->bytenr + be->len > start) {
957			btrfs_err(fs_info,
958				"block entry overlaps a block group [%llu,%llu]!",
959				start, len);
960			dump_block_entry(fs_info, be);
961			continue;
962		}
963		if (be->bytenr < start)
964			continue;
965		if (be->bytenr >= start + len)
966			break;
967		if (be->bytenr + be->len > start + len) {
968			btrfs_err(fs_info,
969				"block entry overlaps a block group [%llu,%llu]!",
970				start, len);
971			dump_block_entry(fs_info, be);
972		}
973		rb_erase(&be->node, &fs_info->block_tree);
974		free_block_entry(be);
975	}
976	spin_unlock(&fs_info->ref_verify_lock);
977}
978
979/* Walk down all roots and build the ref tree, meant to be called at mount */
980int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info)
981{
982	struct btrfs_root *extent_root;
983	struct btrfs_path *path;
984	struct extent_buffer *eb;
985	int tree_block_level = 0;
986	u64 bytenr = 0, num_bytes = 0;
987	int ret, level;
988
989	if (!btrfs_test_opt(fs_info, REF_VERIFY))
990		return 0;
991
992	path = btrfs_alloc_path();
993	if (!path)
994		return -ENOMEM;
995
996	extent_root = btrfs_extent_root(fs_info, 0);
997	eb = btrfs_read_lock_root_node(extent_root);
998	level = btrfs_header_level(eb);
999	path->nodes[level] = eb;
1000	path->slots[level] = 0;
1001	path->locks[level] = BTRFS_READ_LOCK;
1002
1003	while (1) {
1004		/*
1005		 * We have to keep track of the bytenr/num_bytes we last hit
1006		 * because we could have run out of space for an inline ref, and
1007		 * would have had to added a ref key item which may appear on a
1008		 * different leaf from the original extent item.
1009		 */
1010		ret = walk_down_tree(extent_root, path, level,
1011				     &bytenr, &num_bytes, &tree_block_level);
1012		if (ret)
1013			break;
1014		ret = walk_up_tree(path, &level);
1015		if (ret < 0)
1016			break;
1017		if (ret > 0) {
1018			ret = 0;
1019			break;
1020		}
1021	}
1022	if (ret) {
1023		btrfs_free_ref_cache(fs_info);
1024		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
1025	}
1026	btrfs_free_path(path);
1027	return ret;
1028}
1029