xref: /kernel/linux/linux-6.6/fs/btrfs/ordered-data.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/slab.h>
7#include <linux/blkdev.h>
8#include <linux/writeback.h>
9#include <linux/sched/mm.h>
10#include "messages.h"
11#include "misc.h"
12#include "ctree.h"
13#include "transaction.h"
14#include "btrfs_inode.h"
15#include "extent_io.h"
16#include "disk-io.h"
17#include "compression.h"
18#include "delalloc-space.h"
19#include "qgroup.h"
20#include "subpage.h"
21#include "file.h"
22#include "super.h"
23
24static struct kmem_cache *btrfs_ordered_extent_cache;
25
26static u64 entry_end(struct btrfs_ordered_extent *entry)
27{
28	if (entry->file_offset + entry->num_bytes < entry->file_offset)
29		return (u64)-1;
30	return entry->file_offset + entry->num_bytes;
31}
32
33/* returns NULL if the insertion worked, or it returns the node it did find
34 * in the tree
35 */
36static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37				   struct rb_node *node)
38{
39	struct rb_node **p = &root->rb_node;
40	struct rb_node *parent = NULL;
41	struct btrfs_ordered_extent *entry;
42
43	while (*p) {
44		parent = *p;
45		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46
47		if (file_offset < entry->file_offset)
48			p = &(*p)->rb_left;
49		else if (file_offset >= entry_end(entry))
50			p = &(*p)->rb_right;
51		else
52			return parent;
53	}
54
55	rb_link_node(node, parent, p);
56	rb_insert_color(node, root);
57	return NULL;
58}
59
60/*
61 * look for a given offset in the tree, and if it can't be found return the
62 * first lesser offset
63 */
64static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65				     struct rb_node **prev_ret)
66{
67	struct rb_node *n = root->rb_node;
68	struct rb_node *prev = NULL;
69	struct rb_node *test;
70	struct btrfs_ordered_extent *entry;
71	struct btrfs_ordered_extent *prev_entry = NULL;
72
73	while (n) {
74		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75		prev = n;
76		prev_entry = entry;
77
78		if (file_offset < entry->file_offset)
79			n = n->rb_left;
80		else if (file_offset >= entry_end(entry))
81			n = n->rb_right;
82		else
83			return n;
84	}
85	if (!prev_ret)
86		return NULL;
87
88	while (prev && file_offset >= entry_end(prev_entry)) {
89		test = rb_next(prev);
90		if (!test)
91			break;
92		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93				      rb_node);
94		if (file_offset < entry_end(prev_entry))
95			break;
96
97		prev = test;
98	}
99	if (prev)
100		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101				      rb_node);
102	while (prev && file_offset < entry_end(prev_entry)) {
103		test = rb_prev(prev);
104		if (!test)
105			break;
106		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107				      rb_node);
108		prev = test;
109	}
110	*prev_ret = prev;
111	return NULL;
112}
113
114static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115			  u64 len)
116{
117	if (file_offset + len <= entry->file_offset ||
118	    entry->file_offset + entry->num_bytes <= file_offset)
119		return 0;
120	return 1;
121}
122
123/*
124 * look find the first ordered struct that has this offset, otherwise
125 * the first one less than this offset
126 */
127static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
128					  u64 file_offset)
129{
130	struct rb_root *root = &tree->tree;
131	struct rb_node *prev = NULL;
132	struct rb_node *ret;
133	struct btrfs_ordered_extent *entry;
134
135	if (tree->last) {
136		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
137				 rb_node);
138		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
139			return tree->last;
140	}
141	ret = __tree_search(root, file_offset, &prev);
142	if (!ret)
143		ret = prev;
144	if (ret)
145		tree->last = ret;
146	return ret;
147}
148
149static struct btrfs_ordered_extent *alloc_ordered_extent(
150			struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
151			u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
152			u64 offset, unsigned long flags, int compress_type)
153{
154	struct btrfs_ordered_extent *entry;
155	int ret;
156	u64 qgroup_rsv = 0;
157
158	if (flags &
159	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
160		/* For nocow write, we can release the qgroup rsv right now */
161		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
162		if (ret < 0)
163			return ERR_PTR(ret);
164	} else {
165		/*
166		 * The ordered extent has reserved qgroup space, release now
167		 * and pass the reserved number for qgroup_record to free.
168		 */
169		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
170		if (ret < 0)
171			return ERR_PTR(ret);
172	}
173	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
174	if (!entry)
175		return ERR_PTR(-ENOMEM);
176
177	entry->file_offset = file_offset;
178	entry->num_bytes = num_bytes;
179	entry->ram_bytes = ram_bytes;
180	entry->disk_bytenr = disk_bytenr;
181	entry->disk_num_bytes = disk_num_bytes;
182	entry->offset = offset;
183	entry->bytes_left = num_bytes;
184	entry->inode = igrab(&inode->vfs_inode);
185	entry->compress_type = compress_type;
186	entry->truncated_len = (u64)-1;
187	entry->qgroup_rsv = qgroup_rsv;
188	entry->flags = flags;
189	refcount_set(&entry->refs, 1);
190	init_waitqueue_head(&entry->wait);
191	INIT_LIST_HEAD(&entry->list);
192	INIT_LIST_HEAD(&entry->log_list);
193	INIT_LIST_HEAD(&entry->root_extent_list);
194	INIT_LIST_HEAD(&entry->work_list);
195	init_completion(&entry->completion);
196
197	/*
198	 * We don't need the count_max_extents here, we can assume that all of
199	 * that work has been done at higher layers, so this is truly the
200	 * smallest the extent is going to get.
201	 */
202	spin_lock(&inode->lock);
203	btrfs_mod_outstanding_extents(inode, 1);
204	spin_unlock(&inode->lock);
205
206	return entry;
207}
208
209static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
210{
211	struct btrfs_inode *inode = BTRFS_I(entry->inode);
212	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
213	struct btrfs_root *root = inode->root;
214	struct btrfs_fs_info *fs_info = root->fs_info;
215	struct rb_node *node;
216
217	trace_btrfs_ordered_extent_add(inode, entry);
218
219	percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
220				 fs_info->delalloc_batch);
221
222	/* One ref for the tree. */
223	refcount_inc(&entry->refs);
224
225	spin_lock_irq(&tree->lock);
226	node = tree_insert(&tree->tree, entry->file_offset, &entry->rb_node);
227	if (node)
228		btrfs_panic(fs_info, -EEXIST,
229				"inconsistency in ordered tree at offset %llu",
230				entry->file_offset);
231	spin_unlock_irq(&tree->lock);
232
233	spin_lock(&root->ordered_extent_lock);
234	list_add_tail(&entry->root_extent_list,
235		      &root->ordered_extents);
236	root->nr_ordered_extents++;
237	if (root->nr_ordered_extents == 1) {
238		spin_lock(&fs_info->ordered_root_lock);
239		BUG_ON(!list_empty(&root->ordered_root));
240		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
241		spin_unlock(&fs_info->ordered_root_lock);
242	}
243	spin_unlock(&root->ordered_extent_lock);
244}
245
246/*
247 * Add an ordered extent to the per-inode tree.
248 *
249 * @inode:           Inode that this extent is for.
250 * @file_offset:     Logical offset in file where the extent starts.
251 * @num_bytes:       Logical length of extent in file.
252 * @ram_bytes:       Full length of unencoded data.
253 * @disk_bytenr:     Offset of extent on disk.
254 * @disk_num_bytes:  Size of extent on disk.
255 * @offset:          Offset into unencoded data where file data starts.
256 * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
257 * @compress_type:   Compression algorithm used for data.
258 *
259 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
260 * tree is given a single reference on the ordered extent that was inserted, and
261 * the returned pointer is given a second reference.
262 *
263 * Return: the new ordered extent or error pointer.
264 */
265struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
266			struct btrfs_inode *inode, u64 file_offset,
267			u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
268			u64 disk_num_bytes, u64 offset, unsigned long flags,
269			int compress_type)
270{
271	struct btrfs_ordered_extent *entry;
272
273	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
274
275	entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
276				     disk_bytenr, disk_num_bytes, offset, flags,
277				     compress_type);
278	if (!IS_ERR(entry))
279		insert_ordered_extent(entry);
280	return entry;
281}
282
283/*
284 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
285 * when an ordered extent is finished.  If the list covers more than one
286 * ordered extent, it is split across multiples.
287 */
288void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
289			   struct btrfs_ordered_sum *sum)
290{
291	struct btrfs_ordered_inode_tree *tree;
292
293	tree = &BTRFS_I(entry->inode)->ordered_tree;
294	spin_lock_irq(&tree->lock);
295	list_add_tail(&sum->list, &entry->list);
296	spin_unlock_irq(&tree->lock);
297}
298
299static void finish_ordered_fn(struct btrfs_work *work)
300{
301	struct btrfs_ordered_extent *ordered_extent;
302
303	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
304	btrfs_finish_ordered_io(ordered_extent);
305}
306
307static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
308				      struct page *page, u64 file_offset,
309				      u64 len, bool uptodate)
310{
311	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
312	struct btrfs_fs_info *fs_info = inode->root->fs_info;
313
314	lockdep_assert_held(&inode->ordered_tree.lock);
315
316	if (page) {
317		ASSERT(page->mapping);
318		ASSERT(page_offset(page) <= file_offset);
319		ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
320
321		/*
322		 * Ordered (Private2) bit indicates whether we still have
323		 * pending io unfinished for the ordered extent.
324		 *
325		 * If there's no such bit, we need to skip to next range.
326		 */
327		if (!btrfs_page_test_ordered(fs_info, page, file_offset, len))
328			return false;
329		btrfs_page_clear_ordered(fs_info, page, file_offset, len);
330	}
331
332	/* Now we're fine to update the accounting. */
333	if (WARN_ON_ONCE(len > ordered->bytes_left)) {
334		btrfs_crit(fs_info,
335"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
336			   inode->root->root_key.objectid, btrfs_ino(inode),
337			   ordered->file_offset, ordered->num_bytes,
338			   len, ordered->bytes_left);
339		ordered->bytes_left = 0;
340	} else {
341		ordered->bytes_left -= len;
342	}
343
344	if (!uptodate)
345		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
346
347	if (ordered->bytes_left)
348		return false;
349
350	/*
351	 * All the IO of the ordered extent is finished, we need to queue
352	 * the finish_func to be executed.
353	 */
354	set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
355	cond_wake_up(&ordered->wait);
356	refcount_inc(&ordered->refs);
357	trace_btrfs_ordered_extent_mark_finished(inode, ordered);
358	return true;
359}
360
361static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
362{
363	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
364	struct btrfs_fs_info *fs_info = inode->root->fs_info;
365	struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
366		fs_info->endio_freespace_worker : fs_info->endio_write_workers;
367
368	btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL);
369	btrfs_queue_work(wq, &ordered->work);
370}
371
372bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
373				 struct page *page, u64 file_offset, u64 len,
374				 bool uptodate)
375{
376	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
377	unsigned long flags;
378	bool ret;
379
380	trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
381
382	spin_lock_irqsave(&inode->ordered_tree.lock, flags);
383	ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
384	spin_unlock_irqrestore(&inode->ordered_tree.lock, flags);
385
386	if (ret)
387		btrfs_queue_ordered_fn(ordered);
388	return ret;
389}
390
391/*
392 * Mark all ordered extents io inside the specified range finished.
393 *
394 * @page:	 The involved page for the operation.
395 *		 For uncompressed buffered IO, the page status also needs to be
396 *		 updated to indicate whether the pending ordered io is finished.
397 *		 Can be NULL for direct IO and compressed write.
398 *		 For these cases, callers are ensured they won't execute the
399 *		 endio function twice.
400 *
401 * This function is called for endio, thus the range must have ordered
402 * extent(s) covering it.
403 */
404void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
405				    struct page *page, u64 file_offset,
406				    u64 num_bytes, bool uptodate)
407{
408	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
409	struct rb_node *node;
410	struct btrfs_ordered_extent *entry = NULL;
411	unsigned long flags;
412	u64 cur = file_offset;
413
414	trace_btrfs_writepage_end_io_hook(inode, file_offset,
415					  file_offset + num_bytes - 1,
416					  uptodate);
417
418	spin_lock_irqsave(&tree->lock, flags);
419	while (cur < file_offset + num_bytes) {
420		u64 entry_end;
421		u64 end;
422		u32 len;
423
424		node = tree_search(tree, cur);
425		/* No ordered extents at all */
426		if (!node)
427			break;
428
429		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
430		entry_end = entry->file_offset + entry->num_bytes;
431		/*
432		 * |<-- OE --->|  |
433		 *		  cur
434		 * Go to next OE.
435		 */
436		if (cur >= entry_end) {
437			node = rb_next(node);
438			/* No more ordered extents, exit */
439			if (!node)
440				break;
441			entry = rb_entry(node, struct btrfs_ordered_extent,
442					 rb_node);
443
444			/* Go to next ordered extent and continue */
445			cur = entry->file_offset;
446			continue;
447		}
448		/*
449		 * |	|<--- OE --->|
450		 * cur
451		 * Go to the start of OE.
452		 */
453		if (cur < entry->file_offset) {
454			cur = entry->file_offset;
455			continue;
456		}
457
458		/*
459		 * Now we are definitely inside one ordered extent.
460		 *
461		 * |<--- OE --->|
462		 *	|
463		 *	cur
464		 */
465		end = min(entry->file_offset + entry->num_bytes,
466			  file_offset + num_bytes) - 1;
467		ASSERT(end + 1 - cur < U32_MAX);
468		len = end + 1 - cur;
469
470		if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
471			spin_unlock_irqrestore(&tree->lock, flags);
472			btrfs_queue_ordered_fn(entry);
473			spin_lock_irqsave(&tree->lock, flags);
474		}
475		cur += len;
476	}
477	spin_unlock_irqrestore(&tree->lock, flags);
478}
479
480/*
481 * Finish IO for one ordered extent across a given range.  The range can only
482 * contain one ordered extent.
483 *
484 * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
485 *               search and use the ordered extent directly.
486 * 		 Will be also used to store the finished ordered extent.
487 * @file_offset: File offset for the finished IO
488 * @io_size:	 Length of the finish IO range
489 *
490 * Return true if the ordered extent is finished in the range, and update
491 * @cached.
492 * Return false otherwise.
493 *
494 * NOTE: The range can NOT cross multiple ordered extents.
495 * Thus caller should ensure the range doesn't cross ordered extents.
496 */
497bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
498				    struct btrfs_ordered_extent **cached,
499				    u64 file_offset, u64 io_size)
500{
501	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
502	struct rb_node *node;
503	struct btrfs_ordered_extent *entry = NULL;
504	unsigned long flags;
505	bool finished = false;
506
507	spin_lock_irqsave(&tree->lock, flags);
508	if (cached && *cached) {
509		entry = *cached;
510		goto have_entry;
511	}
512
513	node = tree_search(tree, file_offset);
514	if (!node)
515		goto out;
516
517	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
518have_entry:
519	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
520		goto out;
521
522	if (io_size > entry->bytes_left)
523		btrfs_crit(inode->root->fs_info,
524			   "bad ordered accounting left %llu size %llu",
525		       entry->bytes_left, io_size);
526
527	entry->bytes_left -= io_size;
528
529	if (entry->bytes_left == 0) {
530		/*
531		 * Ensure only one caller can set the flag and finished_ret
532		 * accordingly
533		 */
534		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
535		/* test_and_set_bit implies a barrier */
536		cond_wake_up_nomb(&entry->wait);
537	}
538out:
539	if (finished && cached && entry) {
540		*cached = entry;
541		refcount_inc(&entry->refs);
542		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
543	}
544	spin_unlock_irqrestore(&tree->lock, flags);
545	return finished;
546}
547
548/*
549 * used to drop a reference on an ordered extent.  This will free
550 * the extent if the last reference is dropped
551 */
552void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
553{
554	struct list_head *cur;
555	struct btrfs_ordered_sum *sum;
556
557	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
558
559	if (refcount_dec_and_test(&entry->refs)) {
560		ASSERT(list_empty(&entry->root_extent_list));
561		ASSERT(list_empty(&entry->log_list));
562		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
563		if (entry->inode)
564			btrfs_add_delayed_iput(BTRFS_I(entry->inode));
565		while (!list_empty(&entry->list)) {
566			cur = entry->list.next;
567			sum = list_entry(cur, struct btrfs_ordered_sum, list);
568			list_del(&sum->list);
569			kvfree(sum);
570		}
571		kmem_cache_free(btrfs_ordered_extent_cache, entry);
572	}
573}
574
575/*
576 * remove an ordered extent from the tree.  No references are dropped
577 * and waiters are woken up.
578 */
579void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
580				 struct btrfs_ordered_extent *entry)
581{
582	struct btrfs_ordered_inode_tree *tree;
583	struct btrfs_root *root = btrfs_inode->root;
584	struct btrfs_fs_info *fs_info = root->fs_info;
585	struct rb_node *node;
586	bool pending;
587	bool freespace_inode;
588
589	/*
590	 * If this is a free space inode the thread has not acquired the ordered
591	 * extents lockdep map.
592	 */
593	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
594
595	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
596	/* This is paired with btrfs_alloc_ordered_extent. */
597	spin_lock(&btrfs_inode->lock);
598	btrfs_mod_outstanding_extents(btrfs_inode, -1);
599	spin_unlock(&btrfs_inode->lock);
600	if (root != fs_info->tree_root) {
601		u64 release;
602
603		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
604			release = entry->disk_num_bytes;
605		else
606			release = entry->num_bytes;
607		btrfs_delalloc_release_metadata(btrfs_inode, release,
608						test_bit(BTRFS_ORDERED_IOERR,
609							 &entry->flags));
610	}
611
612	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
613				 fs_info->delalloc_batch);
614
615	tree = &btrfs_inode->ordered_tree;
616	spin_lock_irq(&tree->lock);
617	node = &entry->rb_node;
618	rb_erase(node, &tree->tree);
619	RB_CLEAR_NODE(node);
620	if (tree->last == node)
621		tree->last = NULL;
622	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
623	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
624	spin_unlock_irq(&tree->lock);
625
626	/*
627	 * The current running transaction is waiting on us, we need to let it
628	 * know that we're complete and wake it up.
629	 */
630	if (pending) {
631		struct btrfs_transaction *trans;
632
633		/*
634		 * The checks for trans are just a formality, it should be set,
635		 * but if it isn't we don't want to deref/assert under the spin
636		 * lock, so be nice and check if trans is set, but ASSERT() so
637		 * if it isn't set a developer will notice.
638		 */
639		spin_lock(&fs_info->trans_lock);
640		trans = fs_info->running_transaction;
641		if (trans)
642			refcount_inc(&trans->use_count);
643		spin_unlock(&fs_info->trans_lock);
644
645		ASSERT(trans || BTRFS_FS_ERROR(fs_info));
646		if (trans) {
647			if (atomic_dec_and_test(&trans->pending_ordered))
648				wake_up(&trans->pending_wait);
649			btrfs_put_transaction(trans);
650		}
651	}
652
653	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
654
655	spin_lock(&root->ordered_extent_lock);
656	list_del_init(&entry->root_extent_list);
657	root->nr_ordered_extents--;
658
659	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
660
661	if (!root->nr_ordered_extents) {
662		spin_lock(&fs_info->ordered_root_lock);
663		BUG_ON(list_empty(&root->ordered_root));
664		list_del_init(&root->ordered_root);
665		spin_unlock(&fs_info->ordered_root_lock);
666	}
667	spin_unlock(&root->ordered_extent_lock);
668	wake_up(&entry->wait);
669	if (!freespace_inode)
670		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
671}
672
673static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
674{
675	struct btrfs_ordered_extent *ordered;
676
677	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
678	btrfs_start_ordered_extent(ordered);
679	complete(&ordered->completion);
680}
681
682/*
683 * wait for all the ordered extents in a root.  This is done when balancing
684 * space between drives.
685 */
686u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
687			       const u64 range_start, const u64 range_len)
688{
689	struct btrfs_fs_info *fs_info = root->fs_info;
690	LIST_HEAD(splice);
691	LIST_HEAD(skipped);
692	LIST_HEAD(works);
693	struct btrfs_ordered_extent *ordered, *next;
694	u64 count = 0;
695	const u64 range_end = range_start + range_len;
696
697	mutex_lock(&root->ordered_extent_mutex);
698	spin_lock(&root->ordered_extent_lock);
699	list_splice_init(&root->ordered_extents, &splice);
700	while (!list_empty(&splice) && nr) {
701		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
702					   root_extent_list);
703
704		if (range_end <= ordered->disk_bytenr ||
705		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
706			list_move_tail(&ordered->root_extent_list, &skipped);
707			cond_resched_lock(&root->ordered_extent_lock);
708			continue;
709		}
710
711		list_move_tail(&ordered->root_extent_list,
712			       &root->ordered_extents);
713		refcount_inc(&ordered->refs);
714		spin_unlock(&root->ordered_extent_lock);
715
716		btrfs_init_work(&ordered->flush_work,
717				btrfs_run_ordered_extent_work, NULL, NULL);
718		list_add_tail(&ordered->work_list, &works);
719		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
720
721		cond_resched();
722		spin_lock(&root->ordered_extent_lock);
723		if (nr != U64_MAX)
724			nr--;
725		count++;
726	}
727	list_splice_tail(&skipped, &root->ordered_extents);
728	list_splice_tail(&splice, &root->ordered_extents);
729	spin_unlock(&root->ordered_extent_lock);
730
731	list_for_each_entry_safe(ordered, next, &works, work_list) {
732		list_del_init(&ordered->work_list);
733		wait_for_completion(&ordered->completion);
734		btrfs_put_ordered_extent(ordered);
735		cond_resched();
736	}
737	mutex_unlock(&root->ordered_extent_mutex);
738
739	return count;
740}
741
742void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
743			     const u64 range_start, const u64 range_len)
744{
745	struct btrfs_root *root;
746	LIST_HEAD(splice);
747	u64 done;
748
749	mutex_lock(&fs_info->ordered_operations_mutex);
750	spin_lock(&fs_info->ordered_root_lock);
751	list_splice_init(&fs_info->ordered_roots, &splice);
752	while (!list_empty(&splice) && nr) {
753		root = list_first_entry(&splice, struct btrfs_root,
754					ordered_root);
755		root = btrfs_grab_root(root);
756		BUG_ON(!root);
757		list_move_tail(&root->ordered_root,
758			       &fs_info->ordered_roots);
759		spin_unlock(&fs_info->ordered_root_lock);
760
761		done = btrfs_wait_ordered_extents(root, nr,
762						  range_start, range_len);
763		btrfs_put_root(root);
764
765		spin_lock(&fs_info->ordered_root_lock);
766		if (nr != U64_MAX) {
767			nr -= done;
768		}
769	}
770	list_splice_tail(&splice, &fs_info->ordered_roots);
771	spin_unlock(&fs_info->ordered_root_lock);
772	mutex_unlock(&fs_info->ordered_operations_mutex);
773}
774
775/*
776 * Start IO and wait for a given ordered extent to finish.
777 *
778 * Wait on page writeback for all the pages in the extent and the IO completion
779 * code to insert metadata into the btree corresponding to the extent.
780 */
781void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
782{
783	u64 start = entry->file_offset;
784	u64 end = start + entry->num_bytes - 1;
785	struct btrfs_inode *inode = BTRFS_I(entry->inode);
786	bool freespace_inode;
787
788	trace_btrfs_ordered_extent_start(inode, entry);
789
790	/*
791	 * If this is a free space inode do not take the ordered extents lockdep
792	 * map.
793	 */
794	freespace_inode = btrfs_is_free_space_inode(inode);
795
796	/*
797	 * pages in the range can be dirty, clean or writeback.  We
798	 * start IO on any dirty ones so the wait doesn't stall waiting
799	 * for the flusher thread to find them
800	 */
801	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
802		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
803
804	if (!freespace_inode)
805		btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
806	wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
807}
808
809/*
810 * Used to wait on ordered extents across a large range of bytes.
811 */
812int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
813{
814	int ret = 0;
815	int ret_wb = 0;
816	u64 end;
817	u64 orig_end;
818	struct btrfs_ordered_extent *ordered;
819
820	if (start + len < start) {
821		orig_end = OFFSET_MAX;
822	} else {
823		orig_end = start + len - 1;
824		if (orig_end > OFFSET_MAX)
825			orig_end = OFFSET_MAX;
826	}
827
828	/* start IO across the range first to instantiate any delalloc
829	 * extents
830	 */
831	ret = btrfs_fdatawrite_range(inode, start, orig_end);
832	if (ret)
833		return ret;
834
835	/*
836	 * If we have a writeback error don't return immediately. Wait first
837	 * for any ordered extents that haven't completed yet. This is to make
838	 * sure no one can dirty the same page ranges and call writepages()
839	 * before the ordered extents complete - to avoid failures (-EEXIST)
840	 * when adding the new ordered extents to the ordered tree.
841	 */
842	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
843
844	end = orig_end;
845	while (1) {
846		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
847		if (!ordered)
848			break;
849		if (ordered->file_offset > orig_end) {
850			btrfs_put_ordered_extent(ordered);
851			break;
852		}
853		if (ordered->file_offset + ordered->num_bytes <= start) {
854			btrfs_put_ordered_extent(ordered);
855			break;
856		}
857		btrfs_start_ordered_extent(ordered);
858		end = ordered->file_offset;
859		/*
860		 * If the ordered extent had an error save the error but don't
861		 * exit without waiting first for all other ordered extents in
862		 * the range to complete.
863		 */
864		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
865			ret = -EIO;
866		btrfs_put_ordered_extent(ordered);
867		if (end == 0 || end == start)
868			break;
869		end--;
870	}
871	return ret_wb ? ret_wb : ret;
872}
873
874/*
875 * find an ordered extent corresponding to file_offset.  return NULL if
876 * nothing is found, otherwise take a reference on the extent and return it
877 */
878struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
879							 u64 file_offset)
880{
881	struct btrfs_ordered_inode_tree *tree;
882	struct rb_node *node;
883	struct btrfs_ordered_extent *entry = NULL;
884	unsigned long flags;
885
886	tree = &inode->ordered_tree;
887	spin_lock_irqsave(&tree->lock, flags);
888	node = tree_search(tree, file_offset);
889	if (!node)
890		goto out;
891
892	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
893	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
894		entry = NULL;
895	if (entry) {
896		refcount_inc(&entry->refs);
897		trace_btrfs_ordered_extent_lookup(inode, entry);
898	}
899out:
900	spin_unlock_irqrestore(&tree->lock, flags);
901	return entry;
902}
903
904/* Since the DIO code tries to lock a wide area we need to look for any ordered
905 * extents that exist in the range, rather than just the start of the range.
906 */
907struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
908		struct btrfs_inode *inode, u64 file_offset, u64 len)
909{
910	struct btrfs_ordered_inode_tree *tree;
911	struct rb_node *node;
912	struct btrfs_ordered_extent *entry = NULL;
913
914	tree = &inode->ordered_tree;
915	spin_lock_irq(&tree->lock);
916	node = tree_search(tree, file_offset);
917	if (!node) {
918		node = tree_search(tree, file_offset + len);
919		if (!node)
920			goto out;
921	}
922
923	while (1) {
924		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
925		if (range_overlaps(entry, file_offset, len))
926			break;
927
928		if (entry->file_offset >= file_offset + len) {
929			entry = NULL;
930			break;
931		}
932		entry = NULL;
933		node = rb_next(node);
934		if (!node)
935			break;
936	}
937out:
938	if (entry) {
939		refcount_inc(&entry->refs);
940		trace_btrfs_ordered_extent_lookup_range(inode, entry);
941	}
942	spin_unlock_irq(&tree->lock);
943	return entry;
944}
945
946/*
947 * Adds all ordered extents to the given list. The list ends up sorted by the
948 * file_offset of the ordered extents.
949 */
950void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
951					   struct list_head *list)
952{
953	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
954	struct rb_node *n;
955
956	ASSERT(inode_is_locked(&inode->vfs_inode));
957
958	spin_lock_irq(&tree->lock);
959	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
960		struct btrfs_ordered_extent *ordered;
961
962		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
963
964		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
965			continue;
966
967		ASSERT(list_empty(&ordered->log_list));
968		list_add_tail(&ordered->log_list, list);
969		refcount_inc(&ordered->refs);
970		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
971	}
972	spin_unlock_irq(&tree->lock);
973}
974
975/*
976 * lookup and return any extent before 'file_offset'.  NULL is returned
977 * if none is found
978 */
979struct btrfs_ordered_extent *
980btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
981{
982	struct btrfs_ordered_inode_tree *tree;
983	struct rb_node *node;
984	struct btrfs_ordered_extent *entry = NULL;
985
986	tree = &inode->ordered_tree;
987	spin_lock_irq(&tree->lock);
988	node = tree_search(tree, file_offset);
989	if (!node)
990		goto out;
991
992	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
993	refcount_inc(&entry->refs);
994	trace_btrfs_ordered_extent_lookup_first(inode, entry);
995out:
996	spin_unlock_irq(&tree->lock);
997	return entry;
998}
999
1000/*
1001 * Lookup the first ordered extent that overlaps the range
1002 * [@file_offset, @file_offset + @len).
1003 *
1004 * The difference between this and btrfs_lookup_first_ordered_extent() is
1005 * that this one won't return any ordered extent that does not overlap the range.
1006 * And the difference against btrfs_lookup_ordered_extent() is, this function
1007 * ensures the first ordered extent gets returned.
1008 */
1009struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1010			struct btrfs_inode *inode, u64 file_offset, u64 len)
1011{
1012	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
1013	struct rb_node *node;
1014	struct rb_node *cur;
1015	struct rb_node *prev;
1016	struct rb_node *next;
1017	struct btrfs_ordered_extent *entry = NULL;
1018
1019	spin_lock_irq(&tree->lock);
1020	node = tree->tree.rb_node;
1021	/*
1022	 * Here we don't want to use tree_search() which will use tree->last
1023	 * and screw up the search order.
1024	 * And __tree_search() can't return the adjacent ordered extents
1025	 * either, thus here we do our own search.
1026	 */
1027	while (node) {
1028		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1029
1030		if (file_offset < entry->file_offset) {
1031			node = node->rb_left;
1032		} else if (file_offset >= entry_end(entry)) {
1033			node = node->rb_right;
1034		} else {
1035			/*
1036			 * Direct hit, got an ordered extent that starts at
1037			 * @file_offset
1038			 */
1039			goto out;
1040		}
1041	}
1042	if (!entry) {
1043		/* Empty tree */
1044		goto out;
1045	}
1046
1047	cur = &entry->rb_node;
1048	/* We got an entry around @file_offset, check adjacent entries */
1049	if (entry->file_offset < file_offset) {
1050		prev = cur;
1051		next = rb_next(cur);
1052	} else {
1053		prev = rb_prev(cur);
1054		next = cur;
1055	}
1056	if (prev) {
1057		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1058		if (range_overlaps(entry, file_offset, len))
1059			goto out;
1060	}
1061	if (next) {
1062		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1063		if (range_overlaps(entry, file_offset, len))
1064			goto out;
1065	}
1066	/* No ordered extent in the range */
1067	entry = NULL;
1068out:
1069	if (entry) {
1070		refcount_inc(&entry->refs);
1071		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1072	}
1073
1074	spin_unlock_irq(&tree->lock);
1075	return entry;
1076}
1077
1078/*
1079 * Lock the passed range and ensures all pending ordered extents in it are run
1080 * to completion.
1081 *
1082 * @inode:        Inode whose ordered tree is to be searched
1083 * @start:        Beginning of range to flush
1084 * @end:          Last byte of range to lock
1085 * @cached_state: If passed, will return the extent state responsible for the
1086 *                locked range. It's the caller's responsibility to free the
1087 *                cached state.
1088 *
1089 * Always return with the given range locked, ensuring after it's called no
1090 * order extent can be pending.
1091 */
1092void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1093					u64 end,
1094					struct extent_state **cached_state)
1095{
1096	struct btrfs_ordered_extent *ordered;
1097	struct extent_state *cache = NULL;
1098	struct extent_state **cachedp = &cache;
1099
1100	if (cached_state)
1101		cachedp = cached_state;
1102
1103	while (1) {
1104		lock_extent(&inode->io_tree, start, end, cachedp);
1105		ordered = btrfs_lookup_ordered_range(inode, start,
1106						     end - start + 1);
1107		if (!ordered) {
1108			/*
1109			 * If no external cached_state has been passed then
1110			 * decrement the extra ref taken for cachedp since we
1111			 * aren't exposing it outside of this function
1112			 */
1113			if (!cached_state)
1114				refcount_dec(&cache->refs);
1115			break;
1116		}
1117		unlock_extent(&inode->io_tree, start, end, cachedp);
1118		btrfs_start_ordered_extent(ordered);
1119		btrfs_put_ordered_extent(ordered);
1120	}
1121}
1122
1123/*
1124 * Lock the passed range and ensure all pending ordered extents in it are run
1125 * to completion in nowait mode.
1126 *
1127 * Return true if btrfs_lock_ordered_range does not return any extents,
1128 * otherwise false.
1129 */
1130bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1131				  struct extent_state **cached_state)
1132{
1133	struct btrfs_ordered_extent *ordered;
1134
1135	if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1136		return false;
1137
1138	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1139	if (!ordered)
1140		return true;
1141
1142	btrfs_put_ordered_extent(ordered);
1143	unlock_extent(&inode->io_tree, start, end, cached_state);
1144
1145	return false;
1146}
1147
1148/* Split out a new ordered extent for this first @len bytes of @ordered. */
1149struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1150			struct btrfs_ordered_extent *ordered, u64 len)
1151{
1152	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1153	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
1154	struct btrfs_root *root = inode->root;
1155	struct btrfs_fs_info *fs_info = root->fs_info;
1156	u64 file_offset = ordered->file_offset;
1157	u64 disk_bytenr = ordered->disk_bytenr;
1158	unsigned long flags = ordered->flags;
1159	struct btrfs_ordered_sum *sum, *tmpsum;
1160	struct btrfs_ordered_extent *new;
1161	struct rb_node *node;
1162	u64 offset = 0;
1163
1164	trace_btrfs_ordered_extent_split(inode, ordered);
1165
1166	ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1167
1168	/*
1169	 * The entire bio must be covered by the ordered extent, but we can't
1170	 * reduce the original extent to a zero length either.
1171	 */
1172	if (WARN_ON_ONCE(len >= ordered->num_bytes))
1173		return ERR_PTR(-EINVAL);
1174	/* We cannot split partially completed ordered extents. */
1175	if (ordered->bytes_left) {
1176		ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1177		if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1178			return ERR_PTR(-EINVAL);
1179	}
1180	/* We cannot split a compressed ordered extent. */
1181	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1182		return ERR_PTR(-EINVAL);
1183
1184	new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1185				   len, 0, flags, ordered->compress_type);
1186	if (IS_ERR(new))
1187		return new;
1188
1189	/* One ref for the tree. */
1190	refcount_inc(&new->refs);
1191
1192	spin_lock_irq(&root->ordered_extent_lock);
1193	spin_lock(&tree->lock);
1194	/* Remove from tree once */
1195	node = &ordered->rb_node;
1196	rb_erase(node, &tree->tree);
1197	RB_CLEAR_NODE(node);
1198	if (tree->last == node)
1199		tree->last = NULL;
1200
1201	ordered->file_offset += len;
1202	ordered->disk_bytenr += len;
1203	ordered->num_bytes -= len;
1204	ordered->disk_num_bytes -= len;
1205
1206	if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1207		ASSERT(ordered->bytes_left == 0);
1208		new->bytes_left = 0;
1209	} else {
1210		ordered->bytes_left -= len;
1211	}
1212
1213	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1214		if (ordered->truncated_len > len) {
1215			ordered->truncated_len -= len;
1216		} else {
1217			new->truncated_len = ordered->truncated_len;
1218			ordered->truncated_len = 0;
1219		}
1220	}
1221
1222	list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1223		if (offset == len)
1224			break;
1225		list_move_tail(&sum->list, &new->list);
1226		offset += sum->len;
1227	}
1228
1229	/* Re-insert the node */
1230	node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1231	if (node)
1232		btrfs_panic(fs_info, -EEXIST,
1233			"zoned: inconsistency in ordered tree at offset %llu",
1234			ordered->file_offset);
1235
1236	node = tree_insert(&tree->tree, new->file_offset, &new->rb_node);
1237	if (node)
1238		btrfs_panic(fs_info, -EEXIST,
1239			"zoned: inconsistency in ordered tree at offset %llu",
1240			new->file_offset);
1241	spin_unlock(&tree->lock);
1242
1243	list_add_tail(&new->root_extent_list, &root->ordered_extents);
1244	root->nr_ordered_extents++;
1245	spin_unlock_irq(&root->ordered_extent_lock);
1246	return new;
1247}
1248
1249int __init ordered_data_init(void)
1250{
1251	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1252				     sizeof(struct btrfs_ordered_extent), 0,
1253				     SLAB_MEM_SPREAD,
1254				     NULL);
1255	if (!btrfs_ordered_extent_cache)
1256		return -ENOMEM;
1257
1258	return 0;
1259}
1260
1261void __cold ordered_data_exit(void)
1262{
1263	kmem_cache_destroy(btrfs_ordered_extent_cache);
1264}
1265