xref: /kernel/linux/linux-6.6/fs/btrfs/extent-tree.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/signal.h>
8#include <linux/pagemap.h>
9#include <linux/writeback.h>
10#include <linux/blkdev.h>
11#include <linux/sort.h>
12#include <linux/rcupdate.h>
13#include <linux/kthread.h>
14#include <linux/slab.h>
15#include <linux/ratelimit.h>
16#include <linux/percpu_counter.h>
17#include <linux/lockdep.h>
18#include <linux/crc32c.h>
19#include "ctree.h"
20#include "extent-tree.h"
21#include "tree-log.h"
22#include "disk-io.h"
23#include "print-tree.h"
24#include "volumes.h"
25#include "raid56.h"
26#include "locking.h"
27#include "free-space-cache.h"
28#include "free-space-tree.h"
29#include "sysfs.h"
30#include "qgroup.h"
31#include "ref-verify.h"
32#include "space-info.h"
33#include "block-rsv.h"
34#include "delalloc-space.h"
35#include "discard.h"
36#include "rcu-string.h"
37#include "zoned.h"
38#include "dev-replace.h"
39#include "fs.h"
40#include "accessors.h"
41#include "root-tree.h"
42#include "file-item.h"
43#include "orphan.h"
44#include "tree-checker.h"
45
46#undef SCRAMBLE_DELAYED_REFS
47
48
49static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
50			       struct btrfs_delayed_ref_node *node, u64 parent,
51			       u64 root_objectid, u64 owner_objectid,
52			       u64 owner_offset, int refs_to_drop,
53			       struct btrfs_delayed_extent_op *extra_op);
54static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
55				    struct extent_buffer *leaf,
56				    struct btrfs_extent_item *ei);
57static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
58				      u64 parent, u64 root_objectid,
59				      u64 flags, u64 owner, u64 offset,
60				      struct btrfs_key *ins, int ref_mod);
61static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
62				     struct btrfs_delayed_ref_node *node,
63				     struct btrfs_delayed_extent_op *extent_op);
64static int find_next_key(struct btrfs_path *path, int level,
65			 struct btrfs_key *key);
66
67static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
68{
69	return (cache->flags & bits) == bits;
70}
71
72/* simple helper to search for an existing data extent at a given offset */
73int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
74{
75	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
76	int ret;
77	struct btrfs_key key;
78	struct btrfs_path *path;
79
80	path = btrfs_alloc_path();
81	if (!path)
82		return -ENOMEM;
83
84	key.objectid = start;
85	key.offset = len;
86	key.type = BTRFS_EXTENT_ITEM_KEY;
87	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
88	btrfs_free_path(path);
89	return ret;
90}
91
92/*
93 * helper function to lookup reference count and flags of a tree block.
94 *
95 * the head node for delayed ref is used to store the sum of all the
96 * reference count modifications queued up in the rbtree. the head
97 * node may also store the extent flags to set. This way you can check
98 * to see what the reference count and extent flags would be if all of
99 * the delayed refs are not processed.
100 */
101int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
102			     struct btrfs_fs_info *fs_info, u64 bytenr,
103			     u64 offset, int metadata, u64 *refs, u64 *flags)
104{
105	struct btrfs_root *extent_root;
106	struct btrfs_delayed_ref_head *head;
107	struct btrfs_delayed_ref_root *delayed_refs;
108	struct btrfs_path *path;
109	struct btrfs_extent_item *ei;
110	struct extent_buffer *leaf;
111	struct btrfs_key key;
112	u32 item_size;
113	u64 num_refs;
114	u64 extent_flags;
115	int ret;
116
117	/*
118	 * If we don't have skinny metadata, don't bother doing anything
119	 * different
120	 */
121	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
122		offset = fs_info->nodesize;
123		metadata = 0;
124	}
125
126	path = btrfs_alloc_path();
127	if (!path)
128		return -ENOMEM;
129
130	if (!trans) {
131		path->skip_locking = 1;
132		path->search_commit_root = 1;
133	}
134
135search_again:
136	key.objectid = bytenr;
137	key.offset = offset;
138	if (metadata)
139		key.type = BTRFS_METADATA_ITEM_KEY;
140	else
141		key.type = BTRFS_EXTENT_ITEM_KEY;
142
143	extent_root = btrfs_extent_root(fs_info, bytenr);
144	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
145	if (ret < 0)
146		goto out_free;
147
148	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
149		if (path->slots[0]) {
150			path->slots[0]--;
151			btrfs_item_key_to_cpu(path->nodes[0], &key,
152					      path->slots[0]);
153			if (key.objectid == bytenr &&
154			    key.type == BTRFS_EXTENT_ITEM_KEY &&
155			    key.offset == fs_info->nodesize)
156				ret = 0;
157		}
158	}
159
160	if (ret == 0) {
161		leaf = path->nodes[0];
162		item_size = btrfs_item_size(leaf, path->slots[0]);
163		if (item_size >= sizeof(*ei)) {
164			ei = btrfs_item_ptr(leaf, path->slots[0],
165					    struct btrfs_extent_item);
166			num_refs = btrfs_extent_refs(leaf, ei);
167			extent_flags = btrfs_extent_flags(leaf, ei);
168		} else {
169			ret = -EUCLEAN;
170			btrfs_err(fs_info,
171			"unexpected extent item size, has %u expect >= %zu",
172				  item_size, sizeof(*ei));
173			if (trans)
174				btrfs_abort_transaction(trans, ret);
175			else
176				btrfs_handle_fs_error(fs_info, ret, NULL);
177
178			goto out_free;
179		}
180
181		BUG_ON(num_refs == 0);
182	} else {
183		num_refs = 0;
184		extent_flags = 0;
185		ret = 0;
186	}
187
188	if (!trans)
189		goto out;
190
191	delayed_refs = &trans->transaction->delayed_refs;
192	spin_lock(&delayed_refs->lock);
193	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
194	if (head) {
195		if (!mutex_trylock(&head->mutex)) {
196			refcount_inc(&head->refs);
197			spin_unlock(&delayed_refs->lock);
198
199			btrfs_release_path(path);
200
201			/*
202			 * Mutex was contended, block until it's released and try
203			 * again
204			 */
205			mutex_lock(&head->mutex);
206			mutex_unlock(&head->mutex);
207			btrfs_put_delayed_ref_head(head);
208			goto search_again;
209		}
210		spin_lock(&head->lock);
211		if (head->extent_op && head->extent_op->update_flags)
212			extent_flags |= head->extent_op->flags_to_set;
213		else
214			BUG_ON(num_refs == 0);
215
216		num_refs += head->ref_mod;
217		spin_unlock(&head->lock);
218		mutex_unlock(&head->mutex);
219	}
220	spin_unlock(&delayed_refs->lock);
221out:
222	WARN_ON(num_refs == 0);
223	if (refs)
224		*refs = num_refs;
225	if (flags)
226		*flags = extent_flags;
227out_free:
228	btrfs_free_path(path);
229	return ret;
230}
231
232/*
233 * Back reference rules.  Back refs have three main goals:
234 *
235 * 1) differentiate between all holders of references to an extent so that
236 *    when a reference is dropped we can make sure it was a valid reference
237 *    before freeing the extent.
238 *
239 * 2) Provide enough information to quickly find the holders of an extent
240 *    if we notice a given block is corrupted or bad.
241 *
242 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
243 *    maintenance.  This is actually the same as #2, but with a slightly
244 *    different use case.
245 *
246 * There are two kinds of back refs. The implicit back refs is optimized
247 * for pointers in non-shared tree blocks. For a given pointer in a block,
248 * back refs of this kind provide information about the block's owner tree
249 * and the pointer's key. These information allow us to find the block by
250 * b-tree searching. The full back refs is for pointers in tree blocks not
251 * referenced by their owner trees. The location of tree block is recorded
252 * in the back refs. Actually the full back refs is generic, and can be
253 * used in all cases the implicit back refs is used. The major shortcoming
254 * of the full back refs is its overhead. Every time a tree block gets
255 * COWed, we have to update back refs entry for all pointers in it.
256 *
257 * For a newly allocated tree block, we use implicit back refs for
258 * pointers in it. This means most tree related operations only involve
259 * implicit back refs. For a tree block created in old transaction, the
260 * only way to drop a reference to it is COW it. So we can detect the
261 * event that tree block loses its owner tree's reference and do the
262 * back refs conversion.
263 *
264 * When a tree block is COWed through a tree, there are four cases:
265 *
266 * The reference count of the block is one and the tree is the block's
267 * owner tree. Nothing to do in this case.
268 *
269 * The reference count of the block is one and the tree is not the
270 * block's owner tree. In this case, full back refs is used for pointers
271 * in the block. Remove these full back refs, add implicit back refs for
272 * every pointers in the new block.
273 *
274 * The reference count of the block is greater than one and the tree is
275 * the block's owner tree. In this case, implicit back refs is used for
276 * pointers in the block. Add full back refs for every pointers in the
277 * block, increase lower level extents' reference counts. The original
278 * implicit back refs are entailed to the new block.
279 *
280 * The reference count of the block is greater than one and the tree is
281 * not the block's owner tree. Add implicit back refs for every pointer in
282 * the new block, increase lower level extents' reference count.
283 *
284 * Back Reference Key composing:
285 *
286 * The key objectid corresponds to the first byte in the extent,
287 * The key type is used to differentiate between types of back refs.
288 * There are different meanings of the key offset for different types
289 * of back refs.
290 *
291 * File extents can be referenced by:
292 *
293 * - multiple snapshots, subvolumes, or different generations in one subvol
294 * - different files inside a single subvolume
295 * - different offsets inside a file (bookend extents in file.c)
296 *
297 * The extent ref structure for the implicit back refs has fields for:
298 *
299 * - Objectid of the subvolume root
300 * - objectid of the file holding the reference
301 * - original offset in the file
302 * - how many bookend extents
303 *
304 * The key offset for the implicit back refs is hash of the first
305 * three fields.
306 *
307 * The extent ref structure for the full back refs has field for:
308 *
309 * - number of pointers in the tree leaf
310 *
311 * The key offset for the implicit back refs is the first byte of
312 * the tree leaf
313 *
314 * When a file extent is allocated, The implicit back refs is used.
315 * the fields are filled in:
316 *
317 *     (root_key.objectid, inode objectid, offset in file, 1)
318 *
319 * When a file extent is removed file truncation, we find the
320 * corresponding implicit back refs and check the following fields:
321 *
322 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
323 *
324 * Btree extents can be referenced by:
325 *
326 * - Different subvolumes
327 *
328 * Both the implicit back refs and the full back refs for tree blocks
329 * only consist of key. The key offset for the implicit back refs is
330 * objectid of block's owner tree. The key offset for the full back refs
331 * is the first byte of parent block.
332 *
333 * When implicit back refs is used, information about the lowest key and
334 * level of the tree block are required. These information are stored in
335 * tree block info structure.
336 */
337
338/*
339 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
340 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
341 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
342 */
343int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
344				     struct btrfs_extent_inline_ref *iref,
345				     enum btrfs_inline_ref_type is_data)
346{
347	int type = btrfs_extent_inline_ref_type(eb, iref);
348	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
349
350	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
351	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
352	    type == BTRFS_SHARED_DATA_REF_KEY ||
353	    type == BTRFS_EXTENT_DATA_REF_KEY) {
354		if (is_data == BTRFS_REF_TYPE_BLOCK) {
355			if (type == BTRFS_TREE_BLOCK_REF_KEY)
356				return type;
357			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
358				ASSERT(eb->fs_info);
359				/*
360				 * Every shared one has parent tree block,
361				 * which must be aligned to sector size.
362				 */
363				if (offset &&
364				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
365					return type;
366			}
367		} else if (is_data == BTRFS_REF_TYPE_DATA) {
368			if (type == BTRFS_EXTENT_DATA_REF_KEY)
369				return type;
370			if (type == BTRFS_SHARED_DATA_REF_KEY) {
371				ASSERT(eb->fs_info);
372				/*
373				 * Every shared one has parent tree block,
374				 * which must be aligned to sector size.
375				 */
376				if (offset &&
377				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
378					return type;
379			}
380		} else {
381			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
382			return type;
383		}
384	}
385
386	WARN_ON(1);
387	btrfs_print_leaf(eb);
388	btrfs_err(eb->fs_info,
389		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
390		  eb->start, (unsigned long)iref, type);
391
392	return BTRFS_REF_TYPE_INVALID;
393}
394
395u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
396{
397	u32 high_crc = ~(u32)0;
398	u32 low_crc = ~(u32)0;
399	__le64 lenum;
400
401	lenum = cpu_to_le64(root_objectid);
402	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
403	lenum = cpu_to_le64(owner);
404	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
405	lenum = cpu_to_le64(offset);
406	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
407
408	return ((u64)high_crc << 31) ^ (u64)low_crc;
409}
410
411static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
412				     struct btrfs_extent_data_ref *ref)
413{
414	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
415				    btrfs_extent_data_ref_objectid(leaf, ref),
416				    btrfs_extent_data_ref_offset(leaf, ref));
417}
418
419static int match_extent_data_ref(struct extent_buffer *leaf,
420				 struct btrfs_extent_data_ref *ref,
421				 u64 root_objectid, u64 owner, u64 offset)
422{
423	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
424	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
425	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
426		return 0;
427	return 1;
428}
429
430static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
431					   struct btrfs_path *path,
432					   u64 bytenr, u64 parent,
433					   u64 root_objectid,
434					   u64 owner, u64 offset)
435{
436	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
437	struct btrfs_key key;
438	struct btrfs_extent_data_ref *ref;
439	struct extent_buffer *leaf;
440	u32 nritems;
441	int ret;
442	int recow;
443	int err = -ENOENT;
444
445	key.objectid = bytenr;
446	if (parent) {
447		key.type = BTRFS_SHARED_DATA_REF_KEY;
448		key.offset = parent;
449	} else {
450		key.type = BTRFS_EXTENT_DATA_REF_KEY;
451		key.offset = hash_extent_data_ref(root_objectid,
452						  owner, offset);
453	}
454again:
455	recow = 0;
456	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
457	if (ret < 0) {
458		err = ret;
459		goto fail;
460	}
461
462	if (parent) {
463		if (!ret)
464			return 0;
465		goto fail;
466	}
467
468	leaf = path->nodes[0];
469	nritems = btrfs_header_nritems(leaf);
470	while (1) {
471		if (path->slots[0] >= nritems) {
472			ret = btrfs_next_leaf(root, path);
473			if (ret < 0)
474				err = ret;
475			if (ret)
476				goto fail;
477
478			leaf = path->nodes[0];
479			nritems = btrfs_header_nritems(leaf);
480			recow = 1;
481		}
482
483		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
484		if (key.objectid != bytenr ||
485		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
486			goto fail;
487
488		ref = btrfs_item_ptr(leaf, path->slots[0],
489				     struct btrfs_extent_data_ref);
490
491		if (match_extent_data_ref(leaf, ref, root_objectid,
492					  owner, offset)) {
493			if (recow) {
494				btrfs_release_path(path);
495				goto again;
496			}
497			err = 0;
498			break;
499		}
500		path->slots[0]++;
501	}
502fail:
503	return err;
504}
505
506static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
507					   struct btrfs_path *path,
508					   u64 bytenr, u64 parent,
509					   u64 root_objectid, u64 owner,
510					   u64 offset, int refs_to_add)
511{
512	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
513	struct btrfs_key key;
514	struct extent_buffer *leaf;
515	u32 size;
516	u32 num_refs;
517	int ret;
518
519	key.objectid = bytenr;
520	if (parent) {
521		key.type = BTRFS_SHARED_DATA_REF_KEY;
522		key.offset = parent;
523		size = sizeof(struct btrfs_shared_data_ref);
524	} else {
525		key.type = BTRFS_EXTENT_DATA_REF_KEY;
526		key.offset = hash_extent_data_ref(root_objectid,
527						  owner, offset);
528		size = sizeof(struct btrfs_extent_data_ref);
529	}
530
531	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
532	if (ret && ret != -EEXIST)
533		goto fail;
534
535	leaf = path->nodes[0];
536	if (parent) {
537		struct btrfs_shared_data_ref *ref;
538		ref = btrfs_item_ptr(leaf, path->slots[0],
539				     struct btrfs_shared_data_ref);
540		if (ret == 0) {
541			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
542		} else {
543			num_refs = btrfs_shared_data_ref_count(leaf, ref);
544			num_refs += refs_to_add;
545			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
546		}
547	} else {
548		struct btrfs_extent_data_ref *ref;
549		while (ret == -EEXIST) {
550			ref = btrfs_item_ptr(leaf, path->slots[0],
551					     struct btrfs_extent_data_ref);
552			if (match_extent_data_ref(leaf, ref, root_objectid,
553						  owner, offset))
554				break;
555			btrfs_release_path(path);
556			key.offset++;
557			ret = btrfs_insert_empty_item(trans, root, path, &key,
558						      size);
559			if (ret && ret != -EEXIST)
560				goto fail;
561
562			leaf = path->nodes[0];
563		}
564		ref = btrfs_item_ptr(leaf, path->slots[0],
565				     struct btrfs_extent_data_ref);
566		if (ret == 0) {
567			btrfs_set_extent_data_ref_root(leaf, ref,
568						       root_objectid);
569			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
570			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
571			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
572		} else {
573			num_refs = btrfs_extent_data_ref_count(leaf, ref);
574			num_refs += refs_to_add;
575			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
576		}
577	}
578	btrfs_mark_buffer_dirty(trans, leaf);
579	ret = 0;
580fail:
581	btrfs_release_path(path);
582	return ret;
583}
584
585static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
586					   struct btrfs_root *root,
587					   struct btrfs_path *path,
588					   int refs_to_drop)
589{
590	struct btrfs_key key;
591	struct btrfs_extent_data_ref *ref1 = NULL;
592	struct btrfs_shared_data_ref *ref2 = NULL;
593	struct extent_buffer *leaf;
594	u32 num_refs = 0;
595	int ret = 0;
596
597	leaf = path->nodes[0];
598	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
599
600	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
601		ref1 = btrfs_item_ptr(leaf, path->slots[0],
602				      struct btrfs_extent_data_ref);
603		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
604	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
605		ref2 = btrfs_item_ptr(leaf, path->slots[0],
606				      struct btrfs_shared_data_ref);
607		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
608	} else {
609		btrfs_err(trans->fs_info,
610			  "unrecognized backref key (%llu %u %llu)",
611			  key.objectid, key.type, key.offset);
612		btrfs_abort_transaction(trans, -EUCLEAN);
613		return -EUCLEAN;
614	}
615
616	BUG_ON(num_refs < refs_to_drop);
617	num_refs -= refs_to_drop;
618
619	if (num_refs == 0) {
620		ret = btrfs_del_item(trans, root, path);
621	} else {
622		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
623			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
624		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
625			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
626		btrfs_mark_buffer_dirty(trans, leaf);
627	}
628	return ret;
629}
630
631static noinline u32 extent_data_ref_count(struct btrfs_path *path,
632					  struct btrfs_extent_inline_ref *iref)
633{
634	struct btrfs_key key;
635	struct extent_buffer *leaf;
636	struct btrfs_extent_data_ref *ref1;
637	struct btrfs_shared_data_ref *ref2;
638	u32 num_refs = 0;
639	int type;
640
641	leaf = path->nodes[0];
642	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
643
644	if (iref) {
645		/*
646		 * If type is invalid, we should have bailed out earlier than
647		 * this call.
648		 */
649		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
650		ASSERT(type != BTRFS_REF_TYPE_INVALID);
651		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
652			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
653			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
654		} else {
655			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
656			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
657		}
658	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
659		ref1 = btrfs_item_ptr(leaf, path->slots[0],
660				      struct btrfs_extent_data_ref);
661		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
662	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
663		ref2 = btrfs_item_ptr(leaf, path->slots[0],
664				      struct btrfs_shared_data_ref);
665		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
666	} else {
667		WARN_ON(1);
668	}
669	return num_refs;
670}
671
672static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
673					  struct btrfs_path *path,
674					  u64 bytenr, u64 parent,
675					  u64 root_objectid)
676{
677	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
678	struct btrfs_key key;
679	int ret;
680
681	key.objectid = bytenr;
682	if (parent) {
683		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
684		key.offset = parent;
685	} else {
686		key.type = BTRFS_TREE_BLOCK_REF_KEY;
687		key.offset = root_objectid;
688	}
689
690	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
691	if (ret > 0)
692		ret = -ENOENT;
693	return ret;
694}
695
696static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
697					  struct btrfs_path *path,
698					  u64 bytenr, u64 parent,
699					  u64 root_objectid)
700{
701	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
702	struct btrfs_key key;
703	int ret;
704
705	key.objectid = bytenr;
706	if (parent) {
707		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
708		key.offset = parent;
709	} else {
710		key.type = BTRFS_TREE_BLOCK_REF_KEY;
711		key.offset = root_objectid;
712	}
713
714	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
715	btrfs_release_path(path);
716	return ret;
717}
718
719static inline int extent_ref_type(u64 parent, u64 owner)
720{
721	int type;
722	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
723		if (parent > 0)
724			type = BTRFS_SHARED_BLOCK_REF_KEY;
725		else
726			type = BTRFS_TREE_BLOCK_REF_KEY;
727	} else {
728		if (parent > 0)
729			type = BTRFS_SHARED_DATA_REF_KEY;
730		else
731			type = BTRFS_EXTENT_DATA_REF_KEY;
732	}
733	return type;
734}
735
736static int find_next_key(struct btrfs_path *path, int level,
737			 struct btrfs_key *key)
738
739{
740	for (; level < BTRFS_MAX_LEVEL; level++) {
741		if (!path->nodes[level])
742			break;
743		if (path->slots[level] + 1 >=
744		    btrfs_header_nritems(path->nodes[level]))
745			continue;
746		if (level == 0)
747			btrfs_item_key_to_cpu(path->nodes[level], key,
748					      path->slots[level] + 1);
749		else
750			btrfs_node_key_to_cpu(path->nodes[level], key,
751					      path->slots[level] + 1);
752		return 0;
753	}
754	return 1;
755}
756
757/*
758 * look for inline back ref. if back ref is found, *ref_ret is set
759 * to the address of inline back ref, and 0 is returned.
760 *
761 * if back ref isn't found, *ref_ret is set to the address where it
762 * should be inserted, and -ENOENT is returned.
763 *
764 * if insert is true and there are too many inline back refs, the path
765 * points to the extent item, and -EAGAIN is returned.
766 *
767 * NOTE: inline back refs are ordered in the same way that back ref
768 *	 items in the tree are ordered.
769 */
770static noinline_for_stack
771int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
772				 struct btrfs_path *path,
773				 struct btrfs_extent_inline_ref **ref_ret,
774				 u64 bytenr, u64 num_bytes,
775				 u64 parent, u64 root_objectid,
776				 u64 owner, u64 offset, int insert)
777{
778	struct btrfs_fs_info *fs_info = trans->fs_info;
779	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
780	struct btrfs_key key;
781	struct extent_buffer *leaf;
782	struct btrfs_extent_item *ei;
783	struct btrfs_extent_inline_ref *iref;
784	u64 flags;
785	u64 item_size;
786	unsigned long ptr;
787	unsigned long end;
788	int extra_size;
789	int type;
790	int want;
791	int ret;
792	int err = 0;
793	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
794	int needed;
795
796	key.objectid = bytenr;
797	key.type = BTRFS_EXTENT_ITEM_KEY;
798	key.offset = num_bytes;
799
800	want = extent_ref_type(parent, owner);
801	if (insert) {
802		extra_size = btrfs_extent_inline_ref_size(want);
803		path->search_for_extension = 1;
804		path->keep_locks = 1;
805	} else
806		extra_size = -1;
807
808	/*
809	 * Owner is our level, so we can just add one to get the level for the
810	 * block we are interested in.
811	 */
812	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
813		key.type = BTRFS_METADATA_ITEM_KEY;
814		key.offset = owner;
815	}
816
817again:
818	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
819	if (ret < 0) {
820		err = ret;
821		goto out;
822	}
823
824	/*
825	 * We may be a newly converted file system which still has the old fat
826	 * extent entries for metadata, so try and see if we have one of those.
827	 */
828	if (ret > 0 && skinny_metadata) {
829		skinny_metadata = false;
830		if (path->slots[0]) {
831			path->slots[0]--;
832			btrfs_item_key_to_cpu(path->nodes[0], &key,
833					      path->slots[0]);
834			if (key.objectid == bytenr &&
835			    key.type == BTRFS_EXTENT_ITEM_KEY &&
836			    key.offset == num_bytes)
837				ret = 0;
838		}
839		if (ret) {
840			key.objectid = bytenr;
841			key.type = BTRFS_EXTENT_ITEM_KEY;
842			key.offset = num_bytes;
843			btrfs_release_path(path);
844			goto again;
845		}
846	}
847
848	if (ret && !insert) {
849		err = -ENOENT;
850		goto out;
851	} else if (WARN_ON(ret)) {
852		btrfs_print_leaf(path->nodes[0]);
853		btrfs_err(fs_info,
854"extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
855			  bytenr, num_bytes, parent, root_objectid, owner,
856			  offset);
857		err = -EIO;
858		goto out;
859	}
860
861	leaf = path->nodes[0];
862	item_size = btrfs_item_size(leaf, path->slots[0]);
863	if (unlikely(item_size < sizeof(*ei))) {
864		err = -EUCLEAN;
865		btrfs_err(fs_info,
866			  "unexpected extent item size, has %llu expect >= %zu",
867			  item_size, sizeof(*ei));
868		btrfs_abort_transaction(trans, err);
869		goto out;
870	}
871
872	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
873	flags = btrfs_extent_flags(leaf, ei);
874
875	ptr = (unsigned long)(ei + 1);
876	end = (unsigned long)ei + item_size;
877
878	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
879		ptr += sizeof(struct btrfs_tree_block_info);
880		BUG_ON(ptr > end);
881	}
882
883	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
884		needed = BTRFS_REF_TYPE_DATA;
885	else
886		needed = BTRFS_REF_TYPE_BLOCK;
887
888	err = -ENOENT;
889	while (1) {
890		if (ptr >= end) {
891			if (ptr > end) {
892				err = -EUCLEAN;
893				btrfs_print_leaf(path->nodes[0]);
894				btrfs_crit(fs_info,
895"overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
896					path->slots[0], root_objectid, owner, offset, parent);
897			}
898			break;
899		}
900		iref = (struct btrfs_extent_inline_ref *)ptr;
901		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
902		if (type == BTRFS_REF_TYPE_INVALID) {
903			err = -EUCLEAN;
904			goto out;
905		}
906
907		if (want < type)
908			break;
909		if (want > type) {
910			ptr += btrfs_extent_inline_ref_size(type);
911			continue;
912		}
913
914		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
915			struct btrfs_extent_data_ref *dref;
916			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
917			if (match_extent_data_ref(leaf, dref, root_objectid,
918						  owner, offset)) {
919				err = 0;
920				break;
921			}
922			if (hash_extent_data_ref_item(leaf, dref) <
923			    hash_extent_data_ref(root_objectid, owner, offset))
924				break;
925		} else {
926			u64 ref_offset;
927			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
928			if (parent > 0) {
929				if (parent == ref_offset) {
930					err = 0;
931					break;
932				}
933				if (ref_offset < parent)
934					break;
935			} else {
936				if (root_objectid == ref_offset) {
937					err = 0;
938					break;
939				}
940				if (ref_offset < root_objectid)
941					break;
942			}
943		}
944		ptr += btrfs_extent_inline_ref_size(type);
945	}
946	if (err == -ENOENT && insert) {
947		if (item_size + extra_size >=
948		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
949			err = -EAGAIN;
950			goto out;
951		}
952		/*
953		 * To add new inline back ref, we have to make sure
954		 * there is no corresponding back ref item.
955		 * For simplicity, we just do not add new inline back
956		 * ref if there is any kind of item for this block
957		 */
958		if (find_next_key(path, 0, &key) == 0 &&
959		    key.objectid == bytenr &&
960		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
961			err = -EAGAIN;
962			goto out;
963		}
964	}
965	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
966out:
967	if (insert) {
968		path->keep_locks = 0;
969		path->search_for_extension = 0;
970		btrfs_unlock_up_safe(path, 1);
971	}
972	return err;
973}
974
975/*
976 * helper to add new inline back ref
977 */
978static noinline_for_stack
979void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
980				 struct btrfs_path *path,
981				 struct btrfs_extent_inline_ref *iref,
982				 u64 parent, u64 root_objectid,
983				 u64 owner, u64 offset, int refs_to_add,
984				 struct btrfs_delayed_extent_op *extent_op)
985{
986	struct extent_buffer *leaf;
987	struct btrfs_extent_item *ei;
988	unsigned long ptr;
989	unsigned long end;
990	unsigned long item_offset;
991	u64 refs;
992	int size;
993	int type;
994
995	leaf = path->nodes[0];
996	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
997	item_offset = (unsigned long)iref - (unsigned long)ei;
998
999	type = extent_ref_type(parent, owner);
1000	size = btrfs_extent_inline_ref_size(type);
1001
1002	btrfs_extend_item(trans, path, size);
1003
1004	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1005	refs = btrfs_extent_refs(leaf, ei);
1006	refs += refs_to_add;
1007	btrfs_set_extent_refs(leaf, ei, refs);
1008	if (extent_op)
1009		__run_delayed_extent_op(extent_op, leaf, ei);
1010
1011	ptr = (unsigned long)ei + item_offset;
1012	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1013	if (ptr < end - size)
1014		memmove_extent_buffer(leaf, ptr + size, ptr,
1015				      end - size - ptr);
1016
1017	iref = (struct btrfs_extent_inline_ref *)ptr;
1018	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1019	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1020		struct btrfs_extent_data_ref *dref;
1021		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1022		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1023		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1024		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1025		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1026	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1027		struct btrfs_shared_data_ref *sref;
1028		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1029		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1030		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1031	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1032		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1033	} else {
1034		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1035	}
1036	btrfs_mark_buffer_dirty(trans, leaf);
1037}
1038
1039static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1040				 struct btrfs_path *path,
1041				 struct btrfs_extent_inline_ref **ref_ret,
1042				 u64 bytenr, u64 num_bytes, u64 parent,
1043				 u64 root_objectid, u64 owner, u64 offset)
1044{
1045	int ret;
1046
1047	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1048					   num_bytes, parent, root_objectid,
1049					   owner, offset, 0);
1050	if (ret != -ENOENT)
1051		return ret;
1052
1053	btrfs_release_path(path);
1054	*ref_ret = NULL;
1055
1056	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1057		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1058					    root_objectid);
1059	} else {
1060		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1061					     root_objectid, owner, offset);
1062	}
1063	return ret;
1064}
1065
1066/*
1067 * helper to update/remove inline back ref
1068 */
1069static noinline_for_stack int update_inline_extent_backref(
1070				  struct btrfs_trans_handle *trans,
1071				  struct btrfs_path *path,
1072				  struct btrfs_extent_inline_ref *iref,
1073				  int refs_to_mod,
1074				  struct btrfs_delayed_extent_op *extent_op)
1075{
1076	struct extent_buffer *leaf = path->nodes[0];
1077	struct btrfs_fs_info *fs_info = leaf->fs_info;
1078	struct btrfs_extent_item *ei;
1079	struct btrfs_extent_data_ref *dref = NULL;
1080	struct btrfs_shared_data_ref *sref = NULL;
1081	unsigned long ptr;
1082	unsigned long end;
1083	u32 item_size;
1084	int size;
1085	int type;
1086	u64 refs;
1087
1088	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1089	refs = btrfs_extent_refs(leaf, ei);
1090	if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1091		struct btrfs_key key;
1092		u32 extent_size;
1093
1094		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1095		if (key.type == BTRFS_METADATA_ITEM_KEY)
1096			extent_size = fs_info->nodesize;
1097		else
1098			extent_size = key.offset;
1099		btrfs_print_leaf(leaf);
1100		btrfs_err(fs_info,
1101	"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1102			  key.objectid, extent_size, refs_to_mod, refs);
1103		return -EUCLEAN;
1104	}
1105	refs += refs_to_mod;
1106	btrfs_set_extent_refs(leaf, ei, refs);
1107	if (extent_op)
1108		__run_delayed_extent_op(extent_op, leaf, ei);
1109
1110	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1111	/*
1112	 * Function btrfs_get_extent_inline_ref_type() has already printed
1113	 * error messages.
1114	 */
1115	if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1116		return -EUCLEAN;
1117
1118	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1119		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1120		refs = btrfs_extent_data_ref_count(leaf, dref);
1121	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1122		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1123		refs = btrfs_shared_data_ref_count(leaf, sref);
1124	} else {
1125		refs = 1;
1126		/*
1127		 * For tree blocks we can only drop one ref for it, and tree
1128		 * blocks should not have refs > 1.
1129		 *
1130		 * Furthermore if we're inserting a new inline backref, we
1131		 * won't reach this path either. That would be
1132		 * setup_inline_extent_backref().
1133		 */
1134		if (unlikely(refs_to_mod != -1)) {
1135			struct btrfs_key key;
1136
1137			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1138
1139			btrfs_print_leaf(leaf);
1140			btrfs_err(fs_info,
1141			"invalid refs_to_mod for tree block %llu, has %d expect -1",
1142				  key.objectid, refs_to_mod);
1143			return -EUCLEAN;
1144		}
1145	}
1146
1147	if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1148		struct btrfs_key key;
1149		u32 extent_size;
1150
1151		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1152		if (key.type == BTRFS_METADATA_ITEM_KEY)
1153			extent_size = fs_info->nodesize;
1154		else
1155			extent_size = key.offset;
1156		btrfs_print_leaf(leaf);
1157		btrfs_err(fs_info,
1158"invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1159			  (unsigned long)iref, key.objectid, extent_size,
1160			  refs_to_mod, refs);
1161		return -EUCLEAN;
1162	}
1163	refs += refs_to_mod;
1164
1165	if (refs > 0) {
1166		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1167			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1168		else
1169			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1170	} else {
1171		size =  btrfs_extent_inline_ref_size(type);
1172		item_size = btrfs_item_size(leaf, path->slots[0]);
1173		ptr = (unsigned long)iref;
1174		end = (unsigned long)ei + item_size;
1175		if (ptr + size < end)
1176			memmove_extent_buffer(leaf, ptr, ptr + size,
1177					      end - ptr - size);
1178		item_size -= size;
1179		btrfs_truncate_item(trans, path, item_size, 1);
1180	}
1181	btrfs_mark_buffer_dirty(trans, leaf);
1182	return 0;
1183}
1184
1185static noinline_for_stack
1186int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1187				 struct btrfs_path *path,
1188				 u64 bytenr, u64 num_bytes, u64 parent,
1189				 u64 root_objectid, u64 owner,
1190				 u64 offset, int refs_to_add,
1191				 struct btrfs_delayed_extent_op *extent_op)
1192{
1193	struct btrfs_extent_inline_ref *iref;
1194	int ret;
1195
1196	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1197					   num_bytes, parent, root_objectid,
1198					   owner, offset, 1);
1199	if (ret == 0) {
1200		/*
1201		 * We're adding refs to a tree block we already own, this
1202		 * should not happen at all.
1203		 */
1204		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1205			btrfs_print_leaf(path->nodes[0]);
1206			btrfs_crit(trans->fs_info,
1207"adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1208				   bytenr, num_bytes, root_objectid, path->slots[0]);
1209			return -EUCLEAN;
1210		}
1211		ret = update_inline_extent_backref(trans, path, iref,
1212						   refs_to_add, extent_op);
1213	} else if (ret == -ENOENT) {
1214		setup_inline_extent_backref(trans, path, iref, parent,
1215					    root_objectid, owner, offset,
1216					    refs_to_add, extent_op);
1217		ret = 0;
1218	}
1219	return ret;
1220}
1221
1222static int remove_extent_backref(struct btrfs_trans_handle *trans,
1223				 struct btrfs_root *root,
1224				 struct btrfs_path *path,
1225				 struct btrfs_extent_inline_ref *iref,
1226				 int refs_to_drop, int is_data)
1227{
1228	int ret = 0;
1229
1230	BUG_ON(!is_data && refs_to_drop != 1);
1231	if (iref)
1232		ret = update_inline_extent_backref(trans, path, iref,
1233						   -refs_to_drop, NULL);
1234	else if (is_data)
1235		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1236	else
1237		ret = btrfs_del_item(trans, root, path);
1238	return ret;
1239}
1240
1241static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1242			       u64 *discarded_bytes)
1243{
1244	int j, ret = 0;
1245	u64 bytes_left, end;
1246	u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1247
1248	/* Adjust the range to be aligned to 512B sectors if necessary. */
1249	if (start != aligned_start) {
1250		len -= aligned_start - start;
1251		len = round_down(len, 1 << SECTOR_SHIFT);
1252		start = aligned_start;
1253	}
1254
1255	*discarded_bytes = 0;
1256
1257	if (!len)
1258		return 0;
1259
1260	end = start + len;
1261	bytes_left = len;
1262
1263	/* Skip any superblocks on this device. */
1264	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1265		u64 sb_start = btrfs_sb_offset(j);
1266		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1267		u64 size = sb_start - start;
1268
1269		if (!in_range(sb_start, start, bytes_left) &&
1270		    !in_range(sb_end, start, bytes_left) &&
1271		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1272			continue;
1273
1274		/*
1275		 * Superblock spans beginning of range.  Adjust start and
1276		 * try again.
1277		 */
1278		if (sb_start <= start) {
1279			start += sb_end - start;
1280			if (start > end) {
1281				bytes_left = 0;
1282				break;
1283			}
1284			bytes_left = end - start;
1285			continue;
1286		}
1287
1288		if (size) {
1289			ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1290						   size >> SECTOR_SHIFT,
1291						   GFP_NOFS);
1292			if (!ret)
1293				*discarded_bytes += size;
1294			else if (ret != -EOPNOTSUPP)
1295				return ret;
1296		}
1297
1298		start = sb_end;
1299		if (start > end) {
1300			bytes_left = 0;
1301			break;
1302		}
1303		bytes_left = end - start;
1304	}
1305
1306	if (bytes_left) {
1307		ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1308					   bytes_left >> SECTOR_SHIFT,
1309					   GFP_NOFS);
1310		if (!ret)
1311			*discarded_bytes += bytes_left;
1312	}
1313	return ret;
1314}
1315
1316static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1317{
1318	struct btrfs_device *dev = stripe->dev;
1319	struct btrfs_fs_info *fs_info = dev->fs_info;
1320	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1321	u64 phys = stripe->physical;
1322	u64 len = stripe->length;
1323	u64 discarded = 0;
1324	int ret = 0;
1325
1326	/* Zone reset on a zoned filesystem */
1327	if (btrfs_can_zone_reset(dev, phys, len)) {
1328		u64 src_disc;
1329
1330		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1331		if (ret)
1332			goto out;
1333
1334		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1335		    dev != dev_replace->srcdev)
1336			goto out;
1337
1338		src_disc = discarded;
1339
1340		/* Send to replace target as well */
1341		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1342					      &discarded);
1343		discarded += src_disc;
1344	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1345		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1346	} else {
1347		ret = 0;
1348		*bytes = 0;
1349	}
1350
1351out:
1352	*bytes = discarded;
1353	return ret;
1354}
1355
1356int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1357			 u64 num_bytes, u64 *actual_bytes)
1358{
1359	int ret = 0;
1360	u64 discarded_bytes = 0;
1361	u64 end = bytenr + num_bytes;
1362	u64 cur = bytenr;
1363
1364	/*
1365	 * Avoid races with device replace and make sure the devices in the
1366	 * stripes don't go away while we are discarding.
1367	 */
1368	btrfs_bio_counter_inc_blocked(fs_info);
1369	while (cur < end) {
1370		struct btrfs_discard_stripe *stripes;
1371		unsigned int num_stripes;
1372		int i;
1373
1374		num_bytes = end - cur;
1375		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1376		if (IS_ERR(stripes)) {
1377			ret = PTR_ERR(stripes);
1378			if (ret == -EOPNOTSUPP)
1379				ret = 0;
1380			break;
1381		}
1382
1383		for (i = 0; i < num_stripes; i++) {
1384			struct btrfs_discard_stripe *stripe = stripes + i;
1385			u64 bytes;
1386
1387			if (!stripe->dev->bdev) {
1388				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1389				continue;
1390			}
1391
1392			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1393					&stripe->dev->dev_state))
1394				continue;
1395
1396			ret = do_discard_extent(stripe, &bytes);
1397			if (ret) {
1398				/*
1399				 * Keep going if discard is not supported by the
1400				 * device.
1401				 */
1402				if (ret != -EOPNOTSUPP)
1403					break;
1404				ret = 0;
1405			} else {
1406				discarded_bytes += bytes;
1407			}
1408		}
1409		kfree(stripes);
1410		if (ret)
1411			break;
1412		cur += num_bytes;
1413	}
1414	btrfs_bio_counter_dec(fs_info);
1415	if (actual_bytes)
1416		*actual_bytes = discarded_bytes;
1417	return ret;
1418}
1419
1420/* Can return -ENOMEM */
1421int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1422			 struct btrfs_ref *generic_ref)
1423{
1424	struct btrfs_fs_info *fs_info = trans->fs_info;
1425	int ret;
1426
1427	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1428	       generic_ref->action);
1429	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1430	       generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1431
1432	if (generic_ref->type == BTRFS_REF_METADATA)
1433		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1434	else
1435		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1436
1437	btrfs_ref_tree_mod(fs_info, generic_ref);
1438
1439	return ret;
1440}
1441
1442/*
1443 * __btrfs_inc_extent_ref - insert backreference for a given extent
1444 *
1445 * The counterpart is in __btrfs_free_extent(), with examples and more details
1446 * how it works.
1447 *
1448 * @trans:	    Handle of transaction
1449 *
1450 * @node:	    The delayed ref node used to get the bytenr/length for
1451 *		    extent whose references are incremented.
1452 *
1453 * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1454 *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1455 *		    bytenr of the parent block. Since new extents are always
1456 *		    created with indirect references, this will only be the case
1457 *		    when relocating a shared extent. In that case, root_objectid
1458 *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1459 *		    be 0
1460 *
1461 * @root_objectid:  The id of the root where this modification has originated,
1462 *		    this can be either one of the well-known metadata trees or
1463 *		    the subvolume id which references this extent.
1464 *
1465 * @owner:	    For data extents it is the inode number of the owning file.
1466 *		    For metadata extents this parameter holds the level in the
1467 *		    tree of the extent.
1468 *
1469 * @offset:	    For metadata extents the offset is ignored and is currently
1470 *		    always passed as 0. For data extents it is the fileoffset
1471 *		    this extent belongs to.
1472 *
1473 * @refs_to_add     Number of references to add
1474 *
1475 * @extent_op       Pointer to a structure, holding information necessary when
1476 *                  updating a tree block's flags
1477 *
1478 */
1479static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1480				  struct btrfs_delayed_ref_node *node,
1481				  u64 parent, u64 root_objectid,
1482				  u64 owner, u64 offset, int refs_to_add,
1483				  struct btrfs_delayed_extent_op *extent_op)
1484{
1485	struct btrfs_path *path;
1486	struct extent_buffer *leaf;
1487	struct btrfs_extent_item *item;
1488	struct btrfs_key key;
1489	u64 bytenr = node->bytenr;
1490	u64 num_bytes = node->num_bytes;
1491	u64 refs;
1492	int ret;
1493
1494	path = btrfs_alloc_path();
1495	if (!path)
1496		return -ENOMEM;
1497
1498	/* this will setup the path even if it fails to insert the back ref */
1499	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1500					   parent, root_objectid, owner,
1501					   offset, refs_to_add, extent_op);
1502	if ((ret < 0 && ret != -EAGAIN) || !ret)
1503		goto out;
1504
1505	/*
1506	 * Ok we had -EAGAIN which means we didn't have space to insert and
1507	 * inline extent ref, so just update the reference count and add a
1508	 * normal backref.
1509	 */
1510	leaf = path->nodes[0];
1511	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1512	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1513	refs = btrfs_extent_refs(leaf, item);
1514	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1515	if (extent_op)
1516		__run_delayed_extent_op(extent_op, leaf, item);
1517
1518	btrfs_mark_buffer_dirty(trans, leaf);
1519	btrfs_release_path(path);
1520
1521	/* now insert the actual backref */
1522	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1523		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1524					    root_objectid);
1525	else
1526		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1527					     root_objectid, owner, offset,
1528					     refs_to_add);
1529
1530	if (ret)
1531		btrfs_abort_transaction(trans, ret);
1532out:
1533	btrfs_free_path(path);
1534	return ret;
1535}
1536
1537static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1538				struct btrfs_delayed_ref_node *node,
1539				struct btrfs_delayed_extent_op *extent_op,
1540				bool insert_reserved)
1541{
1542	int ret = 0;
1543	struct btrfs_delayed_data_ref *ref;
1544	struct btrfs_key ins;
1545	u64 parent = 0;
1546	u64 ref_root = 0;
1547	u64 flags = 0;
1548
1549	ins.objectid = node->bytenr;
1550	ins.offset = node->num_bytes;
1551	ins.type = BTRFS_EXTENT_ITEM_KEY;
1552
1553	ref = btrfs_delayed_node_to_data_ref(node);
1554	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1555
1556	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1557		parent = ref->parent;
1558	ref_root = ref->root;
1559
1560	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1561		if (extent_op)
1562			flags |= extent_op->flags_to_set;
1563		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1564						 flags, ref->objectid,
1565						 ref->offset, &ins,
1566						 node->ref_mod);
1567	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1568		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1569					     ref->objectid, ref->offset,
1570					     node->ref_mod, extent_op);
1571	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1572		ret = __btrfs_free_extent(trans, node, parent,
1573					  ref_root, ref->objectid,
1574					  ref->offset, node->ref_mod,
1575					  extent_op);
1576	} else {
1577		BUG();
1578	}
1579	return ret;
1580}
1581
1582static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1583				    struct extent_buffer *leaf,
1584				    struct btrfs_extent_item *ei)
1585{
1586	u64 flags = btrfs_extent_flags(leaf, ei);
1587	if (extent_op->update_flags) {
1588		flags |= extent_op->flags_to_set;
1589		btrfs_set_extent_flags(leaf, ei, flags);
1590	}
1591
1592	if (extent_op->update_key) {
1593		struct btrfs_tree_block_info *bi;
1594		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1595		bi = (struct btrfs_tree_block_info *)(ei + 1);
1596		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1597	}
1598}
1599
1600static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1601				 struct btrfs_delayed_ref_head *head,
1602				 struct btrfs_delayed_extent_op *extent_op)
1603{
1604	struct btrfs_fs_info *fs_info = trans->fs_info;
1605	struct btrfs_root *root;
1606	struct btrfs_key key;
1607	struct btrfs_path *path;
1608	struct btrfs_extent_item *ei;
1609	struct extent_buffer *leaf;
1610	u32 item_size;
1611	int ret;
1612	int err = 0;
1613	int metadata = 1;
1614
1615	if (TRANS_ABORTED(trans))
1616		return 0;
1617
1618	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1619		metadata = 0;
1620
1621	path = btrfs_alloc_path();
1622	if (!path)
1623		return -ENOMEM;
1624
1625	key.objectid = head->bytenr;
1626
1627	if (metadata) {
1628		key.type = BTRFS_METADATA_ITEM_KEY;
1629		key.offset = extent_op->level;
1630	} else {
1631		key.type = BTRFS_EXTENT_ITEM_KEY;
1632		key.offset = head->num_bytes;
1633	}
1634
1635	root = btrfs_extent_root(fs_info, key.objectid);
1636again:
1637	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1638	if (ret < 0) {
1639		err = ret;
1640		goto out;
1641	}
1642	if (ret > 0) {
1643		if (metadata) {
1644			if (path->slots[0] > 0) {
1645				path->slots[0]--;
1646				btrfs_item_key_to_cpu(path->nodes[0], &key,
1647						      path->slots[0]);
1648				if (key.objectid == head->bytenr &&
1649				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1650				    key.offset == head->num_bytes)
1651					ret = 0;
1652			}
1653			if (ret > 0) {
1654				btrfs_release_path(path);
1655				metadata = 0;
1656
1657				key.objectid = head->bytenr;
1658				key.offset = head->num_bytes;
1659				key.type = BTRFS_EXTENT_ITEM_KEY;
1660				goto again;
1661			}
1662		} else {
1663			err = -EUCLEAN;
1664			btrfs_err(fs_info,
1665		  "missing extent item for extent %llu num_bytes %llu level %d",
1666				  head->bytenr, head->num_bytes, extent_op->level);
1667			goto out;
1668		}
1669	}
1670
1671	leaf = path->nodes[0];
1672	item_size = btrfs_item_size(leaf, path->slots[0]);
1673
1674	if (unlikely(item_size < sizeof(*ei))) {
1675		err = -EUCLEAN;
1676		btrfs_err(fs_info,
1677			  "unexpected extent item size, has %u expect >= %zu",
1678			  item_size, sizeof(*ei));
1679		btrfs_abort_transaction(trans, err);
1680		goto out;
1681	}
1682
1683	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1684	__run_delayed_extent_op(extent_op, leaf, ei);
1685
1686	btrfs_mark_buffer_dirty(trans, leaf);
1687out:
1688	btrfs_free_path(path);
1689	return err;
1690}
1691
1692static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1693				struct btrfs_delayed_ref_node *node,
1694				struct btrfs_delayed_extent_op *extent_op,
1695				bool insert_reserved)
1696{
1697	int ret = 0;
1698	struct btrfs_delayed_tree_ref *ref;
1699	u64 parent = 0;
1700	u64 ref_root = 0;
1701
1702	ref = btrfs_delayed_node_to_tree_ref(node);
1703	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1704
1705	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1706		parent = ref->parent;
1707	ref_root = ref->root;
1708
1709	if (unlikely(node->ref_mod != 1)) {
1710		btrfs_err(trans->fs_info,
1711	"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1712			  node->bytenr, node->ref_mod, node->action, ref_root,
1713			  parent);
1714		return -EUCLEAN;
1715	}
1716	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1717		BUG_ON(!extent_op || !extent_op->update_flags);
1718		ret = alloc_reserved_tree_block(trans, node, extent_op);
1719	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1720		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1721					     ref->level, 0, 1, extent_op);
1722	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1723		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1724					  ref->level, 0, 1, extent_op);
1725	} else {
1726		BUG();
1727	}
1728	return ret;
1729}
1730
1731/* helper function to actually process a single delayed ref entry */
1732static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1733			       struct btrfs_delayed_ref_node *node,
1734			       struct btrfs_delayed_extent_op *extent_op,
1735			       bool insert_reserved)
1736{
1737	int ret = 0;
1738
1739	if (TRANS_ABORTED(trans)) {
1740		if (insert_reserved)
1741			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1742		return 0;
1743	}
1744
1745	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1746	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1747		ret = run_delayed_tree_ref(trans, node, extent_op,
1748					   insert_reserved);
1749	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1750		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1751		ret = run_delayed_data_ref(trans, node, extent_op,
1752					   insert_reserved);
1753	else
1754		BUG();
1755	if (ret && insert_reserved)
1756		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1757	if (ret < 0)
1758		btrfs_err(trans->fs_info,
1759"failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1760			  node->bytenr, node->num_bytes, node->type,
1761			  node->action, node->ref_mod, ret);
1762	return ret;
1763}
1764
1765static inline struct btrfs_delayed_ref_node *
1766select_delayed_ref(struct btrfs_delayed_ref_head *head)
1767{
1768	struct btrfs_delayed_ref_node *ref;
1769
1770	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1771		return NULL;
1772
1773	/*
1774	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1775	 * This is to prevent a ref count from going down to zero, which deletes
1776	 * the extent item from the extent tree, when there still are references
1777	 * to add, which would fail because they would not find the extent item.
1778	 */
1779	if (!list_empty(&head->ref_add_list))
1780		return list_first_entry(&head->ref_add_list,
1781				struct btrfs_delayed_ref_node, add_list);
1782
1783	ref = rb_entry(rb_first_cached(&head->ref_tree),
1784		       struct btrfs_delayed_ref_node, ref_node);
1785	ASSERT(list_empty(&ref->add_list));
1786	return ref;
1787}
1788
1789static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1790				      struct btrfs_delayed_ref_head *head)
1791{
1792	spin_lock(&delayed_refs->lock);
1793	head->processing = false;
1794	delayed_refs->num_heads_ready++;
1795	spin_unlock(&delayed_refs->lock);
1796	btrfs_delayed_ref_unlock(head);
1797}
1798
1799static struct btrfs_delayed_extent_op *cleanup_extent_op(
1800				struct btrfs_delayed_ref_head *head)
1801{
1802	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1803
1804	if (!extent_op)
1805		return NULL;
1806
1807	if (head->must_insert_reserved) {
1808		head->extent_op = NULL;
1809		btrfs_free_delayed_extent_op(extent_op);
1810		return NULL;
1811	}
1812	return extent_op;
1813}
1814
1815static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1816				     struct btrfs_delayed_ref_head *head)
1817{
1818	struct btrfs_delayed_extent_op *extent_op;
1819	int ret;
1820
1821	extent_op = cleanup_extent_op(head);
1822	if (!extent_op)
1823		return 0;
1824	head->extent_op = NULL;
1825	spin_unlock(&head->lock);
1826	ret = run_delayed_extent_op(trans, head, extent_op);
1827	btrfs_free_delayed_extent_op(extent_op);
1828	return ret ? ret : 1;
1829}
1830
1831void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1832				  struct btrfs_delayed_ref_root *delayed_refs,
1833				  struct btrfs_delayed_ref_head *head)
1834{
1835	int nr_items = 1;	/* Dropping this ref head update. */
1836
1837	/*
1838	 * We had csum deletions accounted for in our delayed refs rsv, we need
1839	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1840	 */
1841	if (head->total_ref_mod < 0 && head->is_data) {
1842		spin_lock(&delayed_refs->lock);
1843		delayed_refs->pending_csums -= head->num_bytes;
1844		spin_unlock(&delayed_refs->lock);
1845		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1846	}
1847
1848	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1849}
1850
1851static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1852			    struct btrfs_delayed_ref_head *head)
1853{
1854
1855	struct btrfs_fs_info *fs_info = trans->fs_info;
1856	struct btrfs_delayed_ref_root *delayed_refs;
1857	int ret;
1858
1859	delayed_refs = &trans->transaction->delayed_refs;
1860
1861	ret = run_and_cleanup_extent_op(trans, head);
1862	if (ret < 0) {
1863		unselect_delayed_ref_head(delayed_refs, head);
1864		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1865		return ret;
1866	} else if (ret) {
1867		return ret;
1868	}
1869
1870	/*
1871	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1872	 * and then re-check to make sure nobody got added.
1873	 */
1874	spin_unlock(&head->lock);
1875	spin_lock(&delayed_refs->lock);
1876	spin_lock(&head->lock);
1877	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1878		spin_unlock(&head->lock);
1879		spin_unlock(&delayed_refs->lock);
1880		return 1;
1881	}
1882	btrfs_delete_ref_head(delayed_refs, head);
1883	spin_unlock(&head->lock);
1884	spin_unlock(&delayed_refs->lock);
1885
1886	if (head->must_insert_reserved) {
1887		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1888		if (head->is_data) {
1889			struct btrfs_root *csum_root;
1890
1891			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1892			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1893					      head->num_bytes);
1894		}
1895	}
1896
1897	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1898
1899	trace_run_delayed_ref_head(fs_info, head, 0);
1900	btrfs_delayed_ref_unlock(head);
1901	btrfs_put_delayed_ref_head(head);
1902	return ret;
1903}
1904
1905static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1906					struct btrfs_trans_handle *trans)
1907{
1908	struct btrfs_delayed_ref_root *delayed_refs =
1909		&trans->transaction->delayed_refs;
1910	struct btrfs_delayed_ref_head *head = NULL;
1911	int ret;
1912
1913	spin_lock(&delayed_refs->lock);
1914	head = btrfs_select_ref_head(delayed_refs);
1915	if (!head) {
1916		spin_unlock(&delayed_refs->lock);
1917		return head;
1918	}
1919
1920	/*
1921	 * Grab the lock that says we are going to process all the refs for
1922	 * this head
1923	 */
1924	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1925	spin_unlock(&delayed_refs->lock);
1926
1927	/*
1928	 * We may have dropped the spin lock to get the head mutex lock, and
1929	 * that might have given someone else time to free the head.  If that's
1930	 * true, it has been removed from our list and we can move on.
1931	 */
1932	if (ret == -EAGAIN)
1933		head = ERR_PTR(-EAGAIN);
1934
1935	return head;
1936}
1937
1938static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1939					   struct btrfs_delayed_ref_head *locked_ref)
1940{
1941	struct btrfs_fs_info *fs_info = trans->fs_info;
1942	struct btrfs_delayed_ref_root *delayed_refs;
1943	struct btrfs_delayed_extent_op *extent_op;
1944	struct btrfs_delayed_ref_node *ref;
1945	bool must_insert_reserved;
1946	int ret;
1947
1948	delayed_refs = &trans->transaction->delayed_refs;
1949
1950	lockdep_assert_held(&locked_ref->mutex);
1951	lockdep_assert_held(&locked_ref->lock);
1952
1953	while ((ref = select_delayed_ref(locked_ref))) {
1954		if (ref->seq &&
1955		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1956			spin_unlock(&locked_ref->lock);
1957			unselect_delayed_ref_head(delayed_refs, locked_ref);
1958			return -EAGAIN;
1959		}
1960
1961		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1962		RB_CLEAR_NODE(&ref->ref_node);
1963		if (!list_empty(&ref->add_list))
1964			list_del(&ref->add_list);
1965		/*
1966		 * When we play the delayed ref, also correct the ref_mod on
1967		 * head
1968		 */
1969		switch (ref->action) {
1970		case BTRFS_ADD_DELAYED_REF:
1971		case BTRFS_ADD_DELAYED_EXTENT:
1972			locked_ref->ref_mod -= ref->ref_mod;
1973			break;
1974		case BTRFS_DROP_DELAYED_REF:
1975			locked_ref->ref_mod += ref->ref_mod;
1976			break;
1977		default:
1978			WARN_ON(1);
1979		}
1980		atomic_dec(&delayed_refs->num_entries);
1981
1982		/*
1983		 * Record the must_insert_reserved flag before we drop the
1984		 * spin lock.
1985		 */
1986		must_insert_reserved = locked_ref->must_insert_reserved;
1987		locked_ref->must_insert_reserved = false;
1988
1989		extent_op = locked_ref->extent_op;
1990		locked_ref->extent_op = NULL;
1991		spin_unlock(&locked_ref->lock);
1992
1993		ret = run_one_delayed_ref(trans, ref, extent_op,
1994					  must_insert_reserved);
1995
1996		btrfs_free_delayed_extent_op(extent_op);
1997		if (ret) {
1998			unselect_delayed_ref_head(delayed_refs, locked_ref);
1999			btrfs_put_delayed_ref(ref);
2000			return ret;
2001		}
2002
2003		btrfs_put_delayed_ref(ref);
2004		cond_resched();
2005
2006		spin_lock(&locked_ref->lock);
2007		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2008	}
2009
2010	return 0;
2011}
2012
2013/*
2014 * Returns 0 on success or if called with an already aborted transaction.
2015 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2016 */
2017static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2018					     unsigned long nr)
2019{
2020	struct btrfs_fs_info *fs_info = trans->fs_info;
2021	struct btrfs_delayed_ref_root *delayed_refs;
2022	struct btrfs_delayed_ref_head *locked_ref = NULL;
2023	int ret;
2024	unsigned long count = 0;
2025
2026	delayed_refs = &trans->transaction->delayed_refs;
2027	do {
2028		if (!locked_ref) {
2029			locked_ref = btrfs_obtain_ref_head(trans);
2030			if (IS_ERR_OR_NULL(locked_ref)) {
2031				if (PTR_ERR(locked_ref) == -EAGAIN) {
2032					continue;
2033				} else {
2034					break;
2035				}
2036			}
2037			count++;
2038		}
2039		/*
2040		 * We need to try and merge add/drops of the same ref since we
2041		 * can run into issues with relocate dropping the implicit ref
2042		 * and then it being added back again before the drop can
2043		 * finish.  If we merged anything we need to re-loop so we can
2044		 * get a good ref.
2045		 * Or we can get node references of the same type that weren't
2046		 * merged when created due to bumps in the tree mod seq, and
2047		 * we need to merge them to prevent adding an inline extent
2048		 * backref before dropping it (triggering a BUG_ON at
2049		 * insert_inline_extent_backref()).
2050		 */
2051		spin_lock(&locked_ref->lock);
2052		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2053
2054		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref);
2055		if (ret < 0 && ret != -EAGAIN) {
2056			/*
2057			 * Error, btrfs_run_delayed_refs_for_head already
2058			 * unlocked everything so just bail out
2059			 */
2060			return ret;
2061		} else if (!ret) {
2062			/*
2063			 * Success, perform the usual cleanup of a processed
2064			 * head
2065			 */
2066			ret = cleanup_ref_head(trans, locked_ref);
2067			if (ret > 0 ) {
2068				/* We dropped our lock, we need to loop. */
2069				ret = 0;
2070				continue;
2071			} else if (ret) {
2072				return ret;
2073			}
2074		}
2075
2076		/*
2077		 * Either success case or btrfs_run_delayed_refs_for_head
2078		 * returned -EAGAIN, meaning we need to select another head
2079		 */
2080
2081		locked_ref = NULL;
2082		cond_resched();
2083	} while ((nr != -1 && count < nr) || locked_ref);
2084
2085	return 0;
2086}
2087
2088#ifdef SCRAMBLE_DELAYED_REFS
2089/*
2090 * Normally delayed refs get processed in ascending bytenr order. This
2091 * correlates in most cases to the order added. To expose dependencies on this
2092 * order, we start to process the tree in the middle instead of the beginning
2093 */
2094static u64 find_middle(struct rb_root *root)
2095{
2096	struct rb_node *n = root->rb_node;
2097	struct btrfs_delayed_ref_node *entry;
2098	int alt = 1;
2099	u64 middle;
2100	u64 first = 0, last = 0;
2101
2102	n = rb_first(root);
2103	if (n) {
2104		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2105		first = entry->bytenr;
2106	}
2107	n = rb_last(root);
2108	if (n) {
2109		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2110		last = entry->bytenr;
2111	}
2112	n = root->rb_node;
2113
2114	while (n) {
2115		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2116		WARN_ON(!entry->in_tree);
2117
2118		middle = entry->bytenr;
2119
2120		if (alt)
2121			n = n->rb_left;
2122		else
2123			n = n->rb_right;
2124
2125		alt = 1 - alt;
2126	}
2127	return middle;
2128}
2129#endif
2130
2131/*
2132 * this starts processing the delayed reference count updates and
2133 * extent insertions we have queued up so far.  count can be
2134 * 0, which means to process everything in the tree at the start
2135 * of the run (but not newly added entries), or it can be some target
2136 * number you'd like to process.
2137 *
2138 * Returns 0 on success or if called with an aborted transaction
2139 * Returns <0 on error and aborts the transaction
2140 */
2141int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2142			   unsigned long count)
2143{
2144	struct btrfs_fs_info *fs_info = trans->fs_info;
2145	struct rb_node *node;
2146	struct btrfs_delayed_ref_root *delayed_refs;
2147	struct btrfs_delayed_ref_head *head;
2148	int ret;
2149	int run_all = count == (unsigned long)-1;
2150
2151	/* We'll clean this up in btrfs_cleanup_transaction */
2152	if (TRANS_ABORTED(trans))
2153		return 0;
2154
2155	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2156		return 0;
2157
2158	delayed_refs = &trans->transaction->delayed_refs;
2159	if (count == 0)
2160		count = delayed_refs->num_heads_ready;
2161
2162again:
2163#ifdef SCRAMBLE_DELAYED_REFS
2164	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2165#endif
2166	ret = __btrfs_run_delayed_refs(trans, count);
2167	if (ret < 0) {
2168		btrfs_abort_transaction(trans, ret);
2169		return ret;
2170	}
2171
2172	if (run_all) {
2173		btrfs_create_pending_block_groups(trans);
2174
2175		spin_lock(&delayed_refs->lock);
2176		node = rb_first_cached(&delayed_refs->href_root);
2177		if (!node) {
2178			spin_unlock(&delayed_refs->lock);
2179			goto out;
2180		}
2181		head = rb_entry(node, struct btrfs_delayed_ref_head,
2182				href_node);
2183		refcount_inc(&head->refs);
2184		spin_unlock(&delayed_refs->lock);
2185
2186		/* Mutex was contended, block until it's released and retry. */
2187		mutex_lock(&head->mutex);
2188		mutex_unlock(&head->mutex);
2189
2190		btrfs_put_delayed_ref_head(head);
2191		cond_resched();
2192		goto again;
2193	}
2194out:
2195	return 0;
2196}
2197
2198int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2199				struct extent_buffer *eb, u64 flags)
2200{
2201	struct btrfs_delayed_extent_op *extent_op;
2202	int level = btrfs_header_level(eb);
2203	int ret;
2204
2205	extent_op = btrfs_alloc_delayed_extent_op();
2206	if (!extent_op)
2207		return -ENOMEM;
2208
2209	extent_op->flags_to_set = flags;
2210	extent_op->update_flags = true;
2211	extent_op->update_key = false;
2212	extent_op->level = level;
2213
2214	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2215	if (ret)
2216		btrfs_free_delayed_extent_op(extent_op);
2217	return ret;
2218}
2219
2220static noinline int check_delayed_ref(struct btrfs_root *root,
2221				      struct btrfs_path *path,
2222				      u64 objectid, u64 offset, u64 bytenr)
2223{
2224	struct btrfs_delayed_ref_head *head;
2225	struct btrfs_delayed_ref_node *ref;
2226	struct btrfs_delayed_data_ref *data_ref;
2227	struct btrfs_delayed_ref_root *delayed_refs;
2228	struct btrfs_transaction *cur_trans;
2229	struct rb_node *node;
2230	int ret = 0;
2231
2232	spin_lock(&root->fs_info->trans_lock);
2233	cur_trans = root->fs_info->running_transaction;
2234	if (cur_trans)
2235		refcount_inc(&cur_trans->use_count);
2236	spin_unlock(&root->fs_info->trans_lock);
2237	if (!cur_trans)
2238		return 0;
2239
2240	delayed_refs = &cur_trans->delayed_refs;
2241	spin_lock(&delayed_refs->lock);
2242	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2243	if (!head) {
2244		spin_unlock(&delayed_refs->lock);
2245		btrfs_put_transaction(cur_trans);
2246		return 0;
2247	}
2248
2249	if (!mutex_trylock(&head->mutex)) {
2250		if (path->nowait) {
2251			spin_unlock(&delayed_refs->lock);
2252			btrfs_put_transaction(cur_trans);
2253			return -EAGAIN;
2254		}
2255
2256		refcount_inc(&head->refs);
2257		spin_unlock(&delayed_refs->lock);
2258
2259		btrfs_release_path(path);
2260
2261		/*
2262		 * Mutex was contended, block until it's released and let
2263		 * caller try again
2264		 */
2265		mutex_lock(&head->mutex);
2266		mutex_unlock(&head->mutex);
2267		btrfs_put_delayed_ref_head(head);
2268		btrfs_put_transaction(cur_trans);
2269		return -EAGAIN;
2270	}
2271	spin_unlock(&delayed_refs->lock);
2272
2273	spin_lock(&head->lock);
2274	/*
2275	 * XXX: We should replace this with a proper search function in the
2276	 * future.
2277	 */
2278	for (node = rb_first_cached(&head->ref_tree); node;
2279	     node = rb_next(node)) {
2280		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2281		/* If it's a shared ref we know a cross reference exists */
2282		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2283			ret = 1;
2284			break;
2285		}
2286
2287		data_ref = btrfs_delayed_node_to_data_ref(ref);
2288
2289		/*
2290		 * If our ref doesn't match the one we're currently looking at
2291		 * then we have a cross reference.
2292		 */
2293		if (data_ref->root != root->root_key.objectid ||
2294		    data_ref->objectid != objectid ||
2295		    data_ref->offset != offset) {
2296			ret = 1;
2297			break;
2298		}
2299	}
2300	spin_unlock(&head->lock);
2301	mutex_unlock(&head->mutex);
2302	btrfs_put_transaction(cur_trans);
2303	return ret;
2304}
2305
2306static noinline int check_committed_ref(struct btrfs_root *root,
2307					struct btrfs_path *path,
2308					u64 objectid, u64 offset, u64 bytenr,
2309					bool strict)
2310{
2311	struct btrfs_fs_info *fs_info = root->fs_info;
2312	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2313	struct extent_buffer *leaf;
2314	struct btrfs_extent_data_ref *ref;
2315	struct btrfs_extent_inline_ref *iref;
2316	struct btrfs_extent_item *ei;
2317	struct btrfs_key key;
2318	u32 item_size;
2319	int type;
2320	int ret;
2321
2322	key.objectid = bytenr;
2323	key.offset = (u64)-1;
2324	key.type = BTRFS_EXTENT_ITEM_KEY;
2325
2326	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2327	if (ret < 0)
2328		goto out;
2329	BUG_ON(ret == 0); /* Corruption */
2330
2331	ret = -ENOENT;
2332	if (path->slots[0] == 0)
2333		goto out;
2334
2335	path->slots[0]--;
2336	leaf = path->nodes[0];
2337	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2338
2339	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2340		goto out;
2341
2342	ret = 1;
2343	item_size = btrfs_item_size(leaf, path->slots[0]);
2344	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2345
2346	/* If extent item has more than 1 inline ref then it's shared */
2347	if (item_size != sizeof(*ei) +
2348	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2349		goto out;
2350
2351	/*
2352	 * If extent created before last snapshot => it's shared unless the
2353	 * snapshot has been deleted. Use the heuristic if strict is false.
2354	 */
2355	if (!strict &&
2356	    (btrfs_extent_generation(leaf, ei) <=
2357	     btrfs_root_last_snapshot(&root->root_item)))
2358		goto out;
2359
2360	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2361
2362	/* If this extent has SHARED_DATA_REF then it's shared */
2363	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2364	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2365		goto out;
2366
2367	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2368	if (btrfs_extent_refs(leaf, ei) !=
2369	    btrfs_extent_data_ref_count(leaf, ref) ||
2370	    btrfs_extent_data_ref_root(leaf, ref) !=
2371	    root->root_key.objectid ||
2372	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2373	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2374		goto out;
2375
2376	ret = 0;
2377out:
2378	return ret;
2379}
2380
2381int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2382			  u64 bytenr, bool strict, struct btrfs_path *path)
2383{
2384	int ret;
2385
2386	do {
2387		ret = check_committed_ref(root, path, objectid,
2388					  offset, bytenr, strict);
2389		if (ret && ret != -ENOENT)
2390			goto out;
2391
2392		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2393	} while (ret == -EAGAIN);
2394
2395out:
2396	btrfs_release_path(path);
2397	if (btrfs_is_data_reloc_root(root))
2398		WARN_ON(ret > 0);
2399	return ret;
2400}
2401
2402static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2403			   struct btrfs_root *root,
2404			   struct extent_buffer *buf,
2405			   int full_backref, int inc)
2406{
2407	struct btrfs_fs_info *fs_info = root->fs_info;
2408	u64 bytenr;
2409	u64 num_bytes;
2410	u64 parent;
2411	u64 ref_root;
2412	u32 nritems;
2413	struct btrfs_key key;
2414	struct btrfs_file_extent_item *fi;
2415	struct btrfs_ref generic_ref = { 0 };
2416	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2417	int i;
2418	int action;
2419	int level;
2420	int ret = 0;
2421
2422	if (btrfs_is_testing(fs_info))
2423		return 0;
2424
2425	ref_root = btrfs_header_owner(buf);
2426	nritems = btrfs_header_nritems(buf);
2427	level = btrfs_header_level(buf);
2428
2429	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2430		return 0;
2431
2432	if (full_backref)
2433		parent = buf->start;
2434	else
2435		parent = 0;
2436	if (inc)
2437		action = BTRFS_ADD_DELAYED_REF;
2438	else
2439		action = BTRFS_DROP_DELAYED_REF;
2440
2441	for (i = 0; i < nritems; i++) {
2442		if (level == 0) {
2443			btrfs_item_key_to_cpu(buf, &key, i);
2444			if (key.type != BTRFS_EXTENT_DATA_KEY)
2445				continue;
2446			fi = btrfs_item_ptr(buf, i,
2447					    struct btrfs_file_extent_item);
2448			if (btrfs_file_extent_type(buf, fi) ==
2449			    BTRFS_FILE_EXTENT_INLINE)
2450				continue;
2451			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2452			if (bytenr == 0)
2453				continue;
2454
2455			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2456			key.offset -= btrfs_file_extent_offset(buf, fi);
2457			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2458					       num_bytes, parent);
2459			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2460					    key.offset, root->root_key.objectid,
2461					    for_reloc);
2462			if (inc)
2463				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2464			else
2465				ret = btrfs_free_extent(trans, &generic_ref);
2466			if (ret)
2467				goto fail;
2468		} else {
2469			bytenr = btrfs_node_blockptr(buf, i);
2470			num_bytes = fs_info->nodesize;
2471			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2472					       num_bytes, parent);
2473			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2474					    root->root_key.objectid, for_reloc);
2475			if (inc)
2476				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2477			else
2478				ret = btrfs_free_extent(trans, &generic_ref);
2479			if (ret)
2480				goto fail;
2481		}
2482	}
2483	return 0;
2484fail:
2485	return ret;
2486}
2487
2488int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2489		  struct extent_buffer *buf, int full_backref)
2490{
2491	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2492}
2493
2494int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2495		  struct extent_buffer *buf, int full_backref)
2496{
2497	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2498}
2499
2500static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2501{
2502	struct btrfs_fs_info *fs_info = root->fs_info;
2503	u64 flags;
2504	u64 ret;
2505
2506	if (data)
2507		flags = BTRFS_BLOCK_GROUP_DATA;
2508	else if (root == fs_info->chunk_root)
2509		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2510	else
2511		flags = BTRFS_BLOCK_GROUP_METADATA;
2512
2513	ret = btrfs_get_alloc_profile(fs_info, flags);
2514	return ret;
2515}
2516
2517static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2518{
2519	struct rb_node *leftmost;
2520	u64 bytenr = 0;
2521
2522	read_lock(&fs_info->block_group_cache_lock);
2523	/* Get the block group with the lowest logical start address. */
2524	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2525	if (leftmost) {
2526		struct btrfs_block_group *bg;
2527
2528		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2529		bytenr = bg->start;
2530	}
2531	read_unlock(&fs_info->block_group_cache_lock);
2532
2533	return bytenr;
2534}
2535
2536static int pin_down_extent(struct btrfs_trans_handle *trans,
2537			   struct btrfs_block_group *cache,
2538			   u64 bytenr, u64 num_bytes, int reserved)
2539{
2540	struct btrfs_fs_info *fs_info = cache->fs_info;
2541
2542	spin_lock(&cache->space_info->lock);
2543	spin_lock(&cache->lock);
2544	cache->pinned += num_bytes;
2545	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2546					     num_bytes);
2547	if (reserved) {
2548		cache->reserved -= num_bytes;
2549		cache->space_info->bytes_reserved -= num_bytes;
2550	}
2551	spin_unlock(&cache->lock);
2552	spin_unlock(&cache->space_info->lock);
2553
2554	set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2555		       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2556	return 0;
2557}
2558
2559int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2560		     u64 bytenr, u64 num_bytes, int reserved)
2561{
2562	struct btrfs_block_group *cache;
2563
2564	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2565	BUG_ON(!cache); /* Logic error */
2566
2567	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2568
2569	btrfs_put_block_group(cache);
2570	return 0;
2571}
2572
2573/*
2574 * this function must be called within transaction
2575 */
2576int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2577				    u64 bytenr, u64 num_bytes)
2578{
2579	struct btrfs_block_group *cache;
2580	int ret;
2581
2582	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2583	if (!cache)
2584		return -EINVAL;
2585
2586	/*
2587	 * Fully cache the free space first so that our pin removes the free space
2588	 * from the cache.
2589	 */
2590	ret = btrfs_cache_block_group(cache, true);
2591	if (ret)
2592		goto out;
2593
2594	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2595
2596	/* remove us from the free space cache (if we're there at all) */
2597	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2598out:
2599	btrfs_put_block_group(cache);
2600	return ret;
2601}
2602
2603static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2604				   u64 start, u64 num_bytes)
2605{
2606	int ret;
2607	struct btrfs_block_group *block_group;
2608
2609	block_group = btrfs_lookup_block_group(fs_info, start);
2610	if (!block_group)
2611		return -EINVAL;
2612
2613	ret = btrfs_cache_block_group(block_group, true);
2614	if (ret)
2615		goto out;
2616
2617	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2618out:
2619	btrfs_put_block_group(block_group);
2620	return ret;
2621}
2622
2623int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2624{
2625	struct btrfs_fs_info *fs_info = eb->fs_info;
2626	struct btrfs_file_extent_item *item;
2627	struct btrfs_key key;
2628	int found_type;
2629	int i;
2630	int ret = 0;
2631
2632	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2633		return 0;
2634
2635	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2636		btrfs_item_key_to_cpu(eb, &key, i);
2637		if (key.type != BTRFS_EXTENT_DATA_KEY)
2638			continue;
2639		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2640		found_type = btrfs_file_extent_type(eb, item);
2641		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2642			continue;
2643		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2644			continue;
2645		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2646		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2647		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2648		if (ret)
2649			break;
2650	}
2651
2652	return ret;
2653}
2654
2655static void
2656btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2657{
2658	atomic_inc(&bg->reservations);
2659}
2660
2661/*
2662 * Returns the free cluster for the given space info and sets empty_cluster to
2663 * what it should be based on the mount options.
2664 */
2665static struct btrfs_free_cluster *
2666fetch_cluster_info(struct btrfs_fs_info *fs_info,
2667		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2668{
2669	struct btrfs_free_cluster *ret = NULL;
2670
2671	*empty_cluster = 0;
2672	if (btrfs_mixed_space_info(space_info))
2673		return ret;
2674
2675	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2676		ret = &fs_info->meta_alloc_cluster;
2677		if (btrfs_test_opt(fs_info, SSD))
2678			*empty_cluster = SZ_2M;
2679		else
2680			*empty_cluster = SZ_64K;
2681	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2682		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2683		*empty_cluster = SZ_2M;
2684		ret = &fs_info->data_alloc_cluster;
2685	}
2686
2687	return ret;
2688}
2689
2690static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2691			      u64 start, u64 end,
2692			      const bool return_free_space)
2693{
2694	struct btrfs_block_group *cache = NULL;
2695	struct btrfs_space_info *space_info;
2696	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2697	struct btrfs_free_cluster *cluster = NULL;
2698	u64 len;
2699	u64 total_unpinned = 0;
2700	u64 empty_cluster = 0;
2701	bool readonly;
2702
2703	while (start <= end) {
2704		readonly = false;
2705		if (!cache ||
2706		    start >= cache->start + cache->length) {
2707			if (cache)
2708				btrfs_put_block_group(cache);
2709			total_unpinned = 0;
2710			cache = btrfs_lookup_block_group(fs_info, start);
2711			BUG_ON(!cache); /* Logic error */
2712
2713			cluster = fetch_cluster_info(fs_info,
2714						     cache->space_info,
2715						     &empty_cluster);
2716			empty_cluster <<= 1;
2717		}
2718
2719		len = cache->start + cache->length - start;
2720		len = min(len, end + 1 - start);
2721
2722		if (return_free_space)
2723			btrfs_add_free_space(cache, start, len);
2724
2725		start += len;
2726		total_unpinned += len;
2727		space_info = cache->space_info;
2728
2729		/*
2730		 * If this space cluster has been marked as fragmented and we've
2731		 * unpinned enough in this block group to potentially allow a
2732		 * cluster to be created inside of it go ahead and clear the
2733		 * fragmented check.
2734		 */
2735		if (cluster && cluster->fragmented &&
2736		    total_unpinned > empty_cluster) {
2737			spin_lock(&cluster->lock);
2738			cluster->fragmented = 0;
2739			spin_unlock(&cluster->lock);
2740		}
2741
2742		spin_lock(&space_info->lock);
2743		spin_lock(&cache->lock);
2744		cache->pinned -= len;
2745		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2746		space_info->max_extent_size = 0;
2747		if (cache->ro) {
2748			space_info->bytes_readonly += len;
2749			readonly = true;
2750		} else if (btrfs_is_zoned(fs_info)) {
2751			/* Need reset before reusing in a zoned block group */
2752			space_info->bytes_zone_unusable += len;
2753			readonly = true;
2754		}
2755		spin_unlock(&cache->lock);
2756		if (!readonly && return_free_space &&
2757		    global_rsv->space_info == space_info) {
2758			spin_lock(&global_rsv->lock);
2759			if (!global_rsv->full) {
2760				u64 to_add = min(len, global_rsv->size -
2761						      global_rsv->reserved);
2762
2763				global_rsv->reserved += to_add;
2764				btrfs_space_info_update_bytes_may_use(fs_info,
2765						space_info, to_add);
2766				if (global_rsv->reserved >= global_rsv->size)
2767					global_rsv->full = 1;
2768				len -= to_add;
2769			}
2770			spin_unlock(&global_rsv->lock);
2771		}
2772		/* Add to any tickets we may have */
2773		if (!readonly && return_free_space && len)
2774			btrfs_try_granting_tickets(fs_info, space_info);
2775		spin_unlock(&space_info->lock);
2776	}
2777
2778	if (cache)
2779		btrfs_put_block_group(cache);
2780	return 0;
2781}
2782
2783int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2784{
2785	struct btrfs_fs_info *fs_info = trans->fs_info;
2786	struct btrfs_block_group *block_group, *tmp;
2787	struct list_head *deleted_bgs;
2788	struct extent_io_tree *unpin;
2789	u64 start;
2790	u64 end;
2791	int ret;
2792
2793	unpin = &trans->transaction->pinned_extents;
2794
2795	while (!TRANS_ABORTED(trans)) {
2796		struct extent_state *cached_state = NULL;
2797
2798		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2799		if (!find_first_extent_bit(unpin, 0, &start, &end,
2800					   EXTENT_DIRTY, &cached_state)) {
2801			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2802			break;
2803		}
2804
2805		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2806			ret = btrfs_discard_extent(fs_info, start,
2807						   end + 1 - start, NULL);
2808
2809		clear_extent_dirty(unpin, start, end, &cached_state);
2810		unpin_extent_range(fs_info, start, end, true);
2811		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2812		free_extent_state(cached_state);
2813		cond_resched();
2814	}
2815
2816	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2817		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2818		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2819	}
2820
2821	/*
2822	 * Transaction is finished.  We don't need the lock anymore.  We
2823	 * do need to clean up the block groups in case of a transaction
2824	 * abort.
2825	 */
2826	deleted_bgs = &trans->transaction->deleted_bgs;
2827	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2828		u64 trimmed = 0;
2829
2830		ret = -EROFS;
2831		if (!TRANS_ABORTED(trans))
2832			ret = btrfs_discard_extent(fs_info,
2833						   block_group->start,
2834						   block_group->length,
2835						   &trimmed);
2836
2837		list_del_init(&block_group->bg_list);
2838		btrfs_unfreeze_block_group(block_group);
2839		btrfs_put_block_group(block_group);
2840
2841		if (ret) {
2842			const char *errstr = btrfs_decode_error(ret);
2843			btrfs_warn(fs_info,
2844			   "discard failed while removing blockgroup: errno=%d %s",
2845				   ret, errstr);
2846		}
2847	}
2848
2849	return 0;
2850}
2851
2852static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2853				     u64 bytenr, u64 num_bytes, bool is_data)
2854{
2855	int ret;
2856
2857	if (is_data) {
2858		struct btrfs_root *csum_root;
2859
2860		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2861		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2862		if (ret) {
2863			btrfs_abort_transaction(trans, ret);
2864			return ret;
2865		}
2866	}
2867
2868	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2869	if (ret) {
2870		btrfs_abort_transaction(trans, ret);
2871		return ret;
2872	}
2873
2874	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2875	if (ret)
2876		btrfs_abort_transaction(trans, ret);
2877
2878	return ret;
2879}
2880
2881#define abort_and_dump(trans, path, fmt, args...)	\
2882({							\
2883	btrfs_abort_transaction(trans, -EUCLEAN);	\
2884	btrfs_print_leaf(path->nodes[0]);		\
2885	btrfs_crit(trans->fs_info, fmt, ##args);	\
2886})
2887
2888/*
2889 * Drop one or more refs of @node.
2890 *
2891 * 1. Locate the extent refs.
2892 *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2893 *    Locate it, then reduce the refs number or remove the ref line completely.
2894 *
2895 * 2. Update the refs count in EXTENT/METADATA_ITEM
2896 *
2897 * Inline backref case:
2898 *
2899 * in extent tree we have:
2900 *
2901 * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2902 *		refs 2 gen 6 flags DATA
2903 *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2904 *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2905 *
2906 * This function gets called with:
2907 *
2908 *    node->bytenr = 13631488
2909 *    node->num_bytes = 1048576
2910 *    root_objectid = FS_TREE
2911 *    owner_objectid = 257
2912 *    owner_offset = 0
2913 *    refs_to_drop = 1
2914 *
2915 * Then we should get some like:
2916 *
2917 * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2918 *		refs 1 gen 6 flags DATA
2919 *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2920 *
2921 * Keyed backref case:
2922 *
2923 * in extent tree we have:
2924 *
2925 *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2926 *		refs 754 gen 6 flags DATA
2927 *	[...]
2928 *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2929 *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2930 *
2931 * This function get called with:
2932 *
2933 *    node->bytenr = 13631488
2934 *    node->num_bytes = 1048576
2935 *    root_objectid = FS_TREE
2936 *    owner_objectid = 866
2937 *    owner_offset = 0
2938 *    refs_to_drop = 1
2939 *
2940 * Then we should get some like:
2941 *
2942 *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2943 *		refs 753 gen 6 flags DATA
2944 *
2945 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2946 */
2947static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2948			       struct btrfs_delayed_ref_node *node, u64 parent,
2949			       u64 root_objectid, u64 owner_objectid,
2950			       u64 owner_offset, int refs_to_drop,
2951			       struct btrfs_delayed_extent_op *extent_op)
2952{
2953	struct btrfs_fs_info *info = trans->fs_info;
2954	struct btrfs_key key;
2955	struct btrfs_path *path;
2956	struct btrfs_root *extent_root;
2957	struct extent_buffer *leaf;
2958	struct btrfs_extent_item *ei;
2959	struct btrfs_extent_inline_ref *iref;
2960	int ret;
2961	int is_data;
2962	int extent_slot = 0;
2963	int found_extent = 0;
2964	int num_to_del = 1;
2965	u32 item_size;
2966	u64 refs;
2967	u64 bytenr = node->bytenr;
2968	u64 num_bytes = node->num_bytes;
2969	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2970
2971	extent_root = btrfs_extent_root(info, bytenr);
2972	ASSERT(extent_root);
2973
2974	path = btrfs_alloc_path();
2975	if (!path)
2976		return -ENOMEM;
2977
2978	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2979
2980	if (!is_data && refs_to_drop != 1) {
2981		btrfs_crit(info,
2982"invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2983			   node->bytenr, refs_to_drop);
2984		ret = -EINVAL;
2985		btrfs_abort_transaction(trans, ret);
2986		goto out;
2987	}
2988
2989	if (is_data)
2990		skinny_metadata = false;
2991
2992	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2993				    parent, root_objectid, owner_objectid,
2994				    owner_offset);
2995	if (ret == 0) {
2996		/*
2997		 * Either the inline backref or the SHARED_DATA_REF/
2998		 * SHARED_BLOCK_REF is found
2999		 *
3000		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3001		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3002		 */
3003		extent_slot = path->slots[0];
3004		while (extent_slot >= 0) {
3005			btrfs_item_key_to_cpu(path->nodes[0], &key,
3006					      extent_slot);
3007			if (key.objectid != bytenr)
3008				break;
3009			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3010			    key.offset == num_bytes) {
3011				found_extent = 1;
3012				break;
3013			}
3014			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3015			    key.offset == owner_objectid) {
3016				found_extent = 1;
3017				break;
3018			}
3019
3020			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3021			if (path->slots[0] - extent_slot > 5)
3022				break;
3023			extent_slot--;
3024		}
3025
3026		if (!found_extent) {
3027			if (iref) {
3028				abort_and_dump(trans, path,
3029"invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3030					   path->slots[0]);
3031				ret = -EUCLEAN;
3032				goto out;
3033			}
3034			/* Must be SHARED_* item, remove the backref first */
3035			ret = remove_extent_backref(trans, extent_root, path,
3036						    NULL, refs_to_drop, is_data);
3037			if (ret) {
3038				btrfs_abort_transaction(trans, ret);
3039				goto out;
3040			}
3041			btrfs_release_path(path);
3042
3043			/* Slow path to locate EXTENT/METADATA_ITEM */
3044			key.objectid = bytenr;
3045			key.type = BTRFS_EXTENT_ITEM_KEY;
3046			key.offset = num_bytes;
3047
3048			if (!is_data && skinny_metadata) {
3049				key.type = BTRFS_METADATA_ITEM_KEY;
3050				key.offset = owner_objectid;
3051			}
3052
3053			ret = btrfs_search_slot(trans, extent_root,
3054						&key, path, -1, 1);
3055			if (ret > 0 && skinny_metadata && path->slots[0]) {
3056				/*
3057				 * Couldn't find our skinny metadata item,
3058				 * see if we have ye olde extent item.
3059				 */
3060				path->slots[0]--;
3061				btrfs_item_key_to_cpu(path->nodes[0], &key,
3062						      path->slots[0]);
3063				if (key.objectid == bytenr &&
3064				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3065				    key.offset == num_bytes)
3066					ret = 0;
3067			}
3068
3069			if (ret > 0 && skinny_metadata) {
3070				skinny_metadata = false;
3071				key.objectid = bytenr;
3072				key.type = BTRFS_EXTENT_ITEM_KEY;
3073				key.offset = num_bytes;
3074				btrfs_release_path(path);
3075				ret = btrfs_search_slot(trans, extent_root,
3076							&key, path, -1, 1);
3077			}
3078
3079			if (ret) {
3080				if (ret > 0)
3081					btrfs_print_leaf(path->nodes[0]);
3082				btrfs_err(info,
3083			"umm, got %d back from search, was looking for %llu, slot %d",
3084					  ret, bytenr, path->slots[0]);
3085			}
3086			if (ret < 0) {
3087				btrfs_abort_transaction(trans, ret);
3088				goto out;
3089			}
3090			extent_slot = path->slots[0];
3091		}
3092	} else if (WARN_ON(ret == -ENOENT)) {
3093		abort_and_dump(trans, path,
3094"unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3095			       bytenr, parent, root_objectid, owner_objectid,
3096			       owner_offset, path->slots[0]);
3097		goto out;
3098	} else {
3099		btrfs_abort_transaction(trans, ret);
3100		goto out;
3101	}
3102
3103	leaf = path->nodes[0];
3104	item_size = btrfs_item_size(leaf, extent_slot);
3105	if (unlikely(item_size < sizeof(*ei))) {
3106		ret = -EUCLEAN;
3107		btrfs_err(trans->fs_info,
3108			  "unexpected extent item size, has %u expect >= %zu",
3109			  item_size, sizeof(*ei));
3110		btrfs_abort_transaction(trans, ret);
3111		goto out;
3112	}
3113	ei = btrfs_item_ptr(leaf, extent_slot,
3114			    struct btrfs_extent_item);
3115	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3116	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3117		struct btrfs_tree_block_info *bi;
3118
3119		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3120			abort_and_dump(trans, path,
3121"invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3122				       key.objectid, key.type, key.offset,
3123				       path->slots[0], owner_objectid, item_size,
3124				       sizeof(*ei) + sizeof(*bi));
3125			ret = -EUCLEAN;
3126			goto out;
3127		}
3128		bi = (struct btrfs_tree_block_info *)(ei + 1);
3129		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3130	}
3131
3132	refs = btrfs_extent_refs(leaf, ei);
3133	if (refs < refs_to_drop) {
3134		abort_and_dump(trans, path,
3135		"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3136			       refs_to_drop, refs, bytenr, path->slots[0]);
3137		ret = -EUCLEAN;
3138		goto out;
3139	}
3140	refs -= refs_to_drop;
3141
3142	if (refs > 0) {
3143		if (extent_op)
3144			__run_delayed_extent_op(extent_op, leaf, ei);
3145		/*
3146		 * In the case of inline back ref, reference count will
3147		 * be updated by remove_extent_backref
3148		 */
3149		if (iref) {
3150			if (!found_extent) {
3151				abort_and_dump(trans, path,
3152"invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3153					       path->slots[0]);
3154				ret = -EUCLEAN;
3155				goto out;
3156			}
3157		} else {
3158			btrfs_set_extent_refs(leaf, ei, refs);
3159			btrfs_mark_buffer_dirty(trans, leaf);
3160		}
3161		if (found_extent) {
3162			ret = remove_extent_backref(trans, extent_root, path,
3163						    iref, refs_to_drop, is_data);
3164			if (ret) {
3165				btrfs_abort_transaction(trans, ret);
3166				goto out;
3167			}
3168		}
3169	} else {
3170		/* In this branch refs == 1 */
3171		if (found_extent) {
3172			if (is_data && refs_to_drop !=
3173			    extent_data_ref_count(path, iref)) {
3174				abort_and_dump(trans, path,
3175		"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3176					       extent_data_ref_count(path, iref),
3177					       refs_to_drop, path->slots[0]);
3178				ret = -EUCLEAN;
3179				goto out;
3180			}
3181			if (iref) {
3182				if (path->slots[0] != extent_slot) {
3183					abort_and_dump(trans, path,
3184"invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3185						       key.objectid, key.type,
3186						       key.offset, path->slots[0]);
3187					ret = -EUCLEAN;
3188					goto out;
3189				}
3190			} else {
3191				/*
3192				 * No inline ref, we must be at SHARED_* item,
3193				 * And it's single ref, it must be:
3194				 * |	extent_slot	  ||extent_slot + 1|
3195				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3196				 */
3197				if (path->slots[0] != extent_slot + 1) {
3198					abort_and_dump(trans, path,
3199	"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3200						       path->slots[0]);
3201					ret = -EUCLEAN;
3202					goto out;
3203				}
3204				path->slots[0] = extent_slot;
3205				num_to_del = 2;
3206			}
3207		}
3208
3209		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3210				      num_to_del);
3211		if (ret) {
3212			btrfs_abort_transaction(trans, ret);
3213			goto out;
3214		}
3215		btrfs_release_path(path);
3216
3217		ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3218	}
3219	btrfs_release_path(path);
3220
3221out:
3222	btrfs_free_path(path);
3223	return ret;
3224}
3225
3226/*
3227 * when we free an block, it is possible (and likely) that we free the last
3228 * delayed ref for that extent as well.  This searches the delayed ref tree for
3229 * a given extent, and if there are no other delayed refs to be processed, it
3230 * removes it from the tree.
3231 */
3232static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3233				      u64 bytenr)
3234{
3235	struct btrfs_delayed_ref_head *head;
3236	struct btrfs_delayed_ref_root *delayed_refs;
3237	int ret = 0;
3238
3239	delayed_refs = &trans->transaction->delayed_refs;
3240	spin_lock(&delayed_refs->lock);
3241	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3242	if (!head)
3243		goto out_delayed_unlock;
3244
3245	spin_lock(&head->lock);
3246	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3247		goto out;
3248
3249	if (cleanup_extent_op(head) != NULL)
3250		goto out;
3251
3252	/*
3253	 * waiting for the lock here would deadlock.  If someone else has it
3254	 * locked they are already in the process of dropping it anyway
3255	 */
3256	if (!mutex_trylock(&head->mutex))
3257		goto out;
3258
3259	btrfs_delete_ref_head(delayed_refs, head);
3260	head->processing = false;
3261
3262	spin_unlock(&head->lock);
3263	spin_unlock(&delayed_refs->lock);
3264
3265	BUG_ON(head->extent_op);
3266	if (head->must_insert_reserved)
3267		ret = 1;
3268
3269	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3270	mutex_unlock(&head->mutex);
3271	btrfs_put_delayed_ref_head(head);
3272	return ret;
3273out:
3274	spin_unlock(&head->lock);
3275
3276out_delayed_unlock:
3277	spin_unlock(&delayed_refs->lock);
3278	return 0;
3279}
3280
3281void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3282			   u64 root_id,
3283			   struct extent_buffer *buf,
3284			   u64 parent, int last_ref)
3285{
3286	struct btrfs_fs_info *fs_info = trans->fs_info;
3287	struct btrfs_ref generic_ref = { 0 };
3288	int ret;
3289
3290	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3291			       buf->start, buf->len, parent);
3292	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3293			    root_id, 0, false);
3294
3295	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3296		btrfs_ref_tree_mod(fs_info, &generic_ref);
3297		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3298		BUG_ON(ret); /* -ENOMEM */
3299	}
3300
3301	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3302		struct btrfs_block_group *cache;
3303		bool must_pin = false;
3304
3305		if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3306			ret = check_ref_cleanup(trans, buf->start);
3307			if (!ret) {
3308				btrfs_redirty_list_add(trans->transaction, buf);
3309				goto out;
3310			}
3311		}
3312
3313		cache = btrfs_lookup_block_group(fs_info, buf->start);
3314
3315		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3316			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3317			btrfs_put_block_group(cache);
3318			goto out;
3319		}
3320
3321		/*
3322		 * If there are tree mod log users we may have recorded mod log
3323		 * operations for this node.  If we re-allocate this node we
3324		 * could replay operations on this node that happened when it
3325		 * existed in a completely different root.  For example if it
3326		 * was part of root A, then was reallocated to root B, and we
3327		 * are doing a btrfs_old_search_slot(root b), we could replay
3328		 * operations that happened when the block was part of root A,
3329		 * giving us an inconsistent view of the btree.
3330		 *
3331		 * We are safe from races here because at this point no other
3332		 * node or root points to this extent buffer, so if after this
3333		 * check a new tree mod log user joins we will not have an
3334		 * existing log of operations on this node that we have to
3335		 * contend with.
3336		 */
3337		if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3338			must_pin = true;
3339
3340		if (must_pin || btrfs_is_zoned(fs_info)) {
3341			btrfs_redirty_list_add(trans->transaction, buf);
3342			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3343			btrfs_put_block_group(cache);
3344			goto out;
3345		}
3346
3347		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3348
3349		btrfs_add_free_space(cache, buf->start, buf->len);
3350		btrfs_free_reserved_bytes(cache, buf->len, 0);
3351		btrfs_put_block_group(cache);
3352		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3353	}
3354out:
3355	if (last_ref) {
3356		/*
3357		 * Deleting the buffer, clear the corrupt flag since it doesn't
3358		 * matter anymore.
3359		 */
3360		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3361	}
3362}
3363
3364/* Can return -ENOMEM */
3365int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3366{
3367	struct btrfs_fs_info *fs_info = trans->fs_info;
3368	int ret;
3369
3370	if (btrfs_is_testing(fs_info))
3371		return 0;
3372
3373	/*
3374	 * tree log blocks never actually go into the extent allocation
3375	 * tree, just update pinning info and exit early.
3376	 */
3377	if ((ref->type == BTRFS_REF_METADATA &&
3378	     ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3379	    (ref->type == BTRFS_REF_DATA &&
3380	     ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3381		/* unlocks the pinned mutex */
3382		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3383		ret = 0;
3384	} else if (ref->type == BTRFS_REF_METADATA) {
3385		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3386	} else {
3387		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3388	}
3389
3390	if (!((ref->type == BTRFS_REF_METADATA &&
3391	       ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3392	      (ref->type == BTRFS_REF_DATA &&
3393	       ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3394		btrfs_ref_tree_mod(fs_info, ref);
3395
3396	return ret;
3397}
3398
3399enum btrfs_loop_type {
3400	/*
3401	 * Start caching block groups but do not wait for progress or for them
3402	 * to be done.
3403	 */
3404	LOOP_CACHING_NOWAIT,
3405
3406	/*
3407	 * Wait for the block group free_space >= the space we're waiting for if
3408	 * the block group isn't cached.
3409	 */
3410	LOOP_CACHING_WAIT,
3411
3412	/*
3413	 * Allow allocations to happen from block groups that do not yet have a
3414	 * size classification.
3415	 */
3416	LOOP_UNSET_SIZE_CLASS,
3417
3418	/*
3419	 * Allocate a chunk and then retry the allocation.
3420	 */
3421	LOOP_ALLOC_CHUNK,
3422
3423	/*
3424	 * Ignore the size class restrictions for this allocation.
3425	 */
3426	LOOP_WRONG_SIZE_CLASS,
3427
3428	/*
3429	 * Ignore the empty size, only try to allocate the number of bytes
3430	 * needed for this allocation.
3431	 */
3432	LOOP_NO_EMPTY_SIZE,
3433};
3434
3435static inline void
3436btrfs_lock_block_group(struct btrfs_block_group *cache,
3437		       int delalloc)
3438{
3439	if (delalloc)
3440		down_read(&cache->data_rwsem);
3441}
3442
3443static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3444		       int delalloc)
3445{
3446	btrfs_get_block_group(cache);
3447	if (delalloc)
3448		down_read(&cache->data_rwsem);
3449}
3450
3451static struct btrfs_block_group *btrfs_lock_cluster(
3452		   struct btrfs_block_group *block_group,
3453		   struct btrfs_free_cluster *cluster,
3454		   int delalloc)
3455	__acquires(&cluster->refill_lock)
3456{
3457	struct btrfs_block_group *used_bg = NULL;
3458
3459	spin_lock(&cluster->refill_lock);
3460	while (1) {
3461		used_bg = cluster->block_group;
3462		if (!used_bg)
3463			return NULL;
3464
3465		if (used_bg == block_group)
3466			return used_bg;
3467
3468		btrfs_get_block_group(used_bg);
3469
3470		if (!delalloc)
3471			return used_bg;
3472
3473		if (down_read_trylock(&used_bg->data_rwsem))
3474			return used_bg;
3475
3476		spin_unlock(&cluster->refill_lock);
3477
3478		/* We should only have one-level nested. */
3479		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3480
3481		spin_lock(&cluster->refill_lock);
3482		if (used_bg == cluster->block_group)
3483			return used_bg;
3484
3485		up_read(&used_bg->data_rwsem);
3486		btrfs_put_block_group(used_bg);
3487	}
3488}
3489
3490static inline void
3491btrfs_release_block_group(struct btrfs_block_group *cache,
3492			 int delalloc)
3493{
3494	if (delalloc)
3495		up_read(&cache->data_rwsem);
3496	btrfs_put_block_group(cache);
3497}
3498
3499/*
3500 * Helper function for find_free_extent().
3501 *
3502 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3503 * Return >0 to inform caller that we find nothing
3504 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3505 */
3506static int find_free_extent_clustered(struct btrfs_block_group *bg,
3507				      struct find_free_extent_ctl *ffe_ctl,
3508				      struct btrfs_block_group **cluster_bg_ret)
3509{
3510	struct btrfs_block_group *cluster_bg;
3511	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3512	u64 aligned_cluster;
3513	u64 offset;
3514	int ret;
3515
3516	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3517	if (!cluster_bg)
3518		goto refill_cluster;
3519	if (cluster_bg != bg && (cluster_bg->ro ||
3520	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3521		goto release_cluster;
3522
3523	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3524			ffe_ctl->num_bytes, cluster_bg->start,
3525			&ffe_ctl->max_extent_size);
3526	if (offset) {
3527		/* We have a block, we're done */
3528		spin_unlock(&last_ptr->refill_lock);
3529		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3530		*cluster_bg_ret = cluster_bg;
3531		ffe_ctl->found_offset = offset;
3532		return 0;
3533	}
3534	WARN_ON(last_ptr->block_group != cluster_bg);
3535
3536release_cluster:
3537	/*
3538	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3539	 * lets just skip it and let the allocator find whatever block it can
3540	 * find. If we reach this point, we will have tried the cluster
3541	 * allocator plenty of times and not have found anything, so we are
3542	 * likely way too fragmented for the clustering stuff to find anything.
3543	 *
3544	 * However, if the cluster is taken from the current block group,
3545	 * release the cluster first, so that we stand a better chance of
3546	 * succeeding in the unclustered allocation.
3547	 */
3548	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3549		spin_unlock(&last_ptr->refill_lock);
3550		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3551		return -ENOENT;
3552	}
3553
3554	/* This cluster didn't work out, free it and start over */
3555	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3556
3557	if (cluster_bg != bg)
3558		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3559
3560refill_cluster:
3561	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3562		spin_unlock(&last_ptr->refill_lock);
3563		return -ENOENT;
3564	}
3565
3566	aligned_cluster = max_t(u64,
3567			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3568			bg->full_stripe_len);
3569	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3570			ffe_ctl->num_bytes, aligned_cluster);
3571	if (ret == 0) {
3572		/* Now pull our allocation out of this cluster */
3573		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3574				ffe_ctl->num_bytes, ffe_ctl->search_start,
3575				&ffe_ctl->max_extent_size);
3576		if (offset) {
3577			/* We found one, proceed */
3578			spin_unlock(&last_ptr->refill_lock);
3579			ffe_ctl->found_offset = offset;
3580			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3581			return 0;
3582		}
3583	}
3584	/*
3585	 * At this point we either didn't find a cluster or we weren't able to
3586	 * allocate a block from our cluster.  Free the cluster we've been
3587	 * trying to use, and go to the next block group.
3588	 */
3589	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3590	spin_unlock(&last_ptr->refill_lock);
3591	return 1;
3592}
3593
3594/*
3595 * Return >0 to inform caller that we find nothing
3596 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3597 */
3598static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3599					struct find_free_extent_ctl *ffe_ctl)
3600{
3601	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3602	u64 offset;
3603
3604	/*
3605	 * We are doing an unclustered allocation, set the fragmented flag so
3606	 * we don't bother trying to setup a cluster again until we get more
3607	 * space.
3608	 */
3609	if (unlikely(last_ptr)) {
3610		spin_lock(&last_ptr->lock);
3611		last_ptr->fragmented = 1;
3612		spin_unlock(&last_ptr->lock);
3613	}
3614	if (ffe_ctl->cached) {
3615		struct btrfs_free_space_ctl *free_space_ctl;
3616
3617		free_space_ctl = bg->free_space_ctl;
3618		spin_lock(&free_space_ctl->tree_lock);
3619		if (free_space_ctl->free_space <
3620		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3621		    ffe_ctl->empty_size) {
3622			ffe_ctl->total_free_space = max_t(u64,
3623					ffe_ctl->total_free_space,
3624					free_space_ctl->free_space);
3625			spin_unlock(&free_space_ctl->tree_lock);
3626			return 1;
3627		}
3628		spin_unlock(&free_space_ctl->tree_lock);
3629	}
3630
3631	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3632			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3633			&ffe_ctl->max_extent_size);
3634	if (!offset)
3635		return 1;
3636	ffe_ctl->found_offset = offset;
3637	return 0;
3638}
3639
3640static int do_allocation_clustered(struct btrfs_block_group *block_group,
3641				   struct find_free_extent_ctl *ffe_ctl,
3642				   struct btrfs_block_group **bg_ret)
3643{
3644	int ret;
3645
3646	/* We want to try and use the cluster allocator, so lets look there */
3647	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3648		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3649		if (ret >= 0)
3650			return ret;
3651		/* ret == -ENOENT case falls through */
3652	}
3653
3654	return find_free_extent_unclustered(block_group, ffe_ctl);
3655}
3656
3657/*
3658 * Tree-log block group locking
3659 * ============================
3660 *
3661 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3662 * indicates the starting address of a block group, which is reserved only
3663 * for tree-log metadata.
3664 *
3665 * Lock nesting
3666 * ============
3667 *
3668 * space_info::lock
3669 *   block_group::lock
3670 *     fs_info::treelog_bg_lock
3671 */
3672
3673/*
3674 * Simple allocator for sequential-only block group. It only allows sequential
3675 * allocation. No need to play with trees. This function also reserves the
3676 * bytes as in btrfs_add_reserved_bytes.
3677 */
3678static int do_allocation_zoned(struct btrfs_block_group *block_group,
3679			       struct find_free_extent_ctl *ffe_ctl,
3680			       struct btrfs_block_group **bg_ret)
3681{
3682	struct btrfs_fs_info *fs_info = block_group->fs_info;
3683	struct btrfs_space_info *space_info = block_group->space_info;
3684	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3685	u64 start = block_group->start;
3686	u64 num_bytes = ffe_ctl->num_bytes;
3687	u64 avail;
3688	u64 bytenr = block_group->start;
3689	u64 log_bytenr;
3690	u64 data_reloc_bytenr;
3691	int ret = 0;
3692	bool skip = false;
3693
3694	ASSERT(btrfs_is_zoned(block_group->fs_info));
3695
3696	/*
3697	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3698	 * group, and vice versa.
3699	 */
3700	spin_lock(&fs_info->treelog_bg_lock);
3701	log_bytenr = fs_info->treelog_bg;
3702	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3703			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3704		skip = true;
3705	spin_unlock(&fs_info->treelog_bg_lock);
3706	if (skip)
3707		return 1;
3708
3709	/*
3710	 * Do not allow non-relocation blocks in the dedicated relocation block
3711	 * group, and vice versa.
3712	 */
3713	spin_lock(&fs_info->relocation_bg_lock);
3714	data_reloc_bytenr = fs_info->data_reloc_bg;
3715	if (data_reloc_bytenr &&
3716	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3717	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3718		skip = true;
3719	spin_unlock(&fs_info->relocation_bg_lock);
3720	if (skip)
3721		return 1;
3722
3723	/* Check RO and no space case before trying to activate it */
3724	spin_lock(&block_group->lock);
3725	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3726		ret = 1;
3727		/*
3728		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3729		 * Return the error after taking the locks.
3730		 */
3731	}
3732	spin_unlock(&block_group->lock);
3733
3734	/* Metadata block group is activated at write time. */
3735	if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3736	    !btrfs_zone_activate(block_group)) {
3737		ret = 1;
3738		/*
3739		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3740		 * Return the error after taking the locks.
3741		 */
3742	}
3743
3744	spin_lock(&space_info->lock);
3745	spin_lock(&block_group->lock);
3746	spin_lock(&fs_info->treelog_bg_lock);
3747	spin_lock(&fs_info->relocation_bg_lock);
3748
3749	if (ret)
3750		goto out;
3751
3752	ASSERT(!ffe_ctl->for_treelog ||
3753	       block_group->start == fs_info->treelog_bg ||
3754	       fs_info->treelog_bg == 0);
3755	ASSERT(!ffe_ctl->for_data_reloc ||
3756	       block_group->start == fs_info->data_reloc_bg ||
3757	       fs_info->data_reloc_bg == 0);
3758
3759	if (block_group->ro ||
3760	    (!ffe_ctl->for_data_reloc &&
3761	     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3762		ret = 1;
3763		goto out;
3764	}
3765
3766	/*
3767	 * Do not allow currently using block group to be tree-log dedicated
3768	 * block group.
3769	 */
3770	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3771	    (block_group->used || block_group->reserved)) {
3772		ret = 1;
3773		goto out;
3774	}
3775
3776	/*
3777	 * Do not allow currently used block group to be the data relocation
3778	 * dedicated block group.
3779	 */
3780	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3781	    (block_group->used || block_group->reserved)) {
3782		ret = 1;
3783		goto out;
3784	}
3785
3786	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3787	avail = block_group->zone_capacity - block_group->alloc_offset;
3788	if (avail < num_bytes) {
3789		if (ffe_ctl->max_extent_size < avail) {
3790			/*
3791			 * With sequential allocator, free space is always
3792			 * contiguous
3793			 */
3794			ffe_ctl->max_extent_size = avail;
3795			ffe_ctl->total_free_space = avail;
3796		}
3797		ret = 1;
3798		goto out;
3799	}
3800
3801	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3802		fs_info->treelog_bg = block_group->start;
3803
3804	if (ffe_ctl->for_data_reloc) {
3805		if (!fs_info->data_reloc_bg)
3806			fs_info->data_reloc_bg = block_group->start;
3807		/*
3808		 * Do not allow allocations from this block group, unless it is
3809		 * for data relocation. Compared to increasing the ->ro, setting
3810		 * the ->zoned_data_reloc_ongoing flag still allows nocow
3811		 * writers to come in. See btrfs_inc_nocow_writers().
3812		 *
3813		 * We need to disable an allocation to avoid an allocation of
3814		 * regular (non-relocation data) extent. With mix of relocation
3815		 * extents and regular extents, we can dispatch WRITE commands
3816		 * (for relocation extents) and ZONE APPEND commands (for
3817		 * regular extents) at the same time to the same zone, which
3818		 * easily break the write pointer.
3819		 *
3820		 * Also, this flag avoids this block group to be zone finished.
3821		 */
3822		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3823	}
3824
3825	ffe_ctl->found_offset = start + block_group->alloc_offset;
3826	block_group->alloc_offset += num_bytes;
3827	spin_lock(&ctl->tree_lock);
3828	ctl->free_space -= num_bytes;
3829	spin_unlock(&ctl->tree_lock);
3830
3831	/*
3832	 * We do not check if found_offset is aligned to stripesize. The
3833	 * address is anyway rewritten when using zone append writing.
3834	 */
3835
3836	ffe_ctl->search_start = ffe_ctl->found_offset;
3837
3838out:
3839	if (ret && ffe_ctl->for_treelog)
3840		fs_info->treelog_bg = 0;
3841	if (ret && ffe_ctl->for_data_reloc)
3842		fs_info->data_reloc_bg = 0;
3843	spin_unlock(&fs_info->relocation_bg_lock);
3844	spin_unlock(&fs_info->treelog_bg_lock);
3845	spin_unlock(&block_group->lock);
3846	spin_unlock(&space_info->lock);
3847	return ret;
3848}
3849
3850static int do_allocation(struct btrfs_block_group *block_group,
3851			 struct find_free_extent_ctl *ffe_ctl,
3852			 struct btrfs_block_group **bg_ret)
3853{
3854	switch (ffe_ctl->policy) {
3855	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3856		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3857	case BTRFS_EXTENT_ALLOC_ZONED:
3858		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3859	default:
3860		BUG();
3861	}
3862}
3863
3864static void release_block_group(struct btrfs_block_group *block_group,
3865				struct find_free_extent_ctl *ffe_ctl,
3866				int delalloc)
3867{
3868	switch (ffe_ctl->policy) {
3869	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3870		ffe_ctl->retry_uncached = false;
3871		break;
3872	case BTRFS_EXTENT_ALLOC_ZONED:
3873		/* Nothing to do */
3874		break;
3875	default:
3876		BUG();
3877	}
3878
3879	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3880	       ffe_ctl->index);
3881	btrfs_release_block_group(block_group, delalloc);
3882}
3883
3884static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3885				   struct btrfs_key *ins)
3886{
3887	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3888
3889	if (!ffe_ctl->use_cluster && last_ptr) {
3890		spin_lock(&last_ptr->lock);
3891		last_ptr->window_start = ins->objectid;
3892		spin_unlock(&last_ptr->lock);
3893	}
3894}
3895
3896static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3897			 struct btrfs_key *ins)
3898{
3899	switch (ffe_ctl->policy) {
3900	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3901		found_extent_clustered(ffe_ctl, ins);
3902		break;
3903	case BTRFS_EXTENT_ALLOC_ZONED:
3904		/* Nothing to do */
3905		break;
3906	default:
3907		BUG();
3908	}
3909}
3910
3911static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3912				    struct find_free_extent_ctl *ffe_ctl)
3913{
3914	/* Block group's activeness is not a requirement for METADATA block groups. */
3915	if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
3916		return 0;
3917
3918	/* If we can activate new zone, just allocate a chunk and use it */
3919	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3920		return 0;
3921
3922	/*
3923	 * We already reached the max active zones. Try to finish one block
3924	 * group to make a room for a new block group. This is only possible
3925	 * for a data block group because btrfs_zone_finish() may need to wait
3926	 * for a running transaction which can cause a deadlock for metadata
3927	 * allocation.
3928	 */
3929	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3930		int ret = btrfs_zone_finish_one_bg(fs_info);
3931
3932		if (ret == 1)
3933			return 0;
3934		else if (ret < 0)
3935			return ret;
3936	}
3937
3938	/*
3939	 * If we have enough free space left in an already active block group
3940	 * and we can't activate any other zone now, do not allow allocating a
3941	 * new chunk and let find_free_extent() retry with a smaller size.
3942	 */
3943	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3944		return -ENOSPC;
3945
3946	/*
3947	 * Even min_alloc_size is not left in any block groups. Since we cannot
3948	 * activate a new block group, allocating it may not help. Let's tell a
3949	 * caller to try again and hope it progress something by writing some
3950	 * parts of the region. That is only possible for data block groups,
3951	 * where a part of the region can be written.
3952	 */
3953	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
3954		return -EAGAIN;
3955
3956	/*
3957	 * We cannot activate a new block group and no enough space left in any
3958	 * block groups. So, allocating a new block group may not help. But,
3959	 * there is nothing to do anyway, so let's go with it.
3960	 */
3961	return 0;
3962}
3963
3964static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
3965			      struct find_free_extent_ctl *ffe_ctl)
3966{
3967	switch (ffe_ctl->policy) {
3968	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3969		return 0;
3970	case BTRFS_EXTENT_ALLOC_ZONED:
3971		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
3972	default:
3973		BUG();
3974	}
3975}
3976
3977/*
3978 * Return >0 means caller needs to re-search for free extent
3979 * Return 0 means we have the needed free extent.
3980 * Return <0 means we failed to locate any free extent.
3981 */
3982static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3983					struct btrfs_key *ins,
3984					struct find_free_extent_ctl *ffe_ctl,
3985					bool full_search)
3986{
3987	struct btrfs_root *root = fs_info->chunk_root;
3988	int ret;
3989
3990	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3991	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3992		ffe_ctl->orig_have_caching_bg = true;
3993
3994	if (ins->objectid) {
3995		found_extent(ffe_ctl, ins);
3996		return 0;
3997	}
3998
3999	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4000		return 1;
4001
4002	ffe_ctl->index++;
4003	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4004		return 1;
4005
4006	/* See the comments for btrfs_loop_type for an explanation of the phases. */
4007	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4008		ffe_ctl->index = 0;
4009		/*
4010		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4011		 * any uncached bgs and we've already done a full search
4012		 * through.
4013		 */
4014		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4015		    (!ffe_ctl->orig_have_caching_bg && full_search))
4016			ffe_ctl->loop++;
4017		ffe_ctl->loop++;
4018
4019		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4020			struct btrfs_trans_handle *trans;
4021			int exist = 0;
4022
4023			/* Check if allocation policy allows to create a new chunk */
4024			ret = can_allocate_chunk(fs_info, ffe_ctl);
4025			if (ret)
4026				return ret;
4027
4028			trans = current->journal_info;
4029			if (trans)
4030				exist = 1;
4031			else
4032				trans = btrfs_join_transaction(root);
4033
4034			if (IS_ERR(trans)) {
4035				ret = PTR_ERR(trans);
4036				return ret;
4037			}
4038
4039			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4040						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4041
4042			/* Do not bail out on ENOSPC since we can do more. */
4043			if (ret == -ENOSPC) {
4044				ret = 0;
4045				ffe_ctl->loop++;
4046			}
4047			else if (ret < 0)
4048				btrfs_abort_transaction(trans, ret);
4049			else
4050				ret = 0;
4051			if (!exist)
4052				btrfs_end_transaction(trans);
4053			if (ret)
4054				return ret;
4055		}
4056
4057		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4058			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4059				return -ENOSPC;
4060
4061			/*
4062			 * Don't loop again if we already have no empty_size and
4063			 * no empty_cluster.
4064			 */
4065			if (ffe_ctl->empty_size == 0 &&
4066			    ffe_ctl->empty_cluster == 0)
4067				return -ENOSPC;
4068			ffe_ctl->empty_size = 0;
4069			ffe_ctl->empty_cluster = 0;
4070		}
4071		return 1;
4072	}
4073	return -ENOSPC;
4074}
4075
4076static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4077					      struct btrfs_block_group *bg)
4078{
4079	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4080		return true;
4081	if (!btrfs_block_group_should_use_size_class(bg))
4082		return true;
4083	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4084		return true;
4085	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4086	    bg->size_class == BTRFS_BG_SZ_NONE)
4087		return true;
4088	return ffe_ctl->size_class == bg->size_class;
4089}
4090
4091static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4092					struct find_free_extent_ctl *ffe_ctl,
4093					struct btrfs_space_info *space_info,
4094					struct btrfs_key *ins)
4095{
4096	/*
4097	 * If our free space is heavily fragmented we may not be able to make
4098	 * big contiguous allocations, so instead of doing the expensive search
4099	 * for free space, simply return ENOSPC with our max_extent_size so we
4100	 * can go ahead and search for a more manageable chunk.
4101	 *
4102	 * If our max_extent_size is large enough for our allocation simply
4103	 * disable clustering since we will likely not be able to find enough
4104	 * space to create a cluster and induce latency trying.
4105	 */
4106	if (space_info->max_extent_size) {
4107		spin_lock(&space_info->lock);
4108		if (space_info->max_extent_size &&
4109		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4110			ins->offset = space_info->max_extent_size;
4111			spin_unlock(&space_info->lock);
4112			return -ENOSPC;
4113		} else if (space_info->max_extent_size) {
4114			ffe_ctl->use_cluster = false;
4115		}
4116		spin_unlock(&space_info->lock);
4117	}
4118
4119	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4120					       &ffe_ctl->empty_cluster);
4121	if (ffe_ctl->last_ptr) {
4122		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4123
4124		spin_lock(&last_ptr->lock);
4125		if (last_ptr->block_group)
4126			ffe_ctl->hint_byte = last_ptr->window_start;
4127		if (last_ptr->fragmented) {
4128			/*
4129			 * We still set window_start so we can keep track of the
4130			 * last place we found an allocation to try and save
4131			 * some time.
4132			 */
4133			ffe_ctl->hint_byte = last_ptr->window_start;
4134			ffe_ctl->use_cluster = false;
4135		}
4136		spin_unlock(&last_ptr->lock);
4137	}
4138
4139	return 0;
4140}
4141
4142static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4143				    struct find_free_extent_ctl *ffe_ctl)
4144{
4145	if (ffe_ctl->for_treelog) {
4146		spin_lock(&fs_info->treelog_bg_lock);
4147		if (fs_info->treelog_bg)
4148			ffe_ctl->hint_byte = fs_info->treelog_bg;
4149		spin_unlock(&fs_info->treelog_bg_lock);
4150	} else if (ffe_ctl->for_data_reloc) {
4151		spin_lock(&fs_info->relocation_bg_lock);
4152		if (fs_info->data_reloc_bg)
4153			ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4154		spin_unlock(&fs_info->relocation_bg_lock);
4155	} else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4156		struct btrfs_block_group *block_group;
4157
4158		spin_lock(&fs_info->zone_active_bgs_lock);
4159		list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4160			/*
4161			 * No lock is OK here because avail is monotinically
4162			 * decreasing, and this is just a hint.
4163			 */
4164			u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4165
4166			if (block_group_bits(block_group, ffe_ctl->flags) &&
4167			    avail >= ffe_ctl->num_bytes) {
4168				ffe_ctl->hint_byte = block_group->start;
4169				break;
4170			}
4171		}
4172		spin_unlock(&fs_info->zone_active_bgs_lock);
4173	}
4174
4175	return 0;
4176}
4177
4178static int prepare_allocation(struct btrfs_fs_info *fs_info,
4179			      struct find_free_extent_ctl *ffe_ctl,
4180			      struct btrfs_space_info *space_info,
4181			      struct btrfs_key *ins)
4182{
4183	switch (ffe_ctl->policy) {
4184	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4185		return prepare_allocation_clustered(fs_info, ffe_ctl,
4186						    space_info, ins);
4187	case BTRFS_EXTENT_ALLOC_ZONED:
4188		return prepare_allocation_zoned(fs_info, ffe_ctl);
4189	default:
4190		BUG();
4191	}
4192}
4193
4194/*
4195 * walks the btree of allocated extents and find a hole of a given size.
4196 * The key ins is changed to record the hole:
4197 * ins->objectid == start position
4198 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4199 * ins->offset == the size of the hole.
4200 * Any available blocks before search_start are skipped.
4201 *
4202 * If there is no suitable free space, we will record the max size of
4203 * the free space extent currently.
4204 *
4205 * The overall logic and call chain:
4206 *
4207 * find_free_extent()
4208 * |- Iterate through all block groups
4209 * |  |- Get a valid block group
4210 * |  |- Try to do clustered allocation in that block group
4211 * |  |- Try to do unclustered allocation in that block group
4212 * |  |- Check if the result is valid
4213 * |  |  |- If valid, then exit
4214 * |  |- Jump to next block group
4215 * |
4216 * |- Push harder to find free extents
4217 *    |- If not found, re-iterate all block groups
4218 */
4219static noinline int find_free_extent(struct btrfs_root *root,
4220				     struct btrfs_key *ins,
4221				     struct find_free_extent_ctl *ffe_ctl)
4222{
4223	struct btrfs_fs_info *fs_info = root->fs_info;
4224	int ret = 0;
4225	int cache_block_group_error = 0;
4226	struct btrfs_block_group *block_group = NULL;
4227	struct btrfs_space_info *space_info;
4228	bool full_search = false;
4229
4230	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4231
4232	ffe_ctl->search_start = 0;
4233	/* For clustered allocation */
4234	ffe_ctl->empty_cluster = 0;
4235	ffe_ctl->last_ptr = NULL;
4236	ffe_ctl->use_cluster = true;
4237	ffe_ctl->have_caching_bg = false;
4238	ffe_ctl->orig_have_caching_bg = false;
4239	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4240	ffe_ctl->loop = 0;
4241	ffe_ctl->retry_uncached = false;
4242	ffe_ctl->cached = 0;
4243	ffe_ctl->max_extent_size = 0;
4244	ffe_ctl->total_free_space = 0;
4245	ffe_ctl->found_offset = 0;
4246	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4247	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4248
4249	if (btrfs_is_zoned(fs_info))
4250		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4251
4252	ins->type = BTRFS_EXTENT_ITEM_KEY;
4253	ins->objectid = 0;
4254	ins->offset = 0;
4255
4256	trace_find_free_extent(root, ffe_ctl);
4257
4258	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4259	if (!space_info) {
4260		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4261		return -ENOSPC;
4262	}
4263
4264	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4265	if (ret < 0)
4266		return ret;
4267
4268	ffe_ctl->search_start = max(ffe_ctl->search_start,
4269				    first_logical_byte(fs_info));
4270	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4271	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4272		block_group = btrfs_lookup_block_group(fs_info,
4273						       ffe_ctl->search_start);
4274		/*
4275		 * we don't want to use the block group if it doesn't match our
4276		 * allocation bits, or if its not cached.
4277		 *
4278		 * However if we are re-searching with an ideal block group
4279		 * picked out then we don't care that the block group is cached.
4280		 */
4281		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4282		    block_group->cached != BTRFS_CACHE_NO) {
4283			down_read(&space_info->groups_sem);
4284			if (list_empty(&block_group->list) ||
4285			    block_group->ro) {
4286				/*
4287				 * someone is removing this block group,
4288				 * we can't jump into the have_block_group
4289				 * target because our list pointers are not
4290				 * valid
4291				 */
4292				btrfs_put_block_group(block_group);
4293				up_read(&space_info->groups_sem);
4294			} else {
4295				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4296							block_group->flags);
4297				btrfs_lock_block_group(block_group,
4298						       ffe_ctl->delalloc);
4299				ffe_ctl->hinted = true;
4300				goto have_block_group;
4301			}
4302		} else if (block_group) {
4303			btrfs_put_block_group(block_group);
4304		}
4305	}
4306search:
4307	trace_find_free_extent_search_loop(root, ffe_ctl);
4308	ffe_ctl->have_caching_bg = false;
4309	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4310	    ffe_ctl->index == 0)
4311		full_search = true;
4312	down_read(&space_info->groups_sem);
4313	list_for_each_entry(block_group,
4314			    &space_info->block_groups[ffe_ctl->index], list) {
4315		struct btrfs_block_group *bg_ret;
4316
4317		ffe_ctl->hinted = false;
4318		/* If the block group is read-only, we can skip it entirely. */
4319		if (unlikely(block_group->ro)) {
4320			if (ffe_ctl->for_treelog)
4321				btrfs_clear_treelog_bg(block_group);
4322			if (ffe_ctl->for_data_reloc)
4323				btrfs_clear_data_reloc_bg(block_group);
4324			continue;
4325		}
4326
4327		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4328		ffe_ctl->search_start = block_group->start;
4329
4330		/*
4331		 * this can happen if we end up cycling through all the
4332		 * raid types, but we want to make sure we only allocate
4333		 * for the proper type.
4334		 */
4335		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4336			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4337				BTRFS_BLOCK_GROUP_RAID1_MASK |
4338				BTRFS_BLOCK_GROUP_RAID56_MASK |
4339				BTRFS_BLOCK_GROUP_RAID10;
4340
4341			/*
4342			 * if they asked for extra copies and this block group
4343			 * doesn't provide them, bail.  This does allow us to
4344			 * fill raid0 from raid1.
4345			 */
4346			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4347				goto loop;
4348
4349			/*
4350			 * This block group has different flags than we want.
4351			 * It's possible that we have MIXED_GROUP flag but no
4352			 * block group is mixed.  Just skip such block group.
4353			 */
4354			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4355			continue;
4356		}
4357
4358have_block_group:
4359		trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4360		ffe_ctl->cached = btrfs_block_group_done(block_group);
4361		if (unlikely(!ffe_ctl->cached)) {
4362			ffe_ctl->have_caching_bg = true;
4363			ret = btrfs_cache_block_group(block_group, false);
4364
4365			/*
4366			 * If we get ENOMEM here or something else we want to
4367			 * try other block groups, because it may not be fatal.
4368			 * However if we can't find anything else we need to
4369			 * save our return here so that we return the actual
4370			 * error that caused problems, not ENOSPC.
4371			 */
4372			if (ret < 0) {
4373				if (!cache_block_group_error)
4374					cache_block_group_error = ret;
4375				ret = 0;
4376				goto loop;
4377			}
4378			ret = 0;
4379		}
4380
4381		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4382			if (!cache_block_group_error)
4383				cache_block_group_error = -EIO;
4384			goto loop;
4385		}
4386
4387		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4388			goto loop;
4389
4390		bg_ret = NULL;
4391		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4392		if (ret > 0)
4393			goto loop;
4394
4395		if (bg_ret && bg_ret != block_group) {
4396			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4397			block_group = bg_ret;
4398		}
4399
4400		/* Checks */
4401		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4402						 fs_info->stripesize);
4403
4404		/* move on to the next group */
4405		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4406		    block_group->start + block_group->length) {
4407			btrfs_add_free_space_unused(block_group,
4408					    ffe_ctl->found_offset,
4409					    ffe_ctl->num_bytes);
4410			goto loop;
4411		}
4412
4413		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4414			btrfs_add_free_space_unused(block_group,
4415					ffe_ctl->found_offset,
4416					ffe_ctl->search_start - ffe_ctl->found_offset);
4417
4418		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4419					       ffe_ctl->num_bytes,
4420					       ffe_ctl->delalloc,
4421					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4422		if (ret == -EAGAIN) {
4423			btrfs_add_free_space_unused(block_group,
4424					ffe_ctl->found_offset,
4425					ffe_ctl->num_bytes);
4426			goto loop;
4427		}
4428		btrfs_inc_block_group_reservations(block_group);
4429
4430		/* we are all good, lets return */
4431		ins->objectid = ffe_ctl->search_start;
4432		ins->offset = ffe_ctl->num_bytes;
4433
4434		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4435		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4436		break;
4437loop:
4438		if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4439		    !ffe_ctl->retry_uncached) {
4440			ffe_ctl->retry_uncached = true;
4441			btrfs_wait_block_group_cache_progress(block_group,
4442						ffe_ctl->num_bytes +
4443						ffe_ctl->empty_cluster +
4444						ffe_ctl->empty_size);
4445			goto have_block_group;
4446		}
4447		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4448		cond_resched();
4449	}
4450	up_read(&space_info->groups_sem);
4451
4452	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4453	if (ret > 0)
4454		goto search;
4455
4456	if (ret == -ENOSPC && !cache_block_group_error) {
4457		/*
4458		 * Use ffe_ctl->total_free_space as fallback if we can't find
4459		 * any contiguous hole.
4460		 */
4461		if (!ffe_ctl->max_extent_size)
4462			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4463		spin_lock(&space_info->lock);
4464		space_info->max_extent_size = ffe_ctl->max_extent_size;
4465		spin_unlock(&space_info->lock);
4466		ins->offset = ffe_ctl->max_extent_size;
4467	} else if (ret == -ENOSPC) {
4468		ret = cache_block_group_error;
4469	}
4470	return ret;
4471}
4472
4473/*
4474 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4475 *			  hole that is at least as big as @num_bytes.
4476 *
4477 * @root           -	The root that will contain this extent
4478 *
4479 * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4480 *			is used for accounting purposes. This value differs
4481 *			from @num_bytes only in the case of compressed extents.
4482 *
4483 * @num_bytes      -	Number of bytes to allocate on-disk.
4484 *
4485 * @min_alloc_size -	Indicates the minimum amount of space that the
4486 *			allocator should try to satisfy. In some cases
4487 *			@num_bytes may be larger than what is required and if
4488 *			the filesystem is fragmented then allocation fails.
4489 *			However, the presence of @min_alloc_size gives a
4490 *			chance to try and satisfy the smaller allocation.
4491 *
4492 * @empty_size     -	A hint that you plan on doing more COW. This is the
4493 *			size in bytes the allocator should try to find free
4494 *			next to the block it returns.  This is just a hint and
4495 *			may be ignored by the allocator.
4496 *
4497 * @hint_byte      -	Hint to the allocator to start searching above the byte
4498 *			address passed. It might be ignored.
4499 *
4500 * @ins            -	This key is modified to record the found hole. It will
4501 *			have the following values:
4502 *			ins->objectid == start position
4503 *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4504 *			ins->offset == the size of the hole.
4505 *
4506 * @is_data        -	Boolean flag indicating whether an extent is
4507 *			allocated for data (true) or metadata (false)
4508 *
4509 * @delalloc       -	Boolean flag indicating whether this allocation is for
4510 *			delalloc or not. If 'true' data_rwsem of block groups
4511 *			is going to be acquired.
4512 *
4513 *
4514 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4515 * case -ENOSPC is returned then @ins->offset will contain the size of the
4516 * largest available hole the allocator managed to find.
4517 */
4518int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4519			 u64 num_bytes, u64 min_alloc_size,
4520			 u64 empty_size, u64 hint_byte,
4521			 struct btrfs_key *ins, int is_data, int delalloc)
4522{
4523	struct btrfs_fs_info *fs_info = root->fs_info;
4524	struct find_free_extent_ctl ffe_ctl = {};
4525	bool final_tried = num_bytes == min_alloc_size;
4526	u64 flags;
4527	int ret;
4528	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4529	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4530
4531	flags = get_alloc_profile_by_root(root, is_data);
4532again:
4533	WARN_ON(num_bytes < fs_info->sectorsize);
4534
4535	ffe_ctl.ram_bytes = ram_bytes;
4536	ffe_ctl.num_bytes = num_bytes;
4537	ffe_ctl.min_alloc_size = min_alloc_size;
4538	ffe_ctl.empty_size = empty_size;
4539	ffe_ctl.flags = flags;
4540	ffe_ctl.delalloc = delalloc;
4541	ffe_ctl.hint_byte = hint_byte;
4542	ffe_ctl.for_treelog = for_treelog;
4543	ffe_ctl.for_data_reloc = for_data_reloc;
4544
4545	ret = find_free_extent(root, ins, &ffe_ctl);
4546	if (!ret && !is_data) {
4547		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4548	} else if (ret == -ENOSPC) {
4549		if (!final_tried && ins->offset) {
4550			num_bytes = min(num_bytes >> 1, ins->offset);
4551			num_bytes = round_down(num_bytes,
4552					       fs_info->sectorsize);
4553			num_bytes = max(num_bytes, min_alloc_size);
4554			ram_bytes = num_bytes;
4555			if (num_bytes == min_alloc_size)
4556				final_tried = true;
4557			goto again;
4558		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4559			struct btrfs_space_info *sinfo;
4560
4561			sinfo = btrfs_find_space_info(fs_info, flags);
4562			btrfs_err(fs_info,
4563	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4564				  flags, num_bytes, for_treelog, for_data_reloc);
4565			if (sinfo)
4566				btrfs_dump_space_info(fs_info, sinfo,
4567						      num_bytes, 1);
4568		}
4569	}
4570
4571	return ret;
4572}
4573
4574int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4575			       u64 start, u64 len, int delalloc)
4576{
4577	struct btrfs_block_group *cache;
4578
4579	cache = btrfs_lookup_block_group(fs_info, start);
4580	if (!cache) {
4581		btrfs_err(fs_info, "Unable to find block group for %llu",
4582			  start);
4583		return -ENOSPC;
4584	}
4585
4586	btrfs_add_free_space(cache, start, len);
4587	btrfs_free_reserved_bytes(cache, len, delalloc);
4588	trace_btrfs_reserved_extent_free(fs_info, start, len);
4589
4590	btrfs_put_block_group(cache);
4591	return 0;
4592}
4593
4594int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4595			      u64 len)
4596{
4597	struct btrfs_block_group *cache;
4598	int ret = 0;
4599
4600	cache = btrfs_lookup_block_group(trans->fs_info, start);
4601	if (!cache) {
4602		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4603			  start);
4604		return -ENOSPC;
4605	}
4606
4607	ret = pin_down_extent(trans, cache, start, len, 1);
4608	btrfs_put_block_group(cache);
4609	return ret;
4610}
4611
4612static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4613				 u64 num_bytes)
4614{
4615	struct btrfs_fs_info *fs_info = trans->fs_info;
4616	int ret;
4617
4618	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4619	if (ret)
4620		return ret;
4621
4622	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4623	if (ret) {
4624		ASSERT(!ret);
4625		btrfs_err(fs_info, "update block group failed for %llu %llu",
4626			  bytenr, num_bytes);
4627		return ret;
4628	}
4629
4630	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4631	return 0;
4632}
4633
4634static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4635				      u64 parent, u64 root_objectid,
4636				      u64 flags, u64 owner, u64 offset,
4637				      struct btrfs_key *ins, int ref_mod)
4638{
4639	struct btrfs_fs_info *fs_info = trans->fs_info;
4640	struct btrfs_root *extent_root;
4641	int ret;
4642	struct btrfs_extent_item *extent_item;
4643	struct btrfs_extent_inline_ref *iref;
4644	struct btrfs_path *path;
4645	struct extent_buffer *leaf;
4646	int type;
4647	u32 size;
4648
4649	if (parent > 0)
4650		type = BTRFS_SHARED_DATA_REF_KEY;
4651	else
4652		type = BTRFS_EXTENT_DATA_REF_KEY;
4653
4654	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4655
4656	path = btrfs_alloc_path();
4657	if (!path)
4658		return -ENOMEM;
4659
4660	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4661	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4662	if (ret) {
4663		btrfs_free_path(path);
4664		return ret;
4665	}
4666
4667	leaf = path->nodes[0];
4668	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4669				     struct btrfs_extent_item);
4670	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4671	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4672	btrfs_set_extent_flags(leaf, extent_item,
4673			       flags | BTRFS_EXTENT_FLAG_DATA);
4674
4675	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4676	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4677	if (parent > 0) {
4678		struct btrfs_shared_data_ref *ref;
4679		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4680		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4681		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4682	} else {
4683		struct btrfs_extent_data_ref *ref;
4684		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4685		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4686		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4687		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4688		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4689	}
4690
4691	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
4692	btrfs_free_path(path);
4693
4694	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4695}
4696
4697static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4698				     struct btrfs_delayed_ref_node *node,
4699				     struct btrfs_delayed_extent_op *extent_op)
4700{
4701	struct btrfs_fs_info *fs_info = trans->fs_info;
4702	struct btrfs_root *extent_root;
4703	int ret;
4704	struct btrfs_extent_item *extent_item;
4705	struct btrfs_key extent_key;
4706	struct btrfs_tree_block_info *block_info;
4707	struct btrfs_extent_inline_ref *iref;
4708	struct btrfs_path *path;
4709	struct extent_buffer *leaf;
4710	struct btrfs_delayed_tree_ref *ref;
4711	u32 size = sizeof(*extent_item) + sizeof(*iref);
4712	u64 flags = extent_op->flags_to_set;
4713	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4714
4715	ref = btrfs_delayed_node_to_tree_ref(node);
4716
4717	extent_key.objectid = node->bytenr;
4718	if (skinny_metadata) {
4719		extent_key.offset = ref->level;
4720		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4721	} else {
4722		extent_key.offset = node->num_bytes;
4723		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4724		size += sizeof(*block_info);
4725	}
4726
4727	path = btrfs_alloc_path();
4728	if (!path)
4729		return -ENOMEM;
4730
4731	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4732	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4733				      size);
4734	if (ret) {
4735		btrfs_free_path(path);
4736		return ret;
4737	}
4738
4739	leaf = path->nodes[0];
4740	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4741				     struct btrfs_extent_item);
4742	btrfs_set_extent_refs(leaf, extent_item, 1);
4743	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4744	btrfs_set_extent_flags(leaf, extent_item,
4745			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4746
4747	if (skinny_metadata) {
4748		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4749	} else {
4750		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4751		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4752		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4753		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4754	}
4755
4756	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4757		btrfs_set_extent_inline_ref_type(leaf, iref,
4758						 BTRFS_SHARED_BLOCK_REF_KEY);
4759		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4760	} else {
4761		btrfs_set_extent_inline_ref_type(leaf, iref,
4762						 BTRFS_TREE_BLOCK_REF_KEY);
4763		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4764	}
4765
4766	btrfs_mark_buffer_dirty(trans, leaf);
4767	btrfs_free_path(path);
4768
4769	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4770}
4771
4772int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4773				     struct btrfs_root *root, u64 owner,
4774				     u64 offset, u64 ram_bytes,
4775				     struct btrfs_key *ins)
4776{
4777	struct btrfs_ref generic_ref = { 0 };
4778
4779	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4780
4781	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4782			       ins->objectid, ins->offset, 0);
4783	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4784			    offset, 0, false);
4785	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4786
4787	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4788}
4789
4790/*
4791 * this is used by the tree logging recovery code.  It records that
4792 * an extent has been allocated and makes sure to clear the free
4793 * space cache bits as well
4794 */
4795int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4796				   u64 root_objectid, u64 owner, u64 offset,
4797				   struct btrfs_key *ins)
4798{
4799	struct btrfs_fs_info *fs_info = trans->fs_info;
4800	int ret;
4801	struct btrfs_block_group *block_group;
4802	struct btrfs_space_info *space_info;
4803
4804	/*
4805	 * Mixed block groups will exclude before processing the log so we only
4806	 * need to do the exclude dance if this fs isn't mixed.
4807	 */
4808	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4809		ret = __exclude_logged_extent(fs_info, ins->objectid,
4810					      ins->offset);
4811		if (ret)
4812			return ret;
4813	}
4814
4815	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4816	if (!block_group)
4817		return -EINVAL;
4818
4819	space_info = block_group->space_info;
4820	spin_lock(&space_info->lock);
4821	spin_lock(&block_group->lock);
4822	space_info->bytes_reserved += ins->offset;
4823	block_group->reserved += ins->offset;
4824	spin_unlock(&block_group->lock);
4825	spin_unlock(&space_info->lock);
4826
4827	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4828					 offset, ins, 1);
4829	if (ret)
4830		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4831	btrfs_put_block_group(block_group);
4832	return ret;
4833}
4834
4835static struct extent_buffer *
4836btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4837		      u64 bytenr, int level, u64 owner,
4838		      enum btrfs_lock_nesting nest)
4839{
4840	struct btrfs_fs_info *fs_info = root->fs_info;
4841	struct extent_buffer *buf;
4842	u64 lockdep_owner = owner;
4843
4844	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4845	if (IS_ERR(buf))
4846		return buf;
4847
4848	/*
4849	 * Extra safety check in case the extent tree is corrupted and extent
4850	 * allocator chooses to use a tree block which is already used and
4851	 * locked.
4852	 */
4853	if (buf->lock_owner == current->pid) {
4854		btrfs_err_rl(fs_info,
4855"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4856			buf->start, btrfs_header_owner(buf), current->pid);
4857		free_extent_buffer(buf);
4858		return ERR_PTR(-EUCLEAN);
4859	}
4860
4861	/*
4862	 * The reloc trees are just snapshots, so we need them to appear to be
4863	 * just like any other fs tree WRT lockdep.
4864	 *
4865	 * The exception however is in replace_path() in relocation, where we
4866	 * hold the lock on the original fs root and then search for the reloc
4867	 * root.  At that point we need to make sure any reloc root buffers are
4868	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4869	 * lockdep happy.
4870	 */
4871	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4872	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4873		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4874
4875	/* btrfs_clear_buffer_dirty() accesses generation field. */
4876	btrfs_set_header_generation(buf, trans->transid);
4877
4878	/*
4879	 * This needs to stay, because we could allocate a freed block from an
4880	 * old tree into a new tree, so we need to make sure this new block is
4881	 * set to the appropriate level and owner.
4882	 */
4883	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4884
4885	__btrfs_tree_lock(buf, nest);
4886	btrfs_clear_buffer_dirty(trans, buf);
4887	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4888	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4889
4890	set_extent_buffer_uptodate(buf);
4891
4892	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4893	btrfs_set_header_level(buf, level);
4894	btrfs_set_header_bytenr(buf, buf->start);
4895	btrfs_set_header_generation(buf, trans->transid);
4896	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4897	btrfs_set_header_owner(buf, owner);
4898	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4899	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4900	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4901		buf->log_index = root->log_transid % 2;
4902		/*
4903		 * we allow two log transactions at a time, use different
4904		 * EXTENT bit to differentiate dirty pages.
4905		 */
4906		if (buf->log_index == 0)
4907			set_extent_bit(&root->dirty_log_pages, buf->start,
4908				       buf->start + buf->len - 1,
4909				       EXTENT_DIRTY, NULL);
4910		else
4911			set_extent_bit(&root->dirty_log_pages, buf->start,
4912				       buf->start + buf->len - 1,
4913				       EXTENT_NEW, NULL);
4914	} else {
4915		buf->log_index = -1;
4916		set_extent_bit(&trans->transaction->dirty_pages, buf->start,
4917			       buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
4918	}
4919	/* this returns a buffer locked for blocking */
4920	return buf;
4921}
4922
4923/*
4924 * finds a free extent and does all the dirty work required for allocation
4925 * returns the tree buffer or an ERR_PTR on error.
4926 */
4927struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4928					     struct btrfs_root *root,
4929					     u64 parent, u64 root_objectid,
4930					     const struct btrfs_disk_key *key,
4931					     int level, u64 hint,
4932					     u64 empty_size,
4933					     enum btrfs_lock_nesting nest)
4934{
4935	struct btrfs_fs_info *fs_info = root->fs_info;
4936	struct btrfs_key ins;
4937	struct btrfs_block_rsv *block_rsv;
4938	struct extent_buffer *buf;
4939	struct btrfs_delayed_extent_op *extent_op;
4940	struct btrfs_ref generic_ref = { 0 };
4941	u64 flags = 0;
4942	int ret;
4943	u32 blocksize = fs_info->nodesize;
4944	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4945
4946#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4947	if (btrfs_is_testing(fs_info)) {
4948		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4949					    level, root_objectid, nest);
4950		if (!IS_ERR(buf))
4951			root->alloc_bytenr += blocksize;
4952		return buf;
4953	}
4954#endif
4955
4956	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4957	if (IS_ERR(block_rsv))
4958		return ERR_CAST(block_rsv);
4959
4960	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4961				   empty_size, hint, &ins, 0, 0);
4962	if (ret)
4963		goto out_unuse;
4964
4965	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4966				    root_objectid, nest);
4967	if (IS_ERR(buf)) {
4968		ret = PTR_ERR(buf);
4969		goto out_free_reserved;
4970	}
4971
4972	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4973		if (parent == 0)
4974			parent = ins.objectid;
4975		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4976	} else
4977		BUG_ON(parent > 0);
4978
4979	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4980		extent_op = btrfs_alloc_delayed_extent_op();
4981		if (!extent_op) {
4982			ret = -ENOMEM;
4983			goto out_free_buf;
4984		}
4985		if (key)
4986			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4987		else
4988			memset(&extent_op->key, 0, sizeof(extent_op->key));
4989		extent_op->flags_to_set = flags;
4990		extent_op->update_key = skinny_metadata ? false : true;
4991		extent_op->update_flags = true;
4992		extent_op->level = level;
4993
4994		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4995				       ins.objectid, ins.offset, parent);
4996		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
4997				    root->root_key.objectid, false);
4998		btrfs_ref_tree_mod(fs_info, &generic_ref);
4999		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5000		if (ret)
5001			goto out_free_delayed;
5002	}
5003	return buf;
5004
5005out_free_delayed:
5006	btrfs_free_delayed_extent_op(extent_op);
5007out_free_buf:
5008	btrfs_tree_unlock(buf);
5009	free_extent_buffer(buf);
5010out_free_reserved:
5011	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5012out_unuse:
5013	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5014	return ERR_PTR(ret);
5015}
5016
5017struct walk_control {
5018	u64 refs[BTRFS_MAX_LEVEL];
5019	u64 flags[BTRFS_MAX_LEVEL];
5020	struct btrfs_key update_progress;
5021	struct btrfs_key drop_progress;
5022	int drop_level;
5023	int stage;
5024	int level;
5025	int shared_level;
5026	int update_ref;
5027	int keep_locks;
5028	int reada_slot;
5029	int reada_count;
5030	int restarted;
5031};
5032
5033#define DROP_REFERENCE	1
5034#define UPDATE_BACKREF	2
5035
5036static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5037				     struct btrfs_root *root,
5038				     struct walk_control *wc,
5039				     struct btrfs_path *path)
5040{
5041	struct btrfs_fs_info *fs_info = root->fs_info;
5042	u64 bytenr;
5043	u64 generation;
5044	u64 refs;
5045	u64 flags;
5046	u32 nritems;
5047	struct btrfs_key key;
5048	struct extent_buffer *eb;
5049	int ret;
5050	int slot;
5051	int nread = 0;
5052
5053	if (path->slots[wc->level] < wc->reada_slot) {
5054		wc->reada_count = wc->reada_count * 2 / 3;
5055		wc->reada_count = max(wc->reada_count, 2);
5056	} else {
5057		wc->reada_count = wc->reada_count * 3 / 2;
5058		wc->reada_count = min_t(int, wc->reada_count,
5059					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5060	}
5061
5062	eb = path->nodes[wc->level];
5063	nritems = btrfs_header_nritems(eb);
5064
5065	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5066		if (nread >= wc->reada_count)
5067			break;
5068
5069		cond_resched();
5070		bytenr = btrfs_node_blockptr(eb, slot);
5071		generation = btrfs_node_ptr_generation(eb, slot);
5072
5073		if (slot == path->slots[wc->level])
5074			goto reada;
5075
5076		if (wc->stage == UPDATE_BACKREF &&
5077		    generation <= root->root_key.offset)
5078			continue;
5079
5080		/* We don't lock the tree block, it's OK to be racy here */
5081		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5082					       wc->level - 1, 1, &refs,
5083					       &flags);
5084		/* We don't care about errors in readahead. */
5085		if (ret < 0)
5086			continue;
5087		BUG_ON(refs == 0);
5088
5089		if (wc->stage == DROP_REFERENCE) {
5090			if (refs == 1)
5091				goto reada;
5092
5093			if (wc->level == 1 &&
5094			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5095				continue;
5096			if (!wc->update_ref ||
5097			    generation <= root->root_key.offset)
5098				continue;
5099			btrfs_node_key_to_cpu(eb, &key, slot);
5100			ret = btrfs_comp_cpu_keys(&key,
5101						  &wc->update_progress);
5102			if (ret < 0)
5103				continue;
5104		} else {
5105			if (wc->level == 1 &&
5106			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5107				continue;
5108		}
5109reada:
5110		btrfs_readahead_node_child(eb, slot);
5111		nread++;
5112	}
5113	wc->reada_slot = slot;
5114}
5115
5116/*
5117 * helper to process tree block while walking down the tree.
5118 *
5119 * when wc->stage == UPDATE_BACKREF, this function updates
5120 * back refs for pointers in the block.
5121 *
5122 * NOTE: return value 1 means we should stop walking down.
5123 */
5124static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5125				   struct btrfs_root *root,
5126				   struct btrfs_path *path,
5127				   struct walk_control *wc, int lookup_info)
5128{
5129	struct btrfs_fs_info *fs_info = root->fs_info;
5130	int level = wc->level;
5131	struct extent_buffer *eb = path->nodes[level];
5132	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5133	int ret;
5134
5135	if (wc->stage == UPDATE_BACKREF &&
5136	    btrfs_header_owner(eb) != root->root_key.objectid)
5137		return 1;
5138
5139	/*
5140	 * when reference count of tree block is 1, it won't increase
5141	 * again. once full backref flag is set, we never clear it.
5142	 */
5143	if (lookup_info &&
5144	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5145	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5146		BUG_ON(!path->locks[level]);
5147		ret = btrfs_lookup_extent_info(trans, fs_info,
5148					       eb->start, level, 1,
5149					       &wc->refs[level],
5150					       &wc->flags[level]);
5151		BUG_ON(ret == -ENOMEM);
5152		if (ret)
5153			return ret;
5154		BUG_ON(wc->refs[level] == 0);
5155	}
5156
5157	if (wc->stage == DROP_REFERENCE) {
5158		if (wc->refs[level] > 1)
5159			return 1;
5160
5161		if (path->locks[level] && !wc->keep_locks) {
5162			btrfs_tree_unlock_rw(eb, path->locks[level]);
5163			path->locks[level] = 0;
5164		}
5165		return 0;
5166	}
5167
5168	/* wc->stage == UPDATE_BACKREF */
5169	if (!(wc->flags[level] & flag)) {
5170		BUG_ON(!path->locks[level]);
5171		ret = btrfs_inc_ref(trans, root, eb, 1);
5172		BUG_ON(ret); /* -ENOMEM */
5173		ret = btrfs_dec_ref(trans, root, eb, 0);
5174		BUG_ON(ret); /* -ENOMEM */
5175		ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5176		BUG_ON(ret); /* -ENOMEM */
5177		wc->flags[level] |= flag;
5178	}
5179
5180	/*
5181	 * the block is shared by multiple trees, so it's not good to
5182	 * keep the tree lock
5183	 */
5184	if (path->locks[level] && level > 0) {
5185		btrfs_tree_unlock_rw(eb, path->locks[level]);
5186		path->locks[level] = 0;
5187	}
5188	return 0;
5189}
5190
5191/*
5192 * This is used to verify a ref exists for this root to deal with a bug where we
5193 * would have a drop_progress key that hadn't been updated properly.
5194 */
5195static int check_ref_exists(struct btrfs_trans_handle *trans,
5196			    struct btrfs_root *root, u64 bytenr, u64 parent,
5197			    int level)
5198{
5199	struct btrfs_path *path;
5200	struct btrfs_extent_inline_ref *iref;
5201	int ret;
5202
5203	path = btrfs_alloc_path();
5204	if (!path)
5205		return -ENOMEM;
5206
5207	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5208				    root->fs_info->nodesize, parent,
5209				    root->root_key.objectid, level, 0);
5210	btrfs_free_path(path);
5211	if (ret == -ENOENT)
5212		return 0;
5213	if (ret < 0)
5214		return ret;
5215	return 1;
5216}
5217
5218/*
5219 * helper to process tree block pointer.
5220 *
5221 * when wc->stage == DROP_REFERENCE, this function checks
5222 * reference count of the block pointed to. if the block
5223 * is shared and we need update back refs for the subtree
5224 * rooted at the block, this function changes wc->stage to
5225 * UPDATE_BACKREF. if the block is shared and there is no
5226 * need to update back, this function drops the reference
5227 * to the block.
5228 *
5229 * NOTE: return value 1 means we should stop walking down.
5230 */
5231static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5232				 struct btrfs_root *root,
5233				 struct btrfs_path *path,
5234				 struct walk_control *wc, int *lookup_info)
5235{
5236	struct btrfs_fs_info *fs_info = root->fs_info;
5237	u64 bytenr;
5238	u64 generation;
5239	u64 parent;
5240	struct btrfs_tree_parent_check check = { 0 };
5241	struct btrfs_key key;
5242	struct btrfs_ref ref = { 0 };
5243	struct extent_buffer *next;
5244	int level = wc->level;
5245	int reada = 0;
5246	int ret = 0;
5247	bool need_account = false;
5248
5249	generation = btrfs_node_ptr_generation(path->nodes[level],
5250					       path->slots[level]);
5251	/*
5252	 * if the lower level block was created before the snapshot
5253	 * was created, we know there is no need to update back refs
5254	 * for the subtree
5255	 */
5256	if (wc->stage == UPDATE_BACKREF &&
5257	    generation <= root->root_key.offset) {
5258		*lookup_info = 1;
5259		return 1;
5260	}
5261
5262	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5263
5264	check.level = level - 1;
5265	check.transid = generation;
5266	check.owner_root = root->root_key.objectid;
5267	check.has_first_key = true;
5268	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5269			      path->slots[level]);
5270
5271	next = find_extent_buffer(fs_info, bytenr);
5272	if (!next) {
5273		next = btrfs_find_create_tree_block(fs_info, bytenr,
5274				root->root_key.objectid, level - 1);
5275		if (IS_ERR(next))
5276			return PTR_ERR(next);
5277		reada = 1;
5278	}
5279	btrfs_tree_lock(next);
5280
5281	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5282				       &wc->refs[level - 1],
5283				       &wc->flags[level - 1]);
5284	if (ret < 0)
5285		goto out_unlock;
5286
5287	if (unlikely(wc->refs[level - 1] == 0)) {
5288		btrfs_err(fs_info, "Missing references.");
5289		ret = -EIO;
5290		goto out_unlock;
5291	}
5292	*lookup_info = 0;
5293
5294	if (wc->stage == DROP_REFERENCE) {
5295		if (wc->refs[level - 1] > 1) {
5296			need_account = true;
5297			if (level == 1 &&
5298			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5299				goto skip;
5300
5301			if (!wc->update_ref ||
5302			    generation <= root->root_key.offset)
5303				goto skip;
5304
5305			btrfs_node_key_to_cpu(path->nodes[level], &key,
5306					      path->slots[level]);
5307			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5308			if (ret < 0)
5309				goto skip;
5310
5311			wc->stage = UPDATE_BACKREF;
5312			wc->shared_level = level - 1;
5313		}
5314	} else {
5315		if (level == 1 &&
5316		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5317			goto skip;
5318	}
5319
5320	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5321		btrfs_tree_unlock(next);
5322		free_extent_buffer(next);
5323		next = NULL;
5324		*lookup_info = 1;
5325	}
5326
5327	if (!next) {
5328		if (reada && level == 1)
5329			reada_walk_down(trans, root, wc, path);
5330		next = read_tree_block(fs_info, bytenr, &check);
5331		if (IS_ERR(next)) {
5332			return PTR_ERR(next);
5333		} else if (!extent_buffer_uptodate(next)) {
5334			free_extent_buffer(next);
5335			return -EIO;
5336		}
5337		btrfs_tree_lock(next);
5338	}
5339
5340	level--;
5341	ASSERT(level == btrfs_header_level(next));
5342	if (level != btrfs_header_level(next)) {
5343		btrfs_err(root->fs_info, "mismatched level");
5344		ret = -EIO;
5345		goto out_unlock;
5346	}
5347	path->nodes[level] = next;
5348	path->slots[level] = 0;
5349	path->locks[level] = BTRFS_WRITE_LOCK;
5350	wc->level = level;
5351	if (wc->level == 1)
5352		wc->reada_slot = 0;
5353	return 0;
5354skip:
5355	wc->refs[level - 1] = 0;
5356	wc->flags[level - 1] = 0;
5357	if (wc->stage == DROP_REFERENCE) {
5358		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5359			parent = path->nodes[level]->start;
5360		} else {
5361			ASSERT(root->root_key.objectid ==
5362			       btrfs_header_owner(path->nodes[level]));
5363			if (root->root_key.objectid !=
5364			    btrfs_header_owner(path->nodes[level])) {
5365				btrfs_err(root->fs_info,
5366						"mismatched block owner");
5367				ret = -EIO;
5368				goto out_unlock;
5369			}
5370			parent = 0;
5371		}
5372
5373		/*
5374		 * If we had a drop_progress we need to verify the refs are set
5375		 * as expected.  If we find our ref then we know that from here
5376		 * on out everything should be correct, and we can clear the
5377		 * ->restarted flag.
5378		 */
5379		if (wc->restarted) {
5380			ret = check_ref_exists(trans, root, bytenr, parent,
5381					       level - 1);
5382			if (ret < 0)
5383				goto out_unlock;
5384			if (ret == 0)
5385				goto no_delete;
5386			ret = 0;
5387			wc->restarted = 0;
5388		}
5389
5390		/*
5391		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5392		 * already accounted them at merge time (replace_path),
5393		 * thus we could skip expensive subtree trace here.
5394		 */
5395		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5396		    need_account) {
5397			ret = btrfs_qgroup_trace_subtree(trans, next,
5398							 generation, level - 1);
5399			if (ret) {
5400				btrfs_err_rl(fs_info,
5401					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5402					     ret);
5403			}
5404		}
5405
5406		/*
5407		 * We need to update the next key in our walk control so we can
5408		 * update the drop_progress key accordingly.  We don't care if
5409		 * find_next_key doesn't find a key because that means we're at
5410		 * the end and are going to clean up now.
5411		 */
5412		wc->drop_level = level;
5413		find_next_key(path, level, &wc->drop_progress);
5414
5415		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5416				       fs_info->nodesize, parent);
5417		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5418				    0, false);
5419		ret = btrfs_free_extent(trans, &ref);
5420		if (ret)
5421			goto out_unlock;
5422	}
5423no_delete:
5424	*lookup_info = 1;
5425	ret = 1;
5426
5427out_unlock:
5428	btrfs_tree_unlock(next);
5429	free_extent_buffer(next);
5430
5431	return ret;
5432}
5433
5434/*
5435 * helper to process tree block while walking up the tree.
5436 *
5437 * when wc->stage == DROP_REFERENCE, this function drops
5438 * reference count on the block.
5439 *
5440 * when wc->stage == UPDATE_BACKREF, this function changes
5441 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5442 * to UPDATE_BACKREF previously while processing the block.
5443 *
5444 * NOTE: return value 1 means we should stop walking up.
5445 */
5446static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5447				 struct btrfs_root *root,
5448				 struct btrfs_path *path,
5449				 struct walk_control *wc)
5450{
5451	struct btrfs_fs_info *fs_info = root->fs_info;
5452	int ret;
5453	int level = wc->level;
5454	struct extent_buffer *eb = path->nodes[level];
5455	u64 parent = 0;
5456
5457	if (wc->stage == UPDATE_BACKREF) {
5458		BUG_ON(wc->shared_level < level);
5459		if (level < wc->shared_level)
5460			goto out;
5461
5462		ret = find_next_key(path, level + 1, &wc->update_progress);
5463		if (ret > 0)
5464			wc->update_ref = 0;
5465
5466		wc->stage = DROP_REFERENCE;
5467		wc->shared_level = -1;
5468		path->slots[level] = 0;
5469
5470		/*
5471		 * check reference count again if the block isn't locked.
5472		 * we should start walking down the tree again if reference
5473		 * count is one.
5474		 */
5475		if (!path->locks[level]) {
5476			BUG_ON(level == 0);
5477			btrfs_tree_lock(eb);
5478			path->locks[level] = BTRFS_WRITE_LOCK;
5479
5480			ret = btrfs_lookup_extent_info(trans, fs_info,
5481						       eb->start, level, 1,
5482						       &wc->refs[level],
5483						       &wc->flags[level]);
5484			if (ret < 0) {
5485				btrfs_tree_unlock_rw(eb, path->locks[level]);
5486				path->locks[level] = 0;
5487				return ret;
5488			}
5489			BUG_ON(wc->refs[level] == 0);
5490			if (wc->refs[level] == 1) {
5491				btrfs_tree_unlock_rw(eb, path->locks[level]);
5492				path->locks[level] = 0;
5493				return 1;
5494			}
5495		}
5496	}
5497
5498	/* wc->stage == DROP_REFERENCE */
5499	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5500
5501	if (wc->refs[level] == 1) {
5502		if (level == 0) {
5503			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5504				ret = btrfs_dec_ref(trans, root, eb, 1);
5505			else
5506				ret = btrfs_dec_ref(trans, root, eb, 0);
5507			BUG_ON(ret); /* -ENOMEM */
5508			if (is_fstree(root->root_key.objectid)) {
5509				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5510				if (ret) {
5511					btrfs_err_rl(fs_info,
5512	"error %d accounting leaf items, quota is out of sync, rescan required",
5513					     ret);
5514				}
5515			}
5516		}
5517		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5518		if (!path->locks[level]) {
5519			btrfs_tree_lock(eb);
5520			path->locks[level] = BTRFS_WRITE_LOCK;
5521		}
5522		btrfs_clear_buffer_dirty(trans, eb);
5523	}
5524
5525	if (eb == root->node) {
5526		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5527			parent = eb->start;
5528		else if (root->root_key.objectid != btrfs_header_owner(eb))
5529			goto owner_mismatch;
5530	} else {
5531		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5532			parent = path->nodes[level + 1]->start;
5533		else if (root->root_key.objectid !=
5534			 btrfs_header_owner(path->nodes[level + 1]))
5535			goto owner_mismatch;
5536	}
5537
5538	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5539			      wc->refs[level] == 1);
5540out:
5541	wc->refs[level] = 0;
5542	wc->flags[level] = 0;
5543	return 0;
5544
5545owner_mismatch:
5546	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5547		     btrfs_header_owner(eb), root->root_key.objectid);
5548	return -EUCLEAN;
5549}
5550
5551static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5552				   struct btrfs_root *root,
5553				   struct btrfs_path *path,
5554				   struct walk_control *wc)
5555{
5556	int level = wc->level;
5557	int lookup_info = 1;
5558	int ret = 0;
5559
5560	while (level >= 0) {
5561		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5562		if (ret)
5563			break;
5564
5565		if (level == 0)
5566			break;
5567
5568		if (path->slots[level] >=
5569		    btrfs_header_nritems(path->nodes[level]))
5570			break;
5571
5572		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5573		if (ret > 0) {
5574			path->slots[level]++;
5575			continue;
5576		} else if (ret < 0)
5577			break;
5578		level = wc->level;
5579	}
5580	return (ret == 1) ? 0 : ret;
5581}
5582
5583static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5584				 struct btrfs_root *root,
5585				 struct btrfs_path *path,
5586				 struct walk_control *wc, int max_level)
5587{
5588	int level = wc->level;
5589	int ret;
5590
5591	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5592	while (level < max_level && path->nodes[level]) {
5593		wc->level = level;
5594		if (path->slots[level] + 1 <
5595		    btrfs_header_nritems(path->nodes[level])) {
5596			path->slots[level]++;
5597			return 0;
5598		} else {
5599			ret = walk_up_proc(trans, root, path, wc);
5600			if (ret > 0)
5601				return 0;
5602			if (ret < 0)
5603				return ret;
5604
5605			if (path->locks[level]) {
5606				btrfs_tree_unlock_rw(path->nodes[level],
5607						     path->locks[level]);
5608				path->locks[level] = 0;
5609			}
5610			free_extent_buffer(path->nodes[level]);
5611			path->nodes[level] = NULL;
5612			level++;
5613		}
5614	}
5615	return 1;
5616}
5617
5618/*
5619 * drop a subvolume tree.
5620 *
5621 * this function traverses the tree freeing any blocks that only
5622 * referenced by the tree.
5623 *
5624 * when a shared tree block is found. this function decreases its
5625 * reference count by one. if update_ref is true, this function
5626 * also make sure backrefs for the shared block and all lower level
5627 * blocks are properly updated.
5628 *
5629 * If called with for_reloc == 0, may exit early with -EAGAIN
5630 */
5631int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5632{
5633	const bool is_reloc_root = (root->root_key.objectid ==
5634				    BTRFS_TREE_RELOC_OBJECTID);
5635	struct btrfs_fs_info *fs_info = root->fs_info;
5636	struct btrfs_path *path;
5637	struct btrfs_trans_handle *trans;
5638	struct btrfs_root *tree_root = fs_info->tree_root;
5639	struct btrfs_root_item *root_item = &root->root_item;
5640	struct walk_control *wc;
5641	struct btrfs_key key;
5642	int err = 0;
5643	int ret;
5644	int level;
5645	bool root_dropped = false;
5646	bool unfinished_drop = false;
5647
5648	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5649
5650	path = btrfs_alloc_path();
5651	if (!path) {
5652		err = -ENOMEM;
5653		goto out;
5654	}
5655
5656	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5657	if (!wc) {
5658		btrfs_free_path(path);
5659		err = -ENOMEM;
5660		goto out;
5661	}
5662
5663	/*
5664	 * Use join to avoid potential EINTR from transaction start. See
5665	 * wait_reserve_ticket and the whole reservation callchain.
5666	 */
5667	if (for_reloc)
5668		trans = btrfs_join_transaction(tree_root);
5669	else
5670		trans = btrfs_start_transaction(tree_root, 0);
5671	if (IS_ERR(trans)) {
5672		err = PTR_ERR(trans);
5673		goto out_free;
5674	}
5675
5676	err = btrfs_run_delayed_items(trans);
5677	if (err)
5678		goto out_end_trans;
5679
5680	/*
5681	 * This will help us catch people modifying the fs tree while we're
5682	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5683	 * dropped as we unlock the root node and parent nodes as we walk down
5684	 * the tree, assuming nothing will change.  If something does change
5685	 * then we'll have stale information and drop references to blocks we've
5686	 * already dropped.
5687	 */
5688	set_bit(BTRFS_ROOT_DELETING, &root->state);
5689	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5690
5691	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5692		level = btrfs_header_level(root->node);
5693		path->nodes[level] = btrfs_lock_root_node(root);
5694		path->slots[level] = 0;
5695		path->locks[level] = BTRFS_WRITE_LOCK;
5696		memset(&wc->update_progress, 0,
5697		       sizeof(wc->update_progress));
5698	} else {
5699		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5700		memcpy(&wc->update_progress, &key,
5701		       sizeof(wc->update_progress));
5702
5703		level = btrfs_root_drop_level(root_item);
5704		BUG_ON(level == 0);
5705		path->lowest_level = level;
5706		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5707		path->lowest_level = 0;
5708		if (ret < 0) {
5709			err = ret;
5710			goto out_end_trans;
5711		}
5712		WARN_ON(ret > 0);
5713
5714		/*
5715		 * unlock our path, this is safe because only this
5716		 * function is allowed to delete this snapshot
5717		 */
5718		btrfs_unlock_up_safe(path, 0);
5719
5720		level = btrfs_header_level(root->node);
5721		while (1) {
5722			btrfs_tree_lock(path->nodes[level]);
5723			path->locks[level] = BTRFS_WRITE_LOCK;
5724
5725			ret = btrfs_lookup_extent_info(trans, fs_info,
5726						path->nodes[level]->start,
5727						level, 1, &wc->refs[level],
5728						&wc->flags[level]);
5729			if (ret < 0) {
5730				err = ret;
5731				goto out_end_trans;
5732			}
5733			BUG_ON(wc->refs[level] == 0);
5734
5735			if (level == btrfs_root_drop_level(root_item))
5736				break;
5737
5738			btrfs_tree_unlock(path->nodes[level]);
5739			path->locks[level] = 0;
5740			WARN_ON(wc->refs[level] != 1);
5741			level--;
5742		}
5743	}
5744
5745	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5746	wc->level = level;
5747	wc->shared_level = -1;
5748	wc->stage = DROP_REFERENCE;
5749	wc->update_ref = update_ref;
5750	wc->keep_locks = 0;
5751	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5752
5753	while (1) {
5754
5755		ret = walk_down_tree(trans, root, path, wc);
5756		if (ret < 0) {
5757			btrfs_abort_transaction(trans, ret);
5758			err = ret;
5759			break;
5760		}
5761
5762		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5763		if (ret < 0) {
5764			btrfs_abort_transaction(trans, ret);
5765			err = ret;
5766			break;
5767		}
5768
5769		if (ret > 0) {
5770			BUG_ON(wc->stage != DROP_REFERENCE);
5771			break;
5772		}
5773
5774		if (wc->stage == DROP_REFERENCE) {
5775			wc->drop_level = wc->level;
5776			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5777					      &wc->drop_progress,
5778					      path->slots[wc->drop_level]);
5779		}
5780		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5781				      &wc->drop_progress);
5782		btrfs_set_root_drop_level(root_item, wc->drop_level);
5783
5784		BUG_ON(wc->level == 0);
5785		if (btrfs_should_end_transaction(trans) ||
5786		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5787			ret = btrfs_update_root(trans, tree_root,
5788						&root->root_key,
5789						root_item);
5790			if (ret) {
5791				btrfs_abort_transaction(trans, ret);
5792				err = ret;
5793				goto out_end_trans;
5794			}
5795
5796			if (!is_reloc_root)
5797				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5798
5799			btrfs_end_transaction_throttle(trans);
5800			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5801				btrfs_debug(fs_info,
5802					    "drop snapshot early exit");
5803				err = -EAGAIN;
5804				goto out_free;
5805			}
5806
5807		       /*
5808			* Use join to avoid potential EINTR from transaction
5809			* start. See wait_reserve_ticket and the whole
5810			* reservation callchain.
5811			*/
5812			if (for_reloc)
5813				trans = btrfs_join_transaction(tree_root);
5814			else
5815				trans = btrfs_start_transaction(tree_root, 0);
5816			if (IS_ERR(trans)) {
5817				err = PTR_ERR(trans);
5818				goto out_free;
5819			}
5820		}
5821	}
5822	btrfs_release_path(path);
5823	if (err)
5824		goto out_end_trans;
5825
5826	ret = btrfs_del_root(trans, &root->root_key);
5827	if (ret) {
5828		btrfs_abort_transaction(trans, ret);
5829		err = ret;
5830		goto out_end_trans;
5831	}
5832
5833	if (!is_reloc_root) {
5834		ret = btrfs_find_root(tree_root, &root->root_key, path,
5835				      NULL, NULL);
5836		if (ret < 0) {
5837			btrfs_abort_transaction(trans, ret);
5838			err = ret;
5839			goto out_end_trans;
5840		} else if (ret > 0) {
5841			/* if we fail to delete the orphan item this time
5842			 * around, it'll get picked up the next time.
5843			 *
5844			 * The most common failure here is just -ENOENT.
5845			 */
5846			btrfs_del_orphan_item(trans, tree_root,
5847					      root->root_key.objectid);
5848		}
5849	}
5850
5851	/*
5852	 * This subvolume is going to be completely dropped, and won't be
5853	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5854	 * commit transaction time.  So free it here manually.
5855	 */
5856	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5857	btrfs_qgroup_free_meta_all_pertrans(root);
5858
5859	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5860		btrfs_add_dropped_root(trans, root);
5861	else
5862		btrfs_put_root(root);
5863	root_dropped = true;
5864out_end_trans:
5865	if (!is_reloc_root)
5866		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5867
5868	btrfs_end_transaction_throttle(trans);
5869out_free:
5870	kfree(wc);
5871	btrfs_free_path(path);
5872out:
5873	/*
5874	 * We were an unfinished drop root, check to see if there are any
5875	 * pending, and if not clear and wake up any waiters.
5876	 */
5877	if (!err && unfinished_drop)
5878		btrfs_maybe_wake_unfinished_drop(fs_info);
5879
5880	/*
5881	 * So if we need to stop dropping the snapshot for whatever reason we
5882	 * need to make sure to add it back to the dead root list so that we
5883	 * keep trying to do the work later.  This also cleans up roots if we
5884	 * don't have it in the radix (like when we recover after a power fail
5885	 * or unmount) so we don't leak memory.
5886	 */
5887	if (!for_reloc && !root_dropped)
5888		btrfs_add_dead_root(root);
5889	return err;
5890}
5891
5892/*
5893 * drop subtree rooted at tree block 'node'.
5894 *
5895 * NOTE: this function will unlock and release tree block 'node'
5896 * only used by relocation code
5897 */
5898int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5899			struct btrfs_root *root,
5900			struct extent_buffer *node,
5901			struct extent_buffer *parent)
5902{
5903	struct btrfs_fs_info *fs_info = root->fs_info;
5904	struct btrfs_path *path;
5905	struct walk_control *wc;
5906	int level;
5907	int parent_level;
5908	int ret = 0;
5909	int wret;
5910
5911	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5912
5913	path = btrfs_alloc_path();
5914	if (!path)
5915		return -ENOMEM;
5916
5917	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5918	if (!wc) {
5919		btrfs_free_path(path);
5920		return -ENOMEM;
5921	}
5922
5923	btrfs_assert_tree_write_locked(parent);
5924	parent_level = btrfs_header_level(parent);
5925	atomic_inc(&parent->refs);
5926	path->nodes[parent_level] = parent;
5927	path->slots[parent_level] = btrfs_header_nritems(parent);
5928
5929	btrfs_assert_tree_write_locked(node);
5930	level = btrfs_header_level(node);
5931	path->nodes[level] = node;
5932	path->slots[level] = 0;
5933	path->locks[level] = BTRFS_WRITE_LOCK;
5934
5935	wc->refs[parent_level] = 1;
5936	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5937	wc->level = level;
5938	wc->shared_level = -1;
5939	wc->stage = DROP_REFERENCE;
5940	wc->update_ref = 0;
5941	wc->keep_locks = 1;
5942	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5943
5944	while (1) {
5945		wret = walk_down_tree(trans, root, path, wc);
5946		if (wret < 0) {
5947			ret = wret;
5948			break;
5949		}
5950
5951		wret = walk_up_tree(trans, root, path, wc, parent_level);
5952		if (wret < 0)
5953			ret = wret;
5954		if (wret != 0)
5955			break;
5956	}
5957
5958	kfree(wc);
5959	btrfs_free_path(path);
5960	return ret;
5961}
5962
5963int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5964				   u64 start, u64 end)
5965{
5966	return unpin_extent_range(fs_info, start, end, false);
5967}
5968
5969/*
5970 * It used to be that old block groups would be left around forever.
5971 * Iterating over them would be enough to trim unused space.  Since we
5972 * now automatically remove them, we also need to iterate over unallocated
5973 * space.
5974 *
5975 * We don't want a transaction for this since the discard may take a
5976 * substantial amount of time.  We don't require that a transaction be
5977 * running, but we do need to take a running transaction into account
5978 * to ensure that we're not discarding chunks that were released or
5979 * allocated in the current transaction.
5980 *
5981 * Holding the chunks lock will prevent other threads from allocating
5982 * or releasing chunks, but it won't prevent a running transaction
5983 * from committing and releasing the memory that the pending chunks
5984 * list head uses.  For that, we need to take a reference to the
5985 * transaction and hold the commit root sem.  We only need to hold
5986 * it while performing the free space search since we have already
5987 * held back allocations.
5988 */
5989static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5990{
5991	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
5992	int ret;
5993
5994	*trimmed = 0;
5995
5996	/* Discard not supported = nothing to do. */
5997	if (!bdev_max_discard_sectors(device->bdev))
5998		return 0;
5999
6000	/* Not writable = nothing to do. */
6001	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6002		return 0;
6003
6004	/* No free space = nothing to do. */
6005	if (device->total_bytes <= device->bytes_used)
6006		return 0;
6007
6008	ret = 0;
6009
6010	while (1) {
6011		struct btrfs_fs_info *fs_info = device->fs_info;
6012		u64 bytes;
6013
6014		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6015		if (ret)
6016			break;
6017
6018		find_first_clear_extent_bit(&device->alloc_state, start,
6019					    &start, &end,
6020					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6021
6022		/* Check if there are any CHUNK_* bits left */
6023		if (start > device->total_bytes) {
6024			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6025			btrfs_warn_in_rcu(fs_info,
6026"ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6027					  start, end - start + 1,
6028					  btrfs_dev_name(device),
6029					  device->total_bytes);
6030			mutex_unlock(&fs_info->chunk_mutex);
6031			ret = 0;
6032			break;
6033		}
6034
6035		/* Ensure we skip the reserved space on each device. */
6036		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6037
6038		/*
6039		 * If find_first_clear_extent_bit find a range that spans the
6040		 * end of the device it will set end to -1, in this case it's up
6041		 * to the caller to trim the value to the size of the device.
6042		 */
6043		end = min(end, device->total_bytes - 1);
6044
6045		len = end - start + 1;
6046
6047		/* We didn't find any extents */
6048		if (!len) {
6049			mutex_unlock(&fs_info->chunk_mutex);
6050			ret = 0;
6051			break;
6052		}
6053
6054		ret = btrfs_issue_discard(device->bdev, start, len,
6055					  &bytes);
6056		if (!ret)
6057			set_extent_bit(&device->alloc_state, start,
6058				       start + bytes - 1, CHUNK_TRIMMED, NULL);
6059		mutex_unlock(&fs_info->chunk_mutex);
6060
6061		if (ret)
6062			break;
6063
6064		start += len;
6065		*trimmed += bytes;
6066
6067		if (fatal_signal_pending(current)) {
6068			ret = -ERESTARTSYS;
6069			break;
6070		}
6071
6072		cond_resched();
6073	}
6074
6075	return ret;
6076}
6077
6078/*
6079 * Trim the whole filesystem by:
6080 * 1) trimming the free space in each block group
6081 * 2) trimming the unallocated space on each device
6082 *
6083 * This will also continue trimming even if a block group or device encounters
6084 * an error.  The return value will be the last error, or 0 if nothing bad
6085 * happens.
6086 */
6087int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6088{
6089	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6090	struct btrfs_block_group *cache = NULL;
6091	struct btrfs_device *device;
6092	u64 group_trimmed;
6093	u64 range_end = U64_MAX;
6094	u64 start;
6095	u64 end;
6096	u64 trimmed = 0;
6097	u64 bg_failed = 0;
6098	u64 dev_failed = 0;
6099	int bg_ret = 0;
6100	int dev_ret = 0;
6101	int ret = 0;
6102
6103	if (range->start == U64_MAX)
6104		return -EINVAL;
6105
6106	/*
6107	 * Check range overflow if range->len is set.
6108	 * The default range->len is U64_MAX.
6109	 */
6110	if (range->len != U64_MAX &&
6111	    check_add_overflow(range->start, range->len, &range_end))
6112		return -EINVAL;
6113
6114	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6115	for (; cache; cache = btrfs_next_block_group(cache)) {
6116		if (cache->start >= range_end) {
6117			btrfs_put_block_group(cache);
6118			break;
6119		}
6120
6121		start = max(range->start, cache->start);
6122		end = min(range_end, cache->start + cache->length);
6123
6124		if (end - start >= range->minlen) {
6125			if (!btrfs_block_group_done(cache)) {
6126				ret = btrfs_cache_block_group(cache, true);
6127				if (ret) {
6128					bg_failed++;
6129					bg_ret = ret;
6130					continue;
6131				}
6132			}
6133			ret = btrfs_trim_block_group(cache,
6134						     &group_trimmed,
6135						     start,
6136						     end,
6137						     range->minlen);
6138
6139			trimmed += group_trimmed;
6140			if (ret) {
6141				bg_failed++;
6142				bg_ret = ret;
6143				continue;
6144			}
6145		}
6146	}
6147
6148	if (bg_failed)
6149		btrfs_warn(fs_info,
6150			"failed to trim %llu block group(s), last error %d",
6151			bg_failed, bg_ret);
6152
6153	mutex_lock(&fs_devices->device_list_mutex);
6154	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6155		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6156			continue;
6157
6158		ret = btrfs_trim_free_extents(device, &group_trimmed);
6159		if (ret) {
6160			dev_failed++;
6161			dev_ret = ret;
6162			break;
6163		}
6164
6165		trimmed += group_trimmed;
6166	}
6167	mutex_unlock(&fs_devices->device_list_mutex);
6168
6169	if (dev_failed)
6170		btrfs_warn(fs_info,
6171			"failed to trim %llu device(s), last error %d",
6172			dev_failed, dev_ret);
6173	range->len = trimmed;
6174	if (bg_ret)
6175		return bg_ret;
6176	return dev_ret;
6177}
6178