xref: /kernel/linux/linux-6.6/fs/btrfs/extent_io.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
9#include <linux/sched/mm.h>
10#include <linux/spinlock.h>
11#include <linux/blkdev.h>
12#include <linux/swap.h>
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
15#include <linux/prefetch.h>
16#include <linux/fsverity.h>
17#include "misc.h"
18#include "extent_io.h"
19#include "extent-io-tree.h"
20#include "extent_map.h"
21#include "ctree.h"
22#include "btrfs_inode.h"
23#include "bio.h"
24#include "check-integrity.h"
25#include "locking.h"
26#include "rcu-string.h"
27#include "backref.h"
28#include "disk-io.h"
29#include "subpage.h"
30#include "zoned.h"
31#include "block-group.h"
32#include "compression.h"
33#include "fs.h"
34#include "accessors.h"
35#include "file-item.h"
36#include "file.h"
37#include "dev-replace.h"
38#include "super.h"
39#include "transaction.h"
40
41static struct kmem_cache *extent_buffer_cache;
42
43#ifdef CONFIG_BTRFS_DEBUG
44static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
45{
46	struct btrfs_fs_info *fs_info = eb->fs_info;
47	unsigned long flags;
48
49	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
50	list_add(&eb->leak_list, &fs_info->allocated_ebs);
51	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
52}
53
54static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
55{
56	struct btrfs_fs_info *fs_info = eb->fs_info;
57	unsigned long flags;
58
59	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
60	list_del(&eb->leak_list);
61	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
62}
63
64void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
65{
66	struct extent_buffer *eb;
67	unsigned long flags;
68
69	/*
70	 * If we didn't get into open_ctree our allocated_ebs will not be
71	 * initialized, so just skip this.
72	 */
73	if (!fs_info->allocated_ebs.next)
74		return;
75
76	WARN_ON(!list_empty(&fs_info->allocated_ebs));
77	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
78	while (!list_empty(&fs_info->allocated_ebs)) {
79		eb = list_first_entry(&fs_info->allocated_ebs,
80				      struct extent_buffer, leak_list);
81		pr_err(
82	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
83		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
84		       btrfs_header_owner(eb));
85		list_del(&eb->leak_list);
86		kmem_cache_free(extent_buffer_cache, eb);
87	}
88	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
89}
90#else
91#define btrfs_leak_debug_add_eb(eb)			do {} while (0)
92#define btrfs_leak_debug_del_eb(eb)			do {} while (0)
93#endif
94
95/*
96 * Structure to record info about the bio being assembled, and other info like
97 * how many bytes are there before stripe/ordered extent boundary.
98 */
99struct btrfs_bio_ctrl {
100	struct btrfs_bio *bbio;
101	enum btrfs_compression_type compress_type;
102	u32 len_to_oe_boundary;
103	blk_opf_t opf;
104	btrfs_bio_end_io_t end_io_func;
105	struct writeback_control *wbc;
106};
107
108static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
109{
110	struct btrfs_bio *bbio = bio_ctrl->bbio;
111
112	if (!bbio)
113		return;
114
115	/* Caller should ensure the bio has at least some range added */
116	ASSERT(bbio->bio.bi_iter.bi_size);
117
118	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
119	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
120		btrfs_submit_compressed_read(bbio);
121	else
122		btrfs_submit_bio(bbio, 0);
123
124	/* The bbio is owned by the end_io handler now */
125	bio_ctrl->bbio = NULL;
126}
127
128/*
129 * Submit or fail the current bio in the bio_ctrl structure.
130 */
131static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
132{
133	struct btrfs_bio *bbio = bio_ctrl->bbio;
134
135	if (!bbio)
136		return;
137
138	if (ret) {
139		ASSERT(ret < 0);
140		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
141		/* The bio is owned by the end_io handler now */
142		bio_ctrl->bbio = NULL;
143	} else {
144		submit_one_bio(bio_ctrl);
145	}
146}
147
148int __init extent_buffer_init_cachep(void)
149{
150	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
151			sizeof(struct extent_buffer), 0,
152			SLAB_MEM_SPREAD, NULL);
153	if (!extent_buffer_cache)
154		return -ENOMEM;
155
156	return 0;
157}
158
159void __cold extent_buffer_free_cachep(void)
160{
161	/*
162	 * Make sure all delayed rcu free are flushed before we
163	 * destroy caches.
164	 */
165	rcu_barrier();
166	kmem_cache_destroy(extent_buffer_cache);
167}
168
169void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
170{
171	unsigned long index = start >> PAGE_SHIFT;
172	unsigned long end_index = end >> PAGE_SHIFT;
173	struct page *page;
174
175	while (index <= end_index) {
176		page = find_get_page(inode->i_mapping, index);
177		BUG_ON(!page); /* Pages should be in the extent_io_tree */
178		clear_page_dirty_for_io(page);
179		put_page(page);
180		index++;
181	}
182}
183
184static void process_one_page(struct btrfs_fs_info *fs_info,
185			     struct page *page, struct page *locked_page,
186			     unsigned long page_ops, u64 start, u64 end)
187{
188	u32 len;
189
190	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
191	len = end + 1 - start;
192
193	if (page_ops & PAGE_SET_ORDERED)
194		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
195	if (page_ops & PAGE_START_WRITEBACK) {
196		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
197		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
198	}
199	if (page_ops & PAGE_END_WRITEBACK)
200		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
201
202	if (page != locked_page && (page_ops & PAGE_UNLOCK))
203		btrfs_page_end_writer_lock(fs_info, page, start, len);
204}
205
206static void __process_pages_contig(struct address_space *mapping,
207				   struct page *locked_page, u64 start, u64 end,
208				   unsigned long page_ops)
209{
210	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
211	pgoff_t start_index = start >> PAGE_SHIFT;
212	pgoff_t end_index = end >> PAGE_SHIFT;
213	pgoff_t index = start_index;
214	struct folio_batch fbatch;
215	int i;
216
217	folio_batch_init(&fbatch);
218	while (index <= end_index) {
219		int found_folios;
220
221		found_folios = filemap_get_folios_contig(mapping, &index,
222				end_index, &fbatch);
223		for (i = 0; i < found_folios; i++) {
224			struct folio *folio = fbatch.folios[i];
225
226			process_one_page(fs_info, &folio->page, locked_page,
227					 page_ops, start, end);
228		}
229		folio_batch_release(&fbatch);
230		cond_resched();
231	}
232}
233
234static noinline void __unlock_for_delalloc(struct inode *inode,
235					   struct page *locked_page,
236					   u64 start, u64 end)
237{
238	unsigned long index = start >> PAGE_SHIFT;
239	unsigned long end_index = end >> PAGE_SHIFT;
240
241	ASSERT(locked_page);
242	if (index == locked_page->index && end_index == index)
243		return;
244
245	__process_pages_contig(inode->i_mapping, locked_page, start, end,
246			       PAGE_UNLOCK);
247}
248
249static noinline int lock_delalloc_pages(struct inode *inode,
250					struct page *locked_page,
251					u64 start,
252					u64 end)
253{
254	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
255	struct address_space *mapping = inode->i_mapping;
256	pgoff_t start_index = start >> PAGE_SHIFT;
257	pgoff_t end_index = end >> PAGE_SHIFT;
258	pgoff_t index = start_index;
259	u64 processed_end = start;
260	struct folio_batch fbatch;
261
262	if (index == locked_page->index && index == end_index)
263		return 0;
264
265	folio_batch_init(&fbatch);
266	while (index <= end_index) {
267		unsigned int found_folios, i;
268
269		found_folios = filemap_get_folios_contig(mapping, &index,
270				end_index, &fbatch);
271		if (found_folios == 0)
272			goto out;
273
274		for (i = 0; i < found_folios; i++) {
275			struct page *page = &fbatch.folios[i]->page;
276			u32 len = end + 1 - start;
277
278			if (page == locked_page)
279				continue;
280
281			if (btrfs_page_start_writer_lock(fs_info, page, start,
282							 len))
283				goto out;
284
285			if (!PageDirty(page) || page->mapping != mapping) {
286				btrfs_page_end_writer_lock(fs_info, page, start,
287							   len);
288				goto out;
289			}
290
291			processed_end = page_offset(page) + PAGE_SIZE - 1;
292		}
293		folio_batch_release(&fbatch);
294		cond_resched();
295	}
296
297	return 0;
298out:
299	folio_batch_release(&fbatch);
300	if (processed_end > start)
301		__unlock_for_delalloc(inode, locked_page, start, processed_end);
302	return -EAGAIN;
303}
304
305/*
306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
307 * more than @max_bytes.
308 *
309 * @start:	The original start bytenr to search.
310 *		Will store the extent range start bytenr.
311 * @end:	The original end bytenr of the search range
312 *		Will store the extent range end bytenr.
313 *
314 * Return true if we find a delalloc range which starts inside the original
315 * range, and @start/@end will store the delalloc range start/end.
316 *
317 * Return false if we can't find any delalloc range which starts inside the
318 * original range, and @start/@end will be the non-delalloc range start/end.
319 */
320EXPORT_FOR_TESTS
321noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
322				    struct page *locked_page, u64 *start,
323				    u64 *end)
324{
325	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
326	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
327	const u64 orig_start = *start;
328	const u64 orig_end = *end;
329	/* The sanity tests may not set a valid fs_info. */
330	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
331	u64 delalloc_start;
332	u64 delalloc_end;
333	bool found;
334	struct extent_state *cached_state = NULL;
335	int ret;
336	int loops = 0;
337
338	/* Caller should pass a valid @end to indicate the search range end */
339	ASSERT(orig_end > orig_start);
340
341	/* The range should at least cover part of the page */
342	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
343		 orig_end <= page_offset(locked_page)));
344again:
345	/* step one, find a bunch of delalloc bytes starting at start */
346	delalloc_start = *start;
347	delalloc_end = 0;
348	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
349					  max_bytes, &cached_state);
350	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
351		*start = delalloc_start;
352
353		/* @delalloc_end can be -1, never go beyond @orig_end */
354		*end = min(delalloc_end, orig_end);
355		free_extent_state(cached_state);
356		return false;
357	}
358
359	/*
360	 * start comes from the offset of locked_page.  We have to lock
361	 * pages in order, so we can't process delalloc bytes before
362	 * locked_page
363	 */
364	if (delalloc_start < *start)
365		delalloc_start = *start;
366
367	/*
368	 * make sure to limit the number of pages we try to lock down
369	 */
370	if (delalloc_end + 1 - delalloc_start > max_bytes)
371		delalloc_end = delalloc_start + max_bytes - 1;
372
373	/* step two, lock all the pages after the page that has start */
374	ret = lock_delalloc_pages(inode, locked_page,
375				  delalloc_start, delalloc_end);
376	ASSERT(!ret || ret == -EAGAIN);
377	if (ret == -EAGAIN) {
378		/* some of the pages are gone, lets avoid looping by
379		 * shortening the size of the delalloc range we're searching
380		 */
381		free_extent_state(cached_state);
382		cached_state = NULL;
383		if (!loops) {
384			max_bytes = PAGE_SIZE;
385			loops = 1;
386			goto again;
387		} else {
388			found = false;
389			goto out_failed;
390		}
391	}
392
393	/* step three, lock the state bits for the whole range */
394	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
395
396	/* then test to make sure it is all still delalloc */
397	ret = test_range_bit(tree, delalloc_start, delalloc_end,
398			     EXTENT_DELALLOC, 1, cached_state);
399	if (!ret) {
400		unlock_extent(tree, delalloc_start, delalloc_end,
401			      &cached_state);
402		__unlock_for_delalloc(inode, locked_page,
403			      delalloc_start, delalloc_end);
404		cond_resched();
405		goto again;
406	}
407	free_extent_state(cached_state);
408	*start = delalloc_start;
409	*end = delalloc_end;
410out_failed:
411	return found;
412}
413
414void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
415				  struct page *locked_page,
416				  u32 clear_bits, unsigned long page_ops)
417{
418	clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
419
420	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
421			       start, end, page_ops);
422}
423
424static bool btrfs_verify_page(struct page *page, u64 start)
425{
426	if (!fsverity_active(page->mapping->host) ||
427	    PageUptodate(page) ||
428	    start >= i_size_read(page->mapping->host))
429		return true;
430	return fsverity_verify_page(page);
431}
432
433static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
434{
435	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
436
437	ASSERT(page_offset(page) <= start &&
438	       start + len <= page_offset(page) + PAGE_SIZE);
439
440	if (uptodate && btrfs_verify_page(page, start))
441		btrfs_page_set_uptodate(fs_info, page, start, len);
442	else
443		btrfs_page_clear_uptodate(fs_info, page, start, len);
444
445	if (!btrfs_is_subpage(fs_info, page))
446		unlock_page(page);
447	else
448		btrfs_subpage_end_reader(fs_info, page, start, len);
449}
450
451/*
452 * after a writepage IO is done, we need to:
453 * clear the uptodate bits on error
454 * clear the writeback bits in the extent tree for this IO
455 * end_page_writeback if the page has no more pending IO
456 *
457 * Scheduling is not allowed, so the extent state tree is expected
458 * to have one and only one object corresponding to this IO.
459 */
460static void end_bio_extent_writepage(struct btrfs_bio *bbio)
461{
462	struct bio *bio = &bbio->bio;
463	int error = blk_status_to_errno(bio->bi_status);
464	struct bio_vec *bvec;
465	struct bvec_iter_all iter_all;
466
467	ASSERT(!bio_flagged(bio, BIO_CLONED));
468	bio_for_each_segment_all(bvec, bio, iter_all) {
469		struct page *page = bvec->bv_page;
470		struct inode *inode = page->mapping->host;
471		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
472		const u32 sectorsize = fs_info->sectorsize;
473		u64 start = page_offset(page) + bvec->bv_offset;
474		u32 len = bvec->bv_len;
475
476		/* Our read/write should always be sector aligned. */
477		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
478			btrfs_err(fs_info,
479		"partial page write in btrfs with offset %u and length %u",
480				  bvec->bv_offset, bvec->bv_len);
481		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
482			btrfs_info(fs_info,
483		"incomplete page write with offset %u and length %u",
484				   bvec->bv_offset, bvec->bv_len);
485
486		btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error);
487		if (error)
488			mapping_set_error(page->mapping, error);
489		btrfs_page_clear_writeback(fs_info, page, start, len);
490	}
491
492	bio_put(bio);
493}
494
495/*
496 * Record previously processed extent range
497 *
498 * For endio_readpage_release_extent() to handle a full extent range, reducing
499 * the extent io operations.
500 */
501struct processed_extent {
502	struct btrfs_inode *inode;
503	/* Start of the range in @inode */
504	u64 start;
505	/* End of the range in @inode */
506	u64 end;
507	bool uptodate;
508};
509
510/*
511 * Try to release processed extent range
512 *
513 * May not release the extent range right now if the current range is
514 * contiguous to processed extent.
515 *
516 * Will release processed extent when any of @inode, @uptodate, the range is
517 * no longer contiguous to the processed range.
518 *
519 * Passing @inode == NULL will force processed extent to be released.
520 */
521static void endio_readpage_release_extent(struct processed_extent *processed,
522			      struct btrfs_inode *inode, u64 start, u64 end,
523			      bool uptodate)
524{
525	struct extent_state *cached = NULL;
526	struct extent_io_tree *tree;
527
528	/* The first extent, initialize @processed */
529	if (!processed->inode)
530		goto update;
531
532	/*
533	 * Contiguous to processed extent, just uptodate the end.
534	 *
535	 * Several things to notice:
536	 *
537	 * - bio can be merged as long as on-disk bytenr is contiguous
538	 *   This means we can have page belonging to other inodes, thus need to
539	 *   check if the inode still matches.
540	 * - bvec can contain range beyond current page for multi-page bvec
541	 *   Thus we need to do processed->end + 1 >= start check
542	 */
543	if (processed->inode == inode && processed->uptodate == uptodate &&
544	    processed->end + 1 >= start && end >= processed->end) {
545		processed->end = end;
546		return;
547	}
548
549	tree = &processed->inode->io_tree;
550	/*
551	 * Now we don't have range contiguous to the processed range, release
552	 * the processed range now.
553	 */
554	unlock_extent(tree, processed->start, processed->end, &cached);
555
556update:
557	/* Update processed to current range */
558	processed->inode = inode;
559	processed->start = start;
560	processed->end = end;
561	processed->uptodate = uptodate;
562}
563
564static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
565{
566	ASSERT(PageLocked(page));
567	if (!btrfs_is_subpage(fs_info, page))
568		return;
569
570	ASSERT(PagePrivate(page));
571	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
572}
573
574/*
575 * after a readpage IO is done, we need to:
576 * clear the uptodate bits on error
577 * set the uptodate bits if things worked
578 * set the page up to date if all extents in the tree are uptodate
579 * clear the lock bit in the extent tree
580 * unlock the page if there are no other extents locked for it
581 *
582 * Scheduling is not allowed, so the extent state tree is expected
583 * to have one and only one object corresponding to this IO.
584 */
585static void end_bio_extent_readpage(struct btrfs_bio *bbio)
586{
587	struct bio *bio = &bbio->bio;
588	struct bio_vec *bvec;
589	struct processed_extent processed = { 0 };
590	/*
591	 * The offset to the beginning of a bio, since one bio can never be
592	 * larger than UINT_MAX, u32 here is enough.
593	 */
594	u32 bio_offset = 0;
595	struct bvec_iter_all iter_all;
596
597	ASSERT(!bio_flagged(bio, BIO_CLONED));
598	bio_for_each_segment_all(bvec, bio, iter_all) {
599		bool uptodate = !bio->bi_status;
600		struct page *page = bvec->bv_page;
601		struct inode *inode = page->mapping->host;
602		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
603		const u32 sectorsize = fs_info->sectorsize;
604		u64 start;
605		u64 end;
606		u32 len;
607
608		btrfs_debug(fs_info,
609			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
610			bio->bi_iter.bi_sector, bio->bi_status,
611			bbio->mirror_num);
612
613		/*
614		 * We always issue full-sector reads, but if some block in a
615		 * page fails to read, blk_update_request() will advance
616		 * bv_offset and adjust bv_len to compensate.  Print a warning
617		 * for unaligned offsets, and an error if they don't add up to
618		 * a full sector.
619		 */
620		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
621			btrfs_err(fs_info,
622		"partial page read in btrfs with offset %u and length %u",
623				  bvec->bv_offset, bvec->bv_len);
624		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
625				     sectorsize))
626			btrfs_info(fs_info,
627		"incomplete page read with offset %u and length %u",
628				   bvec->bv_offset, bvec->bv_len);
629
630		start = page_offset(page) + bvec->bv_offset;
631		end = start + bvec->bv_len - 1;
632		len = bvec->bv_len;
633
634		if (likely(uptodate)) {
635			loff_t i_size = i_size_read(inode);
636			pgoff_t end_index = i_size >> PAGE_SHIFT;
637
638			/*
639			 * Zero out the remaining part if this range straddles
640			 * i_size.
641			 *
642			 * Here we should only zero the range inside the bvec,
643			 * not touch anything else.
644			 *
645			 * NOTE: i_size is exclusive while end is inclusive.
646			 */
647			if (page->index == end_index && i_size <= end) {
648				u32 zero_start = max(offset_in_page(i_size),
649						     offset_in_page(start));
650
651				zero_user_segment(page, zero_start,
652						  offset_in_page(end) + 1);
653			}
654		}
655
656		/* Update page status and unlock. */
657		end_page_read(page, uptodate, start, len);
658		endio_readpage_release_extent(&processed, BTRFS_I(inode),
659					      start, end, uptodate);
660
661		ASSERT(bio_offset + len > bio_offset);
662		bio_offset += len;
663
664	}
665	/* Release the last extent */
666	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
667	bio_put(bio);
668}
669
670/*
671 * Populate every free slot in a provided array with pages.
672 *
673 * @nr_pages:   number of pages to allocate
674 * @page_array: the array to fill with pages; any existing non-null entries in
675 * 		the array will be skipped
676 *
677 * Return: 0        if all pages were able to be allocated;
678 *         -ENOMEM  otherwise, the partially allocated pages would be freed and
679 *                  the array slots zeroed
680 */
681int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
682{
683	unsigned int allocated;
684
685	for (allocated = 0; allocated < nr_pages;) {
686		unsigned int last = allocated;
687
688		allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
689
690		if (allocated == nr_pages)
691			return 0;
692
693		/*
694		 * During this iteration, no page could be allocated, even
695		 * though alloc_pages_bulk_array() falls back to alloc_page()
696		 * if  it could not bulk-allocate. So we must be out of memory.
697		 */
698		if (allocated == last) {
699			for (int i = 0; i < allocated; i++) {
700				__free_page(page_array[i]);
701				page_array[i] = NULL;
702			}
703			return -ENOMEM;
704		}
705
706		memalloc_retry_wait(GFP_NOFS);
707	}
708	return 0;
709}
710
711static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
712				struct page *page, u64 disk_bytenr,
713				unsigned int pg_offset)
714{
715	struct bio *bio = &bio_ctrl->bbio->bio;
716	struct bio_vec *bvec = bio_last_bvec_all(bio);
717	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
718
719	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
720		/*
721		 * For compression, all IO should have its logical bytenr set
722		 * to the starting bytenr of the compressed extent.
723		 */
724		return bio->bi_iter.bi_sector == sector;
725	}
726
727	/*
728	 * The contig check requires the following conditions to be met:
729	 *
730	 * 1) The pages are belonging to the same inode
731	 *    This is implied by the call chain.
732	 *
733	 * 2) The range has adjacent logical bytenr
734	 *
735	 * 3) The range has adjacent file offset
736	 *    This is required for the usage of btrfs_bio->file_offset.
737	 */
738	return bio_end_sector(bio) == sector &&
739		page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
740		page_offset(page) + pg_offset;
741}
742
743static void alloc_new_bio(struct btrfs_inode *inode,
744			  struct btrfs_bio_ctrl *bio_ctrl,
745			  u64 disk_bytenr, u64 file_offset)
746{
747	struct btrfs_fs_info *fs_info = inode->root->fs_info;
748	struct btrfs_bio *bbio;
749
750	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
751			       bio_ctrl->end_io_func, NULL);
752	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
753	bbio->inode = inode;
754	bbio->file_offset = file_offset;
755	bio_ctrl->bbio = bbio;
756	bio_ctrl->len_to_oe_boundary = U32_MAX;
757
758	/* Limit data write bios to the ordered boundary. */
759	if (bio_ctrl->wbc) {
760		struct btrfs_ordered_extent *ordered;
761
762		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
763		if (ordered) {
764			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
765					ordered->file_offset +
766					ordered->disk_num_bytes - file_offset);
767			bbio->ordered = ordered;
768		}
769
770		/*
771		 * Pick the last added device to support cgroup writeback.  For
772		 * multi-device file systems this means blk-cgroup policies have
773		 * to always be set on the last added/replaced device.
774		 * This is a bit odd but has been like that for a long time.
775		 */
776		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
777		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
778	}
779}
780
781/*
782 * @disk_bytenr: logical bytenr where the write will be
783 * @page:	page to add to the bio
784 * @size:	portion of page that we want to write to
785 * @pg_offset:	offset of the new bio or to check whether we are adding
786 *              a contiguous page to the previous one
787 *
788 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
789 * new one in @bio_ctrl->bbio.
790 * The mirror number for this IO should already be initizlied in
791 * @bio_ctrl->mirror_num.
792 */
793static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
794			       u64 disk_bytenr, struct page *page,
795			       size_t size, unsigned long pg_offset)
796{
797	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
798
799	ASSERT(pg_offset + size <= PAGE_SIZE);
800	ASSERT(bio_ctrl->end_io_func);
801
802	if (bio_ctrl->bbio &&
803	    !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
804		submit_one_bio(bio_ctrl);
805
806	do {
807		u32 len = size;
808
809		/* Allocate new bio if needed */
810		if (!bio_ctrl->bbio) {
811			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
812				      page_offset(page) + pg_offset);
813		}
814
815		/* Cap to the current ordered extent boundary if there is one. */
816		if (len > bio_ctrl->len_to_oe_boundary) {
817			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
818			ASSERT(is_data_inode(&inode->vfs_inode));
819			len = bio_ctrl->len_to_oe_boundary;
820		}
821
822		if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
823			/* bio full: move on to a new one */
824			submit_one_bio(bio_ctrl);
825			continue;
826		}
827
828		if (bio_ctrl->wbc)
829			wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
830
831		size -= len;
832		pg_offset += len;
833		disk_bytenr += len;
834
835		/*
836		 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
837		 * sector aligned.  alloc_new_bio() then sets it to the end of
838		 * our ordered extent for writes into zoned devices.
839		 *
840		 * When len_to_oe_boundary is tracking an ordered extent, we
841		 * trust the ordered extent code to align things properly, and
842		 * the check above to cap our write to the ordered extent
843		 * boundary is correct.
844		 *
845		 * When len_to_oe_boundary is U32_MAX, the cap above would
846		 * result in a 4095 byte IO for the last page right before
847		 * we hit the bio limit of UINT_MAX.  bio_add_page() has all
848		 * the checks required to make sure we don't overflow the bio,
849		 * and we should just ignore len_to_oe_boundary completely
850		 * unless we're using it to track an ordered extent.
851		 *
852		 * It's pretty hard to make a bio sized U32_MAX, but it can
853		 * happen when the page cache is able to feed us contiguous
854		 * pages for large extents.
855		 */
856		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
857			bio_ctrl->len_to_oe_boundary -= len;
858
859		/* Ordered extent boundary: move on to a new bio. */
860		if (bio_ctrl->len_to_oe_boundary == 0)
861			submit_one_bio(bio_ctrl);
862	} while (size);
863}
864
865static int attach_extent_buffer_page(struct extent_buffer *eb,
866				     struct page *page,
867				     struct btrfs_subpage *prealloc)
868{
869	struct btrfs_fs_info *fs_info = eb->fs_info;
870	int ret = 0;
871
872	/*
873	 * If the page is mapped to btree inode, we should hold the private
874	 * lock to prevent race.
875	 * For cloned or dummy extent buffers, their pages are not mapped and
876	 * will not race with any other ebs.
877	 */
878	if (page->mapping)
879		lockdep_assert_held(&page->mapping->private_lock);
880
881	if (fs_info->nodesize >= PAGE_SIZE) {
882		if (!PagePrivate(page))
883			attach_page_private(page, eb);
884		else
885			WARN_ON(page->private != (unsigned long)eb);
886		return 0;
887	}
888
889	/* Already mapped, just free prealloc */
890	if (PagePrivate(page)) {
891		btrfs_free_subpage(prealloc);
892		return 0;
893	}
894
895	if (prealloc)
896		/* Has preallocated memory for subpage */
897		attach_page_private(page, prealloc);
898	else
899		/* Do new allocation to attach subpage */
900		ret = btrfs_attach_subpage(fs_info, page,
901					   BTRFS_SUBPAGE_METADATA);
902	return ret;
903}
904
905int set_page_extent_mapped(struct page *page)
906{
907	struct btrfs_fs_info *fs_info;
908
909	ASSERT(page->mapping);
910
911	if (PagePrivate(page))
912		return 0;
913
914	fs_info = btrfs_sb(page->mapping->host->i_sb);
915
916	if (btrfs_is_subpage(fs_info, page))
917		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
918
919	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
920	return 0;
921}
922
923void clear_page_extent_mapped(struct page *page)
924{
925	struct btrfs_fs_info *fs_info;
926
927	ASSERT(page->mapping);
928
929	if (!PagePrivate(page))
930		return;
931
932	fs_info = btrfs_sb(page->mapping->host->i_sb);
933	if (btrfs_is_subpage(fs_info, page))
934		return btrfs_detach_subpage(fs_info, page);
935
936	detach_page_private(page);
937}
938
939static struct extent_map *
940__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
941		 u64 start, u64 len, struct extent_map **em_cached)
942{
943	struct extent_map *em;
944
945	if (em_cached && *em_cached) {
946		em = *em_cached;
947		if (extent_map_in_tree(em) && start >= em->start &&
948		    start < extent_map_end(em)) {
949			refcount_inc(&em->refs);
950			return em;
951		}
952
953		free_extent_map(em);
954		*em_cached = NULL;
955	}
956
957	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
958	if (em_cached && !IS_ERR(em)) {
959		BUG_ON(*em_cached);
960		refcount_inc(&em->refs);
961		*em_cached = em;
962	}
963	return em;
964}
965/*
966 * basic readpage implementation.  Locked extent state structs are inserted
967 * into the tree that are removed when the IO is done (by the end_io
968 * handlers)
969 * XXX JDM: This needs looking at to ensure proper page locking
970 * return 0 on success, otherwise return error
971 */
972static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
973		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
974{
975	struct inode *inode = page->mapping->host;
976	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
977	u64 start = page_offset(page);
978	const u64 end = start + PAGE_SIZE - 1;
979	u64 cur = start;
980	u64 extent_offset;
981	u64 last_byte = i_size_read(inode);
982	u64 block_start;
983	struct extent_map *em;
984	int ret = 0;
985	size_t pg_offset = 0;
986	size_t iosize;
987	size_t blocksize = inode->i_sb->s_blocksize;
988	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
989
990	ret = set_page_extent_mapped(page);
991	if (ret < 0) {
992		unlock_extent(tree, start, end, NULL);
993		unlock_page(page);
994		return ret;
995	}
996
997	if (page->index == last_byte >> PAGE_SHIFT) {
998		size_t zero_offset = offset_in_page(last_byte);
999
1000		if (zero_offset) {
1001			iosize = PAGE_SIZE - zero_offset;
1002			memzero_page(page, zero_offset, iosize);
1003		}
1004	}
1005	bio_ctrl->end_io_func = end_bio_extent_readpage;
1006	begin_page_read(fs_info, page);
1007	while (cur <= end) {
1008		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1009		bool force_bio_submit = false;
1010		u64 disk_bytenr;
1011
1012		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1013		if (cur >= last_byte) {
1014			iosize = PAGE_SIZE - pg_offset;
1015			memzero_page(page, pg_offset, iosize);
1016			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1017			end_page_read(page, true, cur, iosize);
1018			break;
1019		}
1020		em = __get_extent_map(inode, page, pg_offset, cur,
1021				      end - cur + 1, em_cached);
1022		if (IS_ERR(em)) {
1023			unlock_extent(tree, cur, end, NULL);
1024			end_page_read(page, false, cur, end + 1 - cur);
1025			return PTR_ERR(em);
1026		}
1027		extent_offset = cur - em->start;
1028		BUG_ON(extent_map_end(em) <= cur);
1029		BUG_ON(end < cur);
1030
1031		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1032			compress_type = em->compress_type;
1033
1034		iosize = min(extent_map_end(em) - cur, end - cur + 1);
1035		iosize = ALIGN(iosize, blocksize);
1036		if (compress_type != BTRFS_COMPRESS_NONE)
1037			disk_bytenr = em->block_start;
1038		else
1039			disk_bytenr = em->block_start + extent_offset;
1040		block_start = em->block_start;
1041		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1042			block_start = EXTENT_MAP_HOLE;
1043
1044		/*
1045		 * If we have a file range that points to a compressed extent
1046		 * and it's followed by a consecutive file range that points
1047		 * to the same compressed extent (possibly with a different
1048		 * offset and/or length, so it either points to the whole extent
1049		 * or only part of it), we must make sure we do not submit a
1050		 * single bio to populate the pages for the 2 ranges because
1051		 * this makes the compressed extent read zero out the pages
1052		 * belonging to the 2nd range. Imagine the following scenario:
1053		 *
1054		 *  File layout
1055		 *  [0 - 8K]                     [8K - 24K]
1056		 *    |                               |
1057		 *    |                               |
1058		 * points to extent X,         points to extent X,
1059		 * offset 4K, length of 8K     offset 0, length 16K
1060		 *
1061		 * [extent X, compressed length = 4K uncompressed length = 16K]
1062		 *
1063		 * If the bio to read the compressed extent covers both ranges,
1064		 * it will decompress extent X into the pages belonging to the
1065		 * first range and then it will stop, zeroing out the remaining
1066		 * pages that belong to the other range that points to extent X.
1067		 * So here we make sure we submit 2 bios, one for the first
1068		 * range and another one for the third range. Both will target
1069		 * the same physical extent from disk, but we can't currently
1070		 * make the compressed bio endio callback populate the pages
1071		 * for both ranges because each compressed bio is tightly
1072		 * coupled with a single extent map, and each range can have
1073		 * an extent map with a different offset value relative to the
1074		 * uncompressed data of our extent and different lengths. This
1075		 * is a corner case so we prioritize correctness over
1076		 * non-optimal behavior (submitting 2 bios for the same extent).
1077		 */
1078		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1079		    prev_em_start && *prev_em_start != (u64)-1 &&
1080		    *prev_em_start != em->start)
1081			force_bio_submit = true;
1082
1083		if (prev_em_start)
1084			*prev_em_start = em->start;
1085
1086		free_extent_map(em);
1087		em = NULL;
1088
1089		/* we've found a hole, just zero and go on */
1090		if (block_start == EXTENT_MAP_HOLE) {
1091			memzero_page(page, pg_offset, iosize);
1092
1093			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1094			end_page_read(page, true, cur, iosize);
1095			cur = cur + iosize;
1096			pg_offset += iosize;
1097			continue;
1098		}
1099		/* the get_extent function already copied into the page */
1100		if (block_start == EXTENT_MAP_INLINE) {
1101			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1102			end_page_read(page, true, cur, iosize);
1103			cur = cur + iosize;
1104			pg_offset += iosize;
1105			continue;
1106		}
1107
1108		if (bio_ctrl->compress_type != compress_type) {
1109			submit_one_bio(bio_ctrl);
1110			bio_ctrl->compress_type = compress_type;
1111		}
1112
1113		if (force_bio_submit)
1114			submit_one_bio(bio_ctrl);
1115		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1116				   pg_offset);
1117		cur = cur + iosize;
1118		pg_offset += iosize;
1119	}
1120
1121	return 0;
1122}
1123
1124int btrfs_read_folio(struct file *file, struct folio *folio)
1125{
1126	struct page *page = &folio->page;
1127	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1128	u64 start = page_offset(page);
1129	u64 end = start + PAGE_SIZE - 1;
1130	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1131	int ret;
1132
1133	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1134
1135	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
1136	/*
1137	 * If btrfs_do_readpage() failed we will want to submit the assembled
1138	 * bio to do the cleanup.
1139	 */
1140	submit_one_bio(&bio_ctrl);
1141	return ret;
1142}
1143
1144static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1145					u64 start, u64 end,
1146					struct extent_map **em_cached,
1147					struct btrfs_bio_ctrl *bio_ctrl,
1148					u64 *prev_em_start)
1149{
1150	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1151	int index;
1152
1153	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1154
1155	for (index = 0; index < nr_pages; index++) {
1156		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1157				  prev_em_start);
1158		put_page(pages[index]);
1159	}
1160}
1161
1162/*
1163 * helper for __extent_writepage, doing all of the delayed allocation setup.
1164 *
1165 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1166 * to write the page (copy into inline extent).  In this case the IO has
1167 * been started and the page is already unlocked.
1168 *
1169 * This returns 0 if all went well (page still locked)
1170 * This returns < 0 if there were errors (page still locked)
1171 */
1172static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1173		struct page *page, struct writeback_control *wbc)
1174{
1175	const u64 page_start = page_offset(page);
1176	const u64 page_end = page_start + PAGE_SIZE - 1;
1177	u64 delalloc_start = page_start;
1178	u64 delalloc_end = page_end;
1179	u64 delalloc_to_write = 0;
1180	int ret = 0;
1181
1182	while (delalloc_start < page_end) {
1183		delalloc_end = page_end;
1184		if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1185					      &delalloc_start, &delalloc_end)) {
1186			delalloc_start = delalloc_end + 1;
1187			continue;
1188		}
1189
1190		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1191					       delalloc_end, wbc);
1192		if (ret < 0)
1193			return ret;
1194
1195		delalloc_start = delalloc_end + 1;
1196	}
1197
1198	/*
1199	 * delalloc_end is already one less than the total length, so
1200	 * we don't subtract one from PAGE_SIZE
1201	 */
1202	delalloc_to_write +=
1203		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1204
1205	/*
1206	 * If btrfs_run_dealloc_range() already started I/O and unlocked
1207	 * the pages, we just need to account for them here.
1208	 */
1209	if (ret == 1) {
1210		wbc->nr_to_write -= delalloc_to_write;
1211		return 1;
1212	}
1213
1214	if (wbc->nr_to_write < delalloc_to_write) {
1215		int thresh = 8192;
1216
1217		if (delalloc_to_write < thresh * 2)
1218			thresh = delalloc_to_write;
1219		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1220					 thresh);
1221	}
1222
1223	return 0;
1224}
1225
1226/*
1227 * Find the first byte we need to write.
1228 *
1229 * For subpage, one page can contain several sectors, and
1230 * __extent_writepage_io() will just grab all extent maps in the page
1231 * range and try to submit all non-inline/non-compressed extents.
1232 *
1233 * This is a big problem for subpage, we shouldn't re-submit already written
1234 * data at all.
1235 * This function will lookup subpage dirty bit to find which range we really
1236 * need to submit.
1237 *
1238 * Return the next dirty range in [@start, @end).
1239 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1240 */
1241static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1242				 struct page *page, u64 *start, u64 *end)
1243{
1244	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1245	struct btrfs_subpage_info *spi = fs_info->subpage_info;
1246	u64 orig_start = *start;
1247	/* Declare as unsigned long so we can use bitmap ops */
1248	unsigned long flags;
1249	int range_start_bit;
1250	int range_end_bit;
1251
1252	/*
1253	 * For regular sector size == page size case, since one page only
1254	 * contains one sector, we return the page offset directly.
1255	 */
1256	if (!btrfs_is_subpage(fs_info, page)) {
1257		*start = page_offset(page);
1258		*end = page_offset(page) + PAGE_SIZE;
1259		return;
1260	}
1261
1262	range_start_bit = spi->dirty_offset +
1263			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1264
1265	/* We should have the page locked, but just in case */
1266	spin_lock_irqsave(&subpage->lock, flags);
1267	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1268			       spi->dirty_offset + spi->bitmap_nr_bits);
1269	spin_unlock_irqrestore(&subpage->lock, flags);
1270
1271	range_start_bit -= spi->dirty_offset;
1272	range_end_bit -= spi->dirty_offset;
1273
1274	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1275	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1276}
1277
1278/*
1279 * helper for __extent_writepage.  This calls the writepage start hooks,
1280 * and does the loop to map the page into extents and bios.
1281 *
1282 * We return 1 if the IO is started and the page is unlocked,
1283 * 0 if all went well (page still locked)
1284 * < 0 if there were errors (page still locked)
1285 */
1286static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1287				 struct page *page,
1288				 struct btrfs_bio_ctrl *bio_ctrl,
1289				 loff_t i_size,
1290				 int *nr_ret)
1291{
1292	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1293	u64 cur = page_offset(page);
1294	u64 end = cur + PAGE_SIZE - 1;
1295	u64 extent_offset;
1296	u64 block_start;
1297	struct extent_map *em;
1298	int ret = 0;
1299	int nr = 0;
1300
1301	ret = btrfs_writepage_cow_fixup(page);
1302	if (ret) {
1303		/* Fixup worker will requeue */
1304		redirty_page_for_writepage(bio_ctrl->wbc, page);
1305		unlock_page(page);
1306		return 1;
1307	}
1308
1309	bio_ctrl->end_io_func = end_bio_extent_writepage;
1310	while (cur <= end) {
1311		u32 len = end - cur + 1;
1312		u64 disk_bytenr;
1313		u64 em_end;
1314		u64 dirty_range_start = cur;
1315		u64 dirty_range_end;
1316		u32 iosize;
1317
1318		if (cur >= i_size) {
1319			btrfs_mark_ordered_io_finished(inode, page, cur, len,
1320						       true);
1321			/*
1322			 * This range is beyond i_size, thus we don't need to
1323			 * bother writing back.
1324			 * But we still need to clear the dirty subpage bit, or
1325			 * the next time the page gets dirtied, we will try to
1326			 * writeback the sectors with subpage dirty bits,
1327			 * causing writeback without ordered extent.
1328			 */
1329			btrfs_page_clear_dirty(fs_info, page, cur, len);
1330			break;
1331		}
1332
1333		find_next_dirty_byte(fs_info, page, &dirty_range_start,
1334				     &dirty_range_end);
1335		if (cur < dirty_range_start) {
1336			cur = dirty_range_start;
1337			continue;
1338		}
1339
1340		em = btrfs_get_extent(inode, NULL, 0, cur, len);
1341		if (IS_ERR(em)) {
1342			ret = PTR_ERR_OR_ZERO(em);
1343			goto out_error;
1344		}
1345
1346		extent_offset = cur - em->start;
1347		em_end = extent_map_end(em);
1348		ASSERT(cur <= em_end);
1349		ASSERT(cur < end);
1350		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1351		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1352
1353		block_start = em->block_start;
1354		disk_bytenr = em->block_start + extent_offset;
1355
1356		ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
1357		ASSERT(block_start != EXTENT_MAP_HOLE);
1358		ASSERT(block_start != EXTENT_MAP_INLINE);
1359
1360		/*
1361		 * Note that em_end from extent_map_end() and dirty_range_end from
1362		 * find_next_dirty_byte() are all exclusive
1363		 */
1364		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1365		free_extent_map(em);
1366		em = NULL;
1367
1368		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1369		if (!PageWriteback(page)) {
1370			btrfs_err(inode->root->fs_info,
1371				   "page %lu not writeback, cur %llu end %llu",
1372			       page->index, cur, end);
1373		}
1374
1375		/*
1376		 * Although the PageDirty bit is cleared before entering this
1377		 * function, subpage dirty bit is not cleared.
1378		 * So clear subpage dirty bit here so next time we won't submit
1379		 * page for range already written to disk.
1380		 */
1381		btrfs_page_clear_dirty(fs_info, page, cur, iosize);
1382
1383		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1384				   cur - page_offset(page));
1385		cur += iosize;
1386		nr++;
1387	}
1388
1389	btrfs_page_assert_not_dirty(fs_info, page);
1390	*nr_ret = nr;
1391	return 0;
1392
1393out_error:
1394	/*
1395	 * If we finish without problem, we should not only clear page dirty,
1396	 * but also empty subpage dirty bits
1397	 */
1398	*nr_ret = nr;
1399	return ret;
1400}
1401
1402/*
1403 * the writepage semantics are similar to regular writepage.  extent
1404 * records are inserted to lock ranges in the tree, and as dirty areas
1405 * are found, they are marked writeback.  Then the lock bits are removed
1406 * and the end_io handler clears the writeback ranges
1407 *
1408 * Return 0 if everything goes well.
1409 * Return <0 for error.
1410 */
1411static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
1412{
1413	struct folio *folio = page_folio(page);
1414	struct inode *inode = page->mapping->host;
1415	const u64 page_start = page_offset(page);
1416	int ret;
1417	int nr = 0;
1418	size_t pg_offset;
1419	loff_t i_size = i_size_read(inode);
1420	unsigned long end_index = i_size >> PAGE_SHIFT;
1421
1422	trace___extent_writepage(page, inode, bio_ctrl->wbc);
1423
1424	WARN_ON(!PageLocked(page));
1425
1426	pg_offset = offset_in_page(i_size);
1427	if (page->index > end_index ||
1428	   (page->index == end_index && !pg_offset)) {
1429		folio_invalidate(folio, 0, folio_size(folio));
1430		folio_unlock(folio);
1431		return 0;
1432	}
1433
1434	if (page->index == end_index)
1435		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1436
1437	ret = set_page_extent_mapped(page);
1438	if (ret < 0)
1439		goto done;
1440
1441	ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1442	if (ret == 1)
1443		return 0;
1444	if (ret)
1445		goto done;
1446
1447	ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1448	if (ret == 1)
1449		return 0;
1450
1451	bio_ctrl->wbc->nr_to_write--;
1452
1453done:
1454	if (nr == 0) {
1455		/* make sure the mapping tag for page dirty gets cleared */
1456		set_page_writeback(page);
1457		end_page_writeback(page);
1458	}
1459	if (ret) {
1460		btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1461					       PAGE_SIZE, !ret);
1462		mapping_set_error(page->mapping, ret);
1463	}
1464	unlock_page(page);
1465	ASSERT(ret <= 0);
1466	return ret;
1467}
1468
1469void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1470{
1471	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1472		       TASK_UNINTERRUPTIBLE);
1473}
1474
1475/*
1476 * Lock extent buffer status and pages for writeback.
1477 *
1478 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1479 * extent buffer is not dirty)
1480 * Return %true is the extent buffer is submitted to bio.
1481 */
1482static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1483			  struct writeback_control *wbc)
1484{
1485	struct btrfs_fs_info *fs_info = eb->fs_info;
1486	bool ret = false;
1487
1488	btrfs_tree_lock(eb);
1489	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1490		btrfs_tree_unlock(eb);
1491		if (wbc->sync_mode != WB_SYNC_ALL)
1492			return false;
1493		wait_on_extent_buffer_writeback(eb);
1494		btrfs_tree_lock(eb);
1495	}
1496
1497	/*
1498	 * We need to do this to prevent races in people who check if the eb is
1499	 * under IO since we can end up having no IO bits set for a short period
1500	 * of time.
1501	 */
1502	spin_lock(&eb->refs_lock);
1503	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1504		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1505		spin_unlock(&eb->refs_lock);
1506		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1507		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1508					 -eb->len,
1509					 fs_info->dirty_metadata_batch);
1510		ret = true;
1511	} else {
1512		spin_unlock(&eb->refs_lock);
1513	}
1514	btrfs_tree_unlock(eb);
1515	return ret;
1516}
1517
1518static void set_btree_ioerr(struct extent_buffer *eb)
1519{
1520	struct btrfs_fs_info *fs_info = eb->fs_info;
1521
1522	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1523
1524	/*
1525	 * A read may stumble upon this buffer later, make sure that it gets an
1526	 * error and knows there was an error.
1527	 */
1528	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1529
1530	/*
1531	 * We need to set the mapping with the io error as well because a write
1532	 * error will flip the file system readonly, and then syncfs() will
1533	 * return a 0 because we are readonly if we don't modify the err seq for
1534	 * the superblock.
1535	 */
1536	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1537
1538	/*
1539	 * If writeback for a btree extent that doesn't belong to a log tree
1540	 * failed, increment the counter transaction->eb_write_errors.
1541	 * We do this because while the transaction is running and before it's
1542	 * committing (when we call filemap_fdata[write|wait]_range against
1543	 * the btree inode), we might have
1544	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1545	 * returns an error or an error happens during writeback, when we're
1546	 * committing the transaction we wouldn't know about it, since the pages
1547	 * can be no longer dirty nor marked anymore for writeback (if a
1548	 * subsequent modification to the extent buffer didn't happen before the
1549	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1550	 * able to find the pages tagged with SetPageError at transaction
1551	 * commit time. So if this happens we must abort the transaction,
1552	 * otherwise we commit a super block with btree roots that point to
1553	 * btree nodes/leafs whose content on disk is invalid - either garbage
1554	 * or the content of some node/leaf from a past generation that got
1555	 * cowed or deleted and is no longer valid.
1556	 *
1557	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1558	 * not be enough - we need to distinguish between log tree extents vs
1559	 * non-log tree extents, and the next filemap_fdatawait_range() call
1560	 * will catch and clear such errors in the mapping - and that call might
1561	 * be from a log sync and not from a transaction commit. Also, checking
1562	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1563	 * not done and would not be reliable - the eb might have been released
1564	 * from memory and reading it back again means that flag would not be
1565	 * set (since it's a runtime flag, not persisted on disk).
1566	 *
1567	 * Using the flags below in the btree inode also makes us achieve the
1568	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1569	 * writeback for all dirty pages and before filemap_fdatawait_range()
1570	 * is called, the writeback for all dirty pages had already finished
1571	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1572	 * filemap_fdatawait_range() would return success, as it could not know
1573	 * that writeback errors happened (the pages were no longer tagged for
1574	 * writeback).
1575	 */
1576	switch (eb->log_index) {
1577	case -1:
1578		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1579		break;
1580	case 0:
1581		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1582		break;
1583	case 1:
1584		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1585		break;
1586	default:
1587		BUG(); /* unexpected, logic error */
1588	}
1589}
1590
1591/*
1592 * The endio specific version which won't touch any unsafe spinlock in endio
1593 * context.
1594 */
1595static struct extent_buffer *find_extent_buffer_nolock(
1596		struct btrfs_fs_info *fs_info, u64 start)
1597{
1598	struct extent_buffer *eb;
1599
1600	rcu_read_lock();
1601	eb = radix_tree_lookup(&fs_info->buffer_radix,
1602			       start >> fs_info->sectorsize_bits);
1603	if (eb && atomic_inc_not_zero(&eb->refs)) {
1604		rcu_read_unlock();
1605		return eb;
1606	}
1607	rcu_read_unlock();
1608	return NULL;
1609}
1610
1611static void extent_buffer_write_end_io(struct btrfs_bio *bbio)
1612{
1613	struct extent_buffer *eb = bbio->private;
1614	struct btrfs_fs_info *fs_info = eb->fs_info;
1615	bool uptodate = !bbio->bio.bi_status;
1616	struct bvec_iter_all iter_all;
1617	struct bio_vec *bvec;
1618	u32 bio_offset = 0;
1619
1620	if (!uptodate)
1621		set_btree_ioerr(eb);
1622
1623	bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
1624		u64 start = eb->start + bio_offset;
1625		struct page *page = bvec->bv_page;
1626		u32 len = bvec->bv_len;
1627
1628		btrfs_page_clear_writeback(fs_info, page, start, len);
1629		bio_offset += len;
1630	}
1631
1632	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1633	smp_mb__after_atomic();
1634	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1635
1636	bio_put(&bbio->bio);
1637}
1638
1639static void prepare_eb_write(struct extent_buffer *eb)
1640{
1641	u32 nritems;
1642	unsigned long start;
1643	unsigned long end;
1644
1645	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1646
1647	/* Set btree blocks beyond nritems with 0 to avoid stale content */
1648	nritems = btrfs_header_nritems(eb);
1649	if (btrfs_header_level(eb) > 0) {
1650		end = btrfs_node_key_ptr_offset(eb, nritems);
1651		memzero_extent_buffer(eb, end, eb->len - end);
1652	} else {
1653		/*
1654		 * Leaf:
1655		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1656		 */
1657		start = btrfs_item_nr_offset(eb, nritems);
1658		end = btrfs_item_nr_offset(eb, 0);
1659		if (nritems == 0)
1660			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1661		else
1662			end += btrfs_item_offset(eb, nritems - 1);
1663		memzero_extent_buffer(eb, start, end - start);
1664	}
1665}
1666
1667static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1668					    struct writeback_control *wbc)
1669{
1670	struct btrfs_fs_info *fs_info = eb->fs_info;
1671	struct btrfs_bio *bbio;
1672
1673	prepare_eb_write(eb);
1674
1675	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1676			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1677			       eb->fs_info, extent_buffer_write_end_io, eb);
1678	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1679	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1680	wbc_init_bio(wbc, &bbio->bio);
1681	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1682	bbio->file_offset = eb->start;
1683	if (fs_info->nodesize < PAGE_SIZE) {
1684		struct page *p = eb->pages[0];
1685
1686		lock_page(p);
1687		btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len);
1688		if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start,
1689						       eb->len)) {
1690			clear_page_dirty_for_io(p);
1691			wbc->nr_to_write--;
1692		}
1693		__bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p));
1694		wbc_account_cgroup_owner(wbc, p, eb->len);
1695		unlock_page(p);
1696	} else {
1697		for (int i = 0; i < num_extent_pages(eb); i++) {
1698			struct page *p = eb->pages[i];
1699
1700			lock_page(p);
1701			clear_page_dirty_for_io(p);
1702			set_page_writeback(p);
1703			__bio_add_page(&bbio->bio, p, PAGE_SIZE, 0);
1704			wbc_account_cgroup_owner(wbc, p, PAGE_SIZE);
1705			wbc->nr_to_write--;
1706			unlock_page(p);
1707		}
1708	}
1709	btrfs_submit_bio(bbio, 0);
1710}
1711
1712/*
1713 * Submit one subpage btree page.
1714 *
1715 * The main difference to submit_eb_page() is:
1716 * - Page locking
1717 *   For subpage, we don't rely on page locking at all.
1718 *
1719 * - Flush write bio
1720 *   We only flush bio if we may be unable to fit current extent buffers into
1721 *   current bio.
1722 *
1723 * Return >=0 for the number of submitted extent buffers.
1724 * Return <0 for fatal error.
1725 */
1726static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1727{
1728	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1729	int submitted = 0;
1730	u64 page_start = page_offset(page);
1731	int bit_start = 0;
1732	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1733
1734	/* Lock and write each dirty extent buffers in the range */
1735	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1736		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1737		struct extent_buffer *eb;
1738		unsigned long flags;
1739		u64 start;
1740
1741		/*
1742		 * Take private lock to ensure the subpage won't be detached
1743		 * in the meantime.
1744		 */
1745		spin_lock(&page->mapping->private_lock);
1746		if (!PagePrivate(page)) {
1747			spin_unlock(&page->mapping->private_lock);
1748			break;
1749		}
1750		spin_lock_irqsave(&subpage->lock, flags);
1751		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1752			      subpage->bitmaps)) {
1753			spin_unlock_irqrestore(&subpage->lock, flags);
1754			spin_unlock(&page->mapping->private_lock);
1755			bit_start++;
1756			continue;
1757		}
1758
1759		start = page_start + bit_start * fs_info->sectorsize;
1760		bit_start += sectors_per_node;
1761
1762		/*
1763		 * Here we just want to grab the eb without touching extra
1764		 * spin locks, so call find_extent_buffer_nolock().
1765		 */
1766		eb = find_extent_buffer_nolock(fs_info, start);
1767		spin_unlock_irqrestore(&subpage->lock, flags);
1768		spin_unlock(&page->mapping->private_lock);
1769
1770		/*
1771		 * The eb has already reached 0 refs thus find_extent_buffer()
1772		 * doesn't return it. We don't need to write back such eb
1773		 * anyway.
1774		 */
1775		if (!eb)
1776			continue;
1777
1778		if (lock_extent_buffer_for_io(eb, wbc)) {
1779			write_one_eb(eb, wbc);
1780			submitted++;
1781		}
1782		free_extent_buffer(eb);
1783	}
1784	return submitted;
1785}
1786
1787/*
1788 * Submit all page(s) of one extent buffer.
1789 *
1790 * @page:	the page of one extent buffer
1791 * @eb_context:	to determine if we need to submit this page, if current page
1792 *		belongs to this eb, we don't need to submit
1793 *
1794 * The caller should pass each page in their bytenr order, and here we use
1795 * @eb_context to determine if we have submitted pages of one extent buffer.
1796 *
1797 * If we have, we just skip until we hit a new page that doesn't belong to
1798 * current @eb_context.
1799 *
1800 * If not, we submit all the page(s) of the extent buffer.
1801 *
1802 * Return >0 if we have submitted the extent buffer successfully.
1803 * Return 0 if we don't need to submit the page, as it's already submitted by
1804 * previous call.
1805 * Return <0 for fatal error.
1806 */
1807static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1808{
1809	struct writeback_control *wbc = ctx->wbc;
1810	struct address_space *mapping = page->mapping;
1811	struct extent_buffer *eb;
1812	int ret;
1813
1814	if (!PagePrivate(page))
1815		return 0;
1816
1817	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
1818		return submit_eb_subpage(page, wbc);
1819
1820	spin_lock(&mapping->private_lock);
1821	if (!PagePrivate(page)) {
1822		spin_unlock(&mapping->private_lock);
1823		return 0;
1824	}
1825
1826	eb = (struct extent_buffer *)page->private;
1827
1828	/*
1829	 * Shouldn't happen and normally this would be a BUG_ON but no point
1830	 * crashing the machine for something we can survive anyway.
1831	 */
1832	if (WARN_ON(!eb)) {
1833		spin_unlock(&mapping->private_lock);
1834		return 0;
1835	}
1836
1837	if (eb == ctx->eb) {
1838		spin_unlock(&mapping->private_lock);
1839		return 0;
1840	}
1841	ret = atomic_inc_not_zero(&eb->refs);
1842	spin_unlock(&mapping->private_lock);
1843	if (!ret)
1844		return 0;
1845
1846	ctx->eb = eb;
1847
1848	ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1849	if (ret) {
1850		if (ret == -EBUSY)
1851			ret = 0;
1852		free_extent_buffer(eb);
1853		return ret;
1854	}
1855
1856	if (!lock_extent_buffer_for_io(eb, wbc)) {
1857		free_extent_buffer(eb);
1858		return 0;
1859	}
1860	/* Implies write in zoned mode. */
1861	if (ctx->zoned_bg) {
1862		/* Mark the last eb in the block group. */
1863		btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1864		ctx->zoned_bg->meta_write_pointer += eb->len;
1865	}
1866	write_one_eb(eb, wbc);
1867	free_extent_buffer(eb);
1868	return 1;
1869}
1870
1871int btree_write_cache_pages(struct address_space *mapping,
1872				   struct writeback_control *wbc)
1873{
1874	struct btrfs_eb_write_context ctx = { .wbc = wbc };
1875	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
1876	int ret = 0;
1877	int done = 0;
1878	int nr_to_write_done = 0;
1879	struct folio_batch fbatch;
1880	unsigned int nr_folios;
1881	pgoff_t index;
1882	pgoff_t end;		/* Inclusive */
1883	int scanned = 0;
1884	xa_mark_t tag;
1885
1886	folio_batch_init(&fbatch);
1887	if (wbc->range_cyclic) {
1888		index = mapping->writeback_index; /* Start from prev offset */
1889		end = -1;
1890		/*
1891		 * Start from the beginning does not need to cycle over the
1892		 * range, mark it as scanned.
1893		 */
1894		scanned = (index == 0);
1895	} else {
1896		index = wbc->range_start >> PAGE_SHIFT;
1897		end = wbc->range_end >> PAGE_SHIFT;
1898		scanned = 1;
1899	}
1900	if (wbc->sync_mode == WB_SYNC_ALL)
1901		tag = PAGECACHE_TAG_TOWRITE;
1902	else
1903		tag = PAGECACHE_TAG_DIRTY;
1904	btrfs_zoned_meta_io_lock(fs_info);
1905retry:
1906	if (wbc->sync_mode == WB_SYNC_ALL)
1907		tag_pages_for_writeback(mapping, index, end);
1908	while (!done && !nr_to_write_done && (index <= end) &&
1909	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1910					    tag, &fbatch))) {
1911		unsigned i;
1912
1913		for (i = 0; i < nr_folios; i++) {
1914			struct folio *folio = fbatch.folios[i];
1915
1916			ret = submit_eb_page(&folio->page, &ctx);
1917			if (ret == 0)
1918				continue;
1919			if (ret < 0) {
1920				done = 1;
1921				break;
1922			}
1923
1924			/*
1925			 * the filesystem may choose to bump up nr_to_write.
1926			 * We have to make sure to honor the new nr_to_write
1927			 * at any time
1928			 */
1929			nr_to_write_done = wbc->nr_to_write <= 0;
1930		}
1931		folio_batch_release(&fbatch);
1932		cond_resched();
1933	}
1934	if (!scanned && !done) {
1935		/*
1936		 * We hit the last page and there is more work to be done: wrap
1937		 * back to the start of the file
1938		 */
1939		scanned = 1;
1940		index = 0;
1941		goto retry;
1942	}
1943	/*
1944	 * If something went wrong, don't allow any metadata write bio to be
1945	 * submitted.
1946	 *
1947	 * This would prevent use-after-free if we had dirty pages not
1948	 * cleaned up, which can still happen by fuzzed images.
1949	 *
1950	 * - Bad extent tree
1951	 *   Allowing existing tree block to be allocated for other trees.
1952	 *
1953	 * - Log tree operations
1954	 *   Exiting tree blocks get allocated to log tree, bumps its
1955	 *   generation, then get cleaned in tree re-balance.
1956	 *   Such tree block will not be written back, since it's clean,
1957	 *   thus no WRITTEN flag set.
1958	 *   And after log writes back, this tree block is not traced by
1959	 *   any dirty extent_io_tree.
1960	 *
1961	 * - Offending tree block gets re-dirtied from its original owner
1962	 *   Since it has bumped generation, no WRITTEN flag, it can be
1963	 *   reused without COWing. This tree block will not be traced
1964	 *   by btrfs_transaction::dirty_pages.
1965	 *
1966	 *   Now such dirty tree block will not be cleaned by any dirty
1967	 *   extent io tree. Thus we don't want to submit such wild eb
1968	 *   if the fs already has error.
1969	 *
1970	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
1971	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
1972	 */
1973	if (ret > 0)
1974		ret = 0;
1975	if (!ret && BTRFS_FS_ERROR(fs_info))
1976		ret = -EROFS;
1977
1978	if (ctx.zoned_bg)
1979		btrfs_put_block_group(ctx.zoned_bg);
1980	btrfs_zoned_meta_io_unlock(fs_info);
1981	return ret;
1982}
1983
1984/*
1985 * Walk the list of dirty pages of the given address space and write all of them.
1986 *
1987 * @mapping:   address space structure to write
1988 * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
1989 * @bio_ctrl:  holds context for the write, namely the bio
1990 *
1991 * If a page is already under I/O, write_cache_pages() skips it, even
1992 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1993 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1994 * and msync() need to guarantee that all the data which was dirty at the time
1995 * the call was made get new I/O started against them.  If wbc->sync_mode is
1996 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1997 * existing IO to complete.
1998 */
1999static int extent_write_cache_pages(struct address_space *mapping,
2000			     struct btrfs_bio_ctrl *bio_ctrl)
2001{
2002	struct writeback_control *wbc = bio_ctrl->wbc;
2003	struct inode *inode = mapping->host;
2004	int ret = 0;
2005	int done = 0;
2006	int nr_to_write_done = 0;
2007	struct folio_batch fbatch;
2008	unsigned int nr_folios;
2009	pgoff_t index;
2010	pgoff_t end;		/* Inclusive */
2011	pgoff_t done_index;
2012	int range_whole = 0;
2013	int scanned = 0;
2014	xa_mark_t tag;
2015
2016	/*
2017	 * We have to hold onto the inode so that ordered extents can do their
2018	 * work when the IO finishes.  The alternative to this is failing to add
2019	 * an ordered extent if the igrab() fails there and that is a huge pain
2020	 * to deal with, so instead just hold onto the inode throughout the
2021	 * writepages operation.  If it fails here we are freeing up the inode
2022	 * anyway and we'd rather not waste our time writing out stuff that is
2023	 * going to be truncated anyway.
2024	 */
2025	if (!igrab(inode))
2026		return 0;
2027
2028	folio_batch_init(&fbatch);
2029	if (wbc->range_cyclic) {
2030		index = mapping->writeback_index; /* Start from prev offset */
2031		end = -1;
2032		/*
2033		 * Start from the beginning does not need to cycle over the
2034		 * range, mark it as scanned.
2035		 */
2036		scanned = (index == 0);
2037	} else {
2038		index = wbc->range_start >> PAGE_SHIFT;
2039		end = wbc->range_end >> PAGE_SHIFT;
2040		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2041			range_whole = 1;
2042		scanned = 1;
2043	}
2044
2045	/*
2046	 * We do the tagged writepage as long as the snapshot flush bit is set
2047	 * and we are the first one who do the filemap_flush() on this inode.
2048	 *
2049	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2050	 * not race in and drop the bit.
2051	 */
2052	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2053	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2054			       &BTRFS_I(inode)->runtime_flags))
2055		wbc->tagged_writepages = 1;
2056
2057	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2058		tag = PAGECACHE_TAG_TOWRITE;
2059	else
2060		tag = PAGECACHE_TAG_DIRTY;
2061retry:
2062	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2063		tag_pages_for_writeback(mapping, index, end);
2064	done_index = index;
2065	while (!done && !nr_to_write_done && (index <= end) &&
2066			(nr_folios = filemap_get_folios_tag(mapping, &index,
2067							end, tag, &fbatch))) {
2068		unsigned i;
2069
2070		for (i = 0; i < nr_folios; i++) {
2071			struct folio *folio = fbatch.folios[i];
2072
2073			done_index = folio_next_index(folio);
2074			/*
2075			 * At this point we hold neither the i_pages lock nor
2076			 * the page lock: the page may be truncated or
2077			 * invalidated (changing page->mapping to NULL),
2078			 * or even swizzled back from swapper_space to
2079			 * tmpfs file mapping
2080			 */
2081			if (!folio_trylock(folio)) {
2082				submit_write_bio(bio_ctrl, 0);
2083				folio_lock(folio);
2084			}
2085
2086			if (unlikely(folio->mapping != mapping)) {
2087				folio_unlock(folio);
2088				continue;
2089			}
2090
2091			if (!folio_test_dirty(folio)) {
2092				/* Someone wrote it for us. */
2093				folio_unlock(folio);
2094				continue;
2095			}
2096
2097			if (wbc->sync_mode != WB_SYNC_NONE) {
2098				if (folio_test_writeback(folio))
2099					submit_write_bio(bio_ctrl, 0);
2100				folio_wait_writeback(folio);
2101			}
2102
2103			if (folio_test_writeback(folio) ||
2104			    !folio_clear_dirty_for_io(folio)) {
2105				folio_unlock(folio);
2106				continue;
2107			}
2108
2109			ret = __extent_writepage(&folio->page, bio_ctrl);
2110			if (ret < 0) {
2111				done = 1;
2112				break;
2113			}
2114
2115			/*
2116			 * The filesystem may choose to bump up nr_to_write.
2117			 * We have to make sure to honor the new nr_to_write
2118			 * at any time.
2119			 */
2120			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2121					    wbc->nr_to_write <= 0);
2122		}
2123		folio_batch_release(&fbatch);
2124		cond_resched();
2125	}
2126	if (!scanned && !done) {
2127		/*
2128		 * We hit the last page and there is more work to be done: wrap
2129		 * back to the start of the file
2130		 */
2131		scanned = 1;
2132		index = 0;
2133
2134		/*
2135		 * If we're looping we could run into a page that is locked by a
2136		 * writer and that writer could be waiting on writeback for a
2137		 * page in our current bio, and thus deadlock, so flush the
2138		 * write bio here.
2139		 */
2140		submit_write_bio(bio_ctrl, 0);
2141		goto retry;
2142	}
2143
2144	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2145		mapping->writeback_index = done_index;
2146
2147	btrfs_add_delayed_iput(BTRFS_I(inode));
2148	return ret;
2149}
2150
2151/*
2152 * Submit the pages in the range to bio for call sites which delalloc range has
2153 * already been ran (aka, ordered extent inserted) and all pages are still
2154 * locked.
2155 */
2156void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2157			       u64 start, u64 end, struct writeback_control *wbc,
2158			       bool pages_dirty)
2159{
2160	bool found_error = false;
2161	int ret = 0;
2162	struct address_space *mapping = inode->i_mapping;
2163	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2164	const u32 sectorsize = fs_info->sectorsize;
2165	loff_t i_size = i_size_read(inode);
2166	u64 cur = start;
2167	struct btrfs_bio_ctrl bio_ctrl = {
2168		.wbc = wbc,
2169		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2170	};
2171
2172	if (wbc->no_cgroup_owner)
2173		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2174
2175	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2176
2177	while (cur <= end) {
2178		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2179		u32 cur_len = cur_end + 1 - cur;
2180		struct page *page;
2181		int nr = 0;
2182
2183		page = find_get_page(mapping, cur >> PAGE_SHIFT);
2184		ASSERT(PageLocked(page));
2185		if (pages_dirty && page != locked_page) {
2186			ASSERT(PageDirty(page));
2187			clear_page_dirty_for_io(page);
2188		}
2189
2190		ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2191					    i_size, &nr);
2192		if (ret == 1)
2193			goto next_page;
2194
2195		/* Make sure the mapping tag for page dirty gets cleared. */
2196		if (nr == 0) {
2197			set_page_writeback(page);
2198			end_page_writeback(page);
2199		}
2200		if (ret) {
2201			btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2202						       cur, cur_len, !ret);
2203			mapping_set_error(page->mapping, ret);
2204		}
2205		btrfs_page_unlock_writer(fs_info, page, cur, cur_len);
2206		if (ret < 0)
2207			found_error = true;
2208next_page:
2209		put_page(page);
2210		cur = cur_end + 1;
2211	}
2212
2213	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2214}
2215
2216int extent_writepages(struct address_space *mapping,
2217		      struct writeback_control *wbc)
2218{
2219	struct inode *inode = mapping->host;
2220	int ret = 0;
2221	struct btrfs_bio_ctrl bio_ctrl = {
2222		.wbc = wbc,
2223		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2224	};
2225
2226	/*
2227	 * Allow only a single thread to do the reloc work in zoned mode to
2228	 * protect the write pointer updates.
2229	 */
2230	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2231	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2232	submit_write_bio(&bio_ctrl, ret);
2233	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2234	return ret;
2235}
2236
2237void extent_readahead(struct readahead_control *rac)
2238{
2239	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2240	struct page *pagepool[16];
2241	struct extent_map *em_cached = NULL;
2242	u64 prev_em_start = (u64)-1;
2243	int nr;
2244
2245	while ((nr = readahead_page_batch(rac, pagepool))) {
2246		u64 contig_start = readahead_pos(rac);
2247		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2248
2249		contiguous_readpages(pagepool, nr, contig_start, contig_end,
2250				&em_cached, &bio_ctrl, &prev_em_start);
2251	}
2252
2253	if (em_cached)
2254		free_extent_map(em_cached);
2255	submit_one_bio(&bio_ctrl);
2256}
2257
2258/*
2259 * basic invalidate_folio code, this waits on any locked or writeback
2260 * ranges corresponding to the folio, and then deletes any extent state
2261 * records from the tree
2262 */
2263int extent_invalidate_folio(struct extent_io_tree *tree,
2264			  struct folio *folio, size_t offset)
2265{
2266	struct extent_state *cached_state = NULL;
2267	u64 start = folio_pos(folio);
2268	u64 end = start + folio_size(folio) - 1;
2269	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
2270
2271	/* This function is only called for the btree inode */
2272	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2273
2274	start += ALIGN(offset, blocksize);
2275	if (start > end)
2276		return 0;
2277
2278	lock_extent(tree, start, end, &cached_state);
2279	folio_wait_writeback(folio);
2280
2281	/*
2282	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2283	 * so here we only need to unlock the extent range to free any
2284	 * existing extent state.
2285	 */
2286	unlock_extent(tree, start, end, &cached_state);
2287	return 0;
2288}
2289
2290/*
2291 * a helper for release_folio, this tests for areas of the page that
2292 * are locked or under IO and drops the related state bits if it is safe
2293 * to drop the page.
2294 */
2295static int try_release_extent_state(struct extent_io_tree *tree,
2296				    struct page *page, gfp_t mask)
2297{
2298	u64 start = page_offset(page);
2299	u64 end = start + PAGE_SIZE - 1;
2300	int ret = 1;
2301
2302	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
2303		ret = 0;
2304	} else {
2305		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2306				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2307				   EXTENT_QGROUP_RESERVED);
2308
2309		/*
2310		 * At this point we can safely clear everything except the
2311		 * locked bit, the nodatasum bit and the delalloc new bit.
2312		 * The delalloc new bit will be cleared by ordered extent
2313		 * completion.
2314		 */
2315		ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2316
2317		/* if clear_extent_bit failed for enomem reasons,
2318		 * we can't allow the release to continue.
2319		 */
2320		if (ret < 0)
2321			ret = 0;
2322		else
2323			ret = 1;
2324	}
2325	return ret;
2326}
2327
2328/*
2329 * a helper for release_folio.  As long as there are no locked extents
2330 * in the range corresponding to the page, both state records and extent
2331 * map records are removed
2332 */
2333int try_release_extent_mapping(struct page *page, gfp_t mask)
2334{
2335	struct extent_map *em;
2336	u64 start = page_offset(page);
2337	u64 end = start + PAGE_SIZE - 1;
2338	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
2339	struct extent_io_tree *tree = &btrfs_inode->io_tree;
2340	struct extent_map_tree *map = &btrfs_inode->extent_tree;
2341
2342	if (gfpflags_allow_blocking(mask) &&
2343	    page->mapping->host->i_size > SZ_16M) {
2344		u64 len;
2345		while (start <= end) {
2346			struct btrfs_fs_info *fs_info;
2347			u64 cur_gen;
2348
2349			len = end - start + 1;
2350			write_lock(&map->lock);
2351			em = lookup_extent_mapping(map, start, len);
2352			if (!em) {
2353				write_unlock(&map->lock);
2354				break;
2355			}
2356			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2357			    em->start != start) {
2358				write_unlock(&map->lock);
2359				free_extent_map(em);
2360				break;
2361			}
2362			if (test_range_bit(tree, em->start,
2363					   extent_map_end(em) - 1,
2364					   EXTENT_LOCKED, 0, NULL))
2365				goto next;
2366			/*
2367			 * If it's not in the list of modified extents, used
2368			 * by a fast fsync, we can remove it. If it's being
2369			 * logged we can safely remove it since fsync took an
2370			 * extra reference on the em.
2371			 */
2372			if (list_empty(&em->list) ||
2373			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
2374				goto remove_em;
2375			/*
2376			 * If it's in the list of modified extents, remove it
2377			 * only if its generation is older then the current one,
2378			 * in which case we don't need it for a fast fsync.
2379			 * Otherwise don't remove it, we could be racing with an
2380			 * ongoing fast fsync that could miss the new extent.
2381			 */
2382			fs_info = btrfs_inode->root->fs_info;
2383			spin_lock(&fs_info->trans_lock);
2384			cur_gen = fs_info->generation;
2385			spin_unlock(&fs_info->trans_lock);
2386			if (em->generation >= cur_gen)
2387				goto next;
2388remove_em:
2389			/*
2390			 * We only remove extent maps that are not in the list of
2391			 * modified extents or that are in the list but with a
2392			 * generation lower then the current generation, so there
2393			 * is no need to set the full fsync flag on the inode (it
2394			 * hurts the fsync performance for workloads with a data
2395			 * size that exceeds or is close to the system's memory).
2396			 */
2397			remove_extent_mapping(map, em);
2398			/* once for the rb tree */
2399			free_extent_map(em);
2400next:
2401			start = extent_map_end(em);
2402			write_unlock(&map->lock);
2403
2404			/* once for us */
2405			free_extent_map(em);
2406
2407			cond_resched(); /* Allow large-extent preemption. */
2408		}
2409	}
2410	return try_release_extent_state(tree, page, mask);
2411}
2412
2413/*
2414 * To cache previous fiemap extent
2415 *
2416 * Will be used for merging fiemap extent
2417 */
2418struct fiemap_cache {
2419	u64 offset;
2420	u64 phys;
2421	u64 len;
2422	u32 flags;
2423	bool cached;
2424};
2425
2426/*
2427 * Helper to submit fiemap extent.
2428 *
2429 * Will try to merge current fiemap extent specified by @offset, @phys,
2430 * @len and @flags with cached one.
2431 * And only when we fails to merge, cached one will be submitted as
2432 * fiemap extent.
2433 *
2434 * Return value is the same as fiemap_fill_next_extent().
2435 */
2436static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2437				struct fiemap_cache *cache,
2438				u64 offset, u64 phys, u64 len, u32 flags)
2439{
2440	u64 cache_end;
2441	int ret = 0;
2442
2443	/* Set at the end of extent_fiemap(). */
2444	ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2445
2446	if (!cache->cached)
2447		goto assign;
2448
2449	/*
2450	 * When iterating the extents of the inode, at extent_fiemap(), we may
2451	 * find an extent that starts at an offset behind the end offset of the
2452	 * previous extent we processed. This happens if fiemap is called
2453	 * without FIEMAP_FLAG_SYNC and there are ordered extents completing
2454	 * while we call btrfs_next_leaf() (through fiemap_next_leaf_item()).
2455	 *
2456	 * For example we are in leaf X processing its last item, which is the
2457	 * file extent item for file range [512K, 1M[, and after
2458	 * btrfs_next_leaf() releases the path, there's an ordered extent that
2459	 * completes for the file range [768K, 2M[, and that results in trimming
2460	 * the file extent item so that it now corresponds to the file range
2461	 * [512K, 768K[ and a new file extent item is inserted for the file
2462	 * range [768K, 2M[, which may end up as the last item of leaf X or as
2463	 * the first item of the next leaf - in either case btrfs_next_leaf()
2464	 * will leave us with a path pointing to the new extent item, for the
2465	 * file range [768K, 2M[, since that's the first key that follows the
2466	 * last one we processed. So in order not to report overlapping extents
2467	 * to user space, we trim the length of the previously cached extent and
2468	 * emit it.
2469	 *
2470	 * Upon calling btrfs_next_leaf() we may also find an extent with an
2471	 * offset smaller than or equals to cache->offset, and this happens
2472	 * when we had a hole or prealloc extent with several delalloc ranges in
2473	 * it, but after btrfs_next_leaf() released the path, delalloc was
2474	 * flushed and the resulting ordered extents were completed, so we can
2475	 * now have found a file extent item for an offset that is smaller than
2476	 * or equals to what we have in cache->offset. We deal with this as
2477	 * described below.
2478	 */
2479	cache_end = cache->offset + cache->len;
2480	if (cache_end > offset) {
2481		if (offset == cache->offset) {
2482			/*
2483			 * We cached a dealloc range (found in the io tree) for
2484			 * a hole or prealloc extent and we have now found a
2485			 * file extent item for the same offset. What we have
2486			 * now is more recent and up to date, so discard what
2487			 * we had in the cache and use what we have just found.
2488			 */
2489			goto assign;
2490		} else if (offset > cache->offset) {
2491			/*
2492			 * The extent range we previously found ends after the
2493			 * offset of the file extent item we found and that
2494			 * offset falls somewhere in the middle of that previous
2495			 * extent range. So adjust the range we previously found
2496			 * to end at the offset of the file extent item we have
2497			 * just found, since this extent is more up to date.
2498			 * Emit that adjusted range and cache the file extent
2499			 * item we have just found. This corresponds to the case
2500			 * where a previously found file extent item was split
2501			 * due to an ordered extent completing.
2502			 */
2503			cache->len = offset - cache->offset;
2504			goto emit;
2505		} else {
2506			const u64 range_end = offset + len;
2507
2508			/*
2509			 * The offset of the file extent item we have just found
2510			 * is behind the cached offset. This means we were
2511			 * processing a hole or prealloc extent for which we
2512			 * have found delalloc ranges (in the io tree), so what
2513			 * we have in the cache is the last delalloc range we
2514			 * found while the file extent item we found can be
2515			 * either for a whole delalloc range we previously
2516			 * emmitted or only a part of that range.
2517			 *
2518			 * We have two cases here:
2519			 *
2520			 * 1) The file extent item's range ends at or behind the
2521			 *    cached extent's end. In this case just ignore the
2522			 *    current file extent item because we don't want to
2523			 *    overlap with previous ranges that may have been
2524			 *    emmitted already;
2525			 *
2526			 * 2) The file extent item starts behind the currently
2527			 *    cached extent but its end offset goes beyond the
2528			 *    end offset of the cached extent. We don't want to
2529			 *    overlap with a previous range that may have been
2530			 *    emmitted already, so we emit the currently cached
2531			 *    extent and then partially store the current file
2532			 *    extent item's range in the cache, for the subrange
2533			 *    going the cached extent's end to the end of the
2534			 *    file extent item.
2535			 */
2536			if (range_end <= cache_end)
2537				return 0;
2538
2539			if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC)))
2540				phys += cache_end - offset;
2541
2542			offset = cache_end;
2543			len = range_end - cache_end;
2544			goto emit;
2545		}
2546	}
2547
2548	/*
2549	 * Only merges fiemap extents if
2550	 * 1) Their logical addresses are continuous
2551	 *
2552	 * 2) Their physical addresses are continuous
2553	 *    So truly compressed (physical size smaller than logical size)
2554	 *    extents won't get merged with each other
2555	 *
2556	 * 3) Share same flags
2557	 */
2558	if (cache->offset + cache->len  == offset &&
2559	    cache->phys + cache->len == phys  &&
2560	    cache->flags == flags) {
2561		cache->len += len;
2562		return 0;
2563	}
2564
2565emit:
2566	/* Not mergeable, need to submit cached one */
2567	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2568				      cache->len, cache->flags);
2569	cache->cached = false;
2570	if (ret)
2571		return ret;
2572assign:
2573	cache->cached = true;
2574	cache->offset = offset;
2575	cache->phys = phys;
2576	cache->len = len;
2577	cache->flags = flags;
2578
2579	return 0;
2580}
2581
2582/*
2583 * Emit last fiemap cache
2584 *
2585 * The last fiemap cache may still be cached in the following case:
2586 * 0		      4k		    8k
2587 * |<- Fiemap range ->|
2588 * |<------------  First extent ----------->|
2589 *
2590 * In this case, the first extent range will be cached but not emitted.
2591 * So we must emit it before ending extent_fiemap().
2592 */
2593static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2594				  struct fiemap_cache *cache)
2595{
2596	int ret;
2597
2598	if (!cache->cached)
2599		return 0;
2600
2601	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2602				      cache->len, cache->flags);
2603	cache->cached = false;
2604	if (ret > 0)
2605		ret = 0;
2606	return ret;
2607}
2608
2609static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2610{
2611	struct extent_buffer *clone;
2612	struct btrfs_key key;
2613	int slot;
2614	int ret;
2615
2616	path->slots[0]++;
2617	if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2618		return 0;
2619
2620	ret = btrfs_next_leaf(inode->root, path);
2621	if (ret != 0)
2622		return ret;
2623
2624	/*
2625	 * Don't bother with cloning if there are no more file extent items for
2626	 * our inode.
2627	 */
2628	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2629	if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2630		return 1;
2631
2632	/* See the comment at fiemap_search_slot() about why we clone. */
2633	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2634	if (!clone)
2635		return -ENOMEM;
2636
2637	slot = path->slots[0];
2638	btrfs_release_path(path);
2639	path->nodes[0] = clone;
2640	path->slots[0] = slot;
2641
2642	return 0;
2643}
2644
2645/*
2646 * Search for the first file extent item that starts at a given file offset or
2647 * the one that starts immediately before that offset.
2648 * Returns: 0 on success, < 0 on error, 1 if not found.
2649 */
2650static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2651			      u64 file_offset)
2652{
2653	const u64 ino = btrfs_ino(inode);
2654	struct btrfs_root *root = inode->root;
2655	struct extent_buffer *clone;
2656	struct btrfs_key key;
2657	int slot;
2658	int ret;
2659
2660	key.objectid = ino;
2661	key.type = BTRFS_EXTENT_DATA_KEY;
2662	key.offset = file_offset;
2663
2664	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2665	if (ret < 0)
2666		return ret;
2667
2668	if (ret > 0 && path->slots[0] > 0) {
2669		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2670		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2671			path->slots[0]--;
2672	}
2673
2674	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2675		ret = btrfs_next_leaf(root, path);
2676		if (ret != 0)
2677			return ret;
2678
2679		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2680		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2681			return 1;
2682	}
2683
2684	/*
2685	 * We clone the leaf and use it during fiemap. This is because while
2686	 * using the leaf we do expensive things like checking if an extent is
2687	 * shared, which can take a long time. In order to prevent blocking
2688	 * other tasks for too long, we use a clone of the leaf. We have locked
2689	 * the file range in the inode's io tree, so we know none of our file
2690	 * extent items can change. This way we avoid blocking other tasks that
2691	 * want to insert items for other inodes in the same leaf or b+tree
2692	 * rebalance operations (triggered for example when someone is trying
2693	 * to push items into this leaf when trying to insert an item in a
2694	 * neighbour leaf).
2695	 * We also need the private clone because holding a read lock on an
2696	 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2697	 * when we call fiemap_fill_next_extent(), because that may cause a page
2698	 * fault when filling the user space buffer with fiemap data.
2699	 */
2700	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2701	if (!clone)
2702		return -ENOMEM;
2703
2704	slot = path->slots[0];
2705	btrfs_release_path(path);
2706	path->nodes[0] = clone;
2707	path->slots[0] = slot;
2708
2709	return 0;
2710}
2711
2712/*
2713 * Process a range which is a hole or a prealloc extent in the inode's subvolume
2714 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2715 * extent. The end offset (@end) is inclusive.
2716 */
2717static int fiemap_process_hole(struct btrfs_inode *inode,
2718			       struct fiemap_extent_info *fieinfo,
2719			       struct fiemap_cache *cache,
2720			       struct extent_state **delalloc_cached_state,
2721			       struct btrfs_backref_share_check_ctx *backref_ctx,
2722			       u64 disk_bytenr, u64 extent_offset,
2723			       u64 extent_gen,
2724			       u64 start, u64 end)
2725{
2726	const u64 i_size = i_size_read(&inode->vfs_inode);
2727	u64 cur_offset = start;
2728	u64 last_delalloc_end = 0;
2729	u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2730	bool checked_extent_shared = false;
2731	int ret;
2732
2733	/*
2734	 * There can be no delalloc past i_size, so don't waste time looking for
2735	 * it beyond i_size.
2736	 */
2737	while (cur_offset < end && cur_offset < i_size) {
2738		u64 delalloc_start;
2739		u64 delalloc_end;
2740		u64 prealloc_start;
2741		u64 prealloc_len = 0;
2742		bool delalloc;
2743
2744		delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2745							delalloc_cached_state,
2746							&delalloc_start,
2747							&delalloc_end);
2748		if (!delalloc)
2749			break;
2750
2751		/*
2752		 * If this is a prealloc extent we have to report every section
2753		 * of it that has no delalloc.
2754		 */
2755		if (disk_bytenr != 0) {
2756			if (last_delalloc_end == 0) {
2757				prealloc_start = start;
2758				prealloc_len = delalloc_start - start;
2759			} else {
2760				prealloc_start = last_delalloc_end + 1;
2761				prealloc_len = delalloc_start - prealloc_start;
2762			}
2763		}
2764
2765		if (prealloc_len > 0) {
2766			if (!checked_extent_shared && fieinfo->fi_extents_max) {
2767				ret = btrfs_is_data_extent_shared(inode,
2768								  disk_bytenr,
2769								  extent_gen,
2770								  backref_ctx);
2771				if (ret < 0)
2772					return ret;
2773				else if (ret > 0)
2774					prealloc_flags |= FIEMAP_EXTENT_SHARED;
2775
2776				checked_extent_shared = true;
2777			}
2778			ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2779						 disk_bytenr + extent_offset,
2780						 prealloc_len, prealloc_flags);
2781			if (ret)
2782				return ret;
2783			extent_offset += prealloc_len;
2784		}
2785
2786		ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2787					 delalloc_end + 1 - delalloc_start,
2788					 FIEMAP_EXTENT_DELALLOC |
2789					 FIEMAP_EXTENT_UNKNOWN);
2790		if (ret)
2791			return ret;
2792
2793		last_delalloc_end = delalloc_end;
2794		cur_offset = delalloc_end + 1;
2795		extent_offset += cur_offset - delalloc_start;
2796		cond_resched();
2797	}
2798
2799	/*
2800	 * Either we found no delalloc for the whole prealloc extent or we have
2801	 * a prealloc extent that spans i_size or starts at or after i_size.
2802	 */
2803	if (disk_bytenr != 0 && last_delalloc_end < end) {
2804		u64 prealloc_start;
2805		u64 prealloc_len;
2806
2807		if (last_delalloc_end == 0) {
2808			prealloc_start = start;
2809			prealloc_len = end + 1 - start;
2810		} else {
2811			prealloc_start = last_delalloc_end + 1;
2812			prealloc_len = end + 1 - prealloc_start;
2813		}
2814
2815		if (!checked_extent_shared && fieinfo->fi_extents_max) {
2816			ret = btrfs_is_data_extent_shared(inode,
2817							  disk_bytenr,
2818							  extent_gen,
2819							  backref_ctx);
2820			if (ret < 0)
2821				return ret;
2822			else if (ret > 0)
2823				prealloc_flags |= FIEMAP_EXTENT_SHARED;
2824		}
2825		ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2826					 disk_bytenr + extent_offset,
2827					 prealloc_len, prealloc_flags);
2828		if (ret)
2829			return ret;
2830	}
2831
2832	return 0;
2833}
2834
2835static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2836					  struct btrfs_path *path,
2837					  u64 *last_extent_end_ret)
2838{
2839	const u64 ino = btrfs_ino(inode);
2840	struct btrfs_root *root = inode->root;
2841	struct extent_buffer *leaf;
2842	struct btrfs_file_extent_item *ei;
2843	struct btrfs_key key;
2844	u64 disk_bytenr;
2845	int ret;
2846
2847	/*
2848	 * Lookup the last file extent. We're not using i_size here because
2849	 * there might be preallocation past i_size.
2850	 */
2851	ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
2852	/* There can't be a file extent item at offset (u64)-1 */
2853	ASSERT(ret != 0);
2854	if (ret < 0)
2855		return ret;
2856
2857	/*
2858	 * For a non-existing key, btrfs_search_slot() always leaves us at a
2859	 * slot > 0, except if the btree is empty, which is impossible because
2860	 * at least it has the inode item for this inode and all the items for
2861	 * the root inode 256.
2862	 */
2863	ASSERT(path->slots[0] > 0);
2864	path->slots[0]--;
2865	leaf = path->nodes[0];
2866	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2867	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
2868		/* No file extent items in the subvolume tree. */
2869		*last_extent_end_ret = 0;
2870		return 0;
2871	}
2872
2873	/*
2874	 * For an inline extent, the disk_bytenr is where inline data starts at,
2875	 * so first check if we have an inline extent item before checking if we
2876	 * have an implicit hole (disk_bytenr == 0).
2877	 */
2878	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2879	if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
2880		*last_extent_end_ret = btrfs_file_extent_end(path);
2881		return 0;
2882	}
2883
2884	/*
2885	 * Find the last file extent item that is not a hole (when NO_HOLES is
2886	 * not enabled). This should take at most 2 iterations in the worst
2887	 * case: we have one hole file extent item at slot 0 of a leaf and
2888	 * another hole file extent item as the last item in the previous leaf.
2889	 * This is because we merge file extent items that represent holes.
2890	 */
2891	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2892	while (disk_bytenr == 0) {
2893		ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
2894		if (ret < 0) {
2895			return ret;
2896		} else if (ret > 0) {
2897			/* No file extent items that are not holes. */
2898			*last_extent_end_ret = 0;
2899			return 0;
2900		}
2901		leaf = path->nodes[0];
2902		ei = btrfs_item_ptr(leaf, path->slots[0],
2903				    struct btrfs_file_extent_item);
2904		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2905	}
2906
2907	*last_extent_end_ret = btrfs_file_extent_end(path);
2908	return 0;
2909}
2910
2911int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
2912		  u64 start, u64 len)
2913{
2914	const u64 ino = btrfs_ino(inode);
2915	struct extent_state *cached_state = NULL;
2916	struct extent_state *delalloc_cached_state = NULL;
2917	struct btrfs_path *path;
2918	struct fiemap_cache cache = { 0 };
2919	struct btrfs_backref_share_check_ctx *backref_ctx;
2920	u64 last_extent_end;
2921	u64 prev_extent_end;
2922	u64 lockstart;
2923	u64 lockend;
2924	bool stopped = false;
2925	int ret;
2926
2927	backref_ctx = btrfs_alloc_backref_share_check_ctx();
2928	path = btrfs_alloc_path();
2929	if (!backref_ctx || !path) {
2930		ret = -ENOMEM;
2931		goto out;
2932	}
2933
2934	lockstart = round_down(start, inode->root->fs_info->sectorsize);
2935	lockend = round_up(start + len, inode->root->fs_info->sectorsize);
2936	prev_extent_end = lockstart;
2937
2938	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
2939	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
2940
2941	ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
2942	if (ret < 0)
2943		goto out_unlock;
2944	btrfs_release_path(path);
2945
2946	path->reada = READA_FORWARD;
2947	ret = fiemap_search_slot(inode, path, lockstart);
2948	if (ret < 0) {
2949		goto out_unlock;
2950	} else if (ret > 0) {
2951		/*
2952		 * No file extent item found, but we may have delalloc between
2953		 * the current offset and i_size. So check for that.
2954		 */
2955		ret = 0;
2956		goto check_eof_delalloc;
2957	}
2958
2959	while (prev_extent_end < lockend) {
2960		struct extent_buffer *leaf = path->nodes[0];
2961		struct btrfs_file_extent_item *ei;
2962		struct btrfs_key key;
2963		u64 extent_end;
2964		u64 extent_len;
2965		u64 extent_offset = 0;
2966		u64 extent_gen;
2967		u64 disk_bytenr = 0;
2968		u64 flags = 0;
2969		int extent_type;
2970		u8 compression;
2971
2972		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2973		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2974			break;
2975
2976		extent_end = btrfs_file_extent_end(path);
2977
2978		/*
2979		 * The first iteration can leave us at an extent item that ends
2980		 * before our range's start. Move to the next item.
2981		 */
2982		if (extent_end <= lockstart)
2983			goto next_item;
2984
2985		backref_ctx->curr_leaf_bytenr = leaf->start;
2986
2987		/* We have in implicit hole (NO_HOLES feature enabled). */
2988		if (prev_extent_end < key.offset) {
2989			const u64 range_end = min(key.offset, lockend) - 1;
2990
2991			ret = fiemap_process_hole(inode, fieinfo, &cache,
2992						  &delalloc_cached_state,
2993						  backref_ctx, 0, 0, 0,
2994						  prev_extent_end, range_end);
2995			if (ret < 0) {
2996				goto out_unlock;
2997			} else if (ret > 0) {
2998				/* fiemap_fill_next_extent() told us to stop. */
2999				stopped = true;
3000				break;
3001			}
3002
3003			/* We've reached the end of the fiemap range, stop. */
3004			if (key.offset >= lockend) {
3005				stopped = true;
3006				break;
3007			}
3008		}
3009
3010		extent_len = extent_end - key.offset;
3011		ei = btrfs_item_ptr(leaf, path->slots[0],
3012				    struct btrfs_file_extent_item);
3013		compression = btrfs_file_extent_compression(leaf, ei);
3014		extent_type = btrfs_file_extent_type(leaf, ei);
3015		extent_gen = btrfs_file_extent_generation(leaf, ei);
3016
3017		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3018			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3019			if (compression == BTRFS_COMPRESS_NONE)
3020				extent_offset = btrfs_file_extent_offset(leaf, ei);
3021		}
3022
3023		if (compression != BTRFS_COMPRESS_NONE)
3024			flags |= FIEMAP_EXTENT_ENCODED;
3025
3026		if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3027			flags |= FIEMAP_EXTENT_DATA_INLINE;
3028			flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3029			ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3030						 extent_len, flags);
3031		} else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3032			ret = fiemap_process_hole(inode, fieinfo, &cache,
3033						  &delalloc_cached_state,
3034						  backref_ctx,
3035						  disk_bytenr, extent_offset,
3036						  extent_gen, key.offset,
3037						  extent_end - 1);
3038		} else if (disk_bytenr == 0) {
3039			/* We have an explicit hole. */
3040			ret = fiemap_process_hole(inode, fieinfo, &cache,
3041						  &delalloc_cached_state,
3042						  backref_ctx, 0, 0, 0,
3043						  key.offset, extent_end - 1);
3044		} else {
3045			/* We have a regular extent. */
3046			if (fieinfo->fi_extents_max) {
3047				ret = btrfs_is_data_extent_shared(inode,
3048								  disk_bytenr,
3049								  extent_gen,
3050								  backref_ctx);
3051				if (ret < 0)
3052					goto out_unlock;
3053				else if (ret > 0)
3054					flags |= FIEMAP_EXTENT_SHARED;
3055			}
3056
3057			ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3058						 disk_bytenr + extent_offset,
3059						 extent_len, flags);
3060		}
3061
3062		if (ret < 0) {
3063			goto out_unlock;
3064		} else if (ret > 0) {
3065			/* fiemap_fill_next_extent() told us to stop. */
3066			stopped = true;
3067			break;
3068		}
3069
3070		prev_extent_end = extent_end;
3071next_item:
3072		if (fatal_signal_pending(current)) {
3073			ret = -EINTR;
3074			goto out_unlock;
3075		}
3076
3077		ret = fiemap_next_leaf_item(inode, path);
3078		if (ret < 0) {
3079			goto out_unlock;
3080		} else if (ret > 0) {
3081			/* No more file extent items for this inode. */
3082			break;
3083		}
3084		cond_resched();
3085	}
3086
3087check_eof_delalloc:
3088	/*
3089	 * Release (and free) the path before emitting any final entries to
3090	 * fiemap_fill_next_extent() to keep lockdep happy. This is because
3091	 * once we find no more file extent items exist, we may have a
3092	 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
3093	 * faults when copying data to the user space buffer.
3094	 */
3095	btrfs_free_path(path);
3096	path = NULL;
3097
3098	if (!stopped && prev_extent_end < lockend) {
3099		ret = fiemap_process_hole(inode, fieinfo, &cache,
3100					  &delalloc_cached_state, backref_ctx,
3101					  0, 0, 0, prev_extent_end, lockend - 1);
3102		if (ret < 0)
3103			goto out_unlock;
3104		prev_extent_end = lockend;
3105	}
3106
3107	if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3108		const u64 i_size = i_size_read(&inode->vfs_inode);
3109
3110		if (prev_extent_end < i_size) {
3111			u64 delalloc_start;
3112			u64 delalloc_end;
3113			bool delalloc;
3114
3115			delalloc = btrfs_find_delalloc_in_range(inode,
3116								prev_extent_end,
3117								i_size - 1,
3118								&delalloc_cached_state,
3119								&delalloc_start,
3120								&delalloc_end);
3121			if (!delalloc)
3122				cache.flags |= FIEMAP_EXTENT_LAST;
3123		} else {
3124			cache.flags |= FIEMAP_EXTENT_LAST;
3125		}
3126	}
3127
3128	ret = emit_last_fiemap_cache(fieinfo, &cache);
3129
3130out_unlock:
3131	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3132	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3133out:
3134	free_extent_state(delalloc_cached_state);
3135	btrfs_free_backref_share_ctx(backref_ctx);
3136	btrfs_free_path(path);
3137	return ret;
3138}
3139
3140static void __free_extent_buffer(struct extent_buffer *eb)
3141{
3142	kmem_cache_free(extent_buffer_cache, eb);
3143}
3144
3145static int extent_buffer_under_io(const struct extent_buffer *eb)
3146{
3147	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3148		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3149}
3150
3151static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
3152{
3153	struct btrfs_subpage *subpage;
3154
3155	lockdep_assert_held(&page->mapping->private_lock);
3156
3157	if (PagePrivate(page)) {
3158		subpage = (struct btrfs_subpage *)page->private;
3159		if (atomic_read(&subpage->eb_refs))
3160			return true;
3161		/*
3162		 * Even there is no eb refs here, we may still have
3163		 * end_page_read() call relying on page::private.
3164		 */
3165		if (atomic_read(&subpage->readers))
3166			return true;
3167	}
3168	return false;
3169}
3170
3171static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
3172{
3173	struct btrfs_fs_info *fs_info = eb->fs_info;
3174	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3175
3176	/*
3177	 * For mapped eb, we're going to change the page private, which should
3178	 * be done under the private_lock.
3179	 */
3180	if (mapped)
3181		spin_lock(&page->mapping->private_lock);
3182
3183	if (!PagePrivate(page)) {
3184		if (mapped)
3185			spin_unlock(&page->mapping->private_lock);
3186		return;
3187	}
3188
3189	if (fs_info->nodesize >= PAGE_SIZE) {
3190		/*
3191		 * We do this since we'll remove the pages after we've
3192		 * removed the eb from the radix tree, so we could race
3193		 * and have this page now attached to the new eb.  So
3194		 * only clear page_private if it's still connected to
3195		 * this eb.
3196		 */
3197		if (PagePrivate(page) &&
3198		    page->private == (unsigned long)eb) {
3199			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3200			BUG_ON(PageDirty(page));
3201			BUG_ON(PageWriteback(page));
3202			/*
3203			 * We need to make sure we haven't be attached
3204			 * to a new eb.
3205			 */
3206			detach_page_private(page);
3207		}
3208		if (mapped)
3209			spin_unlock(&page->mapping->private_lock);
3210		return;
3211	}
3212
3213	/*
3214	 * For subpage, we can have dummy eb with page private.  In this case,
3215	 * we can directly detach the private as such page is only attached to
3216	 * one dummy eb, no sharing.
3217	 */
3218	if (!mapped) {
3219		btrfs_detach_subpage(fs_info, page);
3220		return;
3221	}
3222
3223	btrfs_page_dec_eb_refs(fs_info, page);
3224
3225	/*
3226	 * We can only detach the page private if there are no other ebs in the
3227	 * page range and no unfinished IO.
3228	 */
3229	if (!page_range_has_eb(fs_info, page))
3230		btrfs_detach_subpage(fs_info, page);
3231
3232	spin_unlock(&page->mapping->private_lock);
3233}
3234
3235/* Release all pages attached to the extent buffer */
3236static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3237{
3238	int i;
3239	int num_pages;
3240
3241	ASSERT(!extent_buffer_under_io(eb));
3242
3243	num_pages = num_extent_pages(eb);
3244	for (i = 0; i < num_pages; i++) {
3245		struct page *page = eb->pages[i];
3246
3247		if (!page)
3248			continue;
3249
3250		detach_extent_buffer_page(eb, page);
3251
3252		/* One for when we allocated the page */
3253		put_page(page);
3254	}
3255}
3256
3257/*
3258 * Helper for releasing the extent buffer.
3259 */
3260static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3261{
3262	btrfs_release_extent_buffer_pages(eb);
3263	btrfs_leak_debug_del_eb(eb);
3264	__free_extent_buffer(eb);
3265}
3266
3267static struct extent_buffer *
3268__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3269		      unsigned long len)
3270{
3271	struct extent_buffer *eb = NULL;
3272
3273	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3274	eb->start = start;
3275	eb->len = len;
3276	eb->fs_info = fs_info;
3277	init_rwsem(&eb->lock);
3278
3279	btrfs_leak_debug_add_eb(eb);
3280
3281	spin_lock_init(&eb->refs_lock);
3282	atomic_set(&eb->refs, 1);
3283
3284	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3285
3286	return eb;
3287}
3288
3289struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3290{
3291	int i;
3292	struct extent_buffer *new;
3293	int num_pages = num_extent_pages(src);
3294	int ret;
3295
3296	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3297	if (new == NULL)
3298		return NULL;
3299
3300	/*
3301	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3302	 * btrfs_release_extent_buffer() have different behavior for
3303	 * UNMAPPED subpage extent buffer.
3304	 */
3305	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3306
3307	ret = btrfs_alloc_page_array(num_pages, new->pages);
3308	if (ret) {
3309		btrfs_release_extent_buffer(new);
3310		return NULL;
3311	}
3312
3313	for (i = 0; i < num_pages; i++) {
3314		int ret;
3315		struct page *p = new->pages[i];
3316
3317		ret = attach_extent_buffer_page(new, p, NULL);
3318		if (ret < 0) {
3319			btrfs_release_extent_buffer(new);
3320			return NULL;
3321		}
3322		WARN_ON(PageDirty(p));
3323	}
3324	copy_extent_buffer_full(new, src);
3325	set_extent_buffer_uptodate(new);
3326
3327	return new;
3328}
3329
3330struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3331						  u64 start, unsigned long len)
3332{
3333	struct extent_buffer *eb;
3334	int num_pages;
3335	int i;
3336	int ret;
3337
3338	eb = __alloc_extent_buffer(fs_info, start, len);
3339	if (!eb)
3340		return NULL;
3341
3342	num_pages = num_extent_pages(eb);
3343	ret = btrfs_alloc_page_array(num_pages, eb->pages);
3344	if (ret)
3345		goto err;
3346
3347	for (i = 0; i < num_pages; i++) {
3348		struct page *p = eb->pages[i];
3349
3350		ret = attach_extent_buffer_page(eb, p, NULL);
3351		if (ret < 0)
3352			goto err;
3353	}
3354
3355	set_extent_buffer_uptodate(eb);
3356	btrfs_set_header_nritems(eb, 0);
3357	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3358
3359	return eb;
3360err:
3361	for (i = 0; i < num_pages; i++) {
3362		if (eb->pages[i]) {
3363			detach_extent_buffer_page(eb, eb->pages[i]);
3364			__free_page(eb->pages[i]);
3365		}
3366	}
3367	__free_extent_buffer(eb);
3368	return NULL;
3369}
3370
3371struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3372						u64 start)
3373{
3374	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3375}
3376
3377static void check_buffer_tree_ref(struct extent_buffer *eb)
3378{
3379	int refs;
3380	/*
3381	 * The TREE_REF bit is first set when the extent_buffer is added
3382	 * to the radix tree. It is also reset, if unset, when a new reference
3383	 * is created by find_extent_buffer.
3384	 *
3385	 * It is only cleared in two cases: freeing the last non-tree
3386	 * reference to the extent_buffer when its STALE bit is set or
3387	 * calling release_folio when the tree reference is the only reference.
3388	 *
3389	 * In both cases, care is taken to ensure that the extent_buffer's
3390	 * pages are not under io. However, release_folio can be concurrently
3391	 * called with creating new references, which is prone to race
3392	 * conditions between the calls to check_buffer_tree_ref in those
3393	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3394	 *
3395	 * The actual lifetime of the extent_buffer in the radix tree is
3396	 * adequately protected by the refcount, but the TREE_REF bit and
3397	 * its corresponding reference are not. To protect against this
3398	 * class of races, we call check_buffer_tree_ref from the codepaths
3399	 * which trigger io. Note that once io is initiated, TREE_REF can no
3400	 * longer be cleared, so that is the moment at which any such race is
3401	 * best fixed.
3402	 */
3403	refs = atomic_read(&eb->refs);
3404	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3405		return;
3406
3407	spin_lock(&eb->refs_lock);
3408	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3409		atomic_inc(&eb->refs);
3410	spin_unlock(&eb->refs_lock);
3411}
3412
3413static void mark_extent_buffer_accessed(struct extent_buffer *eb,
3414		struct page *accessed)
3415{
3416	int num_pages, i;
3417
3418	check_buffer_tree_ref(eb);
3419
3420	num_pages = num_extent_pages(eb);
3421	for (i = 0; i < num_pages; i++) {
3422		struct page *p = eb->pages[i];
3423
3424		if (p != accessed)
3425			mark_page_accessed(p);
3426	}
3427}
3428
3429struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3430					 u64 start)
3431{
3432	struct extent_buffer *eb;
3433
3434	eb = find_extent_buffer_nolock(fs_info, start);
3435	if (!eb)
3436		return NULL;
3437	/*
3438	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3439	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3440	 * another task running free_extent_buffer() might have seen that flag
3441	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3442	 * writeback flags not set) and it's still in the tree (flag
3443	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3444	 * decrementing the extent buffer's reference count twice.  So here we
3445	 * could race and increment the eb's reference count, clear its stale
3446	 * flag, mark it as dirty and drop our reference before the other task
3447	 * finishes executing free_extent_buffer, which would later result in
3448	 * an attempt to free an extent buffer that is dirty.
3449	 */
3450	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3451		spin_lock(&eb->refs_lock);
3452		spin_unlock(&eb->refs_lock);
3453	}
3454	mark_extent_buffer_accessed(eb, NULL);
3455	return eb;
3456}
3457
3458#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3459struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3460					u64 start)
3461{
3462	struct extent_buffer *eb, *exists = NULL;
3463	int ret;
3464
3465	eb = find_extent_buffer(fs_info, start);
3466	if (eb)
3467		return eb;
3468	eb = alloc_dummy_extent_buffer(fs_info, start);
3469	if (!eb)
3470		return ERR_PTR(-ENOMEM);
3471	eb->fs_info = fs_info;
3472again:
3473	ret = radix_tree_preload(GFP_NOFS);
3474	if (ret) {
3475		exists = ERR_PTR(ret);
3476		goto free_eb;
3477	}
3478	spin_lock(&fs_info->buffer_lock);
3479	ret = radix_tree_insert(&fs_info->buffer_radix,
3480				start >> fs_info->sectorsize_bits, eb);
3481	spin_unlock(&fs_info->buffer_lock);
3482	radix_tree_preload_end();
3483	if (ret == -EEXIST) {
3484		exists = find_extent_buffer(fs_info, start);
3485		if (exists)
3486			goto free_eb;
3487		else
3488			goto again;
3489	}
3490	check_buffer_tree_ref(eb);
3491	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3492
3493	return eb;
3494free_eb:
3495	btrfs_release_extent_buffer(eb);
3496	return exists;
3497}
3498#endif
3499
3500static struct extent_buffer *grab_extent_buffer(
3501		struct btrfs_fs_info *fs_info, struct page *page)
3502{
3503	struct extent_buffer *exists;
3504
3505	/*
3506	 * For subpage case, we completely rely on radix tree to ensure we
3507	 * don't try to insert two ebs for the same bytenr.  So here we always
3508	 * return NULL and just continue.
3509	 */
3510	if (fs_info->nodesize < PAGE_SIZE)
3511		return NULL;
3512
3513	/* Page not yet attached to an extent buffer */
3514	if (!PagePrivate(page))
3515		return NULL;
3516
3517	/*
3518	 * We could have already allocated an eb for this page and attached one
3519	 * so lets see if we can get a ref on the existing eb, and if we can we
3520	 * know it's good and we can just return that one, else we know we can
3521	 * just overwrite page->private.
3522	 */
3523	exists = (struct extent_buffer *)page->private;
3524	if (atomic_inc_not_zero(&exists->refs))
3525		return exists;
3526
3527	WARN_ON(PageDirty(page));
3528	detach_page_private(page);
3529	return NULL;
3530}
3531
3532static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3533{
3534	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3535		btrfs_err(fs_info, "bad tree block start %llu", start);
3536		return -EINVAL;
3537	}
3538
3539	if (fs_info->nodesize < PAGE_SIZE &&
3540	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3541		btrfs_err(fs_info,
3542		"tree block crosses page boundary, start %llu nodesize %u",
3543			  start, fs_info->nodesize);
3544		return -EINVAL;
3545	}
3546	if (fs_info->nodesize >= PAGE_SIZE &&
3547	    !PAGE_ALIGNED(start)) {
3548		btrfs_err(fs_info,
3549		"tree block is not page aligned, start %llu nodesize %u",
3550			  start, fs_info->nodesize);
3551		return -EINVAL;
3552	}
3553	return 0;
3554}
3555
3556struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3557					  u64 start, u64 owner_root, int level)
3558{
3559	unsigned long len = fs_info->nodesize;
3560	int num_pages;
3561	int i;
3562	unsigned long index = start >> PAGE_SHIFT;
3563	struct extent_buffer *eb;
3564	struct extent_buffer *exists = NULL;
3565	struct page *p;
3566	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3567	struct btrfs_subpage *prealloc = NULL;
3568	u64 lockdep_owner = owner_root;
3569	int uptodate = 1;
3570	int ret;
3571
3572	if (check_eb_alignment(fs_info, start))
3573		return ERR_PTR(-EINVAL);
3574
3575#if BITS_PER_LONG == 32
3576	if (start >= MAX_LFS_FILESIZE) {
3577		btrfs_err_rl(fs_info,
3578		"extent buffer %llu is beyond 32bit page cache limit", start);
3579		btrfs_err_32bit_limit(fs_info);
3580		return ERR_PTR(-EOVERFLOW);
3581	}
3582	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3583		btrfs_warn_32bit_limit(fs_info);
3584#endif
3585
3586	eb = find_extent_buffer(fs_info, start);
3587	if (eb)
3588		return eb;
3589
3590	eb = __alloc_extent_buffer(fs_info, start, len);
3591	if (!eb)
3592		return ERR_PTR(-ENOMEM);
3593
3594	/*
3595	 * The reloc trees are just snapshots, so we need them to appear to be
3596	 * just like any other fs tree WRT lockdep.
3597	 */
3598	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3599		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3600
3601	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3602
3603	num_pages = num_extent_pages(eb);
3604
3605	/*
3606	 * Preallocate page->private for subpage case, so that we won't
3607	 * allocate memory with private_lock nor page lock hold.
3608	 *
3609	 * The memory will be freed by attach_extent_buffer_page() or freed
3610	 * manually if we exit earlier.
3611	 */
3612	if (fs_info->nodesize < PAGE_SIZE) {
3613		prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3614		if (IS_ERR(prealloc)) {
3615			exists = ERR_CAST(prealloc);
3616			goto free_eb;
3617		}
3618	}
3619
3620	for (i = 0; i < num_pages; i++, index++) {
3621		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
3622		if (!p) {
3623			exists = ERR_PTR(-ENOMEM);
3624			btrfs_free_subpage(prealloc);
3625			goto free_eb;
3626		}
3627
3628		spin_lock(&mapping->private_lock);
3629		exists = grab_extent_buffer(fs_info, p);
3630		if (exists) {
3631			spin_unlock(&mapping->private_lock);
3632			unlock_page(p);
3633			put_page(p);
3634			mark_extent_buffer_accessed(exists, p);
3635			btrfs_free_subpage(prealloc);
3636			goto free_eb;
3637		}
3638		/* Should not fail, as we have preallocated the memory */
3639		ret = attach_extent_buffer_page(eb, p, prealloc);
3640		ASSERT(!ret);
3641		/*
3642		 * To inform we have extra eb under allocation, so that
3643		 * detach_extent_buffer_page() won't release the page private
3644		 * when the eb hasn't yet been inserted into radix tree.
3645		 *
3646		 * The ref will be decreased when the eb released the page, in
3647		 * detach_extent_buffer_page().
3648		 * Thus needs no special handling in error path.
3649		 */
3650		btrfs_page_inc_eb_refs(fs_info, p);
3651		spin_unlock(&mapping->private_lock);
3652
3653		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
3654		eb->pages[i] = p;
3655		if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len))
3656			uptodate = 0;
3657
3658		/*
3659		 * We can't unlock the pages just yet since the extent buffer
3660		 * hasn't been properly inserted in the radix tree, this
3661		 * opens a race with btree_release_folio which can free a page
3662		 * while we are still filling in all pages for the buffer and
3663		 * we could crash.
3664		 */
3665	}
3666	if (uptodate)
3667		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3668again:
3669	ret = radix_tree_preload(GFP_NOFS);
3670	if (ret) {
3671		exists = ERR_PTR(ret);
3672		goto free_eb;
3673	}
3674
3675	spin_lock(&fs_info->buffer_lock);
3676	ret = radix_tree_insert(&fs_info->buffer_radix,
3677				start >> fs_info->sectorsize_bits, eb);
3678	spin_unlock(&fs_info->buffer_lock);
3679	radix_tree_preload_end();
3680	if (ret == -EEXIST) {
3681		exists = find_extent_buffer(fs_info, start);
3682		if (exists)
3683			goto free_eb;
3684		else
3685			goto again;
3686	}
3687	/* add one reference for the tree */
3688	check_buffer_tree_ref(eb);
3689	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3690
3691	/*
3692	 * Now it's safe to unlock the pages because any calls to
3693	 * btree_release_folio will correctly detect that a page belongs to a
3694	 * live buffer and won't free them prematurely.
3695	 */
3696	for (i = 0; i < num_pages; i++)
3697		unlock_page(eb->pages[i]);
3698	return eb;
3699
3700free_eb:
3701	WARN_ON(!atomic_dec_and_test(&eb->refs));
3702	for (i = 0; i < num_pages; i++) {
3703		if (eb->pages[i])
3704			unlock_page(eb->pages[i]);
3705	}
3706
3707	btrfs_release_extent_buffer(eb);
3708	return exists;
3709}
3710
3711static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3712{
3713	struct extent_buffer *eb =
3714			container_of(head, struct extent_buffer, rcu_head);
3715
3716	__free_extent_buffer(eb);
3717}
3718
3719static int release_extent_buffer(struct extent_buffer *eb)
3720	__releases(&eb->refs_lock)
3721{
3722	lockdep_assert_held(&eb->refs_lock);
3723
3724	WARN_ON(atomic_read(&eb->refs) == 0);
3725	if (atomic_dec_and_test(&eb->refs)) {
3726		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3727			struct btrfs_fs_info *fs_info = eb->fs_info;
3728
3729			spin_unlock(&eb->refs_lock);
3730
3731			spin_lock(&fs_info->buffer_lock);
3732			radix_tree_delete(&fs_info->buffer_radix,
3733					  eb->start >> fs_info->sectorsize_bits);
3734			spin_unlock(&fs_info->buffer_lock);
3735		} else {
3736			spin_unlock(&eb->refs_lock);
3737		}
3738
3739		btrfs_leak_debug_del_eb(eb);
3740		/* Should be safe to release our pages at this point */
3741		btrfs_release_extent_buffer_pages(eb);
3742#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3743		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3744			__free_extent_buffer(eb);
3745			return 1;
3746		}
3747#endif
3748		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3749		return 1;
3750	}
3751	spin_unlock(&eb->refs_lock);
3752
3753	return 0;
3754}
3755
3756void free_extent_buffer(struct extent_buffer *eb)
3757{
3758	int refs;
3759	if (!eb)
3760		return;
3761
3762	refs = atomic_read(&eb->refs);
3763	while (1) {
3764		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3765		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3766			refs == 1))
3767			break;
3768		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3769			return;
3770	}
3771
3772	spin_lock(&eb->refs_lock);
3773	if (atomic_read(&eb->refs) == 2 &&
3774	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3775	    !extent_buffer_under_io(eb) &&
3776	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3777		atomic_dec(&eb->refs);
3778
3779	/*
3780	 * I know this is terrible, but it's temporary until we stop tracking
3781	 * the uptodate bits and such for the extent buffers.
3782	 */
3783	release_extent_buffer(eb);
3784}
3785
3786void free_extent_buffer_stale(struct extent_buffer *eb)
3787{
3788	if (!eb)
3789		return;
3790
3791	spin_lock(&eb->refs_lock);
3792	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3793
3794	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3795	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3796		atomic_dec(&eb->refs);
3797	release_extent_buffer(eb);
3798}
3799
3800static void btree_clear_page_dirty(struct page *page)
3801{
3802	ASSERT(PageDirty(page));
3803	ASSERT(PageLocked(page));
3804	clear_page_dirty_for_io(page);
3805	xa_lock_irq(&page->mapping->i_pages);
3806	if (!PageDirty(page))
3807		__xa_clear_mark(&page->mapping->i_pages,
3808				page_index(page), PAGECACHE_TAG_DIRTY);
3809	xa_unlock_irq(&page->mapping->i_pages);
3810}
3811
3812static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3813{
3814	struct btrfs_fs_info *fs_info = eb->fs_info;
3815	struct page *page = eb->pages[0];
3816	bool last;
3817
3818	/* btree_clear_page_dirty() needs page locked */
3819	lock_page(page);
3820	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
3821						  eb->len);
3822	if (last)
3823		btree_clear_page_dirty(page);
3824	unlock_page(page);
3825	WARN_ON(atomic_read(&eb->refs) == 0);
3826}
3827
3828void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3829			      struct extent_buffer *eb)
3830{
3831	struct btrfs_fs_info *fs_info = eb->fs_info;
3832	int i;
3833	int num_pages;
3834	struct page *page;
3835
3836	btrfs_assert_tree_write_locked(eb);
3837
3838	if (trans && btrfs_header_generation(eb) != trans->transid)
3839		return;
3840
3841	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3842		return;
3843
3844	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3845				 fs_info->dirty_metadata_batch);
3846
3847	if (eb->fs_info->nodesize < PAGE_SIZE)
3848		return clear_subpage_extent_buffer_dirty(eb);
3849
3850	num_pages = num_extent_pages(eb);
3851
3852	for (i = 0; i < num_pages; i++) {
3853		page = eb->pages[i];
3854		if (!PageDirty(page))
3855			continue;
3856		lock_page(page);
3857		btree_clear_page_dirty(page);
3858		unlock_page(page);
3859	}
3860	WARN_ON(atomic_read(&eb->refs) == 0);
3861}
3862
3863void set_extent_buffer_dirty(struct extent_buffer *eb)
3864{
3865	int i;
3866	int num_pages;
3867	bool was_dirty;
3868
3869	check_buffer_tree_ref(eb);
3870
3871	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3872
3873	num_pages = num_extent_pages(eb);
3874	WARN_ON(atomic_read(&eb->refs) == 0);
3875	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3876
3877	if (!was_dirty) {
3878		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
3879
3880		/*
3881		 * For subpage case, we can have other extent buffers in the
3882		 * same page, and in clear_subpage_extent_buffer_dirty() we
3883		 * have to clear page dirty without subpage lock held.
3884		 * This can cause race where our page gets dirty cleared after
3885		 * we just set it.
3886		 *
3887		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3888		 * its page for other reasons, we can use page lock to prevent
3889		 * the above race.
3890		 */
3891		if (subpage)
3892			lock_page(eb->pages[0]);
3893		for (i = 0; i < num_pages; i++)
3894			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
3895					     eb->start, eb->len);
3896		if (subpage)
3897			unlock_page(eb->pages[0]);
3898		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3899					 eb->len,
3900					 eb->fs_info->dirty_metadata_batch);
3901	}
3902#ifdef CONFIG_BTRFS_DEBUG
3903	for (i = 0; i < num_pages; i++)
3904		ASSERT(PageDirty(eb->pages[i]));
3905#endif
3906}
3907
3908void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3909{
3910	struct btrfs_fs_info *fs_info = eb->fs_info;
3911	struct page *page;
3912	int num_pages;
3913	int i;
3914
3915	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3916	num_pages = num_extent_pages(eb);
3917	for (i = 0; i < num_pages; i++) {
3918		page = eb->pages[i];
3919		if (!page)
3920			continue;
3921
3922		/*
3923		 * This is special handling for metadata subpage, as regular
3924		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3925		 */
3926		if (fs_info->nodesize >= PAGE_SIZE)
3927			ClearPageUptodate(page);
3928		else
3929			btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
3930						     eb->len);
3931	}
3932}
3933
3934void set_extent_buffer_uptodate(struct extent_buffer *eb)
3935{
3936	struct btrfs_fs_info *fs_info = eb->fs_info;
3937	struct page *page;
3938	int num_pages;
3939	int i;
3940
3941	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3942	num_pages = num_extent_pages(eb);
3943	for (i = 0; i < num_pages; i++) {
3944		page = eb->pages[i];
3945
3946		/*
3947		 * This is special handling for metadata subpage, as regular
3948		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3949		 */
3950		if (fs_info->nodesize >= PAGE_SIZE)
3951			SetPageUptodate(page);
3952		else
3953			btrfs_subpage_set_uptodate(fs_info, page, eb->start,
3954						   eb->len);
3955	}
3956}
3957
3958static void extent_buffer_read_end_io(struct btrfs_bio *bbio)
3959{
3960	struct extent_buffer *eb = bbio->private;
3961	struct btrfs_fs_info *fs_info = eb->fs_info;
3962	bool uptodate = !bbio->bio.bi_status;
3963	struct bvec_iter_all iter_all;
3964	struct bio_vec *bvec;
3965	u32 bio_offset = 0;
3966
3967	eb->read_mirror = bbio->mirror_num;
3968
3969	if (uptodate &&
3970	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3971		uptodate = false;
3972
3973	if (uptodate) {
3974		set_extent_buffer_uptodate(eb);
3975	} else {
3976		clear_extent_buffer_uptodate(eb);
3977		set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3978	}
3979
3980	bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
3981		u64 start = eb->start + bio_offset;
3982		struct page *page = bvec->bv_page;
3983		u32 len = bvec->bv_len;
3984
3985		if (uptodate)
3986			btrfs_page_set_uptodate(fs_info, page, start, len);
3987		else
3988			btrfs_page_clear_uptodate(fs_info, page, start, len);
3989
3990		bio_offset += len;
3991	}
3992
3993	clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3994	smp_mb__after_atomic();
3995	wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
3996	free_extent_buffer(eb);
3997
3998	bio_put(&bbio->bio);
3999}
4000
4001int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4002			     struct btrfs_tree_parent_check *check)
4003{
4004	int num_pages = num_extent_pages(eb), i;
4005	struct btrfs_bio *bbio;
4006
4007	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4008		return 0;
4009
4010	/*
4011	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4012	 * operation, which could potentially still be in flight.  In this case
4013	 * we simply want to return an error.
4014	 */
4015	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4016		return -EIO;
4017
4018	/* Someone else is already reading the buffer, just wait for it. */
4019	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
4020		goto done;
4021
4022	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4023	eb->read_mirror = 0;
4024	check_buffer_tree_ref(eb);
4025	atomic_inc(&eb->refs);
4026
4027	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
4028			       REQ_OP_READ | REQ_META, eb->fs_info,
4029			       extent_buffer_read_end_io, eb);
4030	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
4031	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
4032	bbio->file_offset = eb->start;
4033	memcpy(&bbio->parent_check, check, sizeof(*check));
4034	if (eb->fs_info->nodesize < PAGE_SIZE) {
4035		__bio_add_page(&bbio->bio, eb->pages[0], eb->len,
4036			       eb->start - page_offset(eb->pages[0]));
4037	} else {
4038		for (i = 0; i < num_pages; i++)
4039			__bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0);
4040	}
4041	btrfs_submit_bio(bbio, mirror_num);
4042
4043done:
4044	if (wait == WAIT_COMPLETE) {
4045		wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
4046		if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4047			return -EIO;
4048	}
4049
4050	return 0;
4051}
4052
4053static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
4054			    unsigned long len)
4055{
4056	btrfs_warn(eb->fs_info,
4057		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
4058		eb->start, eb->len, start, len);
4059	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4060
4061	return true;
4062}
4063
4064/*
4065 * Check if the [start, start + len) range is valid before reading/writing
4066 * the eb.
4067 * NOTE: @start and @len are offset inside the eb, not logical address.
4068 *
4069 * Caller should not touch the dst/src memory if this function returns error.
4070 */
4071static inline int check_eb_range(const struct extent_buffer *eb,
4072				 unsigned long start, unsigned long len)
4073{
4074	unsigned long offset;
4075
4076	/* start, start + len should not go beyond eb->len nor overflow */
4077	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
4078		return report_eb_range(eb, start, len);
4079
4080	return false;
4081}
4082
4083void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4084			unsigned long start, unsigned long len)
4085{
4086	size_t cur;
4087	size_t offset;
4088	struct page *page;
4089	char *kaddr;
4090	char *dst = (char *)dstv;
4091	unsigned long i = get_eb_page_index(start);
4092
4093	if (check_eb_range(eb, start, len)) {
4094		/*
4095		 * Invalid range hit, reset the memory, so callers won't get
4096		 * some random garbage for their uninitialzed memory.
4097		 */
4098		memset(dstv, 0, len);
4099		return;
4100	}
4101
4102	offset = get_eb_offset_in_page(eb, start);
4103
4104	while (len > 0) {
4105		page = eb->pages[i];
4106
4107		cur = min(len, (PAGE_SIZE - offset));
4108		kaddr = page_address(page);
4109		memcpy(dst, kaddr + offset, cur);
4110
4111		dst += cur;
4112		len -= cur;
4113		offset = 0;
4114		i++;
4115	}
4116}
4117
4118int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4119				       void __user *dstv,
4120				       unsigned long start, unsigned long len)
4121{
4122	size_t cur;
4123	size_t offset;
4124	struct page *page;
4125	char *kaddr;
4126	char __user *dst = (char __user *)dstv;
4127	unsigned long i = get_eb_page_index(start);
4128	int ret = 0;
4129
4130	WARN_ON(start > eb->len);
4131	WARN_ON(start + len > eb->start + eb->len);
4132
4133	offset = get_eb_offset_in_page(eb, start);
4134
4135	while (len > 0) {
4136		page = eb->pages[i];
4137
4138		cur = min(len, (PAGE_SIZE - offset));
4139		kaddr = page_address(page);
4140		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4141			ret = -EFAULT;
4142			break;
4143		}
4144
4145		dst += cur;
4146		len -= cur;
4147		offset = 0;
4148		i++;
4149	}
4150
4151	return ret;
4152}
4153
4154int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4155			 unsigned long start, unsigned long len)
4156{
4157	size_t cur;
4158	size_t offset;
4159	struct page *page;
4160	char *kaddr;
4161	char *ptr = (char *)ptrv;
4162	unsigned long i = get_eb_page_index(start);
4163	int ret = 0;
4164
4165	if (check_eb_range(eb, start, len))
4166		return -EINVAL;
4167
4168	offset = get_eb_offset_in_page(eb, start);
4169
4170	while (len > 0) {
4171		page = eb->pages[i];
4172
4173		cur = min(len, (PAGE_SIZE - offset));
4174
4175		kaddr = page_address(page);
4176		ret = memcmp(ptr, kaddr + offset, cur);
4177		if (ret)
4178			break;
4179
4180		ptr += cur;
4181		len -= cur;
4182		offset = 0;
4183		i++;
4184	}
4185	return ret;
4186}
4187
4188/*
4189 * Check that the extent buffer is uptodate.
4190 *
4191 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4192 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4193 */
4194static void assert_eb_page_uptodate(const struct extent_buffer *eb,
4195				    struct page *page)
4196{
4197	struct btrfs_fs_info *fs_info = eb->fs_info;
4198
4199	/*
4200	 * If we are using the commit root we could potentially clear a page
4201	 * Uptodate while we're using the extent buffer that we've previously
4202	 * looked up.  We don't want to complain in this case, as the page was
4203	 * valid before, we just didn't write it out.  Instead we want to catch
4204	 * the case where we didn't actually read the block properly, which
4205	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4206	 */
4207	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4208		return;
4209
4210	if (fs_info->nodesize < PAGE_SIZE) {
4211		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page,
4212							 eb->start, eb->len)))
4213			btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len);
4214	} else {
4215		WARN_ON(!PageUptodate(page));
4216	}
4217}
4218
4219static void __write_extent_buffer(const struct extent_buffer *eb,
4220				  const void *srcv, unsigned long start,
4221				  unsigned long len, bool use_memmove)
4222{
4223	size_t cur;
4224	size_t offset;
4225	struct page *page;
4226	char *kaddr;
4227	char *src = (char *)srcv;
4228	unsigned long i = get_eb_page_index(start);
4229	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
4230	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4231
4232	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
4233
4234	if (check_eb_range(eb, start, len))
4235		return;
4236
4237	offset = get_eb_offset_in_page(eb, start);
4238
4239	while (len > 0) {
4240		page = eb->pages[i];
4241		if (check_uptodate)
4242			assert_eb_page_uptodate(eb, page);
4243
4244		cur = min(len, PAGE_SIZE - offset);
4245		kaddr = page_address(page);
4246		if (use_memmove)
4247			memmove(kaddr + offset, src, cur);
4248		else
4249			memcpy(kaddr + offset, src, cur);
4250
4251		src += cur;
4252		len -= cur;
4253		offset = 0;
4254		i++;
4255	}
4256}
4257
4258void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4259			 unsigned long start, unsigned long len)
4260{
4261	return __write_extent_buffer(eb, srcv, start, len, false);
4262}
4263
4264static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4265				 unsigned long start, unsigned long len)
4266{
4267	unsigned long cur = start;
4268
4269	while (cur < start + len) {
4270		unsigned long index = get_eb_page_index(cur);
4271		unsigned int offset = get_eb_offset_in_page(eb, cur);
4272		unsigned int cur_len = min(start + len - cur, PAGE_SIZE - offset);
4273		struct page *page = eb->pages[index];
4274
4275		assert_eb_page_uptodate(eb, page);
4276		memset(page_address(page) + offset, c, cur_len);
4277
4278		cur += cur_len;
4279	}
4280}
4281
4282void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4283			   unsigned long len)
4284{
4285	if (check_eb_range(eb, start, len))
4286		return;
4287	return memset_extent_buffer(eb, 0, start, len);
4288}
4289
4290void copy_extent_buffer_full(const struct extent_buffer *dst,
4291			     const struct extent_buffer *src)
4292{
4293	unsigned long cur = 0;
4294
4295	ASSERT(dst->len == src->len);
4296
4297	while (cur < src->len) {
4298		unsigned long index = get_eb_page_index(cur);
4299		unsigned long offset = get_eb_offset_in_page(src, cur);
4300		unsigned long cur_len = min(src->len, PAGE_SIZE - offset);
4301		void *addr = page_address(src->pages[index]) + offset;
4302
4303		write_extent_buffer(dst, addr, cur, cur_len);
4304
4305		cur += cur_len;
4306	}
4307}
4308
4309void copy_extent_buffer(const struct extent_buffer *dst,
4310			const struct extent_buffer *src,
4311			unsigned long dst_offset, unsigned long src_offset,
4312			unsigned long len)
4313{
4314	u64 dst_len = dst->len;
4315	size_t cur;
4316	size_t offset;
4317	struct page *page;
4318	char *kaddr;
4319	unsigned long i = get_eb_page_index(dst_offset);
4320
4321	if (check_eb_range(dst, dst_offset, len) ||
4322	    check_eb_range(src, src_offset, len))
4323		return;
4324
4325	WARN_ON(src->len != dst_len);
4326
4327	offset = get_eb_offset_in_page(dst, dst_offset);
4328
4329	while (len > 0) {
4330		page = dst->pages[i];
4331		assert_eb_page_uptodate(dst, page);
4332
4333		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
4334
4335		kaddr = page_address(page);
4336		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4337
4338		src_offset += cur;
4339		len -= cur;
4340		offset = 0;
4341		i++;
4342	}
4343}
4344
4345/*
4346 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
4347 * given bit number
4348 * @eb: the extent buffer
4349 * @start: offset of the bitmap item in the extent buffer
4350 * @nr: bit number
4351 * @page_index: return index of the page in the extent buffer that contains the
4352 * given bit number
4353 * @page_offset: return offset into the page given by page_index
4354 *
4355 * This helper hides the ugliness of finding the byte in an extent buffer which
4356 * contains a given bit.
4357 */
4358static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4359				    unsigned long start, unsigned long nr,
4360				    unsigned long *page_index,
4361				    size_t *page_offset)
4362{
4363	size_t byte_offset = BIT_BYTE(nr);
4364	size_t offset;
4365
4366	/*
4367	 * The byte we want is the offset of the extent buffer + the offset of
4368	 * the bitmap item in the extent buffer + the offset of the byte in the
4369	 * bitmap item.
4370	 */
4371	offset = start + offset_in_page(eb->start) + byte_offset;
4372
4373	*page_index = offset >> PAGE_SHIFT;
4374	*page_offset = offset_in_page(offset);
4375}
4376
4377/*
4378 * Determine whether a bit in a bitmap item is set.
4379 *
4380 * @eb:     the extent buffer
4381 * @start:  offset of the bitmap item in the extent buffer
4382 * @nr:     bit number to test
4383 */
4384int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4385			   unsigned long nr)
4386{
4387	u8 *kaddr;
4388	struct page *page;
4389	unsigned long i;
4390	size_t offset;
4391
4392	eb_bitmap_offset(eb, start, nr, &i, &offset);
4393	page = eb->pages[i];
4394	assert_eb_page_uptodate(eb, page);
4395	kaddr = page_address(page);
4396	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4397}
4398
4399static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4400{
4401	unsigned long index = get_eb_page_index(bytenr);
4402
4403	if (check_eb_range(eb, bytenr, 1))
4404		return NULL;
4405	return page_address(eb->pages[index]) + get_eb_offset_in_page(eb, bytenr);
4406}
4407
4408/*
4409 * Set an area of a bitmap to 1.
4410 *
4411 * @eb:     the extent buffer
4412 * @start:  offset of the bitmap item in the extent buffer
4413 * @pos:    bit number of the first bit
4414 * @len:    number of bits to set
4415 */
4416void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4417			      unsigned long pos, unsigned long len)
4418{
4419	unsigned int first_byte = start + BIT_BYTE(pos);
4420	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4421	const bool same_byte = (first_byte == last_byte);
4422	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4423	u8 *kaddr;
4424
4425	if (same_byte)
4426		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4427
4428	/* Handle the first byte. */
4429	kaddr = extent_buffer_get_byte(eb, first_byte);
4430	*kaddr |= mask;
4431	if (same_byte)
4432		return;
4433
4434	/* Handle the byte aligned part. */
4435	ASSERT(first_byte + 1 <= last_byte);
4436	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4437
4438	/* Handle the last byte. */
4439	kaddr = extent_buffer_get_byte(eb, last_byte);
4440	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4441}
4442
4443
4444/*
4445 * Clear an area of a bitmap.
4446 *
4447 * @eb:     the extent buffer
4448 * @start:  offset of the bitmap item in the extent buffer
4449 * @pos:    bit number of the first bit
4450 * @len:    number of bits to clear
4451 */
4452void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4453				unsigned long start, unsigned long pos,
4454				unsigned long len)
4455{
4456	unsigned int first_byte = start + BIT_BYTE(pos);
4457	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4458	const bool same_byte = (first_byte == last_byte);
4459	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4460	u8 *kaddr;
4461
4462	if (same_byte)
4463		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4464
4465	/* Handle the first byte. */
4466	kaddr = extent_buffer_get_byte(eb, first_byte);
4467	*kaddr &= ~mask;
4468	if (same_byte)
4469		return;
4470
4471	/* Handle the byte aligned part. */
4472	ASSERT(first_byte + 1 <= last_byte);
4473	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4474
4475	/* Handle the last byte. */
4476	kaddr = extent_buffer_get_byte(eb, last_byte);
4477	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4478}
4479
4480static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4481{
4482	unsigned long distance = (src > dst) ? src - dst : dst - src;
4483	return distance < len;
4484}
4485
4486void memcpy_extent_buffer(const struct extent_buffer *dst,
4487			  unsigned long dst_offset, unsigned long src_offset,
4488			  unsigned long len)
4489{
4490	unsigned long cur_off = 0;
4491
4492	if (check_eb_range(dst, dst_offset, len) ||
4493	    check_eb_range(dst, src_offset, len))
4494		return;
4495
4496	while (cur_off < len) {
4497		unsigned long cur_src = cur_off + src_offset;
4498		unsigned long pg_index = get_eb_page_index(cur_src);
4499		unsigned long pg_off = get_eb_offset_in_page(dst, cur_src);
4500		unsigned long cur_len = min(src_offset + len - cur_src,
4501					    PAGE_SIZE - pg_off);
4502		void *src_addr = page_address(dst->pages[pg_index]) + pg_off;
4503		const bool use_memmove = areas_overlap(src_offset + cur_off,
4504						       dst_offset + cur_off, cur_len);
4505
4506		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4507				      use_memmove);
4508		cur_off += cur_len;
4509	}
4510}
4511
4512void memmove_extent_buffer(const struct extent_buffer *dst,
4513			   unsigned long dst_offset, unsigned long src_offset,
4514			   unsigned long len)
4515{
4516	unsigned long dst_end = dst_offset + len - 1;
4517	unsigned long src_end = src_offset + len - 1;
4518
4519	if (check_eb_range(dst, dst_offset, len) ||
4520	    check_eb_range(dst, src_offset, len))
4521		return;
4522
4523	if (dst_offset < src_offset) {
4524		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4525		return;
4526	}
4527
4528	while (len > 0) {
4529		unsigned long src_i;
4530		size_t cur;
4531		size_t dst_off_in_page;
4532		size_t src_off_in_page;
4533		void *src_addr;
4534		bool use_memmove;
4535
4536		src_i = get_eb_page_index(src_end);
4537
4538		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
4539		src_off_in_page = get_eb_offset_in_page(dst, src_end);
4540
4541		cur = min_t(unsigned long, len, src_off_in_page + 1);
4542		cur = min(cur, dst_off_in_page + 1);
4543
4544		src_addr = page_address(dst->pages[src_i]) + src_off_in_page -
4545					cur + 1;
4546		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4547					    cur);
4548
4549		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4550				      use_memmove);
4551
4552		dst_end -= cur;
4553		src_end -= cur;
4554		len -= cur;
4555	}
4556}
4557
4558#define GANG_LOOKUP_SIZE	16
4559static struct extent_buffer *get_next_extent_buffer(
4560		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4561{
4562	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4563	struct extent_buffer *found = NULL;
4564	u64 page_start = page_offset(page);
4565	u64 cur = page_start;
4566
4567	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4568	lockdep_assert_held(&fs_info->buffer_lock);
4569
4570	while (cur < page_start + PAGE_SIZE) {
4571		int ret;
4572		int i;
4573
4574		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4575				(void **)gang, cur >> fs_info->sectorsize_bits,
4576				min_t(unsigned int, GANG_LOOKUP_SIZE,
4577				      PAGE_SIZE / fs_info->nodesize));
4578		if (ret == 0)
4579			goto out;
4580		for (i = 0; i < ret; i++) {
4581			/* Already beyond page end */
4582			if (gang[i]->start >= page_start + PAGE_SIZE)
4583				goto out;
4584			/* Found one */
4585			if (gang[i]->start >= bytenr) {
4586				found = gang[i];
4587				goto out;
4588			}
4589		}
4590		cur = gang[ret - 1]->start + gang[ret - 1]->len;
4591	}
4592out:
4593	return found;
4594}
4595
4596static int try_release_subpage_extent_buffer(struct page *page)
4597{
4598	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4599	u64 cur = page_offset(page);
4600	const u64 end = page_offset(page) + PAGE_SIZE;
4601	int ret;
4602
4603	while (cur < end) {
4604		struct extent_buffer *eb = NULL;
4605
4606		/*
4607		 * Unlike try_release_extent_buffer() which uses page->private
4608		 * to grab buffer, for subpage case we rely on radix tree, thus
4609		 * we need to ensure radix tree consistency.
4610		 *
4611		 * We also want an atomic snapshot of the radix tree, thus go
4612		 * with spinlock rather than RCU.
4613		 */
4614		spin_lock(&fs_info->buffer_lock);
4615		eb = get_next_extent_buffer(fs_info, page, cur);
4616		if (!eb) {
4617			/* No more eb in the page range after or at cur */
4618			spin_unlock(&fs_info->buffer_lock);
4619			break;
4620		}
4621		cur = eb->start + eb->len;
4622
4623		/*
4624		 * The same as try_release_extent_buffer(), to ensure the eb
4625		 * won't disappear out from under us.
4626		 */
4627		spin_lock(&eb->refs_lock);
4628		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4629			spin_unlock(&eb->refs_lock);
4630			spin_unlock(&fs_info->buffer_lock);
4631			break;
4632		}
4633		spin_unlock(&fs_info->buffer_lock);
4634
4635		/*
4636		 * If tree ref isn't set then we know the ref on this eb is a
4637		 * real ref, so just return, this eb will likely be freed soon
4638		 * anyway.
4639		 */
4640		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4641			spin_unlock(&eb->refs_lock);
4642			break;
4643		}
4644
4645		/*
4646		 * Here we don't care about the return value, we will always
4647		 * check the page private at the end.  And
4648		 * release_extent_buffer() will release the refs_lock.
4649		 */
4650		release_extent_buffer(eb);
4651	}
4652	/*
4653	 * Finally to check if we have cleared page private, as if we have
4654	 * released all ebs in the page, the page private should be cleared now.
4655	 */
4656	spin_lock(&page->mapping->private_lock);
4657	if (!PagePrivate(page))
4658		ret = 1;
4659	else
4660		ret = 0;
4661	spin_unlock(&page->mapping->private_lock);
4662	return ret;
4663
4664}
4665
4666int try_release_extent_buffer(struct page *page)
4667{
4668	struct extent_buffer *eb;
4669
4670	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4671		return try_release_subpage_extent_buffer(page);
4672
4673	/*
4674	 * We need to make sure nobody is changing page->private, as we rely on
4675	 * page->private as the pointer to extent buffer.
4676	 */
4677	spin_lock(&page->mapping->private_lock);
4678	if (!PagePrivate(page)) {
4679		spin_unlock(&page->mapping->private_lock);
4680		return 1;
4681	}
4682
4683	eb = (struct extent_buffer *)page->private;
4684	BUG_ON(!eb);
4685
4686	/*
4687	 * This is a little awful but should be ok, we need to make sure that
4688	 * the eb doesn't disappear out from under us while we're looking at
4689	 * this page.
4690	 */
4691	spin_lock(&eb->refs_lock);
4692	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4693		spin_unlock(&eb->refs_lock);
4694		spin_unlock(&page->mapping->private_lock);
4695		return 0;
4696	}
4697	spin_unlock(&page->mapping->private_lock);
4698
4699	/*
4700	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4701	 * so just return, this page will likely be freed soon anyway.
4702	 */
4703	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4704		spin_unlock(&eb->refs_lock);
4705		return 0;
4706	}
4707
4708	return release_extent_buffer(eb);
4709}
4710
4711/*
4712 * btrfs_readahead_tree_block - attempt to readahead a child block
4713 * @fs_info:	the fs_info
4714 * @bytenr:	bytenr to read
4715 * @owner_root: objectid of the root that owns this eb
4716 * @gen:	generation for the uptodate check, can be 0
4717 * @level:	level for the eb
4718 *
4719 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
4720 * normal uptodate check of the eb, without checking the generation.  If we have
4721 * to read the block we will not block on anything.
4722 */
4723void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4724				u64 bytenr, u64 owner_root, u64 gen, int level)
4725{
4726	struct btrfs_tree_parent_check check = {
4727		.has_first_key = 0,
4728		.level = level,
4729		.transid = gen
4730	};
4731	struct extent_buffer *eb;
4732	int ret;
4733
4734	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4735	if (IS_ERR(eb))
4736		return;
4737
4738	if (btrfs_buffer_uptodate(eb, gen, 1)) {
4739		free_extent_buffer(eb);
4740		return;
4741	}
4742
4743	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4744	if (ret < 0)
4745		free_extent_buffer_stale(eb);
4746	else
4747		free_extent_buffer(eb);
4748}
4749
4750/*
4751 * btrfs_readahead_node_child - readahead a node's child block
4752 * @node:	parent node we're reading from
4753 * @slot:	slot in the parent node for the child we want to read
4754 *
4755 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4756 * the slot in the node provided.
4757 */
4758void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4759{
4760	btrfs_readahead_tree_block(node->fs_info,
4761				   btrfs_node_blockptr(node, slot),
4762				   btrfs_header_owner(node),
4763				   btrfs_node_ptr_generation(node, slot),
4764				   btrfs_header_level(node) - 1);
4765}
4766