xref: /kernel/linux/linux-6.6/fs/btrfs/ioctl.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/fsnotify.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/string.h>
15#include <linux/backing-dev.h>
16#include <linux/mount.h>
17#include <linux/namei.h>
18#include <linux/writeback.h>
19#include <linux/compat.h>
20#include <linux/security.h>
21#include <linux/xattr.h>
22#include <linux/mm.h>
23#include <linux/slab.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include <linux/btrfs.h>
27#include <linux/uaccess.h>
28#include <linux/iversion.h>
29#include <linux/fileattr.h>
30#include <linux/fsverity.h>
31#include <linux/sched/xacct.h>
32#include "ctree.h"
33#include "disk-io.h"
34#include "export.h"
35#include "transaction.h"
36#include "btrfs_inode.h"
37#include "print-tree.h"
38#include "volumes.h"
39#include "locking.h"
40#include "backref.h"
41#include "rcu-string.h"
42#include "send.h"
43#include "dev-replace.h"
44#include "props.h"
45#include "sysfs.h"
46#include "qgroup.h"
47#include "tree-log.h"
48#include "compression.h"
49#include "space-info.h"
50#include "delalloc-space.h"
51#include "block-group.h"
52#include "subpage.h"
53#include "fs.h"
54#include "accessors.h"
55#include "extent-tree.h"
56#include "root-tree.h"
57#include "defrag.h"
58#include "dir-item.h"
59#include "uuid-tree.h"
60#include "ioctl.h"
61#include "file.h"
62#include "scrub.h"
63#include "super.h"
64
65#ifdef CONFIG_64BIT
66/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
70 */
71struct btrfs_ioctl_timespec_32 {
72	__u64 sec;
73	__u32 nsec;
74} __attribute__ ((__packed__));
75
76struct btrfs_ioctl_received_subvol_args_32 {
77	char	uuid[BTRFS_UUID_SIZE];	/* in */
78	__u64	stransid;		/* in */
79	__u64	rtransid;		/* out */
80	struct btrfs_ioctl_timespec_32 stime; /* in */
81	struct btrfs_ioctl_timespec_32 rtime; /* out */
82	__u64	flags;			/* in */
83	__u64	reserved[16];		/* in */
84} __attribute__ ((__packed__));
85
86#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87				struct btrfs_ioctl_received_subvol_args_32)
88#endif
89
90#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91struct btrfs_ioctl_send_args_32 {
92	__s64 send_fd;			/* in */
93	__u64 clone_sources_count;	/* in */
94	compat_uptr_t clone_sources;	/* in */
95	__u64 parent_root;		/* in */
96	__u64 flags;			/* in */
97	__u32 version;			/* in */
98	__u8  reserved[28];		/* in */
99} __attribute__ ((__packed__));
100
101#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
102			       struct btrfs_ioctl_send_args_32)
103
104struct btrfs_ioctl_encoded_io_args_32 {
105	compat_uptr_t iov;
106	compat_ulong_t iovcnt;
107	__s64 offset;
108	__u64 flags;
109	__u64 len;
110	__u64 unencoded_len;
111	__u64 unencoded_offset;
112	__u32 compression;
113	__u32 encryption;
114	__u8 reserved[64];
115};
116
117#define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
118				       struct btrfs_ioctl_encoded_io_args_32)
119#define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
120					struct btrfs_ioctl_encoded_io_args_32)
121#endif
122
123/* Mask out flags that are inappropriate for the given type of inode. */
124static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
125		unsigned int flags)
126{
127	if (S_ISDIR(inode->i_mode))
128		return flags;
129	else if (S_ISREG(inode->i_mode))
130		return flags & ~FS_DIRSYNC_FL;
131	else
132		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
133}
134
135/*
136 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
137 * ioctl.
138 */
139static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
140{
141	unsigned int iflags = 0;
142	u32 flags = binode->flags;
143	u32 ro_flags = binode->ro_flags;
144
145	if (flags & BTRFS_INODE_SYNC)
146		iflags |= FS_SYNC_FL;
147	if (flags & BTRFS_INODE_IMMUTABLE)
148		iflags |= FS_IMMUTABLE_FL;
149	if (flags & BTRFS_INODE_APPEND)
150		iflags |= FS_APPEND_FL;
151	if (flags & BTRFS_INODE_NODUMP)
152		iflags |= FS_NODUMP_FL;
153	if (flags & BTRFS_INODE_NOATIME)
154		iflags |= FS_NOATIME_FL;
155	if (flags & BTRFS_INODE_DIRSYNC)
156		iflags |= FS_DIRSYNC_FL;
157	if (flags & BTRFS_INODE_NODATACOW)
158		iflags |= FS_NOCOW_FL;
159	if (ro_flags & BTRFS_INODE_RO_VERITY)
160		iflags |= FS_VERITY_FL;
161
162	if (flags & BTRFS_INODE_NOCOMPRESS)
163		iflags |= FS_NOCOMP_FL;
164	else if (flags & BTRFS_INODE_COMPRESS)
165		iflags |= FS_COMPR_FL;
166
167	return iflags;
168}
169
170/*
171 * Update inode->i_flags based on the btrfs internal flags.
172 */
173void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
174{
175	struct btrfs_inode *binode = BTRFS_I(inode);
176	unsigned int new_fl = 0;
177
178	if (binode->flags & BTRFS_INODE_SYNC)
179		new_fl |= S_SYNC;
180	if (binode->flags & BTRFS_INODE_IMMUTABLE)
181		new_fl |= S_IMMUTABLE;
182	if (binode->flags & BTRFS_INODE_APPEND)
183		new_fl |= S_APPEND;
184	if (binode->flags & BTRFS_INODE_NOATIME)
185		new_fl |= S_NOATIME;
186	if (binode->flags & BTRFS_INODE_DIRSYNC)
187		new_fl |= S_DIRSYNC;
188	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
189		new_fl |= S_VERITY;
190
191	set_mask_bits(&inode->i_flags,
192		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
193		      S_VERITY, new_fl);
194}
195
196/*
197 * Check if @flags are a supported and valid set of FS_*_FL flags and that
198 * the old and new flags are not conflicting
199 */
200static int check_fsflags(unsigned int old_flags, unsigned int flags)
201{
202	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203		      FS_NOATIME_FL | FS_NODUMP_FL | \
204		      FS_SYNC_FL | FS_DIRSYNC_FL | \
205		      FS_NOCOMP_FL | FS_COMPR_FL |
206		      FS_NOCOW_FL))
207		return -EOPNOTSUPP;
208
209	/* COMPR and NOCOMP on new/old are valid */
210	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211		return -EINVAL;
212
213	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
214		return -EINVAL;
215
216	/* NOCOW and compression options are mutually exclusive */
217	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
218		return -EINVAL;
219	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
220		return -EINVAL;
221
222	return 0;
223}
224
225static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
226				    unsigned int flags)
227{
228	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
229		return -EPERM;
230
231	return 0;
232}
233
234/*
235 * Set flags/xflags from the internal inode flags. The remaining items of
236 * fsxattr are zeroed.
237 */
238int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
239{
240	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
241
242	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
243	return 0;
244}
245
246int btrfs_fileattr_set(struct mnt_idmap *idmap,
247		       struct dentry *dentry, struct fileattr *fa)
248{
249	struct inode *inode = d_inode(dentry);
250	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
251	struct btrfs_inode *binode = BTRFS_I(inode);
252	struct btrfs_root *root = binode->root;
253	struct btrfs_trans_handle *trans;
254	unsigned int fsflags, old_fsflags;
255	int ret;
256	const char *comp = NULL;
257	u32 binode_flags;
258
259	if (btrfs_root_readonly(root))
260		return -EROFS;
261
262	if (fileattr_has_fsx(fa))
263		return -EOPNOTSUPP;
264
265	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
266	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
267	ret = check_fsflags(old_fsflags, fsflags);
268	if (ret)
269		return ret;
270
271	ret = check_fsflags_compatible(fs_info, fsflags);
272	if (ret)
273		return ret;
274
275	binode_flags = binode->flags;
276	if (fsflags & FS_SYNC_FL)
277		binode_flags |= BTRFS_INODE_SYNC;
278	else
279		binode_flags &= ~BTRFS_INODE_SYNC;
280	if (fsflags & FS_IMMUTABLE_FL)
281		binode_flags |= BTRFS_INODE_IMMUTABLE;
282	else
283		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
284	if (fsflags & FS_APPEND_FL)
285		binode_flags |= BTRFS_INODE_APPEND;
286	else
287		binode_flags &= ~BTRFS_INODE_APPEND;
288	if (fsflags & FS_NODUMP_FL)
289		binode_flags |= BTRFS_INODE_NODUMP;
290	else
291		binode_flags &= ~BTRFS_INODE_NODUMP;
292	if (fsflags & FS_NOATIME_FL)
293		binode_flags |= BTRFS_INODE_NOATIME;
294	else
295		binode_flags &= ~BTRFS_INODE_NOATIME;
296
297	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
298	if (!fa->flags_valid) {
299		/* 1 item for the inode */
300		trans = btrfs_start_transaction(root, 1);
301		if (IS_ERR(trans))
302			return PTR_ERR(trans);
303		goto update_flags;
304	}
305
306	if (fsflags & FS_DIRSYNC_FL)
307		binode_flags |= BTRFS_INODE_DIRSYNC;
308	else
309		binode_flags &= ~BTRFS_INODE_DIRSYNC;
310	if (fsflags & FS_NOCOW_FL) {
311		if (S_ISREG(inode->i_mode)) {
312			/*
313			 * It's safe to turn csums off here, no extents exist.
314			 * Otherwise we want the flag to reflect the real COW
315			 * status of the file and will not set it.
316			 */
317			if (inode->i_size == 0)
318				binode_flags |= BTRFS_INODE_NODATACOW |
319						BTRFS_INODE_NODATASUM;
320		} else {
321			binode_flags |= BTRFS_INODE_NODATACOW;
322		}
323	} else {
324		/*
325		 * Revert back under same assumptions as above
326		 */
327		if (S_ISREG(inode->i_mode)) {
328			if (inode->i_size == 0)
329				binode_flags &= ~(BTRFS_INODE_NODATACOW |
330						  BTRFS_INODE_NODATASUM);
331		} else {
332			binode_flags &= ~BTRFS_INODE_NODATACOW;
333		}
334	}
335
336	/*
337	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
338	 * flag may be changed automatically if compression code won't make
339	 * things smaller.
340	 */
341	if (fsflags & FS_NOCOMP_FL) {
342		binode_flags &= ~BTRFS_INODE_COMPRESS;
343		binode_flags |= BTRFS_INODE_NOCOMPRESS;
344	} else if (fsflags & FS_COMPR_FL) {
345
346		if (IS_SWAPFILE(inode))
347			return -ETXTBSY;
348
349		binode_flags |= BTRFS_INODE_COMPRESS;
350		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
351
352		comp = btrfs_compress_type2str(fs_info->compress_type);
353		if (!comp || comp[0] == 0)
354			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
355	} else {
356		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
357	}
358
359	/*
360	 * 1 for inode item
361	 * 2 for properties
362	 */
363	trans = btrfs_start_transaction(root, 3);
364	if (IS_ERR(trans))
365		return PTR_ERR(trans);
366
367	if (comp) {
368		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
369				     strlen(comp), 0);
370		if (ret) {
371			btrfs_abort_transaction(trans, ret);
372			goto out_end_trans;
373		}
374	} else {
375		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
376				     0, 0);
377		if (ret && ret != -ENODATA) {
378			btrfs_abort_transaction(trans, ret);
379			goto out_end_trans;
380		}
381	}
382
383update_flags:
384	binode->flags = binode_flags;
385	btrfs_sync_inode_flags_to_i_flags(inode);
386	inode_inc_iversion(inode);
387	inode_set_ctime_current(inode);
388	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
389
390 out_end_trans:
391	btrfs_end_transaction(trans);
392	return ret;
393}
394
395/*
396 * Start exclusive operation @type, return true on success
397 */
398bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
399			enum btrfs_exclusive_operation type)
400{
401	bool ret = false;
402
403	spin_lock(&fs_info->super_lock);
404	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
405		fs_info->exclusive_operation = type;
406		ret = true;
407	}
408	spin_unlock(&fs_info->super_lock);
409
410	return ret;
411}
412
413/*
414 * Conditionally allow to enter the exclusive operation in case it's compatible
415 * with the running one.  This must be paired with btrfs_exclop_start_unlock and
416 * btrfs_exclop_finish.
417 *
418 * Compatibility:
419 * - the same type is already running
420 * - when trying to add a device and balance has been paused
421 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
422 *   must check the condition first that would allow none -> @type
423 */
424bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
425				 enum btrfs_exclusive_operation type)
426{
427	spin_lock(&fs_info->super_lock);
428	if (fs_info->exclusive_operation == type ||
429	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
430	     type == BTRFS_EXCLOP_DEV_ADD))
431		return true;
432
433	spin_unlock(&fs_info->super_lock);
434	return false;
435}
436
437void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
438{
439	spin_unlock(&fs_info->super_lock);
440}
441
442void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
443{
444	spin_lock(&fs_info->super_lock);
445	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
446	spin_unlock(&fs_info->super_lock);
447	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
448}
449
450void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
451			  enum btrfs_exclusive_operation op)
452{
453	switch (op) {
454	case BTRFS_EXCLOP_BALANCE_PAUSED:
455		spin_lock(&fs_info->super_lock);
456		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
457		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
458		       fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
459		       fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
460		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
461		spin_unlock(&fs_info->super_lock);
462		break;
463	case BTRFS_EXCLOP_BALANCE:
464		spin_lock(&fs_info->super_lock);
465		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
466		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
467		spin_unlock(&fs_info->super_lock);
468		break;
469	default:
470		btrfs_warn(fs_info,
471			"invalid exclop balance operation %d requested", op);
472	}
473}
474
475static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
476{
477	return put_user(inode->i_generation, arg);
478}
479
480static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
481					void __user *arg)
482{
483	struct btrfs_device *device;
484	struct fstrim_range range;
485	u64 minlen = ULLONG_MAX;
486	u64 num_devices = 0;
487	int ret;
488
489	if (!capable(CAP_SYS_ADMIN))
490		return -EPERM;
491
492	/*
493	 * btrfs_trim_block_group() depends on space cache, which is not
494	 * available in zoned filesystem. So, disallow fitrim on a zoned
495	 * filesystem for now.
496	 */
497	if (btrfs_is_zoned(fs_info))
498		return -EOPNOTSUPP;
499
500	/*
501	 * If the fs is mounted with nologreplay, which requires it to be
502	 * mounted in RO mode as well, we can not allow discard on free space
503	 * inside block groups, because log trees refer to extents that are not
504	 * pinned in a block group's free space cache (pinning the extents is
505	 * precisely the first phase of replaying a log tree).
506	 */
507	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
508		return -EROFS;
509
510	rcu_read_lock();
511	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
512				dev_list) {
513		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
514			continue;
515		num_devices++;
516		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
517				    minlen);
518	}
519	rcu_read_unlock();
520
521	if (!num_devices)
522		return -EOPNOTSUPP;
523	if (copy_from_user(&range, arg, sizeof(range)))
524		return -EFAULT;
525
526	/*
527	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
528	 * block group is in the logical address space, which can be any
529	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
530	 */
531	if (range.len < fs_info->sb->s_blocksize)
532		return -EINVAL;
533
534	range.minlen = max(range.minlen, minlen);
535	ret = btrfs_trim_fs(fs_info, &range);
536	if (ret < 0)
537		return ret;
538
539	if (copy_to_user(arg, &range, sizeof(range)))
540		return -EFAULT;
541
542	return 0;
543}
544
545int __pure btrfs_is_empty_uuid(u8 *uuid)
546{
547	int i;
548
549	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
550		if (uuid[i])
551			return 0;
552	}
553	return 1;
554}
555
556/*
557 * Calculate the number of transaction items to reserve for creating a subvolume
558 * or snapshot, not including the inode, directory entries, or parent directory.
559 */
560static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
561{
562	/*
563	 * 1 to add root block
564	 * 1 to add root item
565	 * 1 to add root ref
566	 * 1 to add root backref
567	 * 1 to add UUID item
568	 * 1 to add qgroup info
569	 * 1 to add qgroup limit
570	 *
571	 * Ideally the last two would only be accounted if qgroups are enabled,
572	 * but that can change between now and the time we would insert them.
573	 */
574	unsigned int num_items = 7;
575
576	if (inherit) {
577		/* 2 to add qgroup relations for each inherited qgroup */
578		num_items += 2 * inherit->num_qgroups;
579	}
580	return num_items;
581}
582
583static noinline int create_subvol(struct mnt_idmap *idmap,
584				  struct inode *dir, struct dentry *dentry,
585				  struct btrfs_qgroup_inherit *inherit)
586{
587	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
588	struct btrfs_trans_handle *trans;
589	struct btrfs_key key;
590	struct btrfs_root_item *root_item;
591	struct btrfs_inode_item *inode_item;
592	struct extent_buffer *leaf;
593	struct btrfs_root *root = BTRFS_I(dir)->root;
594	struct btrfs_root *new_root;
595	struct btrfs_block_rsv block_rsv;
596	struct timespec64 cur_time = current_time(dir);
597	struct btrfs_new_inode_args new_inode_args = {
598		.dir = dir,
599		.dentry = dentry,
600		.subvol = true,
601	};
602	unsigned int trans_num_items;
603	int ret;
604	dev_t anon_dev;
605	u64 objectid;
606
607	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
608	if (!root_item)
609		return -ENOMEM;
610
611	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
612	if (ret)
613		goto out_root_item;
614
615	/*
616	 * Don't create subvolume whose level is not zero. Or qgroup will be
617	 * screwed up since it assumes subvolume qgroup's level to be 0.
618	 */
619	if (btrfs_qgroup_level(objectid)) {
620		ret = -ENOSPC;
621		goto out_root_item;
622	}
623
624	ret = get_anon_bdev(&anon_dev);
625	if (ret < 0)
626		goto out_root_item;
627
628	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
629	if (!new_inode_args.inode) {
630		ret = -ENOMEM;
631		goto out_anon_dev;
632	}
633	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
634	if (ret)
635		goto out_inode;
636	trans_num_items += create_subvol_num_items(inherit);
637
638	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
639	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
640					       trans_num_items, false);
641	if (ret)
642		goto out_new_inode_args;
643
644	trans = btrfs_start_transaction(root, 0);
645	if (IS_ERR(trans)) {
646		ret = PTR_ERR(trans);
647		btrfs_subvolume_release_metadata(root, &block_rsv);
648		goto out_new_inode_args;
649	}
650	trans->block_rsv = &block_rsv;
651	trans->bytes_reserved = block_rsv.size;
652	/* Tree log can't currently deal with an inode which is a new root. */
653	btrfs_set_log_full_commit(trans);
654
655	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
656	if (ret)
657		goto out;
658
659	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
660				      BTRFS_NESTING_NORMAL);
661	if (IS_ERR(leaf)) {
662		ret = PTR_ERR(leaf);
663		goto out;
664	}
665
666	btrfs_mark_buffer_dirty(trans, leaf);
667
668	inode_item = &root_item->inode;
669	btrfs_set_stack_inode_generation(inode_item, 1);
670	btrfs_set_stack_inode_size(inode_item, 3);
671	btrfs_set_stack_inode_nlink(inode_item, 1);
672	btrfs_set_stack_inode_nbytes(inode_item,
673				     fs_info->nodesize);
674	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
675
676	btrfs_set_root_flags(root_item, 0);
677	btrfs_set_root_limit(root_item, 0);
678	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
679
680	btrfs_set_root_bytenr(root_item, leaf->start);
681	btrfs_set_root_generation(root_item, trans->transid);
682	btrfs_set_root_level(root_item, 0);
683	btrfs_set_root_refs(root_item, 1);
684	btrfs_set_root_used(root_item, leaf->len);
685	btrfs_set_root_last_snapshot(root_item, 0);
686
687	btrfs_set_root_generation_v2(root_item,
688			btrfs_root_generation(root_item));
689	generate_random_guid(root_item->uuid);
690	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
691	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
692	root_item->ctime = root_item->otime;
693	btrfs_set_root_ctransid(root_item, trans->transid);
694	btrfs_set_root_otransid(root_item, trans->transid);
695
696	btrfs_tree_unlock(leaf);
697
698	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
699
700	key.objectid = objectid;
701	key.offset = 0;
702	key.type = BTRFS_ROOT_ITEM_KEY;
703	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
704				root_item);
705	if (ret) {
706		/*
707		 * Since we don't abort the transaction in this case, free the
708		 * tree block so that we don't leak space and leave the
709		 * filesystem in an inconsistent state (an extent item in the
710		 * extent tree with a backreference for a root that does not
711		 * exists).
712		 */
713		btrfs_tree_lock(leaf);
714		btrfs_clear_buffer_dirty(trans, leaf);
715		btrfs_tree_unlock(leaf);
716		btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
717		free_extent_buffer(leaf);
718		goto out;
719	}
720
721	free_extent_buffer(leaf);
722	leaf = NULL;
723
724	new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
725	if (IS_ERR(new_root)) {
726		ret = PTR_ERR(new_root);
727		btrfs_abort_transaction(trans, ret);
728		goto out;
729	}
730	/* anon_dev is owned by new_root now. */
731	anon_dev = 0;
732	BTRFS_I(new_inode_args.inode)->root = new_root;
733	/* ... and new_root is owned by new_inode_args.inode now. */
734
735	ret = btrfs_record_root_in_trans(trans, new_root);
736	if (ret) {
737		btrfs_abort_transaction(trans, ret);
738		goto out;
739	}
740
741	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
742				  BTRFS_UUID_KEY_SUBVOL, objectid);
743	if (ret) {
744		btrfs_abort_transaction(trans, ret);
745		goto out;
746	}
747
748	ret = btrfs_create_new_inode(trans, &new_inode_args);
749	if (ret) {
750		btrfs_abort_transaction(trans, ret);
751		goto out;
752	}
753
754	d_instantiate_new(dentry, new_inode_args.inode);
755	new_inode_args.inode = NULL;
756
757out:
758	trans->block_rsv = NULL;
759	trans->bytes_reserved = 0;
760	btrfs_subvolume_release_metadata(root, &block_rsv);
761
762	btrfs_end_transaction(trans);
763out_new_inode_args:
764	btrfs_new_inode_args_destroy(&new_inode_args);
765out_inode:
766	iput(new_inode_args.inode);
767out_anon_dev:
768	if (anon_dev)
769		free_anon_bdev(anon_dev);
770out_root_item:
771	kfree(root_item);
772	return ret;
773}
774
775static int create_snapshot(struct btrfs_root *root, struct inode *dir,
776			   struct dentry *dentry, bool readonly,
777			   struct btrfs_qgroup_inherit *inherit)
778{
779	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
780	struct inode *inode;
781	struct btrfs_pending_snapshot *pending_snapshot;
782	unsigned int trans_num_items;
783	struct btrfs_trans_handle *trans;
784	int ret;
785
786	/* We do not support snapshotting right now. */
787	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
788		btrfs_warn(fs_info,
789			   "extent tree v2 doesn't support snapshotting yet");
790		return -EOPNOTSUPP;
791	}
792
793	if (btrfs_root_refs(&root->root_item) == 0)
794		return -ENOENT;
795
796	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
797		return -EINVAL;
798
799	if (atomic_read(&root->nr_swapfiles)) {
800		btrfs_warn(fs_info,
801			   "cannot snapshot subvolume with active swapfile");
802		return -ETXTBSY;
803	}
804
805	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
806	if (!pending_snapshot)
807		return -ENOMEM;
808
809	ret = get_anon_bdev(&pending_snapshot->anon_dev);
810	if (ret < 0)
811		goto free_pending;
812	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
813			GFP_KERNEL);
814	pending_snapshot->path = btrfs_alloc_path();
815	if (!pending_snapshot->root_item || !pending_snapshot->path) {
816		ret = -ENOMEM;
817		goto free_pending;
818	}
819
820	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
821			     BTRFS_BLOCK_RSV_TEMP);
822	/*
823	 * 1 to add dir item
824	 * 1 to add dir index
825	 * 1 to update parent inode item
826	 */
827	trans_num_items = create_subvol_num_items(inherit) + 3;
828	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
829					       &pending_snapshot->block_rsv,
830					       trans_num_items, false);
831	if (ret)
832		goto free_pending;
833
834	pending_snapshot->dentry = dentry;
835	pending_snapshot->root = root;
836	pending_snapshot->readonly = readonly;
837	pending_snapshot->dir = dir;
838	pending_snapshot->inherit = inherit;
839
840	trans = btrfs_start_transaction(root, 0);
841	if (IS_ERR(trans)) {
842		ret = PTR_ERR(trans);
843		goto fail;
844	}
845
846	trans->pending_snapshot = pending_snapshot;
847
848	ret = btrfs_commit_transaction(trans);
849	if (ret)
850		goto fail;
851
852	ret = pending_snapshot->error;
853	if (ret)
854		goto fail;
855
856	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
857	if (ret)
858		goto fail;
859
860	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
861	if (IS_ERR(inode)) {
862		ret = PTR_ERR(inode);
863		goto fail;
864	}
865
866	d_instantiate(dentry, inode);
867	ret = 0;
868	pending_snapshot->anon_dev = 0;
869fail:
870	/* Prevent double freeing of anon_dev */
871	if (ret && pending_snapshot->snap)
872		pending_snapshot->snap->anon_dev = 0;
873	btrfs_put_root(pending_snapshot->snap);
874	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
875free_pending:
876	if (pending_snapshot->anon_dev)
877		free_anon_bdev(pending_snapshot->anon_dev);
878	kfree(pending_snapshot->root_item);
879	btrfs_free_path(pending_snapshot->path);
880	kfree(pending_snapshot);
881
882	return ret;
883}
884
885/*  copy of may_delete in fs/namei.c()
886 *	Check whether we can remove a link victim from directory dir, check
887 *  whether the type of victim is right.
888 *  1. We can't do it if dir is read-only (done in permission())
889 *  2. We should have write and exec permissions on dir
890 *  3. We can't remove anything from append-only dir
891 *  4. We can't do anything with immutable dir (done in permission())
892 *  5. If the sticky bit on dir is set we should either
893 *	a. be owner of dir, or
894 *	b. be owner of victim, or
895 *	c. have CAP_FOWNER capability
896 *  6. If the victim is append-only or immutable we can't do anything with
897 *     links pointing to it.
898 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
899 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
900 *  9. We can't remove a root or mountpoint.
901 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
902 *     nfs_async_unlink().
903 */
904
905static int btrfs_may_delete(struct mnt_idmap *idmap,
906			    struct inode *dir, struct dentry *victim, int isdir)
907{
908	int error;
909
910	if (d_really_is_negative(victim))
911		return -ENOENT;
912
913	BUG_ON(d_inode(victim->d_parent) != dir);
914	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
915
916	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
917	if (error)
918		return error;
919	if (IS_APPEND(dir))
920		return -EPERM;
921	if (check_sticky(idmap, dir, d_inode(victim)) ||
922	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
923	    IS_SWAPFILE(d_inode(victim)))
924		return -EPERM;
925	if (isdir) {
926		if (!d_is_dir(victim))
927			return -ENOTDIR;
928		if (IS_ROOT(victim))
929			return -EBUSY;
930	} else if (d_is_dir(victim))
931		return -EISDIR;
932	if (IS_DEADDIR(dir))
933		return -ENOENT;
934	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
935		return -EBUSY;
936	return 0;
937}
938
939/* copy of may_create in fs/namei.c() */
940static inline int btrfs_may_create(struct mnt_idmap *idmap,
941				   struct inode *dir, struct dentry *child)
942{
943	if (d_really_is_positive(child))
944		return -EEXIST;
945	if (IS_DEADDIR(dir))
946		return -ENOENT;
947	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
948		return -EOVERFLOW;
949	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
950}
951
952/*
953 * Create a new subvolume below @parent.  This is largely modeled after
954 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
955 * inside this filesystem so it's quite a bit simpler.
956 */
957static noinline int btrfs_mksubvol(const struct path *parent,
958				   struct mnt_idmap *idmap,
959				   const char *name, int namelen,
960				   struct btrfs_root *snap_src,
961				   bool readonly,
962				   struct btrfs_qgroup_inherit *inherit)
963{
964	struct inode *dir = d_inode(parent->dentry);
965	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
966	struct dentry *dentry;
967	struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
968	int error;
969
970	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
971	if (error == -EINTR)
972		return error;
973
974	dentry = lookup_one(idmap, name, parent->dentry, namelen);
975	error = PTR_ERR(dentry);
976	if (IS_ERR(dentry))
977		goto out_unlock;
978
979	error = btrfs_may_create(idmap, dir, dentry);
980	if (error)
981		goto out_dput;
982
983	/*
984	 * even if this name doesn't exist, we may get hash collisions.
985	 * check for them now when we can safely fail
986	 */
987	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
988					       dir->i_ino, &name_str);
989	if (error)
990		goto out_dput;
991
992	down_read(&fs_info->subvol_sem);
993
994	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
995		goto out_up_read;
996
997	if (snap_src)
998		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
999	else
1000		error = create_subvol(idmap, dir, dentry, inherit);
1001
1002	if (!error)
1003		fsnotify_mkdir(dir, dentry);
1004out_up_read:
1005	up_read(&fs_info->subvol_sem);
1006out_dput:
1007	dput(dentry);
1008out_unlock:
1009	btrfs_inode_unlock(BTRFS_I(dir), 0);
1010	return error;
1011}
1012
1013static noinline int btrfs_mksnapshot(const struct path *parent,
1014				   struct mnt_idmap *idmap,
1015				   const char *name, int namelen,
1016				   struct btrfs_root *root,
1017				   bool readonly,
1018				   struct btrfs_qgroup_inherit *inherit)
1019{
1020	int ret;
1021	bool snapshot_force_cow = false;
1022
1023	/*
1024	 * Force new buffered writes to reserve space even when NOCOW is
1025	 * possible. This is to avoid later writeback (running dealloc) to
1026	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1027	 */
1028	btrfs_drew_read_lock(&root->snapshot_lock);
1029
1030	ret = btrfs_start_delalloc_snapshot(root, false);
1031	if (ret)
1032		goto out;
1033
1034	/*
1035	 * All previous writes have started writeback in NOCOW mode, so now
1036	 * we force future writes to fallback to COW mode during snapshot
1037	 * creation.
1038	 */
1039	atomic_inc(&root->snapshot_force_cow);
1040	snapshot_force_cow = true;
1041
1042	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1043
1044	ret = btrfs_mksubvol(parent, idmap, name, namelen,
1045			     root, readonly, inherit);
1046out:
1047	if (snapshot_force_cow)
1048		atomic_dec(&root->snapshot_force_cow);
1049	btrfs_drew_read_unlock(&root->snapshot_lock);
1050	return ret;
1051}
1052
1053/*
1054 * Try to start exclusive operation @type or cancel it if it's running.
1055 *
1056 * Return:
1057 *   0        - normal mode, newly claimed op started
1058 *  >0        - normal mode, something else is running,
1059 *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1060 * ECANCELED  - cancel mode, successful cancel
1061 * ENOTCONN   - cancel mode, operation not running anymore
1062 */
1063static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1064			enum btrfs_exclusive_operation type, bool cancel)
1065{
1066	if (!cancel) {
1067		/* Start normal op */
1068		if (!btrfs_exclop_start(fs_info, type))
1069			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1070		/* Exclusive operation is now claimed */
1071		return 0;
1072	}
1073
1074	/* Cancel running op */
1075	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1076		/*
1077		 * This blocks any exclop finish from setting it to NONE, so we
1078		 * request cancellation. Either it runs and we will wait for it,
1079		 * or it has finished and no waiting will happen.
1080		 */
1081		atomic_inc(&fs_info->reloc_cancel_req);
1082		btrfs_exclop_start_unlock(fs_info);
1083
1084		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1085			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1086				    TASK_INTERRUPTIBLE);
1087
1088		return -ECANCELED;
1089	}
1090
1091	/* Something else is running or none */
1092	return -ENOTCONN;
1093}
1094
1095static noinline int btrfs_ioctl_resize(struct file *file,
1096					void __user *arg)
1097{
1098	BTRFS_DEV_LOOKUP_ARGS(args);
1099	struct inode *inode = file_inode(file);
1100	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1101	u64 new_size;
1102	u64 old_size;
1103	u64 devid = 1;
1104	struct btrfs_root *root = BTRFS_I(inode)->root;
1105	struct btrfs_ioctl_vol_args *vol_args;
1106	struct btrfs_trans_handle *trans;
1107	struct btrfs_device *device = NULL;
1108	char *sizestr;
1109	char *retptr;
1110	char *devstr = NULL;
1111	int ret = 0;
1112	int mod = 0;
1113	bool cancel;
1114
1115	if (!capable(CAP_SYS_ADMIN))
1116		return -EPERM;
1117
1118	ret = mnt_want_write_file(file);
1119	if (ret)
1120		return ret;
1121
1122	/*
1123	 * Read the arguments before checking exclusivity to be able to
1124	 * distinguish regular resize and cancel
1125	 */
1126	vol_args = memdup_user(arg, sizeof(*vol_args));
1127	if (IS_ERR(vol_args)) {
1128		ret = PTR_ERR(vol_args);
1129		goto out_drop;
1130	}
1131	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1132	sizestr = vol_args->name;
1133	cancel = (strcmp("cancel", sizestr) == 0);
1134	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1135	if (ret)
1136		goto out_free;
1137	/* Exclusive operation is now claimed */
1138
1139	devstr = strchr(sizestr, ':');
1140	if (devstr) {
1141		sizestr = devstr + 1;
1142		*devstr = '\0';
1143		devstr = vol_args->name;
1144		ret = kstrtoull(devstr, 10, &devid);
1145		if (ret)
1146			goto out_finish;
1147		if (!devid) {
1148			ret = -EINVAL;
1149			goto out_finish;
1150		}
1151		btrfs_info(fs_info, "resizing devid %llu", devid);
1152	}
1153
1154	args.devid = devid;
1155	device = btrfs_find_device(fs_info->fs_devices, &args);
1156	if (!device) {
1157		btrfs_info(fs_info, "resizer unable to find device %llu",
1158			   devid);
1159		ret = -ENODEV;
1160		goto out_finish;
1161	}
1162
1163	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1164		btrfs_info(fs_info,
1165			   "resizer unable to apply on readonly device %llu",
1166		       devid);
1167		ret = -EPERM;
1168		goto out_finish;
1169	}
1170
1171	if (!strcmp(sizestr, "max"))
1172		new_size = bdev_nr_bytes(device->bdev);
1173	else {
1174		if (sizestr[0] == '-') {
1175			mod = -1;
1176			sizestr++;
1177		} else if (sizestr[0] == '+') {
1178			mod = 1;
1179			sizestr++;
1180		}
1181		new_size = memparse(sizestr, &retptr);
1182		if (*retptr != '\0' || new_size == 0) {
1183			ret = -EINVAL;
1184			goto out_finish;
1185		}
1186	}
1187
1188	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1189		ret = -EPERM;
1190		goto out_finish;
1191	}
1192
1193	old_size = btrfs_device_get_total_bytes(device);
1194
1195	if (mod < 0) {
1196		if (new_size > old_size) {
1197			ret = -EINVAL;
1198			goto out_finish;
1199		}
1200		new_size = old_size - new_size;
1201	} else if (mod > 0) {
1202		if (new_size > ULLONG_MAX - old_size) {
1203			ret = -ERANGE;
1204			goto out_finish;
1205		}
1206		new_size = old_size + new_size;
1207	}
1208
1209	if (new_size < SZ_256M) {
1210		ret = -EINVAL;
1211		goto out_finish;
1212	}
1213	if (new_size > bdev_nr_bytes(device->bdev)) {
1214		ret = -EFBIG;
1215		goto out_finish;
1216	}
1217
1218	new_size = round_down(new_size, fs_info->sectorsize);
1219
1220	if (new_size > old_size) {
1221		trans = btrfs_start_transaction(root, 0);
1222		if (IS_ERR(trans)) {
1223			ret = PTR_ERR(trans);
1224			goto out_finish;
1225		}
1226		ret = btrfs_grow_device(trans, device, new_size);
1227		btrfs_commit_transaction(trans);
1228	} else if (new_size < old_size) {
1229		ret = btrfs_shrink_device(device, new_size);
1230	} /* equal, nothing need to do */
1231
1232	if (ret == 0 && new_size != old_size)
1233		btrfs_info_in_rcu(fs_info,
1234			"resize device %s (devid %llu) from %llu to %llu",
1235			btrfs_dev_name(device), device->devid,
1236			old_size, new_size);
1237out_finish:
1238	btrfs_exclop_finish(fs_info);
1239out_free:
1240	kfree(vol_args);
1241out_drop:
1242	mnt_drop_write_file(file);
1243	return ret;
1244}
1245
1246static noinline int __btrfs_ioctl_snap_create(struct file *file,
1247				struct mnt_idmap *idmap,
1248				const char *name, unsigned long fd, int subvol,
1249				bool readonly,
1250				struct btrfs_qgroup_inherit *inherit)
1251{
1252	int namelen;
1253	int ret = 0;
1254
1255	if (!S_ISDIR(file_inode(file)->i_mode))
1256		return -ENOTDIR;
1257
1258	ret = mnt_want_write_file(file);
1259	if (ret)
1260		goto out;
1261
1262	namelen = strlen(name);
1263	if (strchr(name, '/')) {
1264		ret = -EINVAL;
1265		goto out_drop_write;
1266	}
1267
1268	if (name[0] == '.' &&
1269	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1270		ret = -EEXIST;
1271		goto out_drop_write;
1272	}
1273
1274	if (subvol) {
1275		ret = btrfs_mksubvol(&file->f_path, idmap, name,
1276				     namelen, NULL, readonly, inherit);
1277	} else {
1278		struct fd src = fdget(fd);
1279		struct inode *src_inode;
1280		if (!src.file) {
1281			ret = -EINVAL;
1282			goto out_drop_write;
1283		}
1284
1285		src_inode = file_inode(src.file);
1286		if (src_inode->i_sb != file_inode(file)->i_sb) {
1287			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1288				   "Snapshot src from another FS");
1289			ret = -EXDEV;
1290		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1291			/*
1292			 * Subvolume creation is not restricted, but snapshots
1293			 * are limited to own subvolumes only
1294			 */
1295			ret = -EPERM;
1296		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1297			/*
1298			 * Snapshots must be made with the src_inode referring
1299			 * to the subvolume inode, otherwise the permission
1300			 * checking above is useless because we may have
1301			 * permission on a lower directory but not the subvol
1302			 * itself.
1303			 */
1304			ret = -EINVAL;
1305		} else {
1306			ret = btrfs_mksnapshot(&file->f_path, idmap,
1307					       name, namelen,
1308					       BTRFS_I(src_inode)->root,
1309					       readonly, inherit);
1310		}
1311		fdput(src);
1312	}
1313out_drop_write:
1314	mnt_drop_write_file(file);
1315out:
1316	return ret;
1317}
1318
1319static noinline int btrfs_ioctl_snap_create(struct file *file,
1320					    void __user *arg, int subvol)
1321{
1322	struct btrfs_ioctl_vol_args *vol_args;
1323	int ret;
1324
1325	if (!S_ISDIR(file_inode(file)->i_mode))
1326		return -ENOTDIR;
1327
1328	vol_args = memdup_user(arg, sizeof(*vol_args));
1329	if (IS_ERR(vol_args))
1330		return PTR_ERR(vol_args);
1331	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1332
1333	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1334					vol_args->name, vol_args->fd, subvol,
1335					false, NULL);
1336
1337	kfree(vol_args);
1338	return ret;
1339}
1340
1341static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1342					       void __user *arg, int subvol)
1343{
1344	struct btrfs_ioctl_vol_args_v2 *vol_args;
1345	int ret;
1346	bool readonly = false;
1347	struct btrfs_qgroup_inherit *inherit = NULL;
1348
1349	if (!S_ISDIR(file_inode(file)->i_mode))
1350		return -ENOTDIR;
1351
1352	vol_args = memdup_user(arg, sizeof(*vol_args));
1353	if (IS_ERR(vol_args))
1354		return PTR_ERR(vol_args);
1355	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1356
1357	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1358		ret = -EOPNOTSUPP;
1359		goto free_args;
1360	}
1361
1362	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1363		readonly = true;
1364	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1365		u64 nums;
1366
1367		if (vol_args->size < sizeof(*inherit) ||
1368		    vol_args->size > PAGE_SIZE) {
1369			ret = -EINVAL;
1370			goto free_args;
1371		}
1372		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1373		if (IS_ERR(inherit)) {
1374			ret = PTR_ERR(inherit);
1375			goto free_args;
1376		}
1377
1378		if (inherit->num_qgroups > PAGE_SIZE ||
1379		    inherit->num_ref_copies > PAGE_SIZE ||
1380		    inherit->num_excl_copies > PAGE_SIZE) {
1381			ret = -EINVAL;
1382			goto free_inherit;
1383		}
1384
1385		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1386		       2 * inherit->num_excl_copies;
1387		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1388			ret = -EINVAL;
1389			goto free_inherit;
1390		}
1391	}
1392
1393	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1394					vol_args->name, vol_args->fd, subvol,
1395					readonly, inherit);
1396	if (ret)
1397		goto free_inherit;
1398free_inherit:
1399	kfree(inherit);
1400free_args:
1401	kfree(vol_args);
1402	return ret;
1403}
1404
1405static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1406						void __user *arg)
1407{
1408	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1409	struct btrfs_root *root = BTRFS_I(inode)->root;
1410	int ret = 0;
1411	u64 flags = 0;
1412
1413	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1414		return -EINVAL;
1415
1416	down_read(&fs_info->subvol_sem);
1417	if (btrfs_root_readonly(root))
1418		flags |= BTRFS_SUBVOL_RDONLY;
1419	up_read(&fs_info->subvol_sem);
1420
1421	if (copy_to_user(arg, &flags, sizeof(flags)))
1422		ret = -EFAULT;
1423
1424	return ret;
1425}
1426
1427static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1428					      void __user *arg)
1429{
1430	struct inode *inode = file_inode(file);
1431	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1432	struct btrfs_root *root = BTRFS_I(inode)->root;
1433	struct btrfs_trans_handle *trans;
1434	u64 root_flags;
1435	u64 flags;
1436	int ret = 0;
1437
1438	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1439		return -EPERM;
1440
1441	ret = mnt_want_write_file(file);
1442	if (ret)
1443		goto out;
1444
1445	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1446		ret = -EINVAL;
1447		goto out_drop_write;
1448	}
1449
1450	if (copy_from_user(&flags, arg, sizeof(flags))) {
1451		ret = -EFAULT;
1452		goto out_drop_write;
1453	}
1454
1455	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1456		ret = -EOPNOTSUPP;
1457		goto out_drop_write;
1458	}
1459
1460	down_write(&fs_info->subvol_sem);
1461
1462	/* nothing to do */
1463	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1464		goto out_drop_sem;
1465
1466	root_flags = btrfs_root_flags(&root->root_item);
1467	if (flags & BTRFS_SUBVOL_RDONLY) {
1468		btrfs_set_root_flags(&root->root_item,
1469				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1470	} else {
1471		/*
1472		 * Block RO -> RW transition if this subvolume is involved in
1473		 * send
1474		 */
1475		spin_lock(&root->root_item_lock);
1476		if (root->send_in_progress == 0) {
1477			btrfs_set_root_flags(&root->root_item,
1478				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1479			spin_unlock(&root->root_item_lock);
1480		} else {
1481			spin_unlock(&root->root_item_lock);
1482			btrfs_warn(fs_info,
1483				   "Attempt to set subvolume %llu read-write during send",
1484				   root->root_key.objectid);
1485			ret = -EPERM;
1486			goto out_drop_sem;
1487		}
1488	}
1489
1490	trans = btrfs_start_transaction(root, 1);
1491	if (IS_ERR(trans)) {
1492		ret = PTR_ERR(trans);
1493		goto out_reset;
1494	}
1495
1496	ret = btrfs_update_root(trans, fs_info->tree_root,
1497				&root->root_key, &root->root_item);
1498	if (ret < 0) {
1499		btrfs_end_transaction(trans);
1500		goto out_reset;
1501	}
1502
1503	ret = btrfs_commit_transaction(trans);
1504
1505out_reset:
1506	if (ret)
1507		btrfs_set_root_flags(&root->root_item, root_flags);
1508out_drop_sem:
1509	up_write(&fs_info->subvol_sem);
1510out_drop_write:
1511	mnt_drop_write_file(file);
1512out:
1513	return ret;
1514}
1515
1516static noinline int key_in_sk(struct btrfs_key *key,
1517			      struct btrfs_ioctl_search_key *sk)
1518{
1519	struct btrfs_key test;
1520	int ret;
1521
1522	test.objectid = sk->min_objectid;
1523	test.type = sk->min_type;
1524	test.offset = sk->min_offset;
1525
1526	ret = btrfs_comp_cpu_keys(key, &test);
1527	if (ret < 0)
1528		return 0;
1529
1530	test.objectid = sk->max_objectid;
1531	test.type = sk->max_type;
1532	test.offset = sk->max_offset;
1533
1534	ret = btrfs_comp_cpu_keys(key, &test);
1535	if (ret > 0)
1536		return 0;
1537	return 1;
1538}
1539
1540static noinline int copy_to_sk(struct btrfs_path *path,
1541			       struct btrfs_key *key,
1542			       struct btrfs_ioctl_search_key *sk,
1543			       u64 *buf_size,
1544			       char __user *ubuf,
1545			       unsigned long *sk_offset,
1546			       int *num_found)
1547{
1548	u64 found_transid;
1549	struct extent_buffer *leaf;
1550	struct btrfs_ioctl_search_header sh;
1551	struct btrfs_key test;
1552	unsigned long item_off;
1553	unsigned long item_len;
1554	int nritems;
1555	int i;
1556	int slot;
1557	int ret = 0;
1558
1559	leaf = path->nodes[0];
1560	slot = path->slots[0];
1561	nritems = btrfs_header_nritems(leaf);
1562
1563	if (btrfs_header_generation(leaf) > sk->max_transid) {
1564		i = nritems;
1565		goto advance_key;
1566	}
1567	found_transid = btrfs_header_generation(leaf);
1568
1569	for (i = slot; i < nritems; i++) {
1570		item_off = btrfs_item_ptr_offset(leaf, i);
1571		item_len = btrfs_item_size(leaf, i);
1572
1573		btrfs_item_key_to_cpu(leaf, key, i);
1574		if (!key_in_sk(key, sk))
1575			continue;
1576
1577		if (sizeof(sh) + item_len > *buf_size) {
1578			if (*num_found) {
1579				ret = 1;
1580				goto out;
1581			}
1582
1583			/*
1584			 * return one empty item back for v1, which does not
1585			 * handle -EOVERFLOW
1586			 */
1587
1588			*buf_size = sizeof(sh) + item_len;
1589			item_len = 0;
1590			ret = -EOVERFLOW;
1591		}
1592
1593		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1594			ret = 1;
1595			goto out;
1596		}
1597
1598		sh.objectid = key->objectid;
1599		sh.offset = key->offset;
1600		sh.type = key->type;
1601		sh.len = item_len;
1602		sh.transid = found_transid;
1603
1604		/*
1605		 * Copy search result header. If we fault then loop again so we
1606		 * can fault in the pages and -EFAULT there if there's a
1607		 * problem. Otherwise we'll fault and then copy the buffer in
1608		 * properly this next time through
1609		 */
1610		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1611			ret = 0;
1612			goto out;
1613		}
1614
1615		*sk_offset += sizeof(sh);
1616
1617		if (item_len) {
1618			char __user *up = ubuf + *sk_offset;
1619			/*
1620			 * Copy the item, same behavior as above, but reset the
1621			 * * sk_offset so we copy the full thing again.
1622			 */
1623			if (read_extent_buffer_to_user_nofault(leaf, up,
1624						item_off, item_len)) {
1625				ret = 0;
1626				*sk_offset -= sizeof(sh);
1627				goto out;
1628			}
1629
1630			*sk_offset += item_len;
1631		}
1632		(*num_found)++;
1633
1634		if (ret) /* -EOVERFLOW from above */
1635			goto out;
1636
1637		if (*num_found >= sk->nr_items) {
1638			ret = 1;
1639			goto out;
1640		}
1641	}
1642advance_key:
1643	ret = 0;
1644	test.objectid = sk->max_objectid;
1645	test.type = sk->max_type;
1646	test.offset = sk->max_offset;
1647	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1648		ret = 1;
1649	else if (key->offset < (u64)-1)
1650		key->offset++;
1651	else if (key->type < (u8)-1) {
1652		key->offset = 0;
1653		key->type++;
1654	} else if (key->objectid < (u64)-1) {
1655		key->offset = 0;
1656		key->type = 0;
1657		key->objectid++;
1658	} else
1659		ret = 1;
1660out:
1661	/*
1662	 *  0: all items from this leaf copied, continue with next
1663	 *  1: * more items can be copied, but unused buffer is too small
1664	 *     * all items were found
1665	 *     Either way, it will stops the loop which iterates to the next
1666	 *     leaf
1667	 *  -EOVERFLOW: item was to large for buffer
1668	 *  -EFAULT: could not copy extent buffer back to userspace
1669	 */
1670	return ret;
1671}
1672
1673static noinline int search_ioctl(struct inode *inode,
1674				 struct btrfs_ioctl_search_key *sk,
1675				 u64 *buf_size,
1676				 char __user *ubuf)
1677{
1678	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
1679	struct btrfs_root *root;
1680	struct btrfs_key key;
1681	struct btrfs_path *path;
1682	int ret;
1683	int num_found = 0;
1684	unsigned long sk_offset = 0;
1685
1686	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1687		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1688		return -EOVERFLOW;
1689	}
1690
1691	path = btrfs_alloc_path();
1692	if (!path)
1693		return -ENOMEM;
1694
1695	if (sk->tree_id == 0) {
1696		/* search the root of the inode that was passed */
1697		root = btrfs_grab_root(BTRFS_I(inode)->root);
1698	} else {
1699		root = btrfs_get_fs_root(info, sk->tree_id, true);
1700		if (IS_ERR(root)) {
1701			btrfs_free_path(path);
1702			return PTR_ERR(root);
1703		}
1704	}
1705
1706	key.objectid = sk->min_objectid;
1707	key.type = sk->min_type;
1708	key.offset = sk->min_offset;
1709
1710	while (1) {
1711		ret = -EFAULT;
1712		/*
1713		 * Ensure that the whole user buffer is faulted in at sub-page
1714		 * granularity, otherwise the loop may live-lock.
1715		 */
1716		if (fault_in_subpage_writeable(ubuf + sk_offset,
1717					       *buf_size - sk_offset))
1718			break;
1719
1720		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1721		if (ret != 0) {
1722			if (ret > 0)
1723				ret = 0;
1724			goto err;
1725		}
1726		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1727				 &sk_offset, &num_found);
1728		btrfs_release_path(path);
1729		if (ret)
1730			break;
1731
1732	}
1733	if (ret > 0)
1734		ret = 0;
1735err:
1736	sk->nr_items = num_found;
1737	btrfs_put_root(root);
1738	btrfs_free_path(path);
1739	return ret;
1740}
1741
1742static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1743					    void __user *argp)
1744{
1745	struct btrfs_ioctl_search_args __user *uargs = argp;
1746	struct btrfs_ioctl_search_key sk;
1747	int ret;
1748	u64 buf_size;
1749
1750	if (!capable(CAP_SYS_ADMIN))
1751		return -EPERM;
1752
1753	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1754		return -EFAULT;
1755
1756	buf_size = sizeof(uargs->buf);
1757
1758	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1759
1760	/*
1761	 * In the origin implementation an overflow is handled by returning a
1762	 * search header with a len of zero, so reset ret.
1763	 */
1764	if (ret == -EOVERFLOW)
1765		ret = 0;
1766
1767	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1768		ret = -EFAULT;
1769	return ret;
1770}
1771
1772static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1773					       void __user *argp)
1774{
1775	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1776	struct btrfs_ioctl_search_args_v2 args;
1777	int ret;
1778	u64 buf_size;
1779	const u64 buf_limit = SZ_16M;
1780
1781	if (!capable(CAP_SYS_ADMIN))
1782		return -EPERM;
1783
1784	/* copy search header and buffer size */
1785	if (copy_from_user(&args, uarg, sizeof(args)))
1786		return -EFAULT;
1787
1788	buf_size = args.buf_size;
1789
1790	/* limit result size to 16MB */
1791	if (buf_size > buf_limit)
1792		buf_size = buf_limit;
1793
1794	ret = search_ioctl(inode, &args.key, &buf_size,
1795			   (char __user *)(&uarg->buf[0]));
1796	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1797		ret = -EFAULT;
1798	else if (ret == -EOVERFLOW &&
1799		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1800		ret = -EFAULT;
1801
1802	return ret;
1803}
1804
1805/*
1806 * Search INODE_REFs to identify path name of 'dirid' directory
1807 * in a 'tree_id' tree. and sets path name to 'name'.
1808 */
1809static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1810				u64 tree_id, u64 dirid, char *name)
1811{
1812	struct btrfs_root *root;
1813	struct btrfs_key key;
1814	char *ptr;
1815	int ret = -1;
1816	int slot;
1817	int len;
1818	int total_len = 0;
1819	struct btrfs_inode_ref *iref;
1820	struct extent_buffer *l;
1821	struct btrfs_path *path;
1822
1823	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1824		name[0]='\0';
1825		return 0;
1826	}
1827
1828	path = btrfs_alloc_path();
1829	if (!path)
1830		return -ENOMEM;
1831
1832	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1833
1834	root = btrfs_get_fs_root(info, tree_id, true);
1835	if (IS_ERR(root)) {
1836		ret = PTR_ERR(root);
1837		root = NULL;
1838		goto out;
1839	}
1840
1841	key.objectid = dirid;
1842	key.type = BTRFS_INODE_REF_KEY;
1843	key.offset = (u64)-1;
1844
1845	while (1) {
1846		ret = btrfs_search_backwards(root, &key, path);
1847		if (ret < 0)
1848			goto out;
1849		else if (ret > 0) {
1850			ret = -ENOENT;
1851			goto out;
1852		}
1853
1854		l = path->nodes[0];
1855		slot = path->slots[0];
1856
1857		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1858		len = btrfs_inode_ref_name_len(l, iref);
1859		ptr -= len + 1;
1860		total_len += len + 1;
1861		if (ptr < name) {
1862			ret = -ENAMETOOLONG;
1863			goto out;
1864		}
1865
1866		*(ptr + len) = '/';
1867		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1868
1869		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1870			break;
1871
1872		btrfs_release_path(path);
1873		key.objectid = key.offset;
1874		key.offset = (u64)-1;
1875		dirid = key.objectid;
1876	}
1877	memmove(name, ptr, total_len);
1878	name[total_len] = '\0';
1879	ret = 0;
1880out:
1881	btrfs_put_root(root);
1882	btrfs_free_path(path);
1883	return ret;
1884}
1885
1886static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1887				struct inode *inode,
1888				struct btrfs_ioctl_ino_lookup_user_args *args)
1889{
1890	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1891	struct super_block *sb = inode->i_sb;
1892	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1893	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1894	u64 dirid = args->dirid;
1895	unsigned long item_off;
1896	unsigned long item_len;
1897	struct btrfs_inode_ref *iref;
1898	struct btrfs_root_ref *rref;
1899	struct btrfs_root *root = NULL;
1900	struct btrfs_path *path;
1901	struct btrfs_key key, key2;
1902	struct extent_buffer *leaf;
1903	struct inode *temp_inode;
1904	char *ptr;
1905	int slot;
1906	int len;
1907	int total_len = 0;
1908	int ret;
1909
1910	path = btrfs_alloc_path();
1911	if (!path)
1912		return -ENOMEM;
1913
1914	/*
1915	 * If the bottom subvolume does not exist directly under upper_limit,
1916	 * construct the path in from the bottom up.
1917	 */
1918	if (dirid != upper_limit.objectid) {
1919		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1920
1921		root = btrfs_get_fs_root(fs_info, treeid, true);
1922		if (IS_ERR(root)) {
1923			ret = PTR_ERR(root);
1924			goto out;
1925		}
1926
1927		key.objectid = dirid;
1928		key.type = BTRFS_INODE_REF_KEY;
1929		key.offset = (u64)-1;
1930		while (1) {
1931			ret = btrfs_search_backwards(root, &key, path);
1932			if (ret < 0)
1933				goto out_put;
1934			else if (ret > 0) {
1935				ret = -ENOENT;
1936				goto out_put;
1937			}
1938
1939			leaf = path->nodes[0];
1940			slot = path->slots[0];
1941
1942			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1943			len = btrfs_inode_ref_name_len(leaf, iref);
1944			ptr -= len + 1;
1945			total_len += len + 1;
1946			if (ptr < args->path) {
1947				ret = -ENAMETOOLONG;
1948				goto out_put;
1949			}
1950
1951			*(ptr + len) = '/';
1952			read_extent_buffer(leaf, ptr,
1953					(unsigned long)(iref + 1), len);
1954
1955			/* Check the read+exec permission of this directory */
1956			ret = btrfs_previous_item(root, path, dirid,
1957						  BTRFS_INODE_ITEM_KEY);
1958			if (ret < 0) {
1959				goto out_put;
1960			} else if (ret > 0) {
1961				ret = -ENOENT;
1962				goto out_put;
1963			}
1964
1965			leaf = path->nodes[0];
1966			slot = path->slots[0];
1967			btrfs_item_key_to_cpu(leaf, &key2, slot);
1968			if (key2.objectid != dirid) {
1969				ret = -ENOENT;
1970				goto out_put;
1971			}
1972
1973			/*
1974			 * We don't need the path anymore, so release it and
1975			 * avoid deadlocks and lockdep warnings in case
1976			 * btrfs_iget() needs to lookup the inode from its root
1977			 * btree and lock the same leaf.
1978			 */
1979			btrfs_release_path(path);
1980			temp_inode = btrfs_iget(sb, key2.objectid, root);
1981			if (IS_ERR(temp_inode)) {
1982				ret = PTR_ERR(temp_inode);
1983				goto out_put;
1984			}
1985			ret = inode_permission(idmap, temp_inode,
1986					       MAY_READ | MAY_EXEC);
1987			iput(temp_inode);
1988			if (ret) {
1989				ret = -EACCES;
1990				goto out_put;
1991			}
1992
1993			if (key.offset == upper_limit.objectid)
1994				break;
1995			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1996				ret = -EACCES;
1997				goto out_put;
1998			}
1999
2000			key.objectid = key.offset;
2001			key.offset = (u64)-1;
2002			dirid = key.objectid;
2003		}
2004
2005		memmove(args->path, ptr, total_len);
2006		args->path[total_len] = '\0';
2007		btrfs_put_root(root);
2008		root = NULL;
2009		btrfs_release_path(path);
2010	}
2011
2012	/* Get the bottom subvolume's name from ROOT_REF */
2013	key.objectid = treeid;
2014	key.type = BTRFS_ROOT_REF_KEY;
2015	key.offset = args->treeid;
2016	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2017	if (ret < 0) {
2018		goto out;
2019	} else if (ret > 0) {
2020		ret = -ENOENT;
2021		goto out;
2022	}
2023
2024	leaf = path->nodes[0];
2025	slot = path->slots[0];
2026	btrfs_item_key_to_cpu(leaf, &key, slot);
2027
2028	item_off = btrfs_item_ptr_offset(leaf, slot);
2029	item_len = btrfs_item_size(leaf, slot);
2030	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2031	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2032	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2033		ret = -EINVAL;
2034		goto out;
2035	}
2036
2037	/* Copy subvolume's name */
2038	item_off += sizeof(struct btrfs_root_ref);
2039	item_len -= sizeof(struct btrfs_root_ref);
2040	read_extent_buffer(leaf, args->name, item_off, item_len);
2041	args->name[item_len] = 0;
2042
2043out_put:
2044	btrfs_put_root(root);
2045out:
2046	btrfs_free_path(path);
2047	return ret;
2048}
2049
2050static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2051					   void __user *argp)
2052{
2053	struct btrfs_ioctl_ino_lookup_args *args;
2054	int ret = 0;
2055
2056	args = memdup_user(argp, sizeof(*args));
2057	if (IS_ERR(args))
2058		return PTR_ERR(args);
2059
2060	/*
2061	 * Unprivileged query to obtain the containing subvolume root id. The
2062	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2063	 */
2064	if (args->treeid == 0)
2065		args->treeid = root->root_key.objectid;
2066
2067	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2068		args->name[0] = 0;
2069		goto out;
2070	}
2071
2072	if (!capable(CAP_SYS_ADMIN)) {
2073		ret = -EPERM;
2074		goto out;
2075	}
2076
2077	ret = btrfs_search_path_in_tree(root->fs_info,
2078					args->treeid, args->objectid,
2079					args->name);
2080
2081out:
2082	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2083		ret = -EFAULT;
2084
2085	kfree(args);
2086	return ret;
2087}
2088
2089/*
2090 * Version of ino_lookup ioctl (unprivileged)
2091 *
2092 * The main differences from ino_lookup ioctl are:
2093 *
2094 *   1. Read + Exec permission will be checked using inode_permission() during
2095 *      path construction. -EACCES will be returned in case of failure.
2096 *   2. Path construction will be stopped at the inode number which corresponds
2097 *      to the fd with which this ioctl is called. If constructed path does not
2098 *      exist under fd's inode, -EACCES will be returned.
2099 *   3. The name of bottom subvolume is also searched and filled.
2100 */
2101static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2102{
2103	struct btrfs_ioctl_ino_lookup_user_args *args;
2104	struct inode *inode;
2105	int ret;
2106
2107	args = memdup_user(argp, sizeof(*args));
2108	if (IS_ERR(args))
2109		return PTR_ERR(args);
2110
2111	inode = file_inode(file);
2112
2113	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2114	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2115		/*
2116		 * The subvolume does not exist under fd with which this is
2117		 * called
2118		 */
2119		kfree(args);
2120		return -EACCES;
2121	}
2122
2123	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2124
2125	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2126		ret = -EFAULT;
2127
2128	kfree(args);
2129	return ret;
2130}
2131
2132/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2133static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2134{
2135	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2136	struct btrfs_fs_info *fs_info;
2137	struct btrfs_root *root;
2138	struct btrfs_path *path;
2139	struct btrfs_key key;
2140	struct btrfs_root_item *root_item;
2141	struct btrfs_root_ref *rref;
2142	struct extent_buffer *leaf;
2143	unsigned long item_off;
2144	unsigned long item_len;
2145	int slot;
2146	int ret = 0;
2147
2148	path = btrfs_alloc_path();
2149	if (!path)
2150		return -ENOMEM;
2151
2152	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2153	if (!subvol_info) {
2154		btrfs_free_path(path);
2155		return -ENOMEM;
2156	}
2157
2158	fs_info = BTRFS_I(inode)->root->fs_info;
2159
2160	/* Get root_item of inode's subvolume */
2161	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2162	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2163	if (IS_ERR(root)) {
2164		ret = PTR_ERR(root);
2165		goto out_free;
2166	}
2167	root_item = &root->root_item;
2168
2169	subvol_info->treeid = key.objectid;
2170
2171	subvol_info->generation = btrfs_root_generation(root_item);
2172	subvol_info->flags = btrfs_root_flags(root_item);
2173
2174	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2175	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2176						    BTRFS_UUID_SIZE);
2177	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2178						    BTRFS_UUID_SIZE);
2179
2180	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2181	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2182	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2183
2184	subvol_info->otransid = btrfs_root_otransid(root_item);
2185	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2186	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2187
2188	subvol_info->stransid = btrfs_root_stransid(root_item);
2189	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2190	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2191
2192	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2193	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2194	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2195
2196	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2197		/* Search root tree for ROOT_BACKREF of this subvolume */
2198		key.type = BTRFS_ROOT_BACKREF_KEY;
2199		key.offset = 0;
2200		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2201		if (ret < 0) {
2202			goto out;
2203		} else if (path->slots[0] >=
2204			   btrfs_header_nritems(path->nodes[0])) {
2205			ret = btrfs_next_leaf(fs_info->tree_root, path);
2206			if (ret < 0) {
2207				goto out;
2208			} else if (ret > 0) {
2209				ret = -EUCLEAN;
2210				goto out;
2211			}
2212		}
2213
2214		leaf = path->nodes[0];
2215		slot = path->slots[0];
2216		btrfs_item_key_to_cpu(leaf, &key, slot);
2217		if (key.objectid == subvol_info->treeid &&
2218		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2219			subvol_info->parent_id = key.offset;
2220
2221			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2222			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2223
2224			item_off = btrfs_item_ptr_offset(leaf, slot)
2225					+ sizeof(struct btrfs_root_ref);
2226			item_len = btrfs_item_size(leaf, slot)
2227					- sizeof(struct btrfs_root_ref);
2228			read_extent_buffer(leaf, subvol_info->name,
2229					   item_off, item_len);
2230		} else {
2231			ret = -ENOENT;
2232			goto out;
2233		}
2234	}
2235
2236	btrfs_free_path(path);
2237	path = NULL;
2238	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2239		ret = -EFAULT;
2240
2241out:
2242	btrfs_put_root(root);
2243out_free:
2244	btrfs_free_path(path);
2245	kfree(subvol_info);
2246	return ret;
2247}
2248
2249/*
2250 * Return ROOT_REF information of the subvolume containing this inode
2251 * except the subvolume name.
2252 */
2253static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2254					  void __user *argp)
2255{
2256	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2257	struct btrfs_root_ref *rref;
2258	struct btrfs_path *path;
2259	struct btrfs_key key;
2260	struct extent_buffer *leaf;
2261	u64 objectid;
2262	int slot;
2263	int ret;
2264	u8 found;
2265
2266	path = btrfs_alloc_path();
2267	if (!path)
2268		return -ENOMEM;
2269
2270	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2271	if (IS_ERR(rootrefs)) {
2272		btrfs_free_path(path);
2273		return PTR_ERR(rootrefs);
2274	}
2275
2276	objectid = root->root_key.objectid;
2277	key.objectid = objectid;
2278	key.type = BTRFS_ROOT_REF_KEY;
2279	key.offset = rootrefs->min_treeid;
2280	found = 0;
2281
2282	root = root->fs_info->tree_root;
2283	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2284	if (ret < 0) {
2285		goto out;
2286	} else if (path->slots[0] >=
2287		   btrfs_header_nritems(path->nodes[0])) {
2288		ret = btrfs_next_leaf(root, path);
2289		if (ret < 0) {
2290			goto out;
2291		} else if (ret > 0) {
2292			ret = -EUCLEAN;
2293			goto out;
2294		}
2295	}
2296	while (1) {
2297		leaf = path->nodes[0];
2298		slot = path->slots[0];
2299
2300		btrfs_item_key_to_cpu(leaf, &key, slot);
2301		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2302			ret = 0;
2303			goto out;
2304		}
2305
2306		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2307			ret = -EOVERFLOW;
2308			goto out;
2309		}
2310
2311		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2312		rootrefs->rootref[found].treeid = key.offset;
2313		rootrefs->rootref[found].dirid =
2314				  btrfs_root_ref_dirid(leaf, rref);
2315		found++;
2316
2317		ret = btrfs_next_item(root, path);
2318		if (ret < 0) {
2319			goto out;
2320		} else if (ret > 0) {
2321			ret = -EUCLEAN;
2322			goto out;
2323		}
2324	}
2325
2326out:
2327	btrfs_free_path(path);
2328
2329	if (!ret || ret == -EOVERFLOW) {
2330		rootrefs->num_items = found;
2331		/* update min_treeid for next search */
2332		if (found)
2333			rootrefs->min_treeid =
2334				rootrefs->rootref[found - 1].treeid + 1;
2335		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2336			ret = -EFAULT;
2337	}
2338
2339	kfree(rootrefs);
2340
2341	return ret;
2342}
2343
2344static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2345					     void __user *arg,
2346					     bool destroy_v2)
2347{
2348	struct dentry *parent = file->f_path.dentry;
2349	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2350	struct dentry *dentry;
2351	struct inode *dir = d_inode(parent);
2352	struct inode *inode;
2353	struct btrfs_root *root = BTRFS_I(dir)->root;
2354	struct btrfs_root *dest = NULL;
2355	struct btrfs_ioctl_vol_args *vol_args = NULL;
2356	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2357	struct mnt_idmap *idmap = file_mnt_idmap(file);
2358	char *subvol_name, *subvol_name_ptr = NULL;
2359	int subvol_namelen;
2360	int err = 0;
2361	bool destroy_parent = false;
2362
2363	/* We don't support snapshots with extent tree v2 yet. */
2364	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2365		btrfs_err(fs_info,
2366			  "extent tree v2 doesn't support snapshot deletion yet");
2367		return -EOPNOTSUPP;
2368	}
2369
2370	if (destroy_v2) {
2371		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2372		if (IS_ERR(vol_args2))
2373			return PTR_ERR(vol_args2);
2374
2375		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2376			err = -EOPNOTSUPP;
2377			goto out;
2378		}
2379
2380		/*
2381		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2382		 * name, same as v1 currently does.
2383		 */
2384		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2385			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2386			subvol_name = vol_args2->name;
2387
2388			err = mnt_want_write_file(file);
2389			if (err)
2390				goto out;
2391		} else {
2392			struct inode *old_dir;
2393
2394			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2395				err = -EINVAL;
2396				goto out;
2397			}
2398
2399			err = mnt_want_write_file(file);
2400			if (err)
2401				goto out;
2402
2403			dentry = btrfs_get_dentry(fs_info->sb,
2404					BTRFS_FIRST_FREE_OBJECTID,
2405					vol_args2->subvolid, 0);
2406			if (IS_ERR(dentry)) {
2407				err = PTR_ERR(dentry);
2408				goto out_drop_write;
2409			}
2410
2411			/*
2412			 * Change the default parent since the subvolume being
2413			 * deleted can be outside of the current mount point.
2414			 */
2415			parent = btrfs_get_parent(dentry);
2416
2417			/*
2418			 * At this point dentry->d_name can point to '/' if the
2419			 * subvolume we want to destroy is outsite of the
2420			 * current mount point, so we need to release the
2421			 * current dentry and execute the lookup to return a new
2422			 * one with ->d_name pointing to the
2423			 * <mount point>/subvol_name.
2424			 */
2425			dput(dentry);
2426			if (IS_ERR(parent)) {
2427				err = PTR_ERR(parent);
2428				goto out_drop_write;
2429			}
2430			old_dir = dir;
2431			dir = d_inode(parent);
2432
2433			/*
2434			 * If v2 was used with SPEC_BY_ID, a new parent was
2435			 * allocated since the subvolume can be outside of the
2436			 * current mount point. Later on we need to release this
2437			 * new parent dentry.
2438			 */
2439			destroy_parent = true;
2440
2441			/*
2442			 * On idmapped mounts, deletion via subvolid is
2443			 * restricted to subvolumes that are immediate
2444			 * ancestors of the inode referenced by the file
2445			 * descriptor in the ioctl. Otherwise the idmapping
2446			 * could potentially be abused to delete subvolumes
2447			 * anywhere in the filesystem the user wouldn't be able
2448			 * to delete without an idmapped mount.
2449			 */
2450			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2451				err = -EOPNOTSUPP;
2452				goto free_parent;
2453			}
2454
2455			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2456						fs_info, vol_args2->subvolid);
2457			if (IS_ERR(subvol_name_ptr)) {
2458				err = PTR_ERR(subvol_name_ptr);
2459				goto free_parent;
2460			}
2461			/* subvol_name_ptr is already nul terminated */
2462			subvol_name = (char *)kbasename(subvol_name_ptr);
2463		}
2464	} else {
2465		vol_args = memdup_user(arg, sizeof(*vol_args));
2466		if (IS_ERR(vol_args))
2467			return PTR_ERR(vol_args);
2468
2469		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2470		subvol_name = vol_args->name;
2471
2472		err = mnt_want_write_file(file);
2473		if (err)
2474			goto out;
2475	}
2476
2477	subvol_namelen = strlen(subvol_name);
2478
2479	if (strchr(subvol_name, '/') ||
2480	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
2481		err = -EINVAL;
2482		goto free_subvol_name;
2483	}
2484
2485	if (!S_ISDIR(dir->i_mode)) {
2486		err = -ENOTDIR;
2487		goto free_subvol_name;
2488	}
2489
2490	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2491	if (err == -EINTR)
2492		goto free_subvol_name;
2493	dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2494	if (IS_ERR(dentry)) {
2495		err = PTR_ERR(dentry);
2496		goto out_unlock_dir;
2497	}
2498
2499	if (d_really_is_negative(dentry)) {
2500		err = -ENOENT;
2501		goto out_dput;
2502	}
2503
2504	inode = d_inode(dentry);
2505	dest = BTRFS_I(inode)->root;
2506	if (!capable(CAP_SYS_ADMIN)) {
2507		/*
2508		 * Regular user.  Only allow this with a special mount
2509		 * option, when the user has write+exec access to the
2510		 * subvol root, and when rmdir(2) would have been
2511		 * allowed.
2512		 *
2513		 * Note that this is _not_ check that the subvol is
2514		 * empty or doesn't contain data that we wouldn't
2515		 * otherwise be able to delete.
2516		 *
2517		 * Users who want to delete empty subvols should try
2518		 * rmdir(2).
2519		 */
2520		err = -EPERM;
2521		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2522			goto out_dput;
2523
2524		/*
2525		 * Do not allow deletion if the parent dir is the same
2526		 * as the dir to be deleted.  That means the ioctl
2527		 * must be called on the dentry referencing the root
2528		 * of the subvol, not a random directory contained
2529		 * within it.
2530		 */
2531		err = -EINVAL;
2532		if (root == dest)
2533			goto out_dput;
2534
2535		err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2536		if (err)
2537			goto out_dput;
2538	}
2539
2540	/* check if subvolume may be deleted by a user */
2541	err = btrfs_may_delete(idmap, dir, dentry, 1);
2542	if (err)
2543		goto out_dput;
2544
2545	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2546		err = -EINVAL;
2547		goto out_dput;
2548	}
2549
2550	btrfs_inode_lock(BTRFS_I(inode), 0);
2551	err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2552	btrfs_inode_unlock(BTRFS_I(inode), 0);
2553	if (!err)
2554		d_delete_notify(dir, dentry);
2555
2556out_dput:
2557	dput(dentry);
2558out_unlock_dir:
2559	btrfs_inode_unlock(BTRFS_I(dir), 0);
2560free_subvol_name:
2561	kfree(subvol_name_ptr);
2562free_parent:
2563	if (destroy_parent)
2564		dput(parent);
2565out_drop_write:
2566	mnt_drop_write_file(file);
2567out:
2568	kfree(vol_args2);
2569	kfree(vol_args);
2570	return err;
2571}
2572
2573static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2574{
2575	struct inode *inode = file_inode(file);
2576	struct btrfs_root *root = BTRFS_I(inode)->root;
2577	struct btrfs_ioctl_defrag_range_args range = {0};
2578	int ret;
2579
2580	ret = mnt_want_write_file(file);
2581	if (ret)
2582		return ret;
2583
2584	if (btrfs_root_readonly(root)) {
2585		ret = -EROFS;
2586		goto out;
2587	}
2588
2589	switch (inode->i_mode & S_IFMT) {
2590	case S_IFDIR:
2591		if (!capable(CAP_SYS_ADMIN)) {
2592			ret = -EPERM;
2593			goto out;
2594		}
2595		ret = btrfs_defrag_root(root);
2596		break;
2597	case S_IFREG:
2598		/*
2599		 * Note that this does not check the file descriptor for write
2600		 * access. This prevents defragmenting executables that are
2601		 * running and allows defrag on files open in read-only mode.
2602		 */
2603		if (!capable(CAP_SYS_ADMIN) &&
2604		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2605			ret = -EPERM;
2606			goto out;
2607		}
2608
2609		if (argp) {
2610			if (copy_from_user(&range, argp, sizeof(range))) {
2611				ret = -EFAULT;
2612				goto out;
2613			}
2614			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2615				ret = -EOPNOTSUPP;
2616				goto out;
2617			}
2618			/* compression requires us to start the IO */
2619			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2620				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2621				range.extent_thresh = (u32)-1;
2622			}
2623		} else {
2624			/* the rest are all set to zero by kzalloc */
2625			range.len = (u64)-1;
2626		}
2627		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2628					&range, BTRFS_OLDEST_GENERATION, 0);
2629		if (ret > 0)
2630			ret = 0;
2631		break;
2632	default:
2633		ret = -EINVAL;
2634	}
2635out:
2636	mnt_drop_write_file(file);
2637	return ret;
2638}
2639
2640static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2641{
2642	struct btrfs_ioctl_vol_args *vol_args;
2643	bool restore_op = false;
2644	int ret;
2645
2646	if (!capable(CAP_SYS_ADMIN))
2647		return -EPERM;
2648
2649	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2650		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2651		return -EINVAL;
2652	}
2653
2654	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2655		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2656			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2657
2658		/*
2659		 * We can do the device add because we have a paused balanced,
2660		 * change the exclusive op type and remember we should bring
2661		 * back the paused balance
2662		 */
2663		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2664		btrfs_exclop_start_unlock(fs_info);
2665		restore_op = true;
2666	}
2667
2668	vol_args = memdup_user(arg, sizeof(*vol_args));
2669	if (IS_ERR(vol_args)) {
2670		ret = PTR_ERR(vol_args);
2671		goto out;
2672	}
2673
2674	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2675	ret = btrfs_init_new_device(fs_info, vol_args->name);
2676
2677	if (!ret)
2678		btrfs_info(fs_info, "disk added %s", vol_args->name);
2679
2680	kfree(vol_args);
2681out:
2682	if (restore_op)
2683		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2684	else
2685		btrfs_exclop_finish(fs_info);
2686	return ret;
2687}
2688
2689static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2690{
2691	BTRFS_DEV_LOOKUP_ARGS(args);
2692	struct inode *inode = file_inode(file);
2693	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2694	struct btrfs_ioctl_vol_args_v2 *vol_args;
2695	struct block_device *bdev = NULL;
2696	void *holder;
2697	int ret;
2698	bool cancel = false;
2699
2700	if (!capable(CAP_SYS_ADMIN))
2701		return -EPERM;
2702
2703	vol_args = memdup_user(arg, sizeof(*vol_args));
2704	if (IS_ERR(vol_args))
2705		return PTR_ERR(vol_args);
2706
2707	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2708		ret = -EOPNOTSUPP;
2709		goto out;
2710	}
2711
2712	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2713	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2714		args.devid = vol_args->devid;
2715	} else if (!strcmp("cancel", vol_args->name)) {
2716		cancel = true;
2717	} else {
2718		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2719		if (ret)
2720			goto out;
2721	}
2722
2723	ret = mnt_want_write_file(file);
2724	if (ret)
2725		goto out;
2726
2727	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2728					   cancel);
2729	if (ret)
2730		goto err_drop;
2731
2732	/* Exclusive operation is now claimed */
2733	ret = btrfs_rm_device(fs_info, &args, &bdev, &holder);
2734
2735	btrfs_exclop_finish(fs_info);
2736
2737	if (!ret) {
2738		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2739			btrfs_info(fs_info, "device deleted: id %llu",
2740					vol_args->devid);
2741		else
2742			btrfs_info(fs_info, "device deleted: %s",
2743					vol_args->name);
2744	}
2745err_drop:
2746	mnt_drop_write_file(file);
2747	if (bdev)
2748		blkdev_put(bdev, holder);
2749out:
2750	btrfs_put_dev_args_from_path(&args);
2751	kfree(vol_args);
2752	return ret;
2753}
2754
2755static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2756{
2757	BTRFS_DEV_LOOKUP_ARGS(args);
2758	struct inode *inode = file_inode(file);
2759	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2760	struct btrfs_ioctl_vol_args *vol_args;
2761	struct block_device *bdev = NULL;
2762	void *holder;
2763	int ret;
2764	bool cancel = false;
2765
2766	if (!capable(CAP_SYS_ADMIN))
2767		return -EPERM;
2768
2769	vol_args = memdup_user(arg, sizeof(*vol_args));
2770	if (IS_ERR(vol_args))
2771		return PTR_ERR(vol_args);
2772
2773	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2774	if (!strcmp("cancel", vol_args->name)) {
2775		cancel = true;
2776	} else {
2777		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2778		if (ret)
2779			goto out;
2780	}
2781
2782	ret = mnt_want_write_file(file);
2783	if (ret)
2784		goto out;
2785
2786	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2787					   cancel);
2788	if (ret == 0) {
2789		ret = btrfs_rm_device(fs_info, &args, &bdev, &holder);
2790		if (!ret)
2791			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2792		btrfs_exclop_finish(fs_info);
2793	}
2794
2795	mnt_drop_write_file(file);
2796	if (bdev)
2797		blkdev_put(bdev, holder);
2798out:
2799	btrfs_put_dev_args_from_path(&args);
2800	kfree(vol_args);
2801	return ret;
2802}
2803
2804static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2805				void __user *arg)
2806{
2807	struct btrfs_ioctl_fs_info_args *fi_args;
2808	struct btrfs_device *device;
2809	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2810	u64 flags_in;
2811	int ret = 0;
2812
2813	fi_args = memdup_user(arg, sizeof(*fi_args));
2814	if (IS_ERR(fi_args))
2815		return PTR_ERR(fi_args);
2816
2817	flags_in = fi_args->flags;
2818	memset(fi_args, 0, sizeof(*fi_args));
2819
2820	rcu_read_lock();
2821	fi_args->num_devices = fs_devices->num_devices;
2822
2823	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2824		if (device->devid > fi_args->max_id)
2825			fi_args->max_id = device->devid;
2826	}
2827	rcu_read_unlock();
2828
2829	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2830	fi_args->nodesize = fs_info->nodesize;
2831	fi_args->sectorsize = fs_info->sectorsize;
2832	fi_args->clone_alignment = fs_info->sectorsize;
2833
2834	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2835		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2836		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2837		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2838	}
2839
2840	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2841		fi_args->generation = fs_info->generation;
2842		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2843	}
2844
2845	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2846		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2847		       sizeof(fi_args->metadata_uuid));
2848		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2849	}
2850
2851	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2852		ret = -EFAULT;
2853
2854	kfree(fi_args);
2855	return ret;
2856}
2857
2858static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2859				 void __user *arg)
2860{
2861	BTRFS_DEV_LOOKUP_ARGS(args);
2862	struct btrfs_ioctl_dev_info_args *di_args;
2863	struct btrfs_device *dev;
2864	int ret = 0;
2865
2866	di_args = memdup_user(arg, sizeof(*di_args));
2867	if (IS_ERR(di_args))
2868		return PTR_ERR(di_args);
2869
2870	args.devid = di_args->devid;
2871	if (!btrfs_is_empty_uuid(di_args->uuid))
2872		args.uuid = di_args->uuid;
2873
2874	rcu_read_lock();
2875	dev = btrfs_find_device(fs_info->fs_devices, &args);
2876	if (!dev) {
2877		ret = -ENODEV;
2878		goto out;
2879	}
2880
2881	di_args->devid = dev->devid;
2882	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2883	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2884	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2885	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2886	if (dev->name)
2887		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2888	else
2889		di_args->path[0] = '\0';
2890
2891out:
2892	rcu_read_unlock();
2893	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2894		ret = -EFAULT;
2895
2896	kfree(di_args);
2897	return ret;
2898}
2899
2900static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2901{
2902	struct inode *inode = file_inode(file);
2903	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2904	struct btrfs_root *root = BTRFS_I(inode)->root;
2905	struct btrfs_root *new_root;
2906	struct btrfs_dir_item *di;
2907	struct btrfs_trans_handle *trans;
2908	struct btrfs_path *path = NULL;
2909	struct btrfs_disk_key disk_key;
2910	struct fscrypt_str name = FSTR_INIT("default", 7);
2911	u64 objectid = 0;
2912	u64 dir_id;
2913	int ret;
2914
2915	if (!capable(CAP_SYS_ADMIN))
2916		return -EPERM;
2917
2918	ret = mnt_want_write_file(file);
2919	if (ret)
2920		return ret;
2921
2922	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2923		ret = -EFAULT;
2924		goto out;
2925	}
2926
2927	if (!objectid)
2928		objectid = BTRFS_FS_TREE_OBJECTID;
2929
2930	new_root = btrfs_get_fs_root(fs_info, objectid, true);
2931	if (IS_ERR(new_root)) {
2932		ret = PTR_ERR(new_root);
2933		goto out;
2934	}
2935	if (!is_fstree(new_root->root_key.objectid)) {
2936		ret = -ENOENT;
2937		goto out_free;
2938	}
2939
2940	path = btrfs_alloc_path();
2941	if (!path) {
2942		ret = -ENOMEM;
2943		goto out_free;
2944	}
2945
2946	trans = btrfs_start_transaction(root, 1);
2947	if (IS_ERR(trans)) {
2948		ret = PTR_ERR(trans);
2949		goto out_free;
2950	}
2951
2952	dir_id = btrfs_super_root_dir(fs_info->super_copy);
2953	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2954				   dir_id, &name, 1);
2955	if (IS_ERR_OR_NULL(di)) {
2956		btrfs_release_path(path);
2957		btrfs_end_transaction(trans);
2958		btrfs_err(fs_info,
2959			  "Umm, you don't have the default diritem, this isn't going to work");
2960		ret = -ENOENT;
2961		goto out_free;
2962	}
2963
2964	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2965	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2966	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
2967	btrfs_release_path(path);
2968
2969	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2970	btrfs_end_transaction(trans);
2971out_free:
2972	btrfs_put_root(new_root);
2973	btrfs_free_path(path);
2974out:
2975	mnt_drop_write_file(file);
2976	return ret;
2977}
2978
2979static void get_block_group_info(struct list_head *groups_list,
2980				 struct btrfs_ioctl_space_info *space)
2981{
2982	struct btrfs_block_group *block_group;
2983
2984	space->total_bytes = 0;
2985	space->used_bytes = 0;
2986	space->flags = 0;
2987	list_for_each_entry(block_group, groups_list, list) {
2988		space->flags = block_group->flags;
2989		space->total_bytes += block_group->length;
2990		space->used_bytes += block_group->used;
2991	}
2992}
2993
2994static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2995				   void __user *arg)
2996{
2997	struct btrfs_ioctl_space_args space_args = { 0 };
2998	struct btrfs_ioctl_space_info space;
2999	struct btrfs_ioctl_space_info *dest;
3000	struct btrfs_ioctl_space_info *dest_orig;
3001	struct btrfs_ioctl_space_info __user *user_dest;
3002	struct btrfs_space_info *info;
3003	static const u64 types[] = {
3004		BTRFS_BLOCK_GROUP_DATA,
3005		BTRFS_BLOCK_GROUP_SYSTEM,
3006		BTRFS_BLOCK_GROUP_METADATA,
3007		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3008	};
3009	int num_types = 4;
3010	int alloc_size;
3011	int ret = 0;
3012	u64 slot_count = 0;
3013	int i, c;
3014
3015	if (copy_from_user(&space_args,
3016			   (struct btrfs_ioctl_space_args __user *)arg,
3017			   sizeof(space_args)))
3018		return -EFAULT;
3019
3020	for (i = 0; i < num_types; i++) {
3021		struct btrfs_space_info *tmp;
3022
3023		info = NULL;
3024		list_for_each_entry(tmp, &fs_info->space_info, list) {
3025			if (tmp->flags == types[i]) {
3026				info = tmp;
3027				break;
3028			}
3029		}
3030
3031		if (!info)
3032			continue;
3033
3034		down_read(&info->groups_sem);
3035		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3036			if (!list_empty(&info->block_groups[c]))
3037				slot_count++;
3038		}
3039		up_read(&info->groups_sem);
3040	}
3041
3042	/*
3043	 * Global block reserve, exported as a space_info
3044	 */
3045	slot_count++;
3046
3047	/* space_slots == 0 means they are asking for a count */
3048	if (space_args.space_slots == 0) {
3049		space_args.total_spaces = slot_count;
3050		goto out;
3051	}
3052
3053	slot_count = min_t(u64, space_args.space_slots, slot_count);
3054
3055	alloc_size = sizeof(*dest) * slot_count;
3056
3057	/* we generally have at most 6 or so space infos, one for each raid
3058	 * level.  So, a whole page should be more than enough for everyone
3059	 */
3060	if (alloc_size > PAGE_SIZE)
3061		return -ENOMEM;
3062
3063	space_args.total_spaces = 0;
3064	dest = kmalloc(alloc_size, GFP_KERNEL);
3065	if (!dest)
3066		return -ENOMEM;
3067	dest_orig = dest;
3068
3069	/* now we have a buffer to copy into */
3070	for (i = 0; i < num_types; i++) {
3071		struct btrfs_space_info *tmp;
3072
3073		if (!slot_count)
3074			break;
3075
3076		info = NULL;
3077		list_for_each_entry(tmp, &fs_info->space_info, list) {
3078			if (tmp->flags == types[i]) {
3079				info = tmp;
3080				break;
3081			}
3082		}
3083
3084		if (!info)
3085			continue;
3086		down_read(&info->groups_sem);
3087		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3088			if (!list_empty(&info->block_groups[c])) {
3089				get_block_group_info(&info->block_groups[c],
3090						     &space);
3091				memcpy(dest, &space, sizeof(space));
3092				dest++;
3093				space_args.total_spaces++;
3094				slot_count--;
3095			}
3096			if (!slot_count)
3097				break;
3098		}
3099		up_read(&info->groups_sem);
3100	}
3101
3102	/*
3103	 * Add global block reserve
3104	 */
3105	if (slot_count) {
3106		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3107
3108		spin_lock(&block_rsv->lock);
3109		space.total_bytes = block_rsv->size;
3110		space.used_bytes = block_rsv->size - block_rsv->reserved;
3111		spin_unlock(&block_rsv->lock);
3112		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3113		memcpy(dest, &space, sizeof(space));
3114		space_args.total_spaces++;
3115	}
3116
3117	user_dest = (struct btrfs_ioctl_space_info __user *)
3118		(arg + sizeof(struct btrfs_ioctl_space_args));
3119
3120	if (copy_to_user(user_dest, dest_orig, alloc_size))
3121		ret = -EFAULT;
3122
3123	kfree(dest_orig);
3124out:
3125	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3126		ret = -EFAULT;
3127
3128	return ret;
3129}
3130
3131static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3132					    void __user *argp)
3133{
3134	struct btrfs_trans_handle *trans;
3135	u64 transid;
3136
3137	/*
3138	 * Start orphan cleanup here for the given root in case it hasn't been
3139	 * started already by other means. Errors are handled in the other
3140	 * functions during transaction commit.
3141	 */
3142	btrfs_orphan_cleanup(root);
3143
3144	trans = btrfs_attach_transaction_barrier(root);
3145	if (IS_ERR(trans)) {
3146		if (PTR_ERR(trans) != -ENOENT)
3147			return PTR_ERR(trans);
3148
3149		/* No running transaction, don't bother */
3150		transid = root->fs_info->last_trans_committed;
3151		goto out;
3152	}
3153	transid = trans->transid;
3154	btrfs_commit_transaction_async(trans);
3155out:
3156	if (argp)
3157		if (copy_to_user(argp, &transid, sizeof(transid)))
3158			return -EFAULT;
3159	return 0;
3160}
3161
3162static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3163					   void __user *argp)
3164{
3165	/* By default wait for the current transaction. */
3166	u64 transid = 0;
3167
3168	if (argp)
3169		if (copy_from_user(&transid, argp, sizeof(transid)))
3170			return -EFAULT;
3171
3172	return btrfs_wait_for_commit(fs_info, transid);
3173}
3174
3175static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3176{
3177	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3178	struct btrfs_ioctl_scrub_args *sa;
3179	int ret;
3180
3181	if (!capable(CAP_SYS_ADMIN))
3182		return -EPERM;
3183
3184	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3185		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3186		return -EINVAL;
3187	}
3188
3189	sa = memdup_user(arg, sizeof(*sa));
3190	if (IS_ERR(sa))
3191		return PTR_ERR(sa);
3192
3193	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3194		ret = -EOPNOTSUPP;
3195		goto out;
3196	}
3197
3198	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3199		ret = mnt_want_write_file(file);
3200		if (ret)
3201			goto out;
3202	}
3203
3204	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3205			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3206			      0);
3207
3208	/*
3209	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3210	 * error. This is important as it allows user space to know how much
3211	 * progress scrub has done. For example, if scrub is canceled we get
3212	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3213	 * space. Later user space can inspect the progress from the structure
3214	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3215	 * previously (btrfs-progs does this).
3216	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3217	 * then return -EFAULT to signal the structure was not copied or it may
3218	 * be corrupt and unreliable due to a partial copy.
3219	 */
3220	if (copy_to_user(arg, sa, sizeof(*sa)))
3221		ret = -EFAULT;
3222
3223	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3224		mnt_drop_write_file(file);
3225out:
3226	kfree(sa);
3227	return ret;
3228}
3229
3230static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3231{
3232	if (!capable(CAP_SYS_ADMIN))
3233		return -EPERM;
3234
3235	return btrfs_scrub_cancel(fs_info);
3236}
3237
3238static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3239				       void __user *arg)
3240{
3241	struct btrfs_ioctl_scrub_args *sa;
3242	int ret;
3243
3244	if (!capable(CAP_SYS_ADMIN))
3245		return -EPERM;
3246
3247	sa = memdup_user(arg, sizeof(*sa));
3248	if (IS_ERR(sa))
3249		return PTR_ERR(sa);
3250
3251	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3252
3253	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3254		ret = -EFAULT;
3255
3256	kfree(sa);
3257	return ret;
3258}
3259
3260static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3261				      void __user *arg)
3262{
3263	struct btrfs_ioctl_get_dev_stats *sa;
3264	int ret;
3265
3266	sa = memdup_user(arg, sizeof(*sa));
3267	if (IS_ERR(sa))
3268		return PTR_ERR(sa);
3269
3270	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3271		kfree(sa);
3272		return -EPERM;
3273	}
3274
3275	ret = btrfs_get_dev_stats(fs_info, sa);
3276
3277	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3278		ret = -EFAULT;
3279
3280	kfree(sa);
3281	return ret;
3282}
3283
3284static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3285				    void __user *arg)
3286{
3287	struct btrfs_ioctl_dev_replace_args *p;
3288	int ret;
3289
3290	if (!capable(CAP_SYS_ADMIN))
3291		return -EPERM;
3292
3293	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3294		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3295		return -EINVAL;
3296	}
3297
3298	p = memdup_user(arg, sizeof(*p));
3299	if (IS_ERR(p))
3300		return PTR_ERR(p);
3301
3302	switch (p->cmd) {
3303	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3304		if (sb_rdonly(fs_info->sb)) {
3305			ret = -EROFS;
3306			goto out;
3307		}
3308		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3309			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3310		} else {
3311			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3312			btrfs_exclop_finish(fs_info);
3313		}
3314		break;
3315	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3316		btrfs_dev_replace_status(fs_info, p);
3317		ret = 0;
3318		break;
3319	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3320		p->result = btrfs_dev_replace_cancel(fs_info);
3321		ret = 0;
3322		break;
3323	default:
3324		ret = -EINVAL;
3325		break;
3326	}
3327
3328	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3329		ret = -EFAULT;
3330out:
3331	kfree(p);
3332	return ret;
3333}
3334
3335static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3336{
3337	int ret = 0;
3338	int i;
3339	u64 rel_ptr;
3340	int size;
3341	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3342	struct inode_fs_paths *ipath = NULL;
3343	struct btrfs_path *path;
3344
3345	if (!capable(CAP_DAC_READ_SEARCH))
3346		return -EPERM;
3347
3348	path = btrfs_alloc_path();
3349	if (!path) {
3350		ret = -ENOMEM;
3351		goto out;
3352	}
3353
3354	ipa = memdup_user(arg, sizeof(*ipa));
3355	if (IS_ERR(ipa)) {
3356		ret = PTR_ERR(ipa);
3357		ipa = NULL;
3358		goto out;
3359	}
3360
3361	size = min_t(u32, ipa->size, 4096);
3362	ipath = init_ipath(size, root, path);
3363	if (IS_ERR(ipath)) {
3364		ret = PTR_ERR(ipath);
3365		ipath = NULL;
3366		goto out;
3367	}
3368
3369	ret = paths_from_inode(ipa->inum, ipath);
3370	if (ret < 0)
3371		goto out;
3372
3373	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3374		rel_ptr = ipath->fspath->val[i] -
3375			  (u64)(unsigned long)ipath->fspath->val;
3376		ipath->fspath->val[i] = rel_ptr;
3377	}
3378
3379	btrfs_free_path(path);
3380	path = NULL;
3381	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3382			   ipath->fspath, size);
3383	if (ret) {
3384		ret = -EFAULT;
3385		goto out;
3386	}
3387
3388out:
3389	btrfs_free_path(path);
3390	free_ipath(ipath);
3391	kfree(ipa);
3392
3393	return ret;
3394}
3395
3396static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3397					void __user *arg, int version)
3398{
3399	int ret = 0;
3400	int size;
3401	struct btrfs_ioctl_logical_ino_args *loi;
3402	struct btrfs_data_container *inodes = NULL;
3403	struct btrfs_path *path = NULL;
3404	bool ignore_offset;
3405
3406	if (!capable(CAP_SYS_ADMIN))
3407		return -EPERM;
3408
3409	loi = memdup_user(arg, sizeof(*loi));
3410	if (IS_ERR(loi))
3411		return PTR_ERR(loi);
3412
3413	if (version == 1) {
3414		ignore_offset = false;
3415		size = min_t(u32, loi->size, SZ_64K);
3416	} else {
3417		/* All reserved bits must be 0 for now */
3418		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3419			ret = -EINVAL;
3420			goto out_loi;
3421		}
3422		/* Only accept flags we have defined so far */
3423		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3424			ret = -EINVAL;
3425			goto out_loi;
3426		}
3427		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3428		size = min_t(u32, loi->size, SZ_16M);
3429	}
3430
3431	inodes = init_data_container(size);
3432	if (IS_ERR(inodes)) {
3433		ret = PTR_ERR(inodes);
3434		goto out_loi;
3435	}
3436
3437	path = btrfs_alloc_path();
3438	if (!path) {
3439		ret = -ENOMEM;
3440		goto out;
3441	}
3442	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3443					  inodes, ignore_offset);
3444	btrfs_free_path(path);
3445	if (ret == -EINVAL)
3446		ret = -ENOENT;
3447	if (ret < 0)
3448		goto out;
3449
3450	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3451			   size);
3452	if (ret)
3453		ret = -EFAULT;
3454
3455out:
3456	kvfree(inodes);
3457out_loi:
3458	kfree(loi);
3459
3460	return ret;
3461}
3462
3463void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3464			       struct btrfs_ioctl_balance_args *bargs)
3465{
3466	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3467
3468	bargs->flags = bctl->flags;
3469
3470	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3471		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3472	if (atomic_read(&fs_info->balance_pause_req))
3473		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3474	if (atomic_read(&fs_info->balance_cancel_req))
3475		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3476
3477	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3478	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3479	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3480
3481	spin_lock(&fs_info->balance_lock);
3482	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3483	spin_unlock(&fs_info->balance_lock);
3484}
3485
3486/*
3487 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3488 * required.
3489 *
3490 * @fs_info:       the filesystem
3491 * @excl_acquired: ptr to boolean value which is set to false in case balance
3492 *                 is being resumed
3493 *
3494 * Return 0 on success in which case both fs_info::balance is acquired as well
3495 * as exclusive ops are blocked. In case of failure return an error code.
3496 */
3497static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3498{
3499	int ret;
3500
3501	/*
3502	 * Exclusive operation is locked. Three possibilities:
3503	 *   (1) some other op is running
3504	 *   (2) balance is running
3505	 *   (3) balance is paused -- special case (think resume)
3506	 */
3507	while (1) {
3508		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3509			*excl_acquired = true;
3510			mutex_lock(&fs_info->balance_mutex);
3511			return 0;
3512		}
3513
3514		mutex_lock(&fs_info->balance_mutex);
3515		if (fs_info->balance_ctl) {
3516			/* This is either (2) or (3) */
3517			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3518				/* This is (2) */
3519				ret = -EINPROGRESS;
3520				goto out_failure;
3521
3522			} else {
3523				mutex_unlock(&fs_info->balance_mutex);
3524				/*
3525				 * Lock released to allow other waiters to
3526				 * continue, we'll reexamine the status again.
3527				 */
3528				mutex_lock(&fs_info->balance_mutex);
3529
3530				if (fs_info->balance_ctl &&
3531				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3532					/* This is (3) */
3533					*excl_acquired = false;
3534					return 0;
3535				}
3536			}
3537		} else {
3538			/* This is (1) */
3539			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3540			goto out_failure;
3541		}
3542
3543		mutex_unlock(&fs_info->balance_mutex);
3544	}
3545
3546out_failure:
3547	mutex_unlock(&fs_info->balance_mutex);
3548	*excl_acquired = false;
3549	return ret;
3550}
3551
3552static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3553{
3554	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3555	struct btrfs_fs_info *fs_info = root->fs_info;
3556	struct btrfs_ioctl_balance_args *bargs;
3557	struct btrfs_balance_control *bctl;
3558	bool need_unlock = true;
3559	int ret;
3560
3561	if (!capable(CAP_SYS_ADMIN))
3562		return -EPERM;
3563
3564	ret = mnt_want_write_file(file);
3565	if (ret)
3566		return ret;
3567
3568	bargs = memdup_user(arg, sizeof(*bargs));
3569	if (IS_ERR(bargs)) {
3570		ret = PTR_ERR(bargs);
3571		bargs = NULL;
3572		goto out;
3573	}
3574
3575	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3576	if (ret)
3577		goto out;
3578
3579	lockdep_assert_held(&fs_info->balance_mutex);
3580
3581	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3582		if (!fs_info->balance_ctl) {
3583			ret = -ENOTCONN;
3584			goto out_unlock;
3585		}
3586
3587		bctl = fs_info->balance_ctl;
3588		spin_lock(&fs_info->balance_lock);
3589		bctl->flags |= BTRFS_BALANCE_RESUME;
3590		spin_unlock(&fs_info->balance_lock);
3591		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3592
3593		goto do_balance;
3594	}
3595
3596	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3597		ret = -EINVAL;
3598		goto out_unlock;
3599	}
3600
3601	if (fs_info->balance_ctl) {
3602		ret = -EINPROGRESS;
3603		goto out_unlock;
3604	}
3605
3606	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3607	if (!bctl) {
3608		ret = -ENOMEM;
3609		goto out_unlock;
3610	}
3611
3612	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3613	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3614	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3615
3616	bctl->flags = bargs->flags;
3617do_balance:
3618	/*
3619	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3620	 * bctl is freed in reset_balance_state, or, if restriper was paused
3621	 * all the way until unmount, in free_fs_info.  The flag should be
3622	 * cleared after reset_balance_state.
3623	 */
3624	need_unlock = false;
3625
3626	ret = btrfs_balance(fs_info, bctl, bargs);
3627	bctl = NULL;
3628
3629	if (ret == 0 || ret == -ECANCELED) {
3630		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3631			ret = -EFAULT;
3632	}
3633
3634	kfree(bctl);
3635out_unlock:
3636	mutex_unlock(&fs_info->balance_mutex);
3637	if (need_unlock)
3638		btrfs_exclop_finish(fs_info);
3639out:
3640	mnt_drop_write_file(file);
3641	kfree(bargs);
3642	return ret;
3643}
3644
3645static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3646{
3647	if (!capable(CAP_SYS_ADMIN))
3648		return -EPERM;
3649
3650	switch (cmd) {
3651	case BTRFS_BALANCE_CTL_PAUSE:
3652		return btrfs_pause_balance(fs_info);
3653	case BTRFS_BALANCE_CTL_CANCEL:
3654		return btrfs_cancel_balance(fs_info);
3655	}
3656
3657	return -EINVAL;
3658}
3659
3660static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3661					 void __user *arg)
3662{
3663	struct btrfs_ioctl_balance_args *bargs;
3664	int ret = 0;
3665
3666	if (!capable(CAP_SYS_ADMIN))
3667		return -EPERM;
3668
3669	mutex_lock(&fs_info->balance_mutex);
3670	if (!fs_info->balance_ctl) {
3671		ret = -ENOTCONN;
3672		goto out;
3673	}
3674
3675	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3676	if (!bargs) {
3677		ret = -ENOMEM;
3678		goto out;
3679	}
3680
3681	btrfs_update_ioctl_balance_args(fs_info, bargs);
3682
3683	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3684		ret = -EFAULT;
3685
3686	kfree(bargs);
3687out:
3688	mutex_unlock(&fs_info->balance_mutex);
3689	return ret;
3690}
3691
3692static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3693{
3694	struct inode *inode = file_inode(file);
3695	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3696	struct btrfs_ioctl_quota_ctl_args *sa;
3697	int ret;
3698
3699	if (!capable(CAP_SYS_ADMIN))
3700		return -EPERM;
3701
3702	ret = mnt_want_write_file(file);
3703	if (ret)
3704		return ret;
3705
3706	sa = memdup_user(arg, sizeof(*sa));
3707	if (IS_ERR(sa)) {
3708		ret = PTR_ERR(sa);
3709		goto drop_write;
3710	}
3711
3712	down_write(&fs_info->subvol_sem);
3713
3714	switch (sa->cmd) {
3715	case BTRFS_QUOTA_CTL_ENABLE:
3716		ret = btrfs_quota_enable(fs_info);
3717		break;
3718	case BTRFS_QUOTA_CTL_DISABLE:
3719		ret = btrfs_quota_disable(fs_info);
3720		break;
3721	default:
3722		ret = -EINVAL;
3723		break;
3724	}
3725
3726	kfree(sa);
3727	up_write(&fs_info->subvol_sem);
3728drop_write:
3729	mnt_drop_write_file(file);
3730	return ret;
3731}
3732
3733static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3734{
3735	struct inode *inode = file_inode(file);
3736	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3737	struct btrfs_root *root = BTRFS_I(inode)->root;
3738	struct btrfs_ioctl_qgroup_assign_args *sa;
3739	struct btrfs_trans_handle *trans;
3740	int ret;
3741	int err;
3742
3743	if (!capable(CAP_SYS_ADMIN))
3744		return -EPERM;
3745
3746	ret = mnt_want_write_file(file);
3747	if (ret)
3748		return ret;
3749
3750	sa = memdup_user(arg, sizeof(*sa));
3751	if (IS_ERR(sa)) {
3752		ret = PTR_ERR(sa);
3753		goto drop_write;
3754	}
3755
3756	trans = btrfs_join_transaction(root);
3757	if (IS_ERR(trans)) {
3758		ret = PTR_ERR(trans);
3759		goto out;
3760	}
3761
3762	if (sa->assign) {
3763		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3764	} else {
3765		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3766	}
3767
3768	/* update qgroup status and info */
3769	mutex_lock(&fs_info->qgroup_ioctl_lock);
3770	err = btrfs_run_qgroups(trans);
3771	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3772	if (err < 0)
3773		btrfs_handle_fs_error(fs_info, err,
3774				      "failed to update qgroup status and info");
3775	err = btrfs_end_transaction(trans);
3776	if (err && !ret)
3777		ret = err;
3778
3779out:
3780	kfree(sa);
3781drop_write:
3782	mnt_drop_write_file(file);
3783	return ret;
3784}
3785
3786static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3787{
3788	struct inode *inode = file_inode(file);
3789	struct btrfs_root *root = BTRFS_I(inode)->root;
3790	struct btrfs_ioctl_qgroup_create_args *sa;
3791	struct btrfs_trans_handle *trans;
3792	int ret;
3793	int err;
3794
3795	if (!capable(CAP_SYS_ADMIN))
3796		return -EPERM;
3797
3798	ret = mnt_want_write_file(file);
3799	if (ret)
3800		return ret;
3801
3802	sa = memdup_user(arg, sizeof(*sa));
3803	if (IS_ERR(sa)) {
3804		ret = PTR_ERR(sa);
3805		goto drop_write;
3806	}
3807
3808	if (!sa->qgroupid) {
3809		ret = -EINVAL;
3810		goto out;
3811	}
3812
3813	if (sa->create && is_fstree(sa->qgroupid)) {
3814		ret = -EINVAL;
3815		goto out;
3816	}
3817
3818	trans = btrfs_join_transaction(root);
3819	if (IS_ERR(trans)) {
3820		ret = PTR_ERR(trans);
3821		goto out;
3822	}
3823
3824	if (sa->create) {
3825		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3826	} else {
3827		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3828	}
3829
3830	err = btrfs_end_transaction(trans);
3831	if (err && !ret)
3832		ret = err;
3833
3834out:
3835	kfree(sa);
3836drop_write:
3837	mnt_drop_write_file(file);
3838	return ret;
3839}
3840
3841static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3842{
3843	struct inode *inode = file_inode(file);
3844	struct btrfs_root *root = BTRFS_I(inode)->root;
3845	struct btrfs_ioctl_qgroup_limit_args *sa;
3846	struct btrfs_trans_handle *trans;
3847	int ret;
3848	int err;
3849	u64 qgroupid;
3850
3851	if (!capable(CAP_SYS_ADMIN))
3852		return -EPERM;
3853
3854	ret = mnt_want_write_file(file);
3855	if (ret)
3856		return ret;
3857
3858	sa = memdup_user(arg, sizeof(*sa));
3859	if (IS_ERR(sa)) {
3860		ret = PTR_ERR(sa);
3861		goto drop_write;
3862	}
3863
3864	trans = btrfs_join_transaction(root);
3865	if (IS_ERR(trans)) {
3866		ret = PTR_ERR(trans);
3867		goto out;
3868	}
3869
3870	qgroupid = sa->qgroupid;
3871	if (!qgroupid) {
3872		/* take the current subvol as qgroup */
3873		qgroupid = root->root_key.objectid;
3874	}
3875
3876	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3877
3878	err = btrfs_end_transaction(trans);
3879	if (err && !ret)
3880		ret = err;
3881
3882out:
3883	kfree(sa);
3884drop_write:
3885	mnt_drop_write_file(file);
3886	return ret;
3887}
3888
3889static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3890{
3891	struct inode *inode = file_inode(file);
3892	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3893	struct btrfs_ioctl_quota_rescan_args *qsa;
3894	int ret;
3895
3896	if (!capable(CAP_SYS_ADMIN))
3897		return -EPERM;
3898
3899	ret = mnt_want_write_file(file);
3900	if (ret)
3901		return ret;
3902
3903	qsa = memdup_user(arg, sizeof(*qsa));
3904	if (IS_ERR(qsa)) {
3905		ret = PTR_ERR(qsa);
3906		goto drop_write;
3907	}
3908
3909	if (qsa->flags) {
3910		ret = -EINVAL;
3911		goto out;
3912	}
3913
3914	ret = btrfs_qgroup_rescan(fs_info);
3915
3916out:
3917	kfree(qsa);
3918drop_write:
3919	mnt_drop_write_file(file);
3920	return ret;
3921}
3922
3923static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3924						void __user *arg)
3925{
3926	struct btrfs_ioctl_quota_rescan_args qsa = {0};
3927
3928	if (!capable(CAP_SYS_ADMIN))
3929		return -EPERM;
3930
3931	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3932		qsa.flags = 1;
3933		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3934	}
3935
3936	if (copy_to_user(arg, &qsa, sizeof(qsa)))
3937		return -EFAULT;
3938
3939	return 0;
3940}
3941
3942static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3943						void __user *arg)
3944{
3945	if (!capable(CAP_SYS_ADMIN))
3946		return -EPERM;
3947
3948	return btrfs_qgroup_wait_for_completion(fs_info, true);
3949}
3950
3951static long _btrfs_ioctl_set_received_subvol(struct file *file,
3952					    struct mnt_idmap *idmap,
3953					    struct btrfs_ioctl_received_subvol_args *sa)
3954{
3955	struct inode *inode = file_inode(file);
3956	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3957	struct btrfs_root *root = BTRFS_I(inode)->root;
3958	struct btrfs_root_item *root_item = &root->root_item;
3959	struct btrfs_trans_handle *trans;
3960	struct timespec64 ct = current_time(inode);
3961	int ret = 0;
3962	int received_uuid_changed;
3963
3964	if (!inode_owner_or_capable(idmap, inode))
3965		return -EPERM;
3966
3967	ret = mnt_want_write_file(file);
3968	if (ret < 0)
3969		return ret;
3970
3971	down_write(&fs_info->subvol_sem);
3972
3973	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3974		ret = -EINVAL;
3975		goto out;
3976	}
3977
3978	if (btrfs_root_readonly(root)) {
3979		ret = -EROFS;
3980		goto out;
3981	}
3982
3983	/*
3984	 * 1 - root item
3985	 * 2 - uuid items (received uuid + subvol uuid)
3986	 */
3987	trans = btrfs_start_transaction(root, 3);
3988	if (IS_ERR(trans)) {
3989		ret = PTR_ERR(trans);
3990		trans = NULL;
3991		goto out;
3992	}
3993
3994	sa->rtransid = trans->transid;
3995	sa->rtime.sec = ct.tv_sec;
3996	sa->rtime.nsec = ct.tv_nsec;
3997
3998	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
3999				       BTRFS_UUID_SIZE);
4000	if (received_uuid_changed &&
4001	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4002		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4003					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4004					  root->root_key.objectid);
4005		if (ret && ret != -ENOENT) {
4006		        btrfs_abort_transaction(trans, ret);
4007		        btrfs_end_transaction(trans);
4008		        goto out;
4009		}
4010	}
4011	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4012	btrfs_set_root_stransid(root_item, sa->stransid);
4013	btrfs_set_root_rtransid(root_item, sa->rtransid);
4014	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4015	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4016	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4017	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4018
4019	ret = btrfs_update_root(trans, fs_info->tree_root,
4020				&root->root_key, &root->root_item);
4021	if (ret < 0) {
4022		btrfs_end_transaction(trans);
4023		goto out;
4024	}
4025	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4026		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4027					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4028					  root->root_key.objectid);
4029		if (ret < 0 && ret != -EEXIST) {
4030			btrfs_abort_transaction(trans, ret);
4031			btrfs_end_transaction(trans);
4032			goto out;
4033		}
4034	}
4035	ret = btrfs_commit_transaction(trans);
4036out:
4037	up_write(&fs_info->subvol_sem);
4038	mnt_drop_write_file(file);
4039	return ret;
4040}
4041
4042#ifdef CONFIG_64BIT
4043static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4044						void __user *arg)
4045{
4046	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4047	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4048	int ret = 0;
4049
4050	args32 = memdup_user(arg, sizeof(*args32));
4051	if (IS_ERR(args32))
4052		return PTR_ERR(args32);
4053
4054	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4055	if (!args64) {
4056		ret = -ENOMEM;
4057		goto out;
4058	}
4059
4060	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4061	args64->stransid = args32->stransid;
4062	args64->rtransid = args32->rtransid;
4063	args64->stime.sec = args32->stime.sec;
4064	args64->stime.nsec = args32->stime.nsec;
4065	args64->rtime.sec = args32->rtime.sec;
4066	args64->rtime.nsec = args32->rtime.nsec;
4067	args64->flags = args32->flags;
4068
4069	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4070	if (ret)
4071		goto out;
4072
4073	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4074	args32->stransid = args64->stransid;
4075	args32->rtransid = args64->rtransid;
4076	args32->stime.sec = args64->stime.sec;
4077	args32->stime.nsec = args64->stime.nsec;
4078	args32->rtime.sec = args64->rtime.sec;
4079	args32->rtime.nsec = args64->rtime.nsec;
4080	args32->flags = args64->flags;
4081
4082	ret = copy_to_user(arg, args32, sizeof(*args32));
4083	if (ret)
4084		ret = -EFAULT;
4085
4086out:
4087	kfree(args32);
4088	kfree(args64);
4089	return ret;
4090}
4091#endif
4092
4093static long btrfs_ioctl_set_received_subvol(struct file *file,
4094					    void __user *arg)
4095{
4096	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4097	int ret = 0;
4098
4099	sa = memdup_user(arg, sizeof(*sa));
4100	if (IS_ERR(sa))
4101		return PTR_ERR(sa);
4102
4103	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4104
4105	if (ret)
4106		goto out;
4107
4108	ret = copy_to_user(arg, sa, sizeof(*sa));
4109	if (ret)
4110		ret = -EFAULT;
4111
4112out:
4113	kfree(sa);
4114	return ret;
4115}
4116
4117static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4118					void __user *arg)
4119{
4120	size_t len;
4121	int ret;
4122	char label[BTRFS_LABEL_SIZE];
4123
4124	spin_lock(&fs_info->super_lock);
4125	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4126	spin_unlock(&fs_info->super_lock);
4127
4128	len = strnlen(label, BTRFS_LABEL_SIZE);
4129
4130	if (len == BTRFS_LABEL_SIZE) {
4131		btrfs_warn(fs_info,
4132			   "label is too long, return the first %zu bytes",
4133			   --len);
4134	}
4135
4136	ret = copy_to_user(arg, label, len);
4137
4138	return ret ? -EFAULT : 0;
4139}
4140
4141static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4142{
4143	struct inode *inode = file_inode(file);
4144	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4145	struct btrfs_root *root = BTRFS_I(inode)->root;
4146	struct btrfs_super_block *super_block = fs_info->super_copy;
4147	struct btrfs_trans_handle *trans;
4148	char label[BTRFS_LABEL_SIZE];
4149	int ret;
4150
4151	if (!capable(CAP_SYS_ADMIN))
4152		return -EPERM;
4153
4154	if (copy_from_user(label, arg, sizeof(label)))
4155		return -EFAULT;
4156
4157	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4158		btrfs_err(fs_info,
4159			  "unable to set label with more than %d bytes",
4160			  BTRFS_LABEL_SIZE - 1);
4161		return -EINVAL;
4162	}
4163
4164	ret = mnt_want_write_file(file);
4165	if (ret)
4166		return ret;
4167
4168	trans = btrfs_start_transaction(root, 0);
4169	if (IS_ERR(trans)) {
4170		ret = PTR_ERR(trans);
4171		goto out_unlock;
4172	}
4173
4174	spin_lock(&fs_info->super_lock);
4175	strcpy(super_block->label, label);
4176	spin_unlock(&fs_info->super_lock);
4177	ret = btrfs_commit_transaction(trans);
4178
4179out_unlock:
4180	mnt_drop_write_file(file);
4181	return ret;
4182}
4183
4184#define INIT_FEATURE_FLAGS(suffix) \
4185	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4186	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4187	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4188
4189int btrfs_ioctl_get_supported_features(void __user *arg)
4190{
4191	static const struct btrfs_ioctl_feature_flags features[3] = {
4192		INIT_FEATURE_FLAGS(SUPP),
4193		INIT_FEATURE_FLAGS(SAFE_SET),
4194		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4195	};
4196
4197	if (copy_to_user(arg, &features, sizeof(features)))
4198		return -EFAULT;
4199
4200	return 0;
4201}
4202
4203static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4204					void __user *arg)
4205{
4206	struct btrfs_super_block *super_block = fs_info->super_copy;
4207	struct btrfs_ioctl_feature_flags features;
4208
4209	features.compat_flags = btrfs_super_compat_flags(super_block);
4210	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4211	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4212
4213	if (copy_to_user(arg, &features, sizeof(features)))
4214		return -EFAULT;
4215
4216	return 0;
4217}
4218
4219static int check_feature_bits(struct btrfs_fs_info *fs_info,
4220			      enum btrfs_feature_set set,
4221			      u64 change_mask, u64 flags, u64 supported_flags,
4222			      u64 safe_set, u64 safe_clear)
4223{
4224	const char *type = btrfs_feature_set_name(set);
4225	char *names;
4226	u64 disallowed, unsupported;
4227	u64 set_mask = flags & change_mask;
4228	u64 clear_mask = ~flags & change_mask;
4229
4230	unsupported = set_mask & ~supported_flags;
4231	if (unsupported) {
4232		names = btrfs_printable_features(set, unsupported);
4233		if (names) {
4234			btrfs_warn(fs_info,
4235				   "this kernel does not support the %s feature bit%s",
4236				   names, strchr(names, ',') ? "s" : "");
4237			kfree(names);
4238		} else
4239			btrfs_warn(fs_info,
4240				   "this kernel does not support %s bits 0x%llx",
4241				   type, unsupported);
4242		return -EOPNOTSUPP;
4243	}
4244
4245	disallowed = set_mask & ~safe_set;
4246	if (disallowed) {
4247		names = btrfs_printable_features(set, disallowed);
4248		if (names) {
4249			btrfs_warn(fs_info,
4250				   "can't set the %s feature bit%s while mounted",
4251				   names, strchr(names, ',') ? "s" : "");
4252			kfree(names);
4253		} else
4254			btrfs_warn(fs_info,
4255				   "can't set %s bits 0x%llx while mounted",
4256				   type, disallowed);
4257		return -EPERM;
4258	}
4259
4260	disallowed = clear_mask & ~safe_clear;
4261	if (disallowed) {
4262		names = btrfs_printable_features(set, disallowed);
4263		if (names) {
4264			btrfs_warn(fs_info,
4265				   "can't clear the %s feature bit%s while mounted",
4266				   names, strchr(names, ',') ? "s" : "");
4267			kfree(names);
4268		} else
4269			btrfs_warn(fs_info,
4270				   "can't clear %s bits 0x%llx while mounted",
4271				   type, disallowed);
4272		return -EPERM;
4273	}
4274
4275	return 0;
4276}
4277
4278#define check_feature(fs_info, change_mask, flags, mask_base)	\
4279check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4280		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4281		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4282		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4283
4284static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4285{
4286	struct inode *inode = file_inode(file);
4287	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4288	struct btrfs_root *root = BTRFS_I(inode)->root;
4289	struct btrfs_super_block *super_block = fs_info->super_copy;
4290	struct btrfs_ioctl_feature_flags flags[2];
4291	struct btrfs_trans_handle *trans;
4292	u64 newflags;
4293	int ret;
4294
4295	if (!capable(CAP_SYS_ADMIN))
4296		return -EPERM;
4297
4298	if (copy_from_user(flags, arg, sizeof(flags)))
4299		return -EFAULT;
4300
4301	/* Nothing to do */
4302	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4303	    !flags[0].incompat_flags)
4304		return 0;
4305
4306	ret = check_feature(fs_info, flags[0].compat_flags,
4307			    flags[1].compat_flags, COMPAT);
4308	if (ret)
4309		return ret;
4310
4311	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4312			    flags[1].compat_ro_flags, COMPAT_RO);
4313	if (ret)
4314		return ret;
4315
4316	ret = check_feature(fs_info, flags[0].incompat_flags,
4317			    flags[1].incompat_flags, INCOMPAT);
4318	if (ret)
4319		return ret;
4320
4321	ret = mnt_want_write_file(file);
4322	if (ret)
4323		return ret;
4324
4325	trans = btrfs_start_transaction(root, 0);
4326	if (IS_ERR(trans)) {
4327		ret = PTR_ERR(trans);
4328		goto out_drop_write;
4329	}
4330
4331	spin_lock(&fs_info->super_lock);
4332	newflags = btrfs_super_compat_flags(super_block);
4333	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4334	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4335	btrfs_set_super_compat_flags(super_block, newflags);
4336
4337	newflags = btrfs_super_compat_ro_flags(super_block);
4338	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4339	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4340	btrfs_set_super_compat_ro_flags(super_block, newflags);
4341
4342	newflags = btrfs_super_incompat_flags(super_block);
4343	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4344	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4345	btrfs_set_super_incompat_flags(super_block, newflags);
4346	spin_unlock(&fs_info->super_lock);
4347
4348	ret = btrfs_commit_transaction(trans);
4349out_drop_write:
4350	mnt_drop_write_file(file);
4351
4352	return ret;
4353}
4354
4355static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4356{
4357	struct btrfs_ioctl_send_args *arg;
4358	int ret;
4359
4360	if (compat) {
4361#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4362		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4363
4364		ret = copy_from_user(&args32, argp, sizeof(args32));
4365		if (ret)
4366			return -EFAULT;
4367		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4368		if (!arg)
4369			return -ENOMEM;
4370		arg->send_fd = args32.send_fd;
4371		arg->clone_sources_count = args32.clone_sources_count;
4372		arg->clone_sources = compat_ptr(args32.clone_sources);
4373		arg->parent_root = args32.parent_root;
4374		arg->flags = args32.flags;
4375		arg->version = args32.version;
4376		memcpy(arg->reserved, args32.reserved,
4377		       sizeof(args32.reserved));
4378#else
4379		return -ENOTTY;
4380#endif
4381	} else {
4382		arg = memdup_user(argp, sizeof(*arg));
4383		if (IS_ERR(arg))
4384			return PTR_ERR(arg);
4385	}
4386	ret = btrfs_ioctl_send(inode, arg);
4387	kfree(arg);
4388	return ret;
4389}
4390
4391static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4392				    bool compat)
4393{
4394	struct btrfs_ioctl_encoded_io_args args = { 0 };
4395	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4396					     flags);
4397	size_t copy_end;
4398	struct iovec iovstack[UIO_FASTIOV];
4399	struct iovec *iov = iovstack;
4400	struct iov_iter iter;
4401	loff_t pos;
4402	struct kiocb kiocb;
4403	ssize_t ret;
4404
4405	if (!capable(CAP_SYS_ADMIN)) {
4406		ret = -EPERM;
4407		goto out_acct;
4408	}
4409
4410	if (compat) {
4411#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4412		struct btrfs_ioctl_encoded_io_args_32 args32;
4413
4414		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4415				       flags);
4416		if (copy_from_user(&args32, argp, copy_end)) {
4417			ret = -EFAULT;
4418			goto out_acct;
4419		}
4420		args.iov = compat_ptr(args32.iov);
4421		args.iovcnt = args32.iovcnt;
4422		args.offset = args32.offset;
4423		args.flags = args32.flags;
4424#else
4425		return -ENOTTY;
4426#endif
4427	} else {
4428		copy_end = copy_end_kernel;
4429		if (copy_from_user(&args, argp, copy_end)) {
4430			ret = -EFAULT;
4431			goto out_acct;
4432		}
4433	}
4434	if (args.flags != 0) {
4435		ret = -EINVAL;
4436		goto out_acct;
4437	}
4438
4439	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4440			   &iov, &iter);
4441	if (ret < 0)
4442		goto out_acct;
4443
4444	if (iov_iter_count(&iter) == 0) {
4445		ret = 0;
4446		goto out_iov;
4447	}
4448	pos = args.offset;
4449	ret = rw_verify_area(READ, file, &pos, args.len);
4450	if (ret < 0)
4451		goto out_iov;
4452
4453	init_sync_kiocb(&kiocb, file);
4454	kiocb.ki_pos = pos;
4455
4456	ret = btrfs_encoded_read(&kiocb, &iter, &args);
4457	if (ret >= 0) {
4458		fsnotify_access(file);
4459		if (copy_to_user(argp + copy_end,
4460				 (char *)&args + copy_end_kernel,
4461				 sizeof(args) - copy_end_kernel))
4462			ret = -EFAULT;
4463	}
4464
4465out_iov:
4466	kfree(iov);
4467out_acct:
4468	if (ret > 0)
4469		add_rchar(current, ret);
4470	inc_syscr(current);
4471	return ret;
4472}
4473
4474static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4475{
4476	struct btrfs_ioctl_encoded_io_args args;
4477	struct iovec iovstack[UIO_FASTIOV];
4478	struct iovec *iov = iovstack;
4479	struct iov_iter iter;
4480	loff_t pos;
4481	struct kiocb kiocb;
4482	ssize_t ret;
4483
4484	if (!capable(CAP_SYS_ADMIN)) {
4485		ret = -EPERM;
4486		goto out_acct;
4487	}
4488
4489	if (!(file->f_mode & FMODE_WRITE)) {
4490		ret = -EBADF;
4491		goto out_acct;
4492	}
4493
4494	if (compat) {
4495#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4496		struct btrfs_ioctl_encoded_io_args_32 args32;
4497
4498		if (copy_from_user(&args32, argp, sizeof(args32))) {
4499			ret = -EFAULT;
4500			goto out_acct;
4501		}
4502		args.iov = compat_ptr(args32.iov);
4503		args.iovcnt = args32.iovcnt;
4504		args.offset = args32.offset;
4505		args.flags = args32.flags;
4506		args.len = args32.len;
4507		args.unencoded_len = args32.unencoded_len;
4508		args.unencoded_offset = args32.unencoded_offset;
4509		args.compression = args32.compression;
4510		args.encryption = args32.encryption;
4511		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4512#else
4513		return -ENOTTY;
4514#endif
4515	} else {
4516		if (copy_from_user(&args, argp, sizeof(args))) {
4517			ret = -EFAULT;
4518			goto out_acct;
4519		}
4520	}
4521
4522	ret = -EINVAL;
4523	if (args.flags != 0)
4524		goto out_acct;
4525	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4526		goto out_acct;
4527	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4528	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4529		goto out_acct;
4530	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4531	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4532		goto out_acct;
4533	if (args.unencoded_offset > args.unencoded_len)
4534		goto out_acct;
4535	if (args.len > args.unencoded_len - args.unencoded_offset)
4536		goto out_acct;
4537
4538	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4539			   &iov, &iter);
4540	if (ret < 0)
4541		goto out_acct;
4542
4543	file_start_write(file);
4544
4545	if (iov_iter_count(&iter) == 0) {
4546		ret = 0;
4547		goto out_end_write;
4548	}
4549	pos = args.offset;
4550	ret = rw_verify_area(WRITE, file, &pos, args.len);
4551	if (ret < 0)
4552		goto out_end_write;
4553
4554	init_sync_kiocb(&kiocb, file);
4555	ret = kiocb_set_rw_flags(&kiocb, 0);
4556	if (ret)
4557		goto out_end_write;
4558	kiocb.ki_pos = pos;
4559
4560	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4561	if (ret > 0)
4562		fsnotify_modify(file);
4563
4564out_end_write:
4565	file_end_write(file);
4566	kfree(iov);
4567out_acct:
4568	if (ret > 0)
4569		add_wchar(current, ret);
4570	inc_syscw(current);
4571	return ret;
4572}
4573
4574long btrfs_ioctl(struct file *file, unsigned int
4575		cmd, unsigned long arg)
4576{
4577	struct inode *inode = file_inode(file);
4578	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4579	struct btrfs_root *root = BTRFS_I(inode)->root;
4580	void __user *argp = (void __user *)arg;
4581
4582	switch (cmd) {
4583	case FS_IOC_GETVERSION:
4584		return btrfs_ioctl_getversion(inode, argp);
4585	case FS_IOC_GETFSLABEL:
4586		return btrfs_ioctl_get_fslabel(fs_info, argp);
4587	case FS_IOC_SETFSLABEL:
4588		return btrfs_ioctl_set_fslabel(file, argp);
4589	case FITRIM:
4590		return btrfs_ioctl_fitrim(fs_info, argp);
4591	case BTRFS_IOC_SNAP_CREATE:
4592		return btrfs_ioctl_snap_create(file, argp, 0);
4593	case BTRFS_IOC_SNAP_CREATE_V2:
4594		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4595	case BTRFS_IOC_SUBVOL_CREATE:
4596		return btrfs_ioctl_snap_create(file, argp, 1);
4597	case BTRFS_IOC_SUBVOL_CREATE_V2:
4598		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4599	case BTRFS_IOC_SNAP_DESTROY:
4600		return btrfs_ioctl_snap_destroy(file, argp, false);
4601	case BTRFS_IOC_SNAP_DESTROY_V2:
4602		return btrfs_ioctl_snap_destroy(file, argp, true);
4603	case BTRFS_IOC_SUBVOL_GETFLAGS:
4604		return btrfs_ioctl_subvol_getflags(inode, argp);
4605	case BTRFS_IOC_SUBVOL_SETFLAGS:
4606		return btrfs_ioctl_subvol_setflags(file, argp);
4607	case BTRFS_IOC_DEFAULT_SUBVOL:
4608		return btrfs_ioctl_default_subvol(file, argp);
4609	case BTRFS_IOC_DEFRAG:
4610		return btrfs_ioctl_defrag(file, NULL);
4611	case BTRFS_IOC_DEFRAG_RANGE:
4612		return btrfs_ioctl_defrag(file, argp);
4613	case BTRFS_IOC_RESIZE:
4614		return btrfs_ioctl_resize(file, argp);
4615	case BTRFS_IOC_ADD_DEV:
4616		return btrfs_ioctl_add_dev(fs_info, argp);
4617	case BTRFS_IOC_RM_DEV:
4618		return btrfs_ioctl_rm_dev(file, argp);
4619	case BTRFS_IOC_RM_DEV_V2:
4620		return btrfs_ioctl_rm_dev_v2(file, argp);
4621	case BTRFS_IOC_FS_INFO:
4622		return btrfs_ioctl_fs_info(fs_info, argp);
4623	case BTRFS_IOC_DEV_INFO:
4624		return btrfs_ioctl_dev_info(fs_info, argp);
4625	case BTRFS_IOC_TREE_SEARCH:
4626		return btrfs_ioctl_tree_search(inode, argp);
4627	case BTRFS_IOC_TREE_SEARCH_V2:
4628		return btrfs_ioctl_tree_search_v2(inode, argp);
4629	case BTRFS_IOC_INO_LOOKUP:
4630		return btrfs_ioctl_ino_lookup(root, argp);
4631	case BTRFS_IOC_INO_PATHS:
4632		return btrfs_ioctl_ino_to_path(root, argp);
4633	case BTRFS_IOC_LOGICAL_INO:
4634		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4635	case BTRFS_IOC_LOGICAL_INO_V2:
4636		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4637	case BTRFS_IOC_SPACE_INFO:
4638		return btrfs_ioctl_space_info(fs_info, argp);
4639	case BTRFS_IOC_SYNC: {
4640		int ret;
4641
4642		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4643		if (ret)
4644			return ret;
4645		ret = btrfs_sync_fs(inode->i_sb, 1);
4646		/*
4647		 * The transaction thread may want to do more work,
4648		 * namely it pokes the cleaner kthread that will start
4649		 * processing uncleaned subvols.
4650		 */
4651		wake_up_process(fs_info->transaction_kthread);
4652		return ret;
4653	}
4654	case BTRFS_IOC_START_SYNC:
4655		return btrfs_ioctl_start_sync(root, argp);
4656	case BTRFS_IOC_WAIT_SYNC:
4657		return btrfs_ioctl_wait_sync(fs_info, argp);
4658	case BTRFS_IOC_SCRUB:
4659		return btrfs_ioctl_scrub(file, argp);
4660	case BTRFS_IOC_SCRUB_CANCEL:
4661		return btrfs_ioctl_scrub_cancel(fs_info);
4662	case BTRFS_IOC_SCRUB_PROGRESS:
4663		return btrfs_ioctl_scrub_progress(fs_info, argp);
4664	case BTRFS_IOC_BALANCE_V2:
4665		return btrfs_ioctl_balance(file, argp);
4666	case BTRFS_IOC_BALANCE_CTL:
4667		return btrfs_ioctl_balance_ctl(fs_info, arg);
4668	case BTRFS_IOC_BALANCE_PROGRESS:
4669		return btrfs_ioctl_balance_progress(fs_info, argp);
4670	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4671		return btrfs_ioctl_set_received_subvol(file, argp);
4672#ifdef CONFIG_64BIT
4673	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4674		return btrfs_ioctl_set_received_subvol_32(file, argp);
4675#endif
4676	case BTRFS_IOC_SEND:
4677		return _btrfs_ioctl_send(inode, argp, false);
4678#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4679	case BTRFS_IOC_SEND_32:
4680		return _btrfs_ioctl_send(inode, argp, true);
4681#endif
4682	case BTRFS_IOC_GET_DEV_STATS:
4683		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4684	case BTRFS_IOC_QUOTA_CTL:
4685		return btrfs_ioctl_quota_ctl(file, argp);
4686	case BTRFS_IOC_QGROUP_ASSIGN:
4687		return btrfs_ioctl_qgroup_assign(file, argp);
4688	case BTRFS_IOC_QGROUP_CREATE:
4689		return btrfs_ioctl_qgroup_create(file, argp);
4690	case BTRFS_IOC_QGROUP_LIMIT:
4691		return btrfs_ioctl_qgroup_limit(file, argp);
4692	case BTRFS_IOC_QUOTA_RESCAN:
4693		return btrfs_ioctl_quota_rescan(file, argp);
4694	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4695		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4696	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4697		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4698	case BTRFS_IOC_DEV_REPLACE:
4699		return btrfs_ioctl_dev_replace(fs_info, argp);
4700	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4701		return btrfs_ioctl_get_supported_features(argp);
4702	case BTRFS_IOC_GET_FEATURES:
4703		return btrfs_ioctl_get_features(fs_info, argp);
4704	case BTRFS_IOC_SET_FEATURES:
4705		return btrfs_ioctl_set_features(file, argp);
4706	case BTRFS_IOC_GET_SUBVOL_INFO:
4707		return btrfs_ioctl_get_subvol_info(inode, argp);
4708	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4709		return btrfs_ioctl_get_subvol_rootref(root, argp);
4710	case BTRFS_IOC_INO_LOOKUP_USER:
4711		return btrfs_ioctl_ino_lookup_user(file, argp);
4712	case FS_IOC_ENABLE_VERITY:
4713		return fsverity_ioctl_enable(file, (const void __user *)argp);
4714	case FS_IOC_MEASURE_VERITY:
4715		return fsverity_ioctl_measure(file, argp);
4716	case BTRFS_IOC_ENCODED_READ:
4717		return btrfs_ioctl_encoded_read(file, argp, false);
4718	case BTRFS_IOC_ENCODED_WRITE:
4719		return btrfs_ioctl_encoded_write(file, argp, false);
4720#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4721	case BTRFS_IOC_ENCODED_READ_32:
4722		return btrfs_ioctl_encoded_read(file, argp, true);
4723	case BTRFS_IOC_ENCODED_WRITE_32:
4724		return btrfs_ioctl_encoded_write(file, argp, true);
4725#endif
4726	}
4727
4728	return -ENOTTY;
4729}
4730
4731#ifdef CONFIG_COMPAT
4732long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4733{
4734	/*
4735	 * These all access 32-bit values anyway so no further
4736	 * handling is necessary.
4737	 */
4738	switch (cmd) {
4739	case FS_IOC32_GETVERSION:
4740		cmd = FS_IOC_GETVERSION;
4741		break;
4742	}
4743
4744	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4745}
4746#endif
4747