xref: /kernel/linux/linux-6.6/fs/btrfs/file-item.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/bio.h>
7#include <linux/slab.h>
8#include <linux/pagemap.h>
9#include <linux/highmem.h>
10#include <linux/sched/mm.h>
11#include <crypto/hash.h>
12#include "messages.h"
13#include "misc.h"
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
17#include "bio.h"
18#include "print-tree.h"
19#include "compression.h"
20#include "fs.h"
21#include "accessors.h"
22#include "file-item.h"
23#include "super.h"
24
25#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
26				   sizeof(struct btrfs_item) * 2) / \
27				  size) - 1))
28
29#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
30				       PAGE_SIZE))
31
32/*
33 * Set inode's size according to filesystem options.
34 *
35 * @inode:      inode we want to update the disk_i_size for
36 * @new_i_size: i_size we want to set to, 0 if we use i_size
37 *
38 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
39 * returns as it is perfectly fine with a file that has holes without hole file
40 * extent items.
41 *
42 * However without NO_HOLES we need to only return the area that is contiguous
43 * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
44 * to an extent that has a gap in between.
45 *
46 * Finally new_i_size should only be set in the case of truncate where we're not
47 * ready to use i_size_read() as the limiter yet.
48 */
49void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
50{
51	struct btrfs_fs_info *fs_info = inode->root->fs_info;
52	u64 start, end, i_size;
53	int ret;
54
55	spin_lock(&inode->lock);
56	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
57	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
58		inode->disk_i_size = i_size;
59		goto out_unlock;
60	}
61
62	ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
63					 &end, EXTENT_DIRTY);
64	if (!ret && start == 0)
65		i_size = min(i_size, end + 1);
66	else
67		i_size = 0;
68	inode->disk_i_size = i_size;
69out_unlock:
70	spin_unlock(&inode->lock);
71}
72
73/*
74 * Mark range within a file as having a new extent inserted.
75 *
76 * @inode: inode being modified
77 * @start: start file offset of the file extent we've inserted
78 * @len:   logical length of the file extent item
79 *
80 * Call when we are inserting a new file extent where there was none before.
81 * Does not need to call this in the case where we're replacing an existing file
82 * extent, however if not sure it's fine to call this multiple times.
83 *
84 * The start and len must match the file extent item, so thus must be sectorsize
85 * aligned.
86 */
87int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
88				      u64 len)
89{
90	if (len == 0)
91		return 0;
92
93	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
94
95	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
96		return 0;
97	return set_extent_bit(&inode->file_extent_tree, start, start + len - 1,
98			      EXTENT_DIRTY, NULL);
99}
100
101/*
102 * Mark an inode range as not having a backing extent.
103 *
104 * @inode: inode being modified
105 * @start: start file offset of the file extent we've inserted
106 * @len:   logical length of the file extent item
107 *
108 * Called when we drop a file extent, for example when we truncate.  Doesn't
109 * need to be called for cases where we're replacing a file extent, like when
110 * we've COWed a file extent.
111 *
112 * The start and len must match the file extent item, so thus must be sectorsize
113 * aligned.
114 */
115int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
116					u64 len)
117{
118	if (len == 0)
119		return 0;
120
121	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
122	       len == (u64)-1);
123
124	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
125		return 0;
126	return clear_extent_bit(&inode->file_extent_tree, start,
127				start + len - 1, EXTENT_DIRTY, NULL);
128}
129
130static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
131{
132	ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
133
134	return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
135}
136
137static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
138{
139	ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
140
141	return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
142}
143
144static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
145{
146	u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
147				       fs_info->csum_size);
148
149	return csum_size_to_bytes(fs_info, max_csum_size);
150}
151
152/*
153 * Calculate the total size needed to allocate for an ordered sum structure
154 * spanning @bytes in the file.
155 */
156static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
157{
158	return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
159}
160
161int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
162			     struct btrfs_root *root,
163			     u64 objectid, u64 pos, u64 num_bytes)
164{
165	int ret = 0;
166	struct btrfs_file_extent_item *item;
167	struct btrfs_key file_key;
168	struct btrfs_path *path;
169	struct extent_buffer *leaf;
170
171	path = btrfs_alloc_path();
172	if (!path)
173		return -ENOMEM;
174	file_key.objectid = objectid;
175	file_key.offset = pos;
176	file_key.type = BTRFS_EXTENT_DATA_KEY;
177
178	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
179				      sizeof(*item));
180	if (ret < 0)
181		goto out;
182	BUG_ON(ret); /* Can't happen */
183	leaf = path->nodes[0];
184	item = btrfs_item_ptr(leaf, path->slots[0],
185			      struct btrfs_file_extent_item);
186	btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
187	btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
188	btrfs_set_file_extent_offset(leaf, item, 0);
189	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
190	btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
191	btrfs_set_file_extent_generation(leaf, item, trans->transid);
192	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
193	btrfs_set_file_extent_compression(leaf, item, 0);
194	btrfs_set_file_extent_encryption(leaf, item, 0);
195	btrfs_set_file_extent_other_encoding(leaf, item, 0);
196
197	btrfs_mark_buffer_dirty(trans, leaf);
198out:
199	btrfs_free_path(path);
200	return ret;
201}
202
203static struct btrfs_csum_item *
204btrfs_lookup_csum(struct btrfs_trans_handle *trans,
205		  struct btrfs_root *root,
206		  struct btrfs_path *path,
207		  u64 bytenr, int cow)
208{
209	struct btrfs_fs_info *fs_info = root->fs_info;
210	int ret;
211	struct btrfs_key file_key;
212	struct btrfs_key found_key;
213	struct btrfs_csum_item *item;
214	struct extent_buffer *leaf;
215	u64 csum_offset = 0;
216	const u32 csum_size = fs_info->csum_size;
217	int csums_in_item;
218
219	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
220	file_key.offset = bytenr;
221	file_key.type = BTRFS_EXTENT_CSUM_KEY;
222	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
223	if (ret < 0)
224		goto fail;
225	leaf = path->nodes[0];
226	if (ret > 0) {
227		ret = 1;
228		if (path->slots[0] == 0)
229			goto fail;
230		path->slots[0]--;
231		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
232		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
233			goto fail;
234
235		csum_offset = (bytenr - found_key.offset) >>
236				fs_info->sectorsize_bits;
237		csums_in_item = btrfs_item_size(leaf, path->slots[0]);
238		csums_in_item /= csum_size;
239
240		if (csum_offset == csums_in_item) {
241			ret = -EFBIG;
242			goto fail;
243		} else if (csum_offset > csums_in_item) {
244			goto fail;
245		}
246	}
247	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
248	item = (struct btrfs_csum_item *)((unsigned char *)item +
249					  csum_offset * csum_size);
250	return item;
251fail:
252	if (ret > 0)
253		ret = -ENOENT;
254	return ERR_PTR(ret);
255}
256
257int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
258			     struct btrfs_root *root,
259			     struct btrfs_path *path, u64 objectid,
260			     u64 offset, int mod)
261{
262	struct btrfs_key file_key;
263	int ins_len = mod < 0 ? -1 : 0;
264	int cow = mod != 0;
265
266	file_key.objectid = objectid;
267	file_key.offset = offset;
268	file_key.type = BTRFS_EXTENT_DATA_KEY;
269
270	return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
271}
272
273/*
274 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
275 * store the result to @dst.
276 *
277 * Return >0 for the number of sectors we found.
278 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
279 * for it. Caller may want to try next sector until one range is hit.
280 * Return <0 for fatal error.
281 */
282static int search_csum_tree(struct btrfs_fs_info *fs_info,
283			    struct btrfs_path *path, u64 disk_bytenr,
284			    u64 len, u8 *dst)
285{
286	struct btrfs_root *csum_root;
287	struct btrfs_csum_item *item = NULL;
288	struct btrfs_key key;
289	const u32 sectorsize = fs_info->sectorsize;
290	const u32 csum_size = fs_info->csum_size;
291	u32 itemsize;
292	int ret;
293	u64 csum_start;
294	u64 csum_len;
295
296	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
297	       IS_ALIGNED(len, sectorsize));
298
299	/* Check if the current csum item covers disk_bytenr */
300	if (path->nodes[0]) {
301		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
302				      struct btrfs_csum_item);
303		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
304		itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
305
306		csum_start = key.offset;
307		csum_len = (itemsize / csum_size) * sectorsize;
308
309		if (in_range(disk_bytenr, csum_start, csum_len))
310			goto found;
311	}
312
313	/* Current item doesn't contain the desired range, search again */
314	btrfs_release_path(path);
315	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
316	item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
317	if (IS_ERR(item)) {
318		ret = PTR_ERR(item);
319		goto out;
320	}
321	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
322	itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
323
324	csum_start = key.offset;
325	csum_len = (itemsize / csum_size) * sectorsize;
326	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
327
328found:
329	ret = (min(csum_start + csum_len, disk_bytenr + len) -
330		   disk_bytenr) >> fs_info->sectorsize_bits;
331	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
332			ret * csum_size);
333out:
334	if (ret == -ENOENT || ret == -EFBIG)
335		ret = 0;
336	return ret;
337}
338
339/*
340 * Lookup the checksum for the read bio in csum tree.
341 *
342 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
343 */
344blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
345{
346	struct btrfs_inode *inode = bbio->inode;
347	struct btrfs_fs_info *fs_info = inode->root->fs_info;
348	struct bio *bio = &bbio->bio;
349	struct btrfs_path *path;
350	const u32 sectorsize = fs_info->sectorsize;
351	const u32 csum_size = fs_info->csum_size;
352	u32 orig_len = bio->bi_iter.bi_size;
353	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
354	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
355	blk_status_t ret = BLK_STS_OK;
356	u32 bio_offset = 0;
357
358	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
359	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
360		return BLK_STS_OK;
361
362	/*
363	 * This function is only called for read bio.
364	 *
365	 * This means two things:
366	 * - All our csums should only be in csum tree
367	 *   No ordered extents csums, as ordered extents are only for write
368	 *   path.
369	 * - No need to bother any other info from bvec
370	 *   Since we're looking up csums, the only important info is the
371	 *   disk_bytenr and the length, which can be extracted from bi_iter
372	 *   directly.
373	 */
374	ASSERT(bio_op(bio) == REQ_OP_READ);
375	path = btrfs_alloc_path();
376	if (!path)
377		return BLK_STS_RESOURCE;
378
379	if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
380		bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
381		if (!bbio->csum) {
382			btrfs_free_path(path);
383			return BLK_STS_RESOURCE;
384		}
385	} else {
386		bbio->csum = bbio->csum_inline;
387	}
388
389	/*
390	 * If requested number of sectors is larger than one leaf can contain,
391	 * kick the readahead for csum tree.
392	 */
393	if (nblocks > fs_info->csums_per_leaf)
394		path->reada = READA_FORWARD;
395
396	/*
397	 * the free space stuff is only read when it hasn't been
398	 * updated in the current transaction.  So, we can safely
399	 * read from the commit root and sidestep a nasty deadlock
400	 * between reading the free space cache and updating the csum tree.
401	 */
402	if (btrfs_is_free_space_inode(inode)) {
403		path->search_commit_root = 1;
404		path->skip_locking = 1;
405	}
406
407	while (bio_offset < orig_len) {
408		int count;
409		u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
410		u8 *csum_dst = bbio->csum +
411			(bio_offset >> fs_info->sectorsize_bits) * csum_size;
412
413		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
414					 orig_len - bio_offset, csum_dst);
415		if (count < 0) {
416			ret = errno_to_blk_status(count);
417			if (bbio->csum != bbio->csum_inline)
418				kfree(bbio->csum);
419			bbio->csum = NULL;
420			break;
421		}
422
423		/*
424		 * We didn't find a csum for this range.  We need to make sure
425		 * we complain loudly about this, because we are not NODATASUM.
426		 *
427		 * However for the DATA_RELOC inode we could potentially be
428		 * relocating data extents for a NODATASUM inode, so the inode
429		 * itself won't be marked with NODATASUM, but the extent we're
430		 * copying is in fact NODATASUM.  If we don't find a csum we
431		 * assume this is the case.
432		 */
433		if (count == 0) {
434			memset(csum_dst, 0, csum_size);
435			count = 1;
436
437			if (inode->root->root_key.objectid ==
438			    BTRFS_DATA_RELOC_TREE_OBJECTID) {
439				u64 file_offset = bbio->file_offset + bio_offset;
440
441				set_extent_bit(&inode->io_tree, file_offset,
442					       file_offset + sectorsize - 1,
443					       EXTENT_NODATASUM, NULL);
444			} else {
445				btrfs_warn_rl(fs_info,
446			"csum hole found for disk bytenr range [%llu, %llu)",
447				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
448			}
449		}
450		bio_offset += count * sectorsize;
451	}
452
453	btrfs_free_path(path);
454	return ret;
455}
456
457int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
458			    struct list_head *list, int search_commit,
459			    bool nowait)
460{
461	struct btrfs_fs_info *fs_info = root->fs_info;
462	struct btrfs_key key;
463	struct btrfs_path *path;
464	struct extent_buffer *leaf;
465	struct btrfs_ordered_sum *sums;
466	struct btrfs_csum_item *item;
467	LIST_HEAD(tmplist);
468	int ret;
469
470	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
471	       IS_ALIGNED(end + 1, fs_info->sectorsize));
472
473	path = btrfs_alloc_path();
474	if (!path)
475		return -ENOMEM;
476
477	path->nowait = nowait;
478	if (search_commit) {
479		path->skip_locking = 1;
480		path->reada = READA_FORWARD;
481		path->search_commit_root = 1;
482	}
483
484	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
485	key.offset = start;
486	key.type = BTRFS_EXTENT_CSUM_KEY;
487
488	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
489	if (ret < 0)
490		goto fail;
491	if (ret > 0 && path->slots[0] > 0) {
492		leaf = path->nodes[0];
493		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
494
495		/*
496		 * There are two cases we can hit here for the previous csum
497		 * item:
498		 *
499		 *		|<- search range ->|
500		 *	|<- csum item ->|
501		 *
502		 * Or
503		 *				|<- search range ->|
504		 *	|<- csum item ->|
505		 *
506		 * Check if the previous csum item covers the leading part of
507		 * the search range.  If so we have to start from previous csum
508		 * item.
509		 */
510		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
511		    key.type == BTRFS_EXTENT_CSUM_KEY) {
512			if (bytes_to_csum_size(fs_info, start - key.offset) <
513			    btrfs_item_size(leaf, path->slots[0] - 1))
514				path->slots[0]--;
515		}
516	}
517
518	while (start <= end) {
519		u64 csum_end;
520
521		leaf = path->nodes[0];
522		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
523			ret = btrfs_next_leaf(root, path);
524			if (ret < 0)
525				goto fail;
526			if (ret > 0)
527				break;
528			leaf = path->nodes[0];
529		}
530
531		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
532		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
533		    key.type != BTRFS_EXTENT_CSUM_KEY ||
534		    key.offset > end)
535			break;
536
537		if (key.offset > start)
538			start = key.offset;
539
540		csum_end = key.offset + csum_size_to_bytes(fs_info,
541					btrfs_item_size(leaf, path->slots[0]));
542		if (csum_end <= start) {
543			path->slots[0]++;
544			continue;
545		}
546
547		csum_end = min(csum_end, end + 1);
548		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
549				      struct btrfs_csum_item);
550		while (start < csum_end) {
551			unsigned long offset;
552			size_t size;
553
554			size = min_t(size_t, csum_end - start,
555				     max_ordered_sum_bytes(fs_info));
556			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
557				       GFP_NOFS);
558			if (!sums) {
559				ret = -ENOMEM;
560				goto fail;
561			}
562
563			sums->logical = start;
564			sums->len = size;
565
566			offset = bytes_to_csum_size(fs_info, start - key.offset);
567
568			read_extent_buffer(path->nodes[0],
569					   sums->sums,
570					   ((unsigned long)item) + offset,
571					   bytes_to_csum_size(fs_info, size));
572
573			start += size;
574			list_add_tail(&sums->list, &tmplist);
575		}
576		path->slots[0]++;
577	}
578	ret = 0;
579fail:
580	while (ret < 0 && !list_empty(&tmplist)) {
581		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
582		list_del(&sums->list);
583		kfree(sums);
584	}
585	list_splice_tail(&tmplist, list);
586
587	btrfs_free_path(path);
588	return ret;
589}
590
591/*
592 * Do the same work as btrfs_lookup_csums_list(), the difference is in how
593 * we return the result.
594 *
595 * This version will set the corresponding bits in @csum_bitmap to represent
596 * that there is a csum found.
597 * Each bit represents a sector. Thus caller should ensure @csum_buf passed
598 * in is large enough to contain all csums.
599 */
600int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
601			      u64 start, u64 end, u8 *csum_buf,
602			      unsigned long *csum_bitmap)
603{
604	struct btrfs_fs_info *fs_info = root->fs_info;
605	struct btrfs_key key;
606	struct extent_buffer *leaf;
607	struct btrfs_csum_item *item;
608	const u64 orig_start = start;
609	bool free_path = false;
610	int ret;
611
612	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
613	       IS_ALIGNED(end + 1, fs_info->sectorsize));
614
615	if (!path) {
616		path = btrfs_alloc_path();
617		if (!path)
618			return -ENOMEM;
619		free_path = true;
620	}
621
622	/* Check if we can reuse the previous path. */
623	if (path->nodes[0]) {
624		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
625
626		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
627		    key.type == BTRFS_EXTENT_CSUM_KEY &&
628		    key.offset <= start)
629			goto search_forward;
630		btrfs_release_path(path);
631	}
632
633	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
634	key.type = BTRFS_EXTENT_CSUM_KEY;
635	key.offset = start;
636
637	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
638	if (ret < 0)
639		goto fail;
640	if (ret > 0 && path->slots[0] > 0) {
641		leaf = path->nodes[0];
642		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
643
644		/*
645		 * There are two cases we can hit here for the previous csum
646		 * item:
647		 *
648		 *		|<- search range ->|
649		 *	|<- csum item ->|
650		 *
651		 * Or
652		 *				|<- search range ->|
653		 *	|<- csum item ->|
654		 *
655		 * Check if the previous csum item covers the leading part of
656		 * the search range.  If so we have to start from previous csum
657		 * item.
658		 */
659		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
660		    key.type == BTRFS_EXTENT_CSUM_KEY) {
661			if (bytes_to_csum_size(fs_info, start - key.offset) <
662			    btrfs_item_size(leaf, path->slots[0] - 1))
663				path->slots[0]--;
664		}
665	}
666
667search_forward:
668	while (start <= end) {
669		u64 csum_end;
670
671		leaf = path->nodes[0];
672		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
673			ret = btrfs_next_leaf(root, path);
674			if (ret < 0)
675				goto fail;
676			if (ret > 0)
677				break;
678			leaf = path->nodes[0];
679		}
680
681		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
682		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
683		    key.type != BTRFS_EXTENT_CSUM_KEY ||
684		    key.offset > end)
685			break;
686
687		if (key.offset > start)
688			start = key.offset;
689
690		csum_end = key.offset + csum_size_to_bytes(fs_info,
691					btrfs_item_size(leaf, path->slots[0]));
692		if (csum_end <= start) {
693			path->slots[0]++;
694			continue;
695		}
696
697		csum_end = min(csum_end, end + 1);
698		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
699				      struct btrfs_csum_item);
700		while (start < csum_end) {
701			unsigned long offset;
702			size_t size;
703			u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
704						start - orig_start);
705
706			size = min_t(size_t, csum_end - start, end + 1 - start);
707
708			offset = bytes_to_csum_size(fs_info, start - key.offset);
709
710			read_extent_buffer(path->nodes[0], csum_dest,
711					   ((unsigned long)item) + offset,
712					   bytes_to_csum_size(fs_info, size));
713
714			bitmap_set(csum_bitmap,
715				(start - orig_start) >> fs_info->sectorsize_bits,
716				size >> fs_info->sectorsize_bits);
717
718			start += size;
719		}
720		path->slots[0]++;
721	}
722	ret = 0;
723fail:
724	if (free_path)
725		btrfs_free_path(path);
726	return ret;
727}
728
729/*
730 * Calculate checksums of the data contained inside a bio.
731 */
732blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
733{
734	struct btrfs_ordered_extent *ordered = bbio->ordered;
735	struct btrfs_inode *inode = bbio->inode;
736	struct btrfs_fs_info *fs_info = inode->root->fs_info;
737	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
738	struct bio *bio = &bbio->bio;
739	struct btrfs_ordered_sum *sums;
740	char *data;
741	struct bvec_iter iter;
742	struct bio_vec bvec;
743	int index;
744	unsigned int blockcount;
745	int i;
746	unsigned nofs_flag;
747
748	nofs_flag = memalloc_nofs_save();
749	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
750		       GFP_KERNEL);
751	memalloc_nofs_restore(nofs_flag);
752
753	if (!sums)
754		return BLK_STS_RESOURCE;
755
756	sums->len = bio->bi_iter.bi_size;
757	INIT_LIST_HEAD(&sums->list);
758
759	sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
760	index = 0;
761
762	shash->tfm = fs_info->csum_shash;
763
764	bio_for_each_segment(bvec, bio, iter) {
765		blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
766						 bvec.bv_len + fs_info->sectorsize
767						 - 1);
768
769		for (i = 0; i < blockcount; i++) {
770			data = bvec_kmap_local(&bvec);
771			crypto_shash_digest(shash,
772					    data + (i * fs_info->sectorsize),
773					    fs_info->sectorsize,
774					    sums->sums + index);
775			kunmap_local(data);
776			index += fs_info->csum_size;
777		}
778
779	}
780
781	bbio->sums = sums;
782	btrfs_add_ordered_sum(ordered, sums);
783	return 0;
784}
785
786/*
787 * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
788 * record the updated logical address on Zone Append completion.
789 * Allocate just the structure with an empty sums array here for that case.
790 */
791blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
792{
793	bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
794	if (!bbio->sums)
795		return BLK_STS_RESOURCE;
796	bbio->sums->len = bbio->bio.bi_iter.bi_size;
797	bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
798	btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
799	return 0;
800}
801
802/*
803 * Remove one checksum overlapping a range.
804 *
805 * This expects the key to describe the csum pointed to by the path, and it
806 * expects the csum to overlap the range [bytenr, len]
807 *
808 * The csum should not be entirely contained in the range and the range should
809 * not be entirely contained in the csum.
810 *
811 * This calls btrfs_truncate_item with the correct args based on the overlap,
812 * and fixes up the key as required.
813 */
814static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
815				       struct btrfs_path *path,
816				       struct btrfs_key *key,
817				       u64 bytenr, u64 len)
818{
819	struct btrfs_fs_info *fs_info = trans->fs_info;
820	struct extent_buffer *leaf;
821	const u32 csum_size = fs_info->csum_size;
822	u64 csum_end;
823	u64 end_byte = bytenr + len;
824	u32 blocksize_bits = fs_info->sectorsize_bits;
825
826	leaf = path->nodes[0];
827	csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
828	csum_end <<= blocksize_bits;
829	csum_end += key->offset;
830
831	if (key->offset < bytenr && csum_end <= end_byte) {
832		/*
833		 *         [ bytenr - len ]
834		 *         [   ]
835		 *   [csum     ]
836		 *   A simple truncate off the end of the item
837		 */
838		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
839		new_size *= csum_size;
840		btrfs_truncate_item(trans, path, new_size, 1);
841	} else if (key->offset >= bytenr && csum_end > end_byte &&
842		   end_byte > key->offset) {
843		/*
844		 *         [ bytenr - len ]
845		 *                 [ ]
846		 *                 [csum     ]
847		 * we need to truncate from the beginning of the csum
848		 */
849		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
850		new_size *= csum_size;
851
852		btrfs_truncate_item(trans, path, new_size, 0);
853
854		key->offset = end_byte;
855		btrfs_set_item_key_safe(trans, path, key);
856	} else {
857		BUG();
858	}
859}
860
861/*
862 * Delete the csum items from the csum tree for a given range of bytes.
863 */
864int btrfs_del_csums(struct btrfs_trans_handle *trans,
865		    struct btrfs_root *root, u64 bytenr, u64 len)
866{
867	struct btrfs_fs_info *fs_info = trans->fs_info;
868	struct btrfs_path *path;
869	struct btrfs_key key;
870	u64 end_byte = bytenr + len;
871	u64 csum_end;
872	struct extent_buffer *leaf;
873	int ret = 0;
874	const u32 csum_size = fs_info->csum_size;
875	u32 blocksize_bits = fs_info->sectorsize_bits;
876
877	ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
878	       root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
879
880	path = btrfs_alloc_path();
881	if (!path)
882		return -ENOMEM;
883
884	while (1) {
885		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
886		key.offset = end_byte - 1;
887		key.type = BTRFS_EXTENT_CSUM_KEY;
888
889		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
890		if (ret > 0) {
891			ret = 0;
892			if (path->slots[0] == 0)
893				break;
894			path->slots[0]--;
895		} else if (ret < 0) {
896			break;
897		}
898
899		leaf = path->nodes[0];
900		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
901
902		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
903		    key.type != BTRFS_EXTENT_CSUM_KEY) {
904			break;
905		}
906
907		if (key.offset >= end_byte)
908			break;
909
910		csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
911		csum_end <<= blocksize_bits;
912		csum_end += key.offset;
913
914		/* this csum ends before we start, we're done */
915		if (csum_end <= bytenr)
916			break;
917
918		/* delete the entire item, it is inside our range */
919		if (key.offset >= bytenr && csum_end <= end_byte) {
920			int del_nr = 1;
921
922			/*
923			 * Check how many csum items preceding this one in this
924			 * leaf correspond to our range and then delete them all
925			 * at once.
926			 */
927			if (key.offset > bytenr && path->slots[0] > 0) {
928				int slot = path->slots[0] - 1;
929
930				while (slot >= 0) {
931					struct btrfs_key pk;
932
933					btrfs_item_key_to_cpu(leaf, &pk, slot);
934					if (pk.offset < bytenr ||
935					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
936					    pk.objectid !=
937					    BTRFS_EXTENT_CSUM_OBJECTID)
938						break;
939					path->slots[0] = slot;
940					del_nr++;
941					key.offset = pk.offset;
942					slot--;
943				}
944			}
945			ret = btrfs_del_items(trans, root, path,
946					      path->slots[0], del_nr);
947			if (ret)
948				break;
949			if (key.offset == bytenr)
950				break;
951		} else if (key.offset < bytenr && csum_end > end_byte) {
952			unsigned long offset;
953			unsigned long shift_len;
954			unsigned long item_offset;
955			/*
956			 *        [ bytenr - len ]
957			 *     [csum                ]
958			 *
959			 * Our bytes are in the middle of the csum,
960			 * we need to split this item and insert a new one.
961			 *
962			 * But we can't drop the path because the
963			 * csum could change, get removed, extended etc.
964			 *
965			 * The trick here is the max size of a csum item leaves
966			 * enough room in the tree block for a single
967			 * item header.  So, we split the item in place,
968			 * adding a new header pointing to the existing
969			 * bytes.  Then we loop around again and we have
970			 * a nicely formed csum item that we can neatly
971			 * truncate.
972			 */
973			offset = (bytenr - key.offset) >> blocksize_bits;
974			offset *= csum_size;
975
976			shift_len = (len >> blocksize_bits) * csum_size;
977
978			item_offset = btrfs_item_ptr_offset(leaf,
979							    path->slots[0]);
980
981			memzero_extent_buffer(leaf, item_offset + offset,
982					     shift_len);
983			key.offset = bytenr;
984
985			/*
986			 * btrfs_split_item returns -EAGAIN when the
987			 * item changed size or key
988			 */
989			ret = btrfs_split_item(trans, root, path, &key, offset);
990			if (ret && ret != -EAGAIN) {
991				btrfs_abort_transaction(trans, ret);
992				break;
993			}
994			ret = 0;
995
996			key.offset = end_byte - 1;
997		} else {
998			truncate_one_csum(trans, path, &key, bytenr, len);
999			if (key.offset < bytenr)
1000				break;
1001		}
1002		btrfs_release_path(path);
1003	}
1004	btrfs_free_path(path);
1005	return ret;
1006}
1007
1008static int find_next_csum_offset(struct btrfs_root *root,
1009				 struct btrfs_path *path,
1010				 u64 *next_offset)
1011{
1012	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1013	struct btrfs_key found_key;
1014	int slot = path->slots[0] + 1;
1015	int ret;
1016
1017	if (nritems == 0 || slot >= nritems) {
1018		ret = btrfs_next_leaf(root, path);
1019		if (ret < 0) {
1020			return ret;
1021		} else if (ret > 0) {
1022			*next_offset = (u64)-1;
1023			return 0;
1024		}
1025		slot = path->slots[0];
1026	}
1027
1028	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1029
1030	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1031	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
1032		*next_offset = (u64)-1;
1033	else
1034		*next_offset = found_key.offset;
1035
1036	return 0;
1037}
1038
1039int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1040			   struct btrfs_root *root,
1041			   struct btrfs_ordered_sum *sums)
1042{
1043	struct btrfs_fs_info *fs_info = root->fs_info;
1044	struct btrfs_key file_key;
1045	struct btrfs_key found_key;
1046	struct btrfs_path *path;
1047	struct btrfs_csum_item *item;
1048	struct btrfs_csum_item *item_end;
1049	struct extent_buffer *leaf = NULL;
1050	u64 next_offset;
1051	u64 total_bytes = 0;
1052	u64 csum_offset;
1053	u64 bytenr;
1054	u32 ins_size;
1055	int index = 0;
1056	int found_next;
1057	int ret;
1058	const u32 csum_size = fs_info->csum_size;
1059
1060	path = btrfs_alloc_path();
1061	if (!path)
1062		return -ENOMEM;
1063again:
1064	next_offset = (u64)-1;
1065	found_next = 0;
1066	bytenr = sums->logical + total_bytes;
1067	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1068	file_key.offset = bytenr;
1069	file_key.type = BTRFS_EXTENT_CSUM_KEY;
1070
1071	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1072	if (!IS_ERR(item)) {
1073		ret = 0;
1074		leaf = path->nodes[0];
1075		item_end = btrfs_item_ptr(leaf, path->slots[0],
1076					  struct btrfs_csum_item);
1077		item_end = (struct btrfs_csum_item *)((char *)item_end +
1078			   btrfs_item_size(leaf, path->slots[0]));
1079		goto found;
1080	}
1081	ret = PTR_ERR(item);
1082	if (ret != -EFBIG && ret != -ENOENT)
1083		goto out;
1084
1085	if (ret == -EFBIG) {
1086		u32 item_size;
1087		/* we found one, but it isn't big enough yet */
1088		leaf = path->nodes[0];
1089		item_size = btrfs_item_size(leaf, path->slots[0]);
1090		if ((item_size / csum_size) >=
1091		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
1092			/* already at max size, make a new one */
1093			goto insert;
1094		}
1095	} else {
1096		/* We didn't find a csum item, insert one. */
1097		ret = find_next_csum_offset(root, path, &next_offset);
1098		if (ret < 0)
1099			goto out;
1100		found_next = 1;
1101		goto insert;
1102	}
1103
1104	/*
1105	 * At this point, we know the tree has a checksum item that ends at an
1106	 * offset matching the start of the checksum range we want to insert.
1107	 * We try to extend that item as much as possible and then add as many
1108	 * checksums to it as they fit.
1109	 *
1110	 * First check if the leaf has enough free space for at least one
1111	 * checksum. If it has go directly to the item extension code, otherwise
1112	 * release the path and do a search for insertion before the extension.
1113	 */
1114	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1115		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1116		csum_offset = (bytenr - found_key.offset) >>
1117			fs_info->sectorsize_bits;
1118		goto extend_csum;
1119	}
1120
1121	btrfs_release_path(path);
1122	path->search_for_extension = 1;
1123	ret = btrfs_search_slot(trans, root, &file_key, path,
1124				csum_size, 1);
1125	path->search_for_extension = 0;
1126	if (ret < 0)
1127		goto out;
1128
1129	if (ret > 0) {
1130		if (path->slots[0] == 0)
1131			goto insert;
1132		path->slots[0]--;
1133	}
1134
1135	leaf = path->nodes[0];
1136	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1137	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1138
1139	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1140	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1141	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1142		goto insert;
1143	}
1144
1145extend_csum:
1146	if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1147	    csum_size) {
1148		int extend_nr;
1149		u64 tmp;
1150		u32 diff;
1151
1152		tmp = sums->len - total_bytes;
1153		tmp >>= fs_info->sectorsize_bits;
1154		WARN_ON(tmp < 1);
1155		extend_nr = max_t(int, 1, tmp);
1156
1157		/*
1158		 * A log tree can already have checksum items with a subset of
1159		 * the checksums we are trying to log. This can happen after
1160		 * doing a sequence of partial writes into prealloc extents and
1161		 * fsyncs in between, with a full fsync logging a larger subrange
1162		 * of an extent for which a previous fast fsync logged a smaller
1163		 * subrange. And this happens in particular due to merging file
1164		 * extent items when we complete an ordered extent for a range
1165		 * covered by a prealloc extent - this is done at
1166		 * btrfs_mark_extent_written().
1167		 *
1168		 * So if we try to extend the previous checksum item, which has
1169		 * a range that ends at the start of the range we want to insert,
1170		 * make sure we don't extend beyond the start offset of the next
1171		 * checksum item. If we are at the last item in the leaf, then
1172		 * forget the optimization of extending and add a new checksum
1173		 * item - it is not worth the complexity of releasing the path,
1174		 * getting the first key for the next leaf, repeat the btree
1175		 * search, etc, because log trees are temporary anyway and it
1176		 * would only save a few bytes of leaf space.
1177		 */
1178		if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1179			if (path->slots[0] + 1 >=
1180			    btrfs_header_nritems(path->nodes[0])) {
1181				ret = find_next_csum_offset(root, path, &next_offset);
1182				if (ret < 0)
1183					goto out;
1184				found_next = 1;
1185				goto insert;
1186			}
1187
1188			ret = find_next_csum_offset(root, path, &next_offset);
1189			if (ret < 0)
1190				goto out;
1191
1192			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1193			if (tmp <= INT_MAX)
1194				extend_nr = min_t(int, extend_nr, tmp);
1195		}
1196
1197		diff = (csum_offset + extend_nr) * csum_size;
1198		diff = min(diff,
1199			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1200
1201		diff = diff - btrfs_item_size(leaf, path->slots[0]);
1202		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1203		diff /= csum_size;
1204		diff *= csum_size;
1205
1206		btrfs_extend_item(trans, path, diff);
1207		ret = 0;
1208		goto csum;
1209	}
1210
1211insert:
1212	btrfs_release_path(path);
1213	csum_offset = 0;
1214	if (found_next) {
1215		u64 tmp;
1216
1217		tmp = sums->len - total_bytes;
1218		tmp >>= fs_info->sectorsize_bits;
1219		tmp = min(tmp, (next_offset - file_key.offset) >>
1220					 fs_info->sectorsize_bits);
1221
1222		tmp = max_t(u64, 1, tmp);
1223		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1224		ins_size = csum_size * tmp;
1225	} else {
1226		ins_size = csum_size;
1227	}
1228	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1229				      ins_size);
1230	if (ret < 0)
1231		goto out;
1232	if (WARN_ON(ret != 0))
1233		goto out;
1234	leaf = path->nodes[0];
1235csum:
1236	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1237	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1238				      btrfs_item_size(leaf, path->slots[0]));
1239	item = (struct btrfs_csum_item *)((unsigned char *)item +
1240					  csum_offset * csum_size);
1241found:
1242	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1243	ins_size *= csum_size;
1244	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1245			      ins_size);
1246	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1247			    ins_size);
1248
1249	index += ins_size;
1250	ins_size /= csum_size;
1251	total_bytes += ins_size * fs_info->sectorsize;
1252
1253	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
1254	if (total_bytes < sums->len) {
1255		btrfs_release_path(path);
1256		cond_resched();
1257		goto again;
1258	}
1259out:
1260	btrfs_free_path(path);
1261	return ret;
1262}
1263
1264void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1265				     const struct btrfs_path *path,
1266				     struct btrfs_file_extent_item *fi,
1267				     struct extent_map *em)
1268{
1269	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1270	struct btrfs_root *root = inode->root;
1271	struct extent_buffer *leaf = path->nodes[0];
1272	const int slot = path->slots[0];
1273	struct btrfs_key key;
1274	u64 extent_start, extent_end;
1275	u64 bytenr;
1276	u8 type = btrfs_file_extent_type(leaf, fi);
1277	int compress_type = btrfs_file_extent_compression(leaf, fi);
1278
1279	btrfs_item_key_to_cpu(leaf, &key, slot);
1280	extent_start = key.offset;
1281	extent_end = btrfs_file_extent_end(path);
1282	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1283	em->generation = btrfs_file_extent_generation(leaf, fi);
1284	if (type == BTRFS_FILE_EXTENT_REG ||
1285	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1286		em->start = extent_start;
1287		em->len = extent_end - extent_start;
1288		em->orig_start = extent_start -
1289			btrfs_file_extent_offset(leaf, fi);
1290		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1291		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1292		if (bytenr == 0) {
1293			em->block_start = EXTENT_MAP_HOLE;
1294			return;
1295		}
1296		if (compress_type != BTRFS_COMPRESS_NONE) {
1297			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1298			em->compress_type = compress_type;
1299			em->block_start = bytenr;
1300			em->block_len = em->orig_block_len;
1301		} else {
1302			bytenr += btrfs_file_extent_offset(leaf, fi);
1303			em->block_start = bytenr;
1304			em->block_len = em->len;
1305			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1306				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1307		}
1308	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1309		em->block_start = EXTENT_MAP_INLINE;
1310		em->start = extent_start;
1311		em->len = extent_end - extent_start;
1312		/*
1313		 * Initialize orig_start and block_len with the same values
1314		 * as in inode.c:btrfs_get_extent().
1315		 */
1316		em->orig_start = EXTENT_MAP_HOLE;
1317		em->block_len = (u64)-1;
1318		em->compress_type = compress_type;
1319		if (compress_type != BTRFS_COMPRESS_NONE)
1320			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1321	} else {
1322		btrfs_err(fs_info,
1323			  "unknown file extent item type %d, inode %llu, offset %llu, "
1324			  "root %llu", type, btrfs_ino(inode), extent_start,
1325			  root->root_key.objectid);
1326	}
1327}
1328
1329/*
1330 * Returns the end offset (non inclusive) of the file extent item the given path
1331 * points to. If it points to an inline extent, the returned offset is rounded
1332 * up to the sector size.
1333 */
1334u64 btrfs_file_extent_end(const struct btrfs_path *path)
1335{
1336	const struct extent_buffer *leaf = path->nodes[0];
1337	const int slot = path->slots[0];
1338	struct btrfs_file_extent_item *fi;
1339	struct btrfs_key key;
1340	u64 end;
1341
1342	btrfs_item_key_to_cpu(leaf, &key, slot);
1343	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1344	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1345
1346	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1347		end = btrfs_file_extent_ram_bytes(leaf, fi);
1348		end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1349	} else {
1350		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1351	}
1352
1353	return end;
1354}
1355