xref: /kernel/linux/linux-6.6/fs/btrfs/disk-io.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/blkdev.h>
8#include <linux/radix-tree.h>
9#include <linux/writeback.h>
10#include <linux/workqueue.h>
11#include <linux/kthread.h>
12#include <linux/slab.h>
13#include <linux/migrate.h>
14#include <linux/ratelimit.h>
15#include <linux/uuid.h>
16#include <linux/semaphore.h>
17#include <linux/error-injection.h>
18#include <linux/crc32c.h>
19#include <linux/sched/mm.h>
20#include <asm/unaligned.h>
21#include <crypto/hash.h>
22#include "ctree.h"
23#include "disk-io.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "bio.h"
27#include "print-tree.h"
28#include "locking.h"
29#include "tree-log.h"
30#include "free-space-cache.h"
31#include "free-space-tree.h"
32#include "check-integrity.h"
33#include "rcu-string.h"
34#include "dev-replace.h"
35#include "raid56.h"
36#include "sysfs.h"
37#include "qgroup.h"
38#include "compression.h"
39#include "tree-checker.h"
40#include "ref-verify.h"
41#include "block-group.h"
42#include "discard.h"
43#include "space-info.h"
44#include "zoned.h"
45#include "subpage.h"
46#include "fs.h"
47#include "accessors.h"
48#include "extent-tree.h"
49#include "root-tree.h"
50#include "defrag.h"
51#include "uuid-tree.h"
52#include "relocation.h"
53#include "scrub.h"
54#include "super.h"
55
56#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
57				 BTRFS_HEADER_FLAG_RELOC |\
58				 BTRFS_SUPER_FLAG_ERROR |\
59				 BTRFS_SUPER_FLAG_SEEDING |\
60				 BTRFS_SUPER_FLAG_METADUMP |\
61				 BTRFS_SUPER_FLAG_METADUMP_V2)
62
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67{
68	if (fs_info->csum_shash)
69		crypto_free_shash(fs_info->csum_shash);
70}
71
72/*
73 * Compute the csum of a btree block and store the result to provided buffer.
74 */
75static void csum_tree_block(struct extent_buffer *buf, u8 *result)
76{
77	struct btrfs_fs_info *fs_info = buf->fs_info;
78	const int num_pages = num_extent_pages(buf);
79	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
80	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
81	char *kaddr;
82	int i;
83
84	shash->tfm = fs_info->csum_shash;
85	crypto_shash_init(shash);
86	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
87	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
88			    first_page_part - BTRFS_CSUM_SIZE);
89
90	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
91		kaddr = page_address(buf->pages[i]);
92		crypto_shash_update(shash, kaddr, PAGE_SIZE);
93	}
94	memset(result, 0, BTRFS_CSUM_SIZE);
95	crypto_shash_final(shash, result);
96}
97
98/*
99 * we can't consider a given block up to date unless the transid of the
100 * block matches the transid in the parent node's pointer.  This is how we
101 * detect blocks that either didn't get written at all or got written
102 * in the wrong place.
103 */
104int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
105{
106	if (!extent_buffer_uptodate(eb))
107		return 0;
108
109	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
110		return 1;
111
112	if (atomic)
113		return -EAGAIN;
114
115	if (!extent_buffer_uptodate(eb) ||
116	    btrfs_header_generation(eb) != parent_transid) {
117		btrfs_err_rl(eb->fs_info,
118"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
119			eb->start, eb->read_mirror,
120			parent_transid, btrfs_header_generation(eb));
121		clear_extent_buffer_uptodate(eb);
122		return 0;
123	}
124	return 1;
125}
126
127static bool btrfs_supported_super_csum(u16 csum_type)
128{
129	switch (csum_type) {
130	case BTRFS_CSUM_TYPE_CRC32:
131	case BTRFS_CSUM_TYPE_XXHASH:
132	case BTRFS_CSUM_TYPE_SHA256:
133	case BTRFS_CSUM_TYPE_BLAKE2:
134		return true;
135	default:
136		return false;
137	}
138}
139
140/*
141 * Return 0 if the superblock checksum type matches the checksum value of that
142 * algorithm. Pass the raw disk superblock data.
143 */
144int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
145			   const struct btrfs_super_block *disk_sb)
146{
147	char result[BTRFS_CSUM_SIZE];
148	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
149
150	shash->tfm = fs_info->csum_shash;
151
152	/*
153	 * The super_block structure does not span the whole
154	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
155	 * filled with zeros and is included in the checksum.
156	 */
157	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
158			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
159
160	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
161		return 1;
162
163	return 0;
164}
165
166static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
167				      int mirror_num)
168{
169	struct btrfs_fs_info *fs_info = eb->fs_info;
170	int i, num_pages = num_extent_pages(eb);
171	int ret = 0;
172
173	if (sb_rdonly(fs_info->sb))
174		return -EROFS;
175
176	for (i = 0; i < num_pages; i++) {
177		struct page *p = eb->pages[i];
178		u64 start = max_t(u64, eb->start, page_offset(p));
179		u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE);
180		u32 len = end - start;
181
182		ret = btrfs_repair_io_failure(fs_info, 0, start, len,
183				start, p, offset_in_page(start), mirror_num);
184		if (ret)
185			break;
186	}
187
188	return ret;
189}
190
191/*
192 * helper to read a given tree block, doing retries as required when
193 * the checksums don't match and we have alternate mirrors to try.
194 *
195 * @check:		expected tree parentness check, see the comments of the
196 *			structure for details.
197 */
198int btrfs_read_extent_buffer(struct extent_buffer *eb,
199			     struct btrfs_tree_parent_check *check)
200{
201	struct btrfs_fs_info *fs_info = eb->fs_info;
202	int failed = 0;
203	int ret;
204	int num_copies = 0;
205	int mirror_num = 0;
206	int failed_mirror = 0;
207
208	ASSERT(check);
209
210	while (1) {
211		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
212		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
213		if (!ret)
214			break;
215
216		num_copies = btrfs_num_copies(fs_info,
217					      eb->start, eb->len);
218		if (num_copies == 1)
219			break;
220
221		if (!failed_mirror) {
222			failed = 1;
223			failed_mirror = eb->read_mirror;
224		}
225
226		mirror_num++;
227		if (mirror_num == failed_mirror)
228			mirror_num++;
229
230		if (mirror_num > num_copies)
231			break;
232	}
233
234	if (failed && !ret && failed_mirror)
235		btrfs_repair_eb_io_failure(eb, failed_mirror);
236
237	return ret;
238}
239
240/*
241 * Checksum a dirty tree block before IO.
242 */
243blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
244{
245	struct extent_buffer *eb = bbio->private;
246	struct btrfs_fs_info *fs_info = eb->fs_info;
247	u64 found_start = btrfs_header_bytenr(eb);
248	u8 result[BTRFS_CSUM_SIZE];
249	int ret;
250
251	/* Btree blocks are always contiguous on disk. */
252	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
253		return BLK_STS_IOERR;
254	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
255		return BLK_STS_IOERR;
256
257	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
258		WARN_ON_ONCE(found_start != 0);
259		return BLK_STS_OK;
260	}
261
262	if (WARN_ON_ONCE(found_start != eb->start))
263		return BLK_STS_IOERR;
264	if (WARN_ON(!btrfs_page_test_uptodate(fs_info, eb->pages[0], eb->start,
265					      eb->len)))
266		return BLK_STS_IOERR;
267
268	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
269				    offsetof(struct btrfs_header, fsid),
270				    BTRFS_FSID_SIZE) == 0);
271	csum_tree_block(eb, result);
272
273	if (btrfs_header_level(eb))
274		ret = btrfs_check_node(eb);
275	else
276		ret = btrfs_check_leaf(eb);
277
278	if (ret < 0)
279		goto error;
280
281	/*
282	 * Also check the generation, the eb reached here must be newer than
283	 * last committed. Or something seriously wrong happened.
284	 */
285	if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
286		ret = -EUCLEAN;
287		btrfs_err(fs_info,
288			"block=%llu bad generation, have %llu expect > %llu",
289			  eb->start, btrfs_header_generation(eb),
290			  fs_info->last_trans_committed);
291		goto error;
292	}
293	write_extent_buffer(eb, result, 0, fs_info->csum_size);
294	return BLK_STS_OK;
295
296error:
297	btrfs_print_tree(eb, 0);
298	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
299		  eb->start);
300	/*
301	 * Be noisy if this is an extent buffer from a log tree. We don't abort
302	 * a transaction in case there's a bad log tree extent buffer, we just
303	 * fallback to a transaction commit. Still we want to know when there is
304	 * a bad log tree extent buffer, as that may signal a bug somewhere.
305	 */
306	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
307		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
308	return errno_to_blk_status(ret);
309}
310
311static bool check_tree_block_fsid(struct extent_buffer *eb)
312{
313	struct btrfs_fs_info *fs_info = eb->fs_info;
314	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
315	u8 fsid[BTRFS_FSID_SIZE];
316
317	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
318			   BTRFS_FSID_SIZE);
319
320	/*
321	 * alloc_fs_devices() copies the fsid into metadata_uuid if the
322	 * metadata_uuid is unset in the superblock, including for a seed device.
323	 * So, we can use fs_devices->metadata_uuid.
324	 */
325	if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
326		return false;
327
328	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
329		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
330			return false;
331
332	return true;
333}
334
335/* Do basic extent buffer checks at read time */
336int btrfs_validate_extent_buffer(struct extent_buffer *eb,
337				 struct btrfs_tree_parent_check *check)
338{
339	struct btrfs_fs_info *fs_info = eb->fs_info;
340	u64 found_start;
341	const u32 csum_size = fs_info->csum_size;
342	u8 found_level;
343	u8 result[BTRFS_CSUM_SIZE];
344	const u8 *header_csum;
345	int ret = 0;
346
347	ASSERT(check);
348
349	found_start = btrfs_header_bytenr(eb);
350	if (found_start != eb->start) {
351		btrfs_err_rl(fs_info,
352			"bad tree block start, mirror %u want %llu have %llu",
353			     eb->read_mirror, eb->start, found_start);
354		ret = -EIO;
355		goto out;
356	}
357	if (check_tree_block_fsid(eb)) {
358		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
359			     eb->start, eb->read_mirror);
360		ret = -EIO;
361		goto out;
362	}
363	found_level = btrfs_header_level(eb);
364	if (found_level >= BTRFS_MAX_LEVEL) {
365		btrfs_err(fs_info,
366			"bad tree block level, mirror %u level %d on logical %llu",
367			eb->read_mirror, btrfs_header_level(eb), eb->start);
368		ret = -EIO;
369		goto out;
370	}
371
372	csum_tree_block(eb, result);
373	header_csum = page_address(eb->pages[0]) +
374		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
375
376	if (memcmp(result, header_csum, csum_size) != 0) {
377		btrfs_warn_rl(fs_info,
378"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
379			      eb->start, eb->read_mirror,
380			      CSUM_FMT_VALUE(csum_size, header_csum),
381			      CSUM_FMT_VALUE(csum_size, result),
382			      btrfs_header_level(eb));
383		ret = -EUCLEAN;
384		goto out;
385	}
386
387	if (found_level != check->level) {
388		btrfs_err(fs_info,
389		"level verify failed on logical %llu mirror %u wanted %u found %u",
390			  eb->start, eb->read_mirror, check->level, found_level);
391		ret = -EIO;
392		goto out;
393	}
394	if (unlikely(check->transid &&
395		     btrfs_header_generation(eb) != check->transid)) {
396		btrfs_err_rl(eb->fs_info,
397"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
398				eb->start, eb->read_mirror, check->transid,
399				btrfs_header_generation(eb));
400		ret = -EIO;
401		goto out;
402	}
403	if (check->has_first_key) {
404		struct btrfs_key *expect_key = &check->first_key;
405		struct btrfs_key found_key;
406
407		if (found_level)
408			btrfs_node_key_to_cpu(eb, &found_key, 0);
409		else
410			btrfs_item_key_to_cpu(eb, &found_key, 0);
411		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
412			btrfs_err(fs_info,
413"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
414				  eb->start, check->transid,
415				  expect_key->objectid,
416				  expect_key->type, expect_key->offset,
417				  found_key.objectid, found_key.type,
418				  found_key.offset);
419			ret = -EUCLEAN;
420			goto out;
421		}
422	}
423	if (check->owner_root) {
424		ret = btrfs_check_eb_owner(eb, check->owner_root);
425		if (ret < 0)
426			goto out;
427	}
428
429	/*
430	 * If this is a leaf block and it is corrupt, set the corrupt bit so
431	 * that we don't try and read the other copies of this block, just
432	 * return -EIO.
433	 */
434	if (found_level == 0 && btrfs_check_leaf(eb)) {
435		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
436		ret = -EIO;
437	}
438
439	if (found_level > 0 && btrfs_check_node(eb))
440		ret = -EIO;
441
442	if (ret)
443		btrfs_err(fs_info,
444		"read time tree block corruption detected on logical %llu mirror %u",
445			  eb->start, eb->read_mirror);
446out:
447	return ret;
448}
449
450#ifdef CONFIG_MIGRATION
451static int btree_migrate_folio(struct address_space *mapping,
452		struct folio *dst, struct folio *src, enum migrate_mode mode)
453{
454	/*
455	 * we can't safely write a btree page from here,
456	 * we haven't done the locking hook
457	 */
458	if (folio_test_dirty(src))
459		return -EAGAIN;
460	/*
461	 * Buffers may be managed in a filesystem specific way.
462	 * We must have no buffers or drop them.
463	 */
464	if (folio_get_private(src) &&
465	    !filemap_release_folio(src, GFP_KERNEL))
466		return -EAGAIN;
467	return migrate_folio(mapping, dst, src, mode);
468}
469#else
470#define btree_migrate_folio NULL
471#endif
472
473static int btree_writepages(struct address_space *mapping,
474			    struct writeback_control *wbc)
475{
476	struct btrfs_fs_info *fs_info;
477	int ret;
478
479	if (wbc->sync_mode == WB_SYNC_NONE) {
480
481		if (wbc->for_kupdate)
482			return 0;
483
484		fs_info = BTRFS_I(mapping->host)->root->fs_info;
485		/* this is a bit racy, but that's ok */
486		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
487					     BTRFS_DIRTY_METADATA_THRESH,
488					     fs_info->dirty_metadata_batch);
489		if (ret < 0)
490			return 0;
491	}
492	return btree_write_cache_pages(mapping, wbc);
493}
494
495static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
496{
497	if (folio_test_writeback(folio) || folio_test_dirty(folio))
498		return false;
499
500	return try_release_extent_buffer(&folio->page);
501}
502
503static void btree_invalidate_folio(struct folio *folio, size_t offset,
504				 size_t length)
505{
506	struct extent_io_tree *tree;
507	tree = &BTRFS_I(folio->mapping->host)->io_tree;
508	extent_invalidate_folio(tree, folio, offset);
509	btree_release_folio(folio, GFP_NOFS);
510	if (folio_get_private(folio)) {
511		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
512			   "folio private not zero on folio %llu",
513			   (unsigned long long)folio_pos(folio));
514		folio_detach_private(folio);
515	}
516}
517
518#ifdef DEBUG
519static bool btree_dirty_folio(struct address_space *mapping,
520		struct folio *folio)
521{
522	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
523	struct btrfs_subpage_info *spi = fs_info->subpage_info;
524	struct btrfs_subpage *subpage;
525	struct extent_buffer *eb;
526	int cur_bit = 0;
527	u64 page_start = folio_pos(folio);
528
529	if (fs_info->sectorsize == PAGE_SIZE) {
530		eb = folio_get_private(folio);
531		BUG_ON(!eb);
532		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
533		BUG_ON(!atomic_read(&eb->refs));
534		btrfs_assert_tree_write_locked(eb);
535		return filemap_dirty_folio(mapping, folio);
536	}
537
538	ASSERT(spi);
539	subpage = folio_get_private(folio);
540
541	for (cur_bit = spi->dirty_offset;
542	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
543	     cur_bit++) {
544		unsigned long flags;
545		u64 cur;
546
547		spin_lock_irqsave(&subpage->lock, flags);
548		if (!test_bit(cur_bit, subpage->bitmaps)) {
549			spin_unlock_irqrestore(&subpage->lock, flags);
550			continue;
551		}
552		spin_unlock_irqrestore(&subpage->lock, flags);
553		cur = page_start + cur_bit * fs_info->sectorsize;
554
555		eb = find_extent_buffer(fs_info, cur);
556		ASSERT(eb);
557		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
558		ASSERT(atomic_read(&eb->refs));
559		btrfs_assert_tree_write_locked(eb);
560		free_extent_buffer(eb);
561
562		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
563	}
564	return filemap_dirty_folio(mapping, folio);
565}
566#else
567#define btree_dirty_folio filemap_dirty_folio
568#endif
569
570static const struct address_space_operations btree_aops = {
571	.writepages	= btree_writepages,
572	.release_folio	= btree_release_folio,
573	.invalidate_folio = btree_invalidate_folio,
574	.migrate_folio	= btree_migrate_folio,
575	.dirty_folio	= btree_dirty_folio,
576};
577
578struct extent_buffer *btrfs_find_create_tree_block(
579						struct btrfs_fs_info *fs_info,
580						u64 bytenr, u64 owner_root,
581						int level)
582{
583	if (btrfs_is_testing(fs_info))
584		return alloc_test_extent_buffer(fs_info, bytenr);
585	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
586}
587
588/*
589 * Read tree block at logical address @bytenr and do variant basic but critical
590 * verification.
591 *
592 * @check:		expected tree parentness check, see comments of the
593 *			structure for details.
594 */
595struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
596				      struct btrfs_tree_parent_check *check)
597{
598	struct extent_buffer *buf = NULL;
599	int ret;
600
601	ASSERT(check);
602
603	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
604					   check->level);
605	if (IS_ERR(buf))
606		return buf;
607
608	ret = btrfs_read_extent_buffer(buf, check);
609	if (ret) {
610		free_extent_buffer_stale(buf);
611		return ERR_PTR(ret);
612	}
613	if (btrfs_check_eb_owner(buf, check->owner_root)) {
614		free_extent_buffer_stale(buf);
615		return ERR_PTR(-EUCLEAN);
616	}
617	return buf;
618
619}
620
621static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
622			 u64 objectid)
623{
624	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
625
626	memset(&root->root_key, 0, sizeof(root->root_key));
627	memset(&root->root_item, 0, sizeof(root->root_item));
628	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
629	root->fs_info = fs_info;
630	root->root_key.objectid = objectid;
631	root->node = NULL;
632	root->commit_root = NULL;
633	root->state = 0;
634	RB_CLEAR_NODE(&root->rb_node);
635
636	root->last_trans = 0;
637	root->free_objectid = 0;
638	root->nr_delalloc_inodes = 0;
639	root->nr_ordered_extents = 0;
640	root->inode_tree = RB_ROOT;
641	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
642
643	btrfs_init_root_block_rsv(root);
644
645	INIT_LIST_HEAD(&root->dirty_list);
646	INIT_LIST_HEAD(&root->root_list);
647	INIT_LIST_HEAD(&root->delalloc_inodes);
648	INIT_LIST_HEAD(&root->delalloc_root);
649	INIT_LIST_HEAD(&root->ordered_extents);
650	INIT_LIST_HEAD(&root->ordered_root);
651	INIT_LIST_HEAD(&root->reloc_dirty_list);
652	INIT_LIST_HEAD(&root->logged_list[0]);
653	INIT_LIST_HEAD(&root->logged_list[1]);
654	spin_lock_init(&root->inode_lock);
655	spin_lock_init(&root->delalloc_lock);
656	spin_lock_init(&root->ordered_extent_lock);
657	spin_lock_init(&root->accounting_lock);
658	spin_lock_init(&root->log_extents_lock[0]);
659	spin_lock_init(&root->log_extents_lock[1]);
660	spin_lock_init(&root->qgroup_meta_rsv_lock);
661	mutex_init(&root->objectid_mutex);
662	mutex_init(&root->log_mutex);
663	mutex_init(&root->ordered_extent_mutex);
664	mutex_init(&root->delalloc_mutex);
665	init_waitqueue_head(&root->qgroup_flush_wait);
666	init_waitqueue_head(&root->log_writer_wait);
667	init_waitqueue_head(&root->log_commit_wait[0]);
668	init_waitqueue_head(&root->log_commit_wait[1]);
669	INIT_LIST_HEAD(&root->log_ctxs[0]);
670	INIT_LIST_HEAD(&root->log_ctxs[1]);
671	atomic_set(&root->log_commit[0], 0);
672	atomic_set(&root->log_commit[1], 0);
673	atomic_set(&root->log_writers, 0);
674	atomic_set(&root->log_batch, 0);
675	refcount_set(&root->refs, 1);
676	atomic_set(&root->snapshot_force_cow, 0);
677	atomic_set(&root->nr_swapfiles, 0);
678	root->log_transid = 0;
679	root->log_transid_committed = -1;
680	root->last_log_commit = 0;
681	root->anon_dev = 0;
682	if (!dummy) {
683		extent_io_tree_init(fs_info, &root->dirty_log_pages,
684				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
685		extent_io_tree_init(fs_info, &root->log_csum_range,
686				    IO_TREE_LOG_CSUM_RANGE);
687	}
688
689	spin_lock_init(&root->root_item_lock);
690	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
691#ifdef CONFIG_BTRFS_DEBUG
692	INIT_LIST_HEAD(&root->leak_list);
693	spin_lock(&fs_info->fs_roots_radix_lock);
694	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
695	spin_unlock(&fs_info->fs_roots_radix_lock);
696#endif
697}
698
699static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
700					   u64 objectid, gfp_t flags)
701{
702	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
703	if (root)
704		__setup_root(root, fs_info, objectid);
705	return root;
706}
707
708#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
709/* Should only be used by the testing infrastructure */
710struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
711{
712	struct btrfs_root *root;
713
714	if (!fs_info)
715		return ERR_PTR(-EINVAL);
716
717	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
718	if (!root)
719		return ERR_PTR(-ENOMEM);
720
721	/* We don't use the stripesize in selftest, set it as sectorsize */
722	root->alloc_bytenr = 0;
723
724	return root;
725}
726#endif
727
728static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
729{
730	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
731	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
732
733	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
734}
735
736static int global_root_key_cmp(const void *k, const struct rb_node *node)
737{
738	const struct btrfs_key *key = k;
739	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
740
741	return btrfs_comp_cpu_keys(key, &root->root_key);
742}
743
744int btrfs_global_root_insert(struct btrfs_root *root)
745{
746	struct btrfs_fs_info *fs_info = root->fs_info;
747	struct rb_node *tmp;
748	int ret = 0;
749
750	write_lock(&fs_info->global_root_lock);
751	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
752	write_unlock(&fs_info->global_root_lock);
753
754	if (tmp) {
755		ret = -EEXIST;
756		btrfs_warn(fs_info, "global root %llu %llu already exists",
757				root->root_key.objectid, root->root_key.offset);
758	}
759	return ret;
760}
761
762void btrfs_global_root_delete(struct btrfs_root *root)
763{
764	struct btrfs_fs_info *fs_info = root->fs_info;
765
766	write_lock(&fs_info->global_root_lock);
767	rb_erase(&root->rb_node, &fs_info->global_root_tree);
768	write_unlock(&fs_info->global_root_lock);
769}
770
771struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
772				     struct btrfs_key *key)
773{
774	struct rb_node *node;
775	struct btrfs_root *root = NULL;
776
777	read_lock(&fs_info->global_root_lock);
778	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
779	if (node)
780		root = container_of(node, struct btrfs_root, rb_node);
781	read_unlock(&fs_info->global_root_lock);
782
783	return root;
784}
785
786static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
787{
788	struct btrfs_block_group *block_group;
789	u64 ret;
790
791	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
792		return 0;
793
794	if (bytenr)
795		block_group = btrfs_lookup_block_group(fs_info, bytenr);
796	else
797		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
798	ASSERT(block_group);
799	if (!block_group)
800		return 0;
801	ret = block_group->global_root_id;
802	btrfs_put_block_group(block_group);
803
804	return ret;
805}
806
807struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
808{
809	struct btrfs_key key = {
810		.objectid = BTRFS_CSUM_TREE_OBJECTID,
811		.type = BTRFS_ROOT_ITEM_KEY,
812		.offset = btrfs_global_root_id(fs_info, bytenr),
813	};
814
815	return btrfs_global_root(fs_info, &key);
816}
817
818struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
819{
820	struct btrfs_key key = {
821		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
822		.type = BTRFS_ROOT_ITEM_KEY,
823		.offset = btrfs_global_root_id(fs_info, bytenr),
824	};
825
826	return btrfs_global_root(fs_info, &key);
827}
828
829struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
830{
831	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
832		return fs_info->block_group_root;
833	return btrfs_extent_root(fs_info, 0);
834}
835
836struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
837				     u64 objectid)
838{
839	struct btrfs_fs_info *fs_info = trans->fs_info;
840	struct extent_buffer *leaf;
841	struct btrfs_root *tree_root = fs_info->tree_root;
842	struct btrfs_root *root;
843	struct btrfs_key key;
844	unsigned int nofs_flag;
845	int ret = 0;
846
847	/*
848	 * We're holding a transaction handle, so use a NOFS memory allocation
849	 * context to avoid deadlock if reclaim happens.
850	 */
851	nofs_flag = memalloc_nofs_save();
852	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
853	memalloc_nofs_restore(nofs_flag);
854	if (!root)
855		return ERR_PTR(-ENOMEM);
856
857	root->root_key.objectid = objectid;
858	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
859	root->root_key.offset = 0;
860
861	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
862				      BTRFS_NESTING_NORMAL);
863	if (IS_ERR(leaf)) {
864		ret = PTR_ERR(leaf);
865		leaf = NULL;
866		goto fail;
867	}
868
869	root->node = leaf;
870	btrfs_mark_buffer_dirty(trans, leaf);
871
872	root->commit_root = btrfs_root_node(root);
873	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
874
875	btrfs_set_root_flags(&root->root_item, 0);
876	btrfs_set_root_limit(&root->root_item, 0);
877	btrfs_set_root_bytenr(&root->root_item, leaf->start);
878	btrfs_set_root_generation(&root->root_item, trans->transid);
879	btrfs_set_root_level(&root->root_item, 0);
880	btrfs_set_root_refs(&root->root_item, 1);
881	btrfs_set_root_used(&root->root_item, leaf->len);
882	btrfs_set_root_last_snapshot(&root->root_item, 0);
883	btrfs_set_root_dirid(&root->root_item, 0);
884	if (is_fstree(objectid))
885		generate_random_guid(root->root_item.uuid);
886	else
887		export_guid(root->root_item.uuid, &guid_null);
888	btrfs_set_root_drop_level(&root->root_item, 0);
889
890	btrfs_tree_unlock(leaf);
891
892	key.objectid = objectid;
893	key.type = BTRFS_ROOT_ITEM_KEY;
894	key.offset = 0;
895	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
896	if (ret)
897		goto fail;
898
899	return root;
900
901fail:
902	btrfs_put_root(root);
903
904	return ERR_PTR(ret);
905}
906
907static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
908					 struct btrfs_fs_info *fs_info)
909{
910	struct btrfs_root *root;
911
912	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
913	if (!root)
914		return ERR_PTR(-ENOMEM);
915
916	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
917	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
918	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
919
920	return root;
921}
922
923int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
924			      struct btrfs_root *root)
925{
926	struct extent_buffer *leaf;
927
928	/*
929	 * DON'T set SHAREABLE bit for log trees.
930	 *
931	 * Log trees are not exposed to user space thus can't be snapshotted,
932	 * and they go away before a real commit is actually done.
933	 *
934	 * They do store pointers to file data extents, and those reference
935	 * counts still get updated (along with back refs to the log tree).
936	 */
937
938	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
939			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
940	if (IS_ERR(leaf))
941		return PTR_ERR(leaf);
942
943	root->node = leaf;
944
945	btrfs_mark_buffer_dirty(trans, root->node);
946	btrfs_tree_unlock(root->node);
947
948	return 0;
949}
950
951int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
952			     struct btrfs_fs_info *fs_info)
953{
954	struct btrfs_root *log_root;
955
956	log_root = alloc_log_tree(trans, fs_info);
957	if (IS_ERR(log_root))
958		return PTR_ERR(log_root);
959
960	if (!btrfs_is_zoned(fs_info)) {
961		int ret = btrfs_alloc_log_tree_node(trans, log_root);
962
963		if (ret) {
964			btrfs_put_root(log_root);
965			return ret;
966		}
967	}
968
969	WARN_ON(fs_info->log_root_tree);
970	fs_info->log_root_tree = log_root;
971	return 0;
972}
973
974int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
975		       struct btrfs_root *root)
976{
977	struct btrfs_fs_info *fs_info = root->fs_info;
978	struct btrfs_root *log_root;
979	struct btrfs_inode_item *inode_item;
980	int ret;
981
982	log_root = alloc_log_tree(trans, fs_info);
983	if (IS_ERR(log_root))
984		return PTR_ERR(log_root);
985
986	ret = btrfs_alloc_log_tree_node(trans, log_root);
987	if (ret) {
988		btrfs_put_root(log_root);
989		return ret;
990	}
991
992	log_root->last_trans = trans->transid;
993	log_root->root_key.offset = root->root_key.objectid;
994
995	inode_item = &log_root->root_item.inode;
996	btrfs_set_stack_inode_generation(inode_item, 1);
997	btrfs_set_stack_inode_size(inode_item, 3);
998	btrfs_set_stack_inode_nlink(inode_item, 1);
999	btrfs_set_stack_inode_nbytes(inode_item,
1000				     fs_info->nodesize);
1001	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1002
1003	btrfs_set_root_node(&log_root->root_item, log_root->node);
1004
1005	WARN_ON(root->log_root);
1006	root->log_root = log_root;
1007	root->log_transid = 0;
1008	root->log_transid_committed = -1;
1009	root->last_log_commit = 0;
1010	return 0;
1011}
1012
1013static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1014					      struct btrfs_path *path,
1015					      struct btrfs_key *key)
1016{
1017	struct btrfs_root *root;
1018	struct btrfs_tree_parent_check check = { 0 };
1019	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1020	u64 generation;
1021	int ret;
1022	int level;
1023
1024	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1025	if (!root)
1026		return ERR_PTR(-ENOMEM);
1027
1028	ret = btrfs_find_root(tree_root, key, path,
1029			      &root->root_item, &root->root_key);
1030	if (ret) {
1031		if (ret > 0)
1032			ret = -ENOENT;
1033		goto fail;
1034	}
1035
1036	generation = btrfs_root_generation(&root->root_item);
1037	level = btrfs_root_level(&root->root_item);
1038	check.level = level;
1039	check.transid = generation;
1040	check.owner_root = key->objectid;
1041	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1042				     &check);
1043	if (IS_ERR(root->node)) {
1044		ret = PTR_ERR(root->node);
1045		root->node = NULL;
1046		goto fail;
1047	}
1048	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1049		ret = -EIO;
1050		goto fail;
1051	}
1052
1053	/*
1054	 * For real fs, and not log/reloc trees, root owner must
1055	 * match its root node owner
1056	 */
1057	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1058	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1059	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1060	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1061		btrfs_crit(fs_info,
1062"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1063			   root->root_key.objectid, root->node->start,
1064			   btrfs_header_owner(root->node),
1065			   root->root_key.objectid);
1066		ret = -EUCLEAN;
1067		goto fail;
1068	}
1069	root->commit_root = btrfs_root_node(root);
1070	return root;
1071fail:
1072	btrfs_put_root(root);
1073	return ERR_PTR(ret);
1074}
1075
1076struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1077					struct btrfs_key *key)
1078{
1079	struct btrfs_root *root;
1080	struct btrfs_path *path;
1081
1082	path = btrfs_alloc_path();
1083	if (!path)
1084		return ERR_PTR(-ENOMEM);
1085	root = read_tree_root_path(tree_root, path, key);
1086	btrfs_free_path(path);
1087
1088	return root;
1089}
1090
1091/*
1092 * Initialize subvolume root in-memory structure
1093 *
1094 * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1095 */
1096static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1097{
1098	int ret;
1099
1100	btrfs_drew_lock_init(&root->snapshot_lock);
1101
1102	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1103	    !btrfs_is_data_reloc_root(root) &&
1104	    is_fstree(root->root_key.objectid)) {
1105		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1106		btrfs_check_and_init_root_item(&root->root_item);
1107	}
1108
1109	/*
1110	 * Don't assign anonymous block device to roots that are not exposed to
1111	 * userspace, the id pool is limited to 1M
1112	 */
1113	if (is_fstree(root->root_key.objectid) &&
1114	    btrfs_root_refs(&root->root_item) > 0) {
1115		if (!anon_dev) {
1116			ret = get_anon_bdev(&root->anon_dev);
1117			if (ret)
1118				goto fail;
1119		} else {
1120			root->anon_dev = anon_dev;
1121		}
1122	}
1123
1124	mutex_lock(&root->objectid_mutex);
1125	ret = btrfs_init_root_free_objectid(root);
1126	if (ret) {
1127		mutex_unlock(&root->objectid_mutex);
1128		goto fail;
1129	}
1130
1131	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1132
1133	mutex_unlock(&root->objectid_mutex);
1134
1135	return 0;
1136fail:
1137	/* The caller is responsible to call btrfs_free_fs_root */
1138	return ret;
1139}
1140
1141static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1142					       u64 root_id)
1143{
1144	struct btrfs_root *root;
1145
1146	spin_lock(&fs_info->fs_roots_radix_lock);
1147	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1148				 (unsigned long)root_id);
1149	root = btrfs_grab_root(root);
1150	spin_unlock(&fs_info->fs_roots_radix_lock);
1151	return root;
1152}
1153
1154static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1155						u64 objectid)
1156{
1157	struct btrfs_key key = {
1158		.objectid = objectid,
1159		.type = BTRFS_ROOT_ITEM_KEY,
1160		.offset = 0,
1161	};
1162
1163	switch (objectid) {
1164	case BTRFS_ROOT_TREE_OBJECTID:
1165		return btrfs_grab_root(fs_info->tree_root);
1166	case BTRFS_EXTENT_TREE_OBJECTID:
1167		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1168	case BTRFS_CHUNK_TREE_OBJECTID:
1169		return btrfs_grab_root(fs_info->chunk_root);
1170	case BTRFS_DEV_TREE_OBJECTID:
1171		return btrfs_grab_root(fs_info->dev_root);
1172	case BTRFS_CSUM_TREE_OBJECTID:
1173		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1174	case BTRFS_QUOTA_TREE_OBJECTID:
1175		return btrfs_grab_root(fs_info->quota_root);
1176	case BTRFS_UUID_TREE_OBJECTID:
1177		return btrfs_grab_root(fs_info->uuid_root);
1178	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1179		return btrfs_grab_root(fs_info->block_group_root);
1180	case BTRFS_FREE_SPACE_TREE_OBJECTID:
1181		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1182	default:
1183		return NULL;
1184	}
1185}
1186
1187int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1188			 struct btrfs_root *root)
1189{
1190	int ret;
1191
1192	ret = radix_tree_preload(GFP_NOFS);
1193	if (ret)
1194		return ret;
1195
1196	spin_lock(&fs_info->fs_roots_radix_lock);
1197	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1198				(unsigned long)root->root_key.objectid,
1199				root);
1200	if (ret == 0) {
1201		btrfs_grab_root(root);
1202		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1203	}
1204	spin_unlock(&fs_info->fs_roots_radix_lock);
1205	radix_tree_preload_end();
1206
1207	return ret;
1208}
1209
1210void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1211{
1212#ifdef CONFIG_BTRFS_DEBUG
1213	struct btrfs_root *root;
1214
1215	while (!list_empty(&fs_info->allocated_roots)) {
1216		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1217
1218		root = list_first_entry(&fs_info->allocated_roots,
1219					struct btrfs_root, leak_list);
1220		btrfs_err(fs_info, "leaked root %s refcount %d",
1221			  btrfs_root_name(&root->root_key, buf),
1222			  refcount_read(&root->refs));
1223		while (refcount_read(&root->refs) > 1)
1224			btrfs_put_root(root);
1225		btrfs_put_root(root);
1226	}
1227#endif
1228}
1229
1230static void free_global_roots(struct btrfs_fs_info *fs_info)
1231{
1232	struct btrfs_root *root;
1233	struct rb_node *node;
1234
1235	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1236		root = rb_entry(node, struct btrfs_root, rb_node);
1237		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1238		btrfs_put_root(root);
1239	}
1240}
1241
1242void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1243{
1244	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1245	percpu_counter_destroy(&fs_info->delalloc_bytes);
1246	percpu_counter_destroy(&fs_info->ordered_bytes);
1247	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1248	btrfs_free_csum_hash(fs_info);
1249	btrfs_free_stripe_hash_table(fs_info);
1250	btrfs_free_ref_cache(fs_info);
1251	kfree(fs_info->balance_ctl);
1252	kfree(fs_info->delayed_root);
1253	free_global_roots(fs_info);
1254	btrfs_put_root(fs_info->tree_root);
1255	btrfs_put_root(fs_info->chunk_root);
1256	btrfs_put_root(fs_info->dev_root);
1257	btrfs_put_root(fs_info->quota_root);
1258	btrfs_put_root(fs_info->uuid_root);
1259	btrfs_put_root(fs_info->fs_root);
1260	btrfs_put_root(fs_info->data_reloc_root);
1261	btrfs_put_root(fs_info->block_group_root);
1262	btrfs_check_leaked_roots(fs_info);
1263	btrfs_extent_buffer_leak_debug_check(fs_info);
1264	kfree(fs_info->super_copy);
1265	kfree(fs_info->super_for_commit);
1266	kfree(fs_info->subpage_info);
1267	kvfree(fs_info);
1268}
1269
1270
1271/*
1272 * Get an in-memory reference of a root structure.
1273 *
1274 * For essential trees like root/extent tree, we grab it from fs_info directly.
1275 * For subvolume trees, we check the cached filesystem roots first. If not
1276 * found, then read it from disk and add it to cached fs roots.
1277 *
1278 * Caller should release the root by calling btrfs_put_root() after the usage.
1279 *
1280 * NOTE: Reloc and log trees can't be read by this function as they share the
1281 *	 same root objectid.
1282 *
1283 * @objectid:	root id
1284 * @anon_dev:	preallocated anonymous block device number for new roots,
1285 *		pass NULL for a new allocation.
1286 * @check_ref:	whether to check root item references, If true, return -ENOENT
1287 *		for orphan roots
1288 */
1289static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1290					     u64 objectid, dev_t *anon_dev,
1291					     bool check_ref)
1292{
1293	struct btrfs_root *root;
1294	struct btrfs_path *path;
1295	struct btrfs_key key;
1296	int ret;
1297
1298	root = btrfs_get_global_root(fs_info, objectid);
1299	if (root)
1300		return root;
1301
1302	/*
1303	 * If we're called for non-subvolume trees, and above function didn't
1304	 * find one, do not try to read it from disk.
1305	 *
1306	 * This is namely for free-space-tree and quota tree, which can change
1307	 * at runtime and should only be grabbed from fs_info.
1308	 */
1309	if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1310		return ERR_PTR(-ENOENT);
1311again:
1312	root = btrfs_lookup_fs_root(fs_info, objectid);
1313	if (root) {
1314		/*
1315		 * Some other caller may have read out the newly inserted
1316		 * subvolume already (for things like backref walk etc).  Not
1317		 * that common but still possible.  In that case, we just need
1318		 * to free the anon_dev.
1319		 */
1320		if (unlikely(anon_dev && *anon_dev)) {
1321			free_anon_bdev(*anon_dev);
1322			*anon_dev = 0;
1323		}
1324
1325		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1326			btrfs_put_root(root);
1327			return ERR_PTR(-ENOENT);
1328		}
1329		return root;
1330	}
1331
1332	key.objectid = objectid;
1333	key.type = BTRFS_ROOT_ITEM_KEY;
1334	key.offset = (u64)-1;
1335	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1336	if (IS_ERR(root))
1337		return root;
1338
1339	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1340		ret = -ENOENT;
1341		goto fail;
1342	}
1343
1344	ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1345	if (ret)
1346		goto fail;
1347
1348	path = btrfs_alloc_path();
1349	if (!path) {
1350		ret = -ENOMEM;
1351		goto fail;
1352	}
1353	key.objectid = BTRFS_ORPHAN_OBJECTID;
1354	key.type = BTRFS_ORPHAN_ITEM_KEY;
1355	key.offset = objectid;
1356
1357	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1358	btrfs_free_path(path);
1359	if (ret < 0)
1360		goto fail;
1361	if (ret == 0)
1362		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1363
1364	ret = btrfs_insert_fs_root(fs_info, root);
1365	if (ret) {
1366		if (ret == -EEXIST) {
1367			btrfs_put_root(root);
1368			goto again;
1369		}
1370		goto fail;
1371	}
1372	return root;
1373fail:
1374	/*
1375	 * If our caller provided us an anonymous device, then it's his
1376	 * responsibility to free it in case we fail. So we have to set our
1377	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1378	 * and once again by our caller.
1379	 */
1380	if (anon_dev && *anon_dev)
1381		root->anon_dev = 0;
1382	btrfs_put_root(root);
1383	return ERR_PTR(ret);
1384}
1385
1386/*
1387 * Get in-memory reference of a root structure
1388 *
1389 * @objectid:	tree objectid
1390 * @check_ref:	if set, verify that the tree exists and the item has at least
1391 *		one reference
1392 */
1393struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1394				     u64 objectid, bool check_ref)
1395{
1396	return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1397}
1398
1399/*
1400 * Get in-memory reference of a root structure, created as new, optionally pass
1401 * the anonymous block device id
1402 *
1403 * @objectid:	tree objectid
1404 * @anon_dev:	if NULL, allocate a new anonymous block device or use the
1405 *		parameter value if not NULL
1406 */
1407struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1408					 u64 objectid, dev_t *anon_dev)
1409{
1410	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1411}
1412
1413/*
1414 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1415 * @fs_info:	the fs_info
1416 * @objectid:	the objectid we need to lookup
1417 *
1418 * This is exclusively used for backref walking, and exists specifically because
1419 * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1420 * creation time, which means we may have to read the tree_root in order to look
1421 * up a fs root that is not in memory.  If the root is not in memory we will
1422 * read the tree root commit root and look up the fs root from there.  This is a
1423 * temporary root, it will not be inserted into the radix tree as it doesn't
1424 * have the most uptodate information, it'll simply be discarded once the
1425 * backref code is finished using the root.
1426 */
1427struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1428						 struct btrfs_path *path,
1429						 u64 objectid)
1430{
1431	struct btrfs_root *root;
1432	struct btrfs_key key;
1433
1434	ASSERT(path->search_commit_root && path->skip_locking);
1435
1436	/*
1437	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1438	 * since this is called via the backref walking code we won't be looking
1439	 * up a root that doesn't exist, unless there's corruption.  So if root
1440	 * != NULL just return it.
1441	 */
1442	root = btrfs_get_global_root(fs_info, objectid);
1443	if (root)
1444		return root;
1445
1446	root = btrfs_lookup_fs_root(fs_info, objectid);
1447	if (root)
1448		return root;
1449
1450	key.objectid = objectid;
1451	key.type = BTRFS_ROOT_ITEM_KEY;
1452	key.offset = (u64)-1;
1453	root = read_tree_root_path(fs_info->tree_root, path, &key);
1454	btrfs_release_path(path);
1455
1456	return root;
1457}
1458
1459static int cleaner_kthread(void *arg)
1460{
1461	struct btrfs_fs_info *fs_info = arg;
1462	int again;
1463
1464	while (1) {
1465		again = 0;
1466
1467		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1468
1469		/* Make the cleaner go to sleep early. */
1470		if (btrfs_need_cleaner_sleep(fs_info))
1471			goto sleep;
1472
1473		/*
1474		 * Do not do anything if we might cause open_ctree() to block
1475		 * before we have finished mounting the filesystem.
1476		 */
1477		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1478			goto sleep;
1479
1480		if (!mutex_trylock(&fs_info->cleaner_mutex))
1481			goto sleep;
1482
1483		/*
1484		 * Avoid the problem that we change the status of the fs
1485		 * during the above check and trylock.
1486		 */
1487		if (btrfs_need_cleaner_sleep(fs_info)) {
1488			mutex_unlock(&fs_info->cleaner_mutex);
1489			goto sleep;
1490		}
1491
1492		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1493			btrfs_sysfs_feature_update(fs_info);
1494
1495		btrfs_run_delayed_iputs(fs_info);
1496
1497		again = btrfs_clean_one_deleted_snapshot(fs_info);
1498		mutex_unlock(&fs_info->cleaner_mutex);
1499
1500		/*
1501		 * The defragger has dealt with the R/O remount and umount,
1502		 * needn't do anything special here.
1503		 */
1504		btrfs_run_defrag_inodes(fs_info);
1505
1506		/*
1507		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1508		 * with relocation (btrfs_relocate_chunk) and relocation
1509		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1510		 * after acquiring fs_info->reclaim_bgs_lock. So we
1511		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1512		 * unused block groups.
1513		 */
1514		btrfs_delete_unused_bgs(fs_info);
1515
1516		/*
1517		 * Reclaim block groups in the reclaim_bgs list after we deleted
1518		 * all unused block_groups. This possibly gives us some more free
1519		 * space.
1520		 */
1521		btrfs_reclaim_bgs(fs_info);
1522sleep:
1523		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1524		if (kthread_should_park())
1525			kthread_parkme();
1526		if (kthread_should_stop())
1527			return 0;
1528		if (!again) {
1529			set_current_state(TASK_INTERRUPTIBLE);
1530			schedule();
1531			__set_current_state(TASK_RUNNING);
1532		}
1533	}
1534}
1535
1536static int transaction_kthread(void *arg)
1537{
1538	struct btrfs_root *root = arg;
1539	struct btrfs_fs_info *fs_info = root->fs_info;
1540	struct btrfs_trans_handle *trans;
1541	struct btrfs_transaction *cur;
1542	u64 transid;
1543	time64_t delta;
1544	unsigned long delay;
1545	bool cannot_commit;
1546
1547	do {
1548		cannot_commit = false;
1549		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1550		mutex_lock(&fs_info->transaction_kthread_mutex);
1551
1552		spin_lock(&fs_info->trans_lock);
1553		cur = fs_info->running_transaction;
1554		if (!cur) {
1555			spin_unlock(&fs_info->trans_lock);
1556			goto sleep;
1557		}
1558
1559		delta = ktime_get_seconds() - cur->start_time;
1560		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1561		    cur->state < TRANS_STATE_COMMIT_PREP &&
1562		    delta < fs_info->commit_interval) {
1563			spin_unlock(&fs_info->trans_lock);
1564			delay -= msecs_to_jiffies((delta - 1) * 1000);
1565			delay = min(delay,
1566				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1567			goto sleep;
1568		}
1569		transid = cur->transid;
1570		spin_unlock(&fs_info->trans_lock);
1571
1572		/* If the file system is aborted, this will always fail. */
1573		trans = btrfs_attach_transaction(root);
1574		if (IS_ERR(trans)) {
1575			if (PTR_ERR(trans) != -ENOENT)
1576				cannot_commit = true;
1577			goto sleep;
1578		}
1579		if (transid == trans->transid) {
1580			btrfs_commit_transaction(trans);
1581		} else {
1582			btrfs_end_transaction(trans);
1583		}
1584sleep:
1585		wake_up_process(fs_info->cleaner_kthread);
1586		mutex_unlock(&fs_info->transaction_kthread_mutex);
1587
1588		if (BTRFS_FS_ERROR(fs_info))
1589			btrfs_cleanup_transaction(fs_info);
1590		if (!kthread_should_stop() &&
1591				(!btrfs_transaction_blocked(fs_info) ||
1592				 cannot_commit))
1593			schedule_timeout_interruptible(delay);
1594	} while (!kthread_should_stop());
1595	return 0;
1596}
1597
1598/*
1599 * This will find the highest generation in the array of root backups.  The
1600 * index of the highest array is returned, or -EINVAL if we can't find
1601 * anything.
1602 *
1603 * We check to make sure the array is valid by comparing the
1604 * generation of the latest  root in the array with the generation
1605 * in the super block.  If they don't match we pitch it.
1606 */
1607static int find_newest_super_backup(struct btrfs_fs_info *info)
1608{
1609	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1610	u64 cur;
1611	struct btrfs_root_backup *root_backup;
1612	int i;
1613
1614	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1615		root_backup = info->super_copy->super_roots + i;
1616		cur = btrfs_backup_tree_root_gen(root_backup);
1617		if (cur == newest_gen)
1618			return i;
1619	}
1620
1621	return -EINVAL;
1622}
1623
1624/*
1625 * copy all the root pointers into the super backup array.
1626 * this will bump the backup pointer by one when it is
1627 * done
1628 */
1629static void backup_super_roots(struct btrfs_fs_info *info)
1630{
1631	const int next_backup = info->backup_root_index;
1632	struct btrfs_root_backup *root_backup;
1633
1634	root_backup = info->super_for_commit->super_roots + next_backup;
1635
1636	/*
1637	 * make sure all of our padding and empty slots get zero filled
1638	 * regardless of which ones we use today
1639	 */
1640	memset(root_backup, 0, sizeof(*root_backup));
1641
1642	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1643
1644	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1645	btrfs_set_backup_tree_root_gen(root_backup,
1646			       btrfs_header_generation(info->tree_root->node));
1647
1648	btrfs_set_backup_tree_root_level(root_backup,
1649			       btrfs_header_level(info->tree_root->node));
1650
1651	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1652	btrfs_set_backup_chunk_root_gen(root_backup,
1653			       btrfs_header_generation(info->chunk_root->node));
1654	btrfs_set_backup_chunk_root_level(root_backup,
1655			       btrfs_header_level(info->chunk_root->node));
1656
1657	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1658		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1659		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1660
1661		btrfs_set_backup_extent_root(root_backup,
1662					     extent_root->node->start);
1663		btrfs_set_backup_extent_root_gen(root_backup,
1664				btrfs_header_generation(extent_root->node));
1665		btrfs_set_backup_extent_root_level(root_backup,
1666					btrfs_header_level(extent_root->node));
1667
1668		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1669		btrfs_set_backup_csum_root_gen(root_backup,
1670					       btrfs_header_generation(csum_root->node));
1671		btrfs_set_backup_csum_root_level(root_backup,
1672						 btrfs_header_level(csum_root->node));
1673	}
1674
1675	/*
1676	 * we might commit during log recovery, which happens before we set
1677	 * the fs_root.  Make sure it is valid before we fill it in.
1678	 */
1679	if (info->fs_root && info->fs_root->node) {
1680		btrfs_set_backup_fs_root(root_backup,
1681					 info->fs_root->node->start);
1682		btrfs_set_backup_fs_root_gen(root_backup,
1683			       btrfs_header_generation(info->fs_root->node));
1684		btrfs_set_backup_fs_root_level(root_backup,
1685			       btrfs_header_level(info->fs_root->node));
1686	}
1687
1688	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1689	btrfs_set_backup_dev_root_gen(root_backup,
1690			       btrfs_header_generation(info->dev_root->node));
1691	btrfs_set_backup_dev_root_level(root_backup,
1692				       btrfs_header_level(info->dev_root->node));
1693
1694	btrfs_set_backup_total_bytes(root_backup,
1695			     btrfs_super_total_bytes(info->super_copy));
1696	btrfs_set_backup_bytes_used(root_backup,
1697			     btrfs_super_bytes_used(info->super_copy));
1698	btrfs_set_backup_num_devices(root_backup,
1699			     btrfs_super_num_devices(info->super_copy));
1700
1701	/*
1702	 * if we don't copy this out to the super_copy, it won't get remembered
1703	 * for the next commit
1704	 */
1705	memcpy(&info->super_copy->super_roots,
1706	       &info->super_for_commit->super_roots,
1707	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1708}
1709
1710/*
1711 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1712 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1713 *
1714 * fs_info - filesystem whose backup roots need to be read
1715 * priority - priority of backup root required
1716 *
1717 * Returns backup root index on success and -EINVAL otherwise.
1718 */
1719static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1720{
1721	int backup_index = find_newest_super_backup(fs_info);
1722	struct btrfs_super_block *super = fs_info->super_copy;
1723	struct btrfs_root_backup *root_backup;
1724
1725	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1726		if (priority == 0)
1727			return backup_index;
1728
1729		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1730		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1731	} else {
1732		return -EINVAL;
1733	}
1734
1735	root_backup = super->super_roots + backup_index;
1736
1737	btrfs_set_super_generation(super,
1738				   btrfs_backup_tree_root_gen(root_backup));
1739	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1740	btrfs_set_super_root_level(super,
1741				   btrfs_backup_tree_root_level(root_backup));
1742	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1743
1744	/*
1745	 * Fixme: the total bytes and num_devices need to match or we should
1746	 * need a fsck
1747	 */
1748	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1749	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1750
1751	return backup_index;
1752}
1753
1754/* helper to cleanup workers */
1755static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1756{
1757	btrfs_destroy_workqueue(fs_info->fixup_workers);
1758	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1759	btrfs_destroy_workqueue(fs_info->workers);
1760	if (fs_info->endio_workers)
1761		destroy_workqueue(fs_info->endio_workers);
1762	if (fs_info->rmw_workers)
1763		destroy_workqueue(fs_info->rmw_workers);
1764	if (fs_info->compressed_write_workers)
1765		destroy_workqueue(fs_info->compressed_write_workers);
1766	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1767	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1768	btrfs_destroy_workqueue(fs_info->delayed_workers);
1769	btrfs_destroy_workqueue(fs_info->caching_workers);
1770	btrfs_destroy_workqueue(fs_info->flush_workers);
1771	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1772	if (fs_info->discard_ctl.discard_workers)
1773		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1774	/*
1775	 * Now that all other work queues are destroyed, we can safely destroy
1776	 * the queues used for metadata I/O, since tasks from those other work
1777	 * queues can do metadata I/O operations.
1778	 */
1779	if (fs_info->endio_meta_workers)
1780		destroy_workqueue(fs_info->endio_meta_workers);
1781}
1782
1783static void free_root_extent_buffers(struct btrfs_root *root)
1784{
1785	if (root) {
1786		free_extent_buffer(root->node);
1787		free_extent_buffer(root->commit_root);
1788		root->node = NULL;
1789		root->commit_root = NULL;
1790	}
1791}
1792
1793static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1794{
1795	struct btrfs_root *root, *tmp;
1796
1797	rbtree_postorder_for_each_entry_safe(root, tmp,
1798					     &fs_info->global_root_tree,
1799					     rb_node)
1800		free_root_extent_buffers(root);
1801}
1802
1803/* helper to cleanup tree roots */
1804static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1805{
1806	free_root_extent_buffers(info->tree_root);
1807
1808	free_global_root_pointers(info);
1809	free_root_extent_buffers(info->dev_root);
1810	free_root_extent_buffers(info->quota_root);
1811	free_root_extent_buffers(info->uuid_root);
1812	free_root_extent_buffers(info->fs_root);
1813	free_root_extent_buffers(info->data_reloc_root);
1814	free_root_extent_buffers(info->block_group_root);
1815	if (free_chunk_root)
1816		free_root_extent_buffers(info->chunk_root);
1817}
1818
1819void btrfs_put_root(struct btrfs_root *root)
1820{
1821	if (!root)
1822		return;
1823
1824	if (refcount_dec_and_test(&root->refs)) {
1825		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1826		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1827		if (root->anon_dev)
1828			free_anon_bdev(root->anon_dev);
1829		free_root_extent_buffers(root);
1830#ifdef CONFIG_BTRFS_DEBUG
1831		spin_lock(&root->fs_info->fs_roots_radix_lock);
1832		list_del_init(&root->leak_list);
1833		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1834#endif
1835		kfree(root);
1836	}
1837}
1838
1839void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1840{
1841	int ret;
1842	struct btrfs_root *gang[8];
1843	int i;
1844
1845	while (!list_empty(&fs_info->dead_roots)) {
1846		gang[0] = list_entry(fs_info->dead_roots.next,
1847				     struct btrfs_root, root_list);
1848		list_del(&gang[0]->root_list);
1849
1850		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1851			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1852		btrfs_put_root(gang[0]);
1853	}
1854
1855	while (1) {
1856		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1857					     (void **)gang, 0,
1858					     ARRAY_SIZE(gang));
1859		if (!ret)
1860			break;
1861		for (i = 0; i < ret; i++)
1862			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1863	}
1864}
1865
1866static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1867{
1868	mutex_init(&fs_info->scrub_lock);
1869	atomic_set(&fs_info->scrubs_running, 0);
1870	atomic_set(&fs_info->scrub_pause_req, 0);
1871	atomic_set(&fs_info->scrubs_paused, 0);
1872	atomic_set(&fs_info->scrub_cancel_req, 0);
1873	init_waitqueue_head(&fs_info->scrub_pause_wait);
1874	refcount_set(&fs_info->scrub_workers_refcnt, 0);
1875}
1876
1877static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1878{
1879	spin_lock_init(&fs_info->balance_lock);
1880	mutex_init(&fs_info->balance_mutex);
1881	atomic_set(&fs_info->balance_pause_req, 0);
1882	atomic_set(&fs_info->balance_cancel_req, 0);
1883	fs_info->balance_ctl = NULL;
1884	init_waitqueue_head(&fs_info->balance_wait_q);
1885	atomic_set(&fs_info->reloc_cancel_req, 0);
1886}
1887
1888static int btrfs_init_btree_inode(struct super_block *sb)
1889{
1890	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1891	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1892					      fs_info->tree_root);
1893	struct inode *inode;
1894
1895	inode = new_inode(sb);
1896	if (!inode)
1897		return -ENOMEM;
1898
1899	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1900	set_nlink(inode, 1);
1901	/*
1902	 * we set the i_size on the btree inode to the max possible int.
1903	 * the real end of the address space is determined by all of
1904	 * the devices in the system
1905	 */
1906	inode->i_size = OFFSET_MAX;
1907	inode->i_mapping->a_ops = &btree_aops;
1908	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1909
1910	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1911	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1912			    IO_TREE_BTREE_INODE_IO);
1913	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1914
1915	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1916	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1917	BTRFS_I(inode)->location.type = 0;
1918	BTRFS_I(inode)->location.offset = 0;
1919	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1920	__insert_inode_hash(inode, hash);
1921	fs_info->btree_inode = inode;
1922
1923	return 0;
1924}
1925
1926static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1927{
1928	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1929	init_rwsem(&fs_info->dev_replace.rwsem);
1930	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1931}
1932
1933static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1934{
1935	spin_lock_init(&fs_info->qgroup_lock);
1936	mutex_init(&fs_info->qgroup_ioctl_lock);
1937	fs_info->qgroup_tree = RB_ROOT;
1938	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1939	fs_info->qgroup_seq = 1;
1940	fs_info->qgroup_ulist = NULL;
1941	fs_info->qgroup_rescan_running = false;
1942	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1943	mutex_init(&fs_info->qgroup_rescan_lock);
1944}
1945
1946static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1947{
1948	u32 max_active = fs_info->thread_pool_size;
1949	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1950	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1951
1952	fs_info->workers =
1953		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1954
1955	fs_info->delalloc_workers =
1956		btrfs_alloc_workqueue(fs_info, "delalloc",
1957				      flags, max_active, 2);
1958
1959	fs_info->flush_workers =
1960		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1961				      flags, max_active, 0);
1962
1963	fs_info->caching_workers =
1964		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1965
1966	fs_info->fixup_workers =
1967		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1968
1969	fs_info->endio_workers =
1970		alloc_workqueue("btrfs-endio", flags, max_active);
1971	fs_info->endio_meta_workers =
1972		alloc_workqueue("btrfs-endio-meta", flags, max_active);
1973	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1974	fs_info->endio_write_workers =
1975		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1976				      max_active, 2);
1977	fs_info->compressed_write_workers =
1978		alloc_workqueue("btrfs-compressed-write", flags, max_active);
1979	fs_info->endio_freespace_worker =
1980		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1981				      max_active, 0);
1982	fs_info->delayed_workers =
1983		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1984				      max_active, 0);
1985	fs_info->qgroup_rescan_workers =
1986		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1987					      ordered_flags);
1988	fs_info->discard_ctl.discard_workers =
1989		alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
1990
1991	if (!(fs_info->workers &&
1992	      fs_info->delalloc_workers && fs_info->flush_workers &&
1993	      fs_info->endio_workers && fs_info->endio_meta_workers &&
1994	      fs_info->compressed_write_workers &&
1995	      fs_info->endio_write_workers &&
1996	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
1997	      fs_info->caching_workers && fs_info->fixup_workers &&
1998	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
1999	      fs_info->discard_ctl.discard_workers)) {
2000		return -ENOMEM;
2001	}
2002
2003	return 0;
2004}
2005
2006static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2007{
2008	struct crypto_shash *csum_shash;
2009	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2010
2011	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2012
2013	if (IS_ERR(csum_shash)) {
2014		btrfs_err(fs_info, "error allocating %s hash for checksum",
2015			  csum_driver);
2016		return PTR_ERR(csum_shash);
2017	}
2018
2019	fs_info->csum_shash = csum_shash;
2020
2021	/*
2022	 * Check if the checksum implementation is a fast accelerated one.
2023	 * As-is this is a bit of a hack and should be replaced once the csum
2024	 * implementations provide that information themselves.
2025	 */
2026	switch (csum_type) {
2027	case BTRFS_CSUM_TYPE_CRC32:
2028		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2029			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2030		break;
2031	case BTRFS_CSUM_TYPE_XXHASH:
2032		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2033		break;
2034	default:
2035		break;
2036	}
2037
2038	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2039			btrfs_super_csum_name(csum_type),
2040			crypto_shash_driver_name(csum_shash));
2041	return 0;
2042}
2043
2044static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2045			    struct btrfs_fs_devices *fs_devices)
2046{
2047	int ret;
2048	struct btrfs_tree_parent_check check = { 0 };
2049	struct btrfs_root *log_tree_root;
2050	struct btrfs_super_block *disk_super = fs_info->super_copy;
2051	u64 bytenr = btrfs_super_log_root(disk_super);
2052	int level = btrfs_super_log_root_level(disk_super);
2053
2054	if (fs_devices->rw_devices == 0) {
2055		btrfs_warn(fs_info, "log replay required on RO media");
2056		return -EIO;
2057	}
2058
2059	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2060					 GFP_KERNEL);
2061	if (!log_tree_root)
2062		return -ENOMEM;
2063
2064	check.level = level;
2065	check.transid = fs_info->generation + 1;
2066	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2067	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2068	if (IS_ERR(log_tree_root->node)) {
2069		btrfs_warn(fs_info, "failed to read log tree");
2070		ret = PTR_ERR(log_tree_root->node);
2071		log_tree_root->node = NULL;
2072		btrfs_put_root(log_tree_root);
2073		return ret;
2074	}
2075	if (!extent_buffer_uptodate(log_tree_root->node)) {
2076		btrfs_err(fs_info, "failed to read log tree");
2077		btrfs_put_root(log_tree_root);
2078		return -EIO;
2079	}
2080
2081	/* returns with log_tree_root freed on success */
2082	ret = btrfs_recover_log_trees(log_tree_root);
2083	if (ret) {
2084		btrfs_handle_fs_error(fs_info, ret,
2085				      "Failed to recover log tree");
2086		btrfs_put_root(log_tree_root);
2087		return ret;
2088	}
2089
2090	if (sb_rdonly(fs_info->sb)) {
2091		ret = btrfs_commit_super(fs_info);
2092		if (ret)
2093			return ret;
2094	}
2095
2096	return 0;
2097}
2098
2099static int load_global_roots_objectid(struct btrfs_root *tree_root,
2100				      struct btrfs_path *path, u64 objectid,
2101				      const char *name)
2102{
2103	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2104	struct btrfs_root *root;
2105	u64 max_global_id = 0;
2106	int ret;
2107	struct btrfs_key key = {
2108		.objectid = objectid,
2109		.type = BTRFS_ROOT_ITEM_KEY,
2110		.offset = 0,
2111	};
2112	bool found = false;
2113
2114	/* If we have IGNOREDATACSUMS skip loading these roots. */
2115	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2116	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2117		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2118		return 0;
2119	}
2120
2121	while (1) {
2122		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2123		if (ret < 0)
2124			break;
2125
2126		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2127			ret = btrfs_next_leaf(tree_root, path);
2128			if (ret) {
2129				if (ret > 0)
2130					ret = 0;
2131				break;
2132			}
2133		}
2134		ret = 0;
2135
2136		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2137		if (key.objectid != objectid)
2138			break;
2139		btrfs_release_path(path);
2140
2141		/*
2142		 * Just worry about this for extent tree, it'll be the same for
2143		 * everybody.
2144		 */
2145		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2146			max_global_id = max(max_global_id, key.offset);
2147
2148		found = true;
2149		root = read_tree_root_path(tree_root, path, &key);
2150		if (IS_ERR(root)) {
2151			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2152				ret = PTR_ERR(root);
2153			break;
2154		}
2155		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2156		ret = btrfs_global_root_insert(root);
2157		if (ret) {
2158			btrfs_put_root(root);
2159			break;
2160		}
2161		key.offset++;
2162	}
2163	btrfs_release_path(path);
2164
2165	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2166		fs_info->nr_global_roots = max_global_id + 1;
2167
2168	if (!found || ret) {
2169		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2170			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2171
2172		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2173			ret = ret ? ret : -ENOENT;
2174		else
2175			ret = 0;
2176		btrfs_err(fs_info, "failed to load root %s", name);
2177	}
2178	return ret;
2179}
2180
2181static int load_global_roots(struct btrfs_root *tree_root)
2182{
2183	struct btrfs_path *path;
2184	int ret = 0;
2185
2186	path = btrfs_alloc_path();
2187	if (!path)
2188		return -ENOMEM;
2189
2190	ret = load_global_roots_objectid(tree_root, path,
2191					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2192	if (ret)
2193		goto out;
2194	ret = load_global_roots_objectid(tree_root, path,
2195					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2196	if (ret)
2197		goto out;
2198	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2199		goto out;
2200	ret = load_global_roots_objectid(tree_root, path,
2201					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2202					 "free space");
2203out:
2204	btrfs_free_path(path);
2205	return ret;
2206}
2207
2208static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2209{
2210	struct btrfs_root *tree_root = fs_info->tree_root;
2211	struct btrfs_root *root;
2212	struct btrfs_key location;
2213	int ret;
2214
2215	BUG_ON(!fs_info->tree_root);
2216
2217	ret = load_global_roots(tree_root);
2218	if (ret)
2219		return ret;
2220
2221	location.type = BTRFS_ROOT_ITEM_KEY;
2222	location.offset = 0;
2223
2224	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2225		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2226		root = btrfs_read_tree_root(tree_root, &location);
2227		if (IS_ERR(root)) {
2228			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2229				ret = PTR_ERR(root);
2230				goto out;
2231			}
2232		} else {
2233			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2234			fs_info->block_group_root = root;
2235		}
2236	}
2237
2238	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2239	root = btrfs_read_tree_root(tree_root, &location);
2240	if (IS_ERR(root)) {
2241		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2242			ret = PTR_ERR(root);
2243			goto out;
2244		}
2245	} else {
2246		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2247		fs_info->dev_root = root;
2248	}
2249	/* Initialize fs_info for all devices in any case */
2250	ret = btrfs_init_devices_late(fs_info);
2251	if (ret)
2252		goto out;
2253
2254	/*
2255	 * This tree can share blocks with some other fs tree during relocation
2256	 * and we need a proper setup by btrfs_get_fs_root
2257	 */
2258	root = btrfs_get_fs_root(tree_root->fs_info,
2259				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2260	if (IS_ERR(root)) {
2261		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2262			ret = PTR_ERR(root);
2263			goto out;
2264		}
2265	} else {
2266		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2267		fs_info->data_reloc_root = root;
2268	}
2269
2270	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2271	root = btrfs_read_tree_root(tree_root, &location);
2272	if (!IS_ERR(root)) {
2273		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2274		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2275		fs_info->quota_root = root;
2276	}
2277
2278	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2279	root = btrfs_read_tree_root(tree_root, &location);
2280	if (IS_ERR(root)) {
2281		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2282			ret = PTR_ERR(root);
2283			if (ret != -ENOENT)
2284				goto out;
2285		}
2286	} else {
2287		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2288		fs_info->uuid_root = root;
2289	}
2290
2291	return 0;
2292out:
2293	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2294		   location.objectid, ret);
2295	return ret;
2296}
2297
2298/*
2299 * Real super block validation
2300 * NOTE: super csum type and incompat features will not be checked here.
2301 *
2302 * @sb:		super block to check
2303 * @mirror_num:	the super block number to check its bytenr:
2304 * 		0	the primary (1st) sb
2305 * 		1, 2	2nd and 3rd backup copy
2306 * 	       -1	skip bytenr check
2307 */
2308int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2309			 struct btrfs_super_block *sb, int mirror_num)
2310{
2311	u64 nodesize = btrfs_super_nodesize(sb);
2312	u64 sectorsize = btrfs_super_sectorsize(sb);
2313	int ret = 0;
2314
2315	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2316		btrfs_err(fs_info, "no valid FS found");
2317		ret = -EINVAL;
2318	}
2319	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2320		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2321				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2322		ret = -EINVAL;
2323	}
2324	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2325		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2326				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2327		ret = -EINVAL;
2328	}
2329	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2330		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2331				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2332		ret = -EINVAL;
2333	}
2334	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2335		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2336				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2337		ret = -EINVAL;
2338	}
2339
2340	/*
2341	 * Check sectorsize and nodesize first, other check will need it.
2342	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2343	 */
2344	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2345	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2346		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2347		ret = -EINVAL;
2348	}
2349
2350	/*
2351	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2352	 *
2353	 * We can support 16K sectorsize with 64K page size without problem,
2354	 * but such sectorsize/pagesize combination doesn't make much sense.
2355	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2356	 * beginning.
2357	 */
2358	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2359		btrfs_err(fs_info,
2360			"sectorsize %llu not yet supported for page size %lu",
2361			sectorsize, PAGE_SIZE);
2362		ret = -EINVAL;
2363	}
2364
2365	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2366	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2367		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2368		ret = -EINVAL;
2369	}
2370	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2371		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2372			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2373		ret = -EINVAL;
2374	}
2375
2376	/* Root alignment check */
2377	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2378		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2379			   btrfs_super_root(sb));
2380		ret = -EINVAL;
2381	}
2382	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2383		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2384			   btrfs_super_chunk_root(sb));
2385		ret = -EINVAL;
2386	}
2387	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2388		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2389			   btrfs_super_log_root(sb));
2390		ret = -EINVAL;
2391	}
2392
2393	if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2394		btrfs_err(fs_info,
2395		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2396			  sb->fsid, fs_info->fs_devices->fsid);
2397		ret = -EINVAL;
2398	}
2399
2400	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2401		   BTRFS_FSID_SIZE) != 0) {
2402		btrfs_err(fs_info,
2403"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2404			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2405		ret = -EINVAL;
2406	}
2407
2408	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2409		   BTRFS_FSID_SIZE) != 0) {
2410		btrfs_err(fs_info,
2411			"dev_item UUID does not match metadata fsid: %pU != %pU",
2412			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2413		ret = -EINVAL;
2414	}
2415
2416	/*
2417	 * Artificial requirement for block-group-tree to force newer features
2418	 * (free-space-tree, no-holes) so the test matrix is smaller.
2419	 */
2420	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2421	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2422	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2423		btrfs_err(fs_info,
2424		"block-group-tree feature requires fres-space-tree and no-holes");
2425		ret = -EINVAL;
2426	}
2427
2428	/*
2429	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2430	 * done later
2431	 */
2432	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2433		btrfs_err(fs_info, "bytes_used is too small %llu",
2434			  btrfs_super_bytes_used(sb));
2435		ret = -EINVAL;
2436	}
2437	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2438		btrfs_err(fs_info, "invalid stripesize %u",
2439			  btrfs_super_stripesize(sb));
2440		ret = -EINVAL;
2441	}
2442	if (btrfs_super_num_devices(sb) > (1UL << 31))
2443		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2444			   btrfs_super_num_devices(sb));
2445	if (btrfs_super_num_devices(sb) == 0) {
2446		btrfs_err(fs_info, "number of devices is 0");
2447		ret = -EINVAL;
2448	}
2449
2450	if (mirror_num >= 0 &&
2451	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2452		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2453			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2454		ret = -EINVAL;
2455	}
2456
2457	/*
2458	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2459	 * and one chunk
2460	 */
2461	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2462		btrfs_err(fs_info, "system chunk array too big %u > %u",
2463			  btrfs_super_sys_array_size(sb),
2464			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2465		ret = -EINVAL;
2466	}
2467	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2468			+ sizeof(struct btrfs_chunk)) {
2469		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2470			  btrfs_super_sys_array_size(sb),
2471			  sizeof(struct btrfs_disk_key)
2472			  + sizeof(struct btrfs_chunk));
2473		ret = -EINVAL;
2474	}
2475
2476	/*
2477	 * The generation is a global counter, we'll trust it more than the others
2478	 * but it's still possible that it's the one that's wrong.
2479	 */
2480	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2481		btrfs_warn(fs_info,
2482			"suspicious: generation < chunk_root_generation: %llu < %llu",
2483			btrfs_super_generation(sb),
2484			btrfs_super_chunk_root_generation(sb));
2485	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2486	    && btrfs_super_cache_generation(sb) != (u64)-1)
2487		btrfs_warn(fs_info,
2488			"suspicious: generation < cache_generation: %llu < %llu",
2489			btrfs_super_generation(sb),
2490			btrfs_super_cache_generation(sb));
2491
2492	return ret;
2493}
2494
2495/*
2496 * Validation of super block at mount time.
2497 * Some checks already done early at mount time, like csum type and incompat
2498 * flags will be skipped.
2499 */
2500static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2501{
2502	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2503}
2504
2505/*
2506 * Validation of super block at write time.
2507 * Some checks like bytenr check will be skipped as their values will be
2508 * overwritten soon.
2509 * Extra checks like csum type and incompat flags will be done here.
2510 */
2511static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2512				      struct btrfs_super_block *sb)
2513{
2514	int ret;
2515
2516	ret = btrfs_validate_super(fs_info, sb, -1);
2517	if (ret < 0)
2518		goto out;
2519	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2520		ret = -EUCLEAN;
2521		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2522			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2523		goto out;
2524	}
2525	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2526		ret = -EUCLEAN;
2527		btrfs_err(fs_info,
2528		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2529			  btrfs_super_incompat_flags(sb),
2530			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2531		goto out;
2532	}
2533out:
2534	if (ret < 0)
2535		btrfs_err(fs_info,
2536		"super block corruption detected before writing it to disk");
2537	return ret;
2538}
2539
2540static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2541{
2542	struct btrfs_tree_parent_check check = {
2543		.level = level,
2544		.transid = gen,
2545		.owner_root = root->root_key.objectid
2546	};
2547	int ret = 0;
2548
2549	root->node = read_tree_block(root->fs_info, bytenr, &check);
2550	if (IS_ERR(root->node)) {
2551		ret = PTR_ERR(root->node);
2552		root->node = NULL;
2553		return ret;
2554	}
2555	if (!extent_buffer_uptodate(root->node)) {
2556		free_extent_buffer(root->node);
2557		root->node = NULL;
2558		return -EIO;
2559	}
2560
2561	btrfs_set_root_node(&root->root_item, root->node);
2562	root->commit_root = btrfs_root_node(root);
2563	btrfs_set_root_refs(&root->root_item, 1);
2564	return ret;
2565}
2566
2567static int load_important_roots(struct btrfs_fs_info *fs_info)
2568{
2569	struct btrfs_super_block *sb = fs_info->super_copy;
2570	u64 gen, bytenr;
2571	int level, ret;
2572
2573	bytenr = btrfs_super_root(sb);
2574	gen = btrfs_super_generation(sb);
2575	level = btrfs_super_root_level(sb);
2576	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2577	if (ret) {
2578		btrfs_warn(fs_info, "couldn't read tree root");
2579		return ret;
2580	}
2581	return 0;
2582}
2583
2584static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2585{
2586	int backup_index = find_newest_super_backup(fs_info);
2587	struct btrfs_super_block *sb = fs_info->super_copy;
2588	struct btrfs_root *tree_root = fs_info->tree_root;
2589	bool handle_error = false;
2590	int ret = 0;
2591	int i;
2592
2593	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2594		if (handle_error) {
2595			if (!IS_ERR(tree_root->node))
2596				free_extent_buffer(tree_root->node);
2597			tree_root->node = NULL;
2598
2599			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2600				break;
2601
2602			free_root_pointers(fs_info, 0);
2603
2604			/*
2605			 * Don't use the log in recovery mode, it won't be
2606			 * valid
2607			 */
2608			btrfs_set_super_log_root(sb, 0);
2609
2610			/* We can't trust the free space cache either */
2611			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2612
2613			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2614			ret = read_backup_root(fs_info, i);
2615			backup_index = ret;
2616			if (ret < 0)
2617				return ret;
2618		}
2619
2620		ret = load_important_roots(fs_info);
2621		if (ret) {
2622			handle_error = true;
2623			continue;
2624		}
2625
2626		/*
2627		 * No need to hold btrfs_root::objectid_mutex since the fs
2628		 * hasn't been fully initialised and we are the only user
2629		 */
2630		ret = btrfs_init_root_free_objectid(tree_root);
2631		if (ret < 0) {
2632			handle_error = true;
2633			continue;
2634		}
2635
2636		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2637
2638		ret = btrfs_read_roots(fs_info);
2639		if (ret < 0) {
2640			handle_error = true;
2641			continue;
2642		}
2643
2644		/* All successful */
2645		fs_info->generation = btrfs_header_generation(tree_root->node);
2646		fs_info->last_trans_committed = fs_info->generation;
2647		fs_info->last_reloc_trans = 0;
2648
2649		/* Always begin writing backup roots after the one being used */
2650		if (backup_index < 0) {
2651			fs_info->backup_root_index = 0;
2652		} else {
2653			fs_info->backup_root_index = backup_index + 1;
2654			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2655		}
2656		break;
2657	}
2658
2659	return ret;
2660}
2661
2662void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2663{
2664	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2665	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2666	INIT_LIST_HEAD(&fs_info->trans_list);
2667	INIT_LIST_HEAD(&fs_info->dead_roots);
2668	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2669	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2670	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2671	spin_lock_init(&fs_info->delalloc_root_lock);
2672	spin_lock_init(&fs_info->trans_lock);
2673	spin_lock_init(&fs_info->fs_roots_radix_lock);
2674	spin_lock_init(&fs_info->delayed_iput_lock);
2675	spin_lock_init(&fs_info->defrag_inodes_lock);
2676	spin_lock_init(&fs_info->super_lock);
2677	spin_lock_init(&fs_info->buffer_lock);
2678	spin_lock_init(&fs_info->unused_bgs_lock);
2679	spin_lock_init(&fs_info->treelog_bg_lock);
2680	spin_lock_init(&fs_info->zone_active_bgs_lock);
2681	spin_lock_init(&fs_info->relocation_bg_lock);
2682	rwlock_init(&fs_info->tree_mod_log_lock);
2683	rwlock_init(&fs_info->global_root_lock);
2684	mutex_init(&fs_info->unused_bg_unpin_mutex);
2685	mutex_init(&fs_info->reclaim_bgs_lock);
2686	mutex_init(&fs_info->reloc_mutex);
2687	mutex_init(&fs_info->delalloc_root_mutex);
2688	mutex_init(&fs_info->zoned_meta_io_lock);
2689	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2690	seqlock_init(&fs_info->profiles_lock);
2691
2692	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2693	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2694	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2695	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2696	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2697				     BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2698	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2699				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2700	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2701				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2702	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2703				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2704
2705	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2706	INIT_LIST_HEAD(&fs_info->space_info);
2707	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2708	INIT_LIST_HEAD(&fs_info->unused_bgs);
2709	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2710	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2711#ifdef CONFIG_BTRFS_DEBUG
2712	INIT_LIST_HEAD(&fs_info->allocated_roots);
2713	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2714	spin_lock_init(&fs_info->eb_leak_lock);
2715#endif
2716	extent_map_tree_init(&fs_info->mapping_tree);
2717	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2718			     BTRFS_BLOCK_RSV_GLOBAL);
2719	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2720	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2721	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2722	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2723			     BTRFS_BLOCK_RSV_DELOPS);
2724	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2725			     BTRFS_BLOCK_RSV_DELREFS);
2726
2727	atomic_set(&fs_info->async_delalloc_pages, 0);
2728	atomic_set(&fs_info->defrag_running, 0);
2729	atomic_set(&fs_info->nr_delayed_iputs, 0);
2730	atomic64_set(&fs_info->tree_mod_seq, 0);
2731	fs_info->global_root_tree = RB_ROOT;
2732	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2733	fs_info->metadata_ratio = 0;
2734	fs_info->defrag_inodes = RB_ROOT;
2735	atomic64_set(&fs_info->free_chunk_space, 0);
2736	fs_info->tree_mod_log = RB_ROOT;
2737	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2738	btrfs_init_ref_verify(fs_info);
2739
2740	fs_info->thread_pool_size = min_t(unsigned long,
2741					  num_online_cpus() + 2, 8);
2742
2743	INIT_LIST_HEAD(&fs_info->ordered_roots);
2744	spin_lock_init(&fs_info->ordered_root_lock);
2745
2746	btrfs_init_scrub(fs_info);
2747#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2748	fs_info->check_integrity_print_mask = 0;
2749#endif
2750	btrfs_init_balance(fs_info);
2751	btrfs_init_async_reclaim_work(fs_info);
2752
2753	rwlock_init(&fs_info->block_group_cache_lock);
2754	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2755
2756	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2757			    IO_TREE_FS_EXCLUDED_EXTENTS);
2758
2759	mutex_init(&fs_info->ordered_operations_mutex);
2760	mutex_init(&fs_info->tree_log_mutex);
2761	mutex_init(&fs_info->chunk_mutex);
2762	mutex_init(&fs_info->transaction_kthread_mutex);
2763	mutex_init(&fs_info->cleaner_mutex);
2764	mutex_init(&fs_info->ro_block_group_mutex);
2765	init_rwsem(&fs_info->commit_root_sem);
2766	init_rwsem(&fs_info->cleanup_work_sem);
2767	init_rwsem(&fs_info->subvol_sem);
2768	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2769
2770	btrfs_init_dev_replace_locks(fs_info);
2771	btrfs_init_qgroup(fs_info);
2772	btrfs_discard_init(fs_info);
2773
2774	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2775	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2776
2777	init_waitqueue_head(&fs_info->transaction_throttle);
2778	init_waitqueue_head(&fs_info->transaction_wait);
2779	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2780	init_waitqueue_head(&fs_info->async_submit_wait);
2781	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2782
2783	/* Usable values until the real ones are cached from the superblock */
2784	fs_info->nodesize = 4096;
2785	fs_info->sectorsize = 4096;
2786	fs_info->sectorsize_bits = ilog2(4096);
2787	fs_info->stripesize = 4096;
2788
2789	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2790
2791	spin_lock_init(&fs_info->swapfile_pins_lock);
2792	fs_info->swapfile_pins = RB_ROOT;
2793
2794	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2795	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2796}
2797
2798static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2799{
2800	int ret;
2801
2802	fs_info->sb = sb;
2803	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2804	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2805
2806	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2807	if (ret)
2808		return ret;
2809
2810	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2811	if (ret)
2812		return ret;
2813
2814	fs_info->dirty_metadata_batch = PAGE_SIZE *
2815					(1 + ilog2(nr_cpu_ids));
2816
2817	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2818	if (ret)
2819		return ret;
2820
2821	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2822			GFP_KERNEL);
2823	if (ret)
2824		return ret;
2825
2826	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2827					GFP_KERNEL);
2828	if (!fs_info->delayed_root)
2829		return -ENOMEM;
2830	btrfs_init_delayed_root(fs_info->delayed_root);
2831
2832	if (sb_rdonly(sb))
2833		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2834
2835	return btrfs_alloc_stripe_hash_table(fs_info);
2836}
2837
2838static int btrfs_uuid_rescan_kthread(void *data)
2839{
2840	struct btrfs_fs_info *fs_info = data;
2841	int ret;
2842
2843	/*
2844	 * 1st step is to iterate through the existing UUID tree and
2845	 * to delete all entries that contain outdated data.
2846	 * 2nd step is to add all missing entries to the UUID tree.
2847	 */
2848	ret = btrfs_uuid_tree_iterate(fs_info);
2849	if (ret < 0) {
2850		if (ret != -EINTR)
2851			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2852				   ret);
2853		up(&fs_info->uuid_tree_rescan_sem);
2854		return ret;
2855	}
2856	return btrfs_uuid_scan_kthread(data);
2857}
2858
2859static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2860{
2861	struct task_struct *task;
2862
2863	down(&fs_info->uuid_tree_rescan_sem);
2864	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2865	if (IS_ERR(task)) {
2866		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2867		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2868		up(&fs_info->uuid_tree_rescan_sem);
2869		return PTR_ERR(task);
2870	}
2871
2872	return 0;
2873}
2874
2875static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2876{
2877	u64 root_objectid = 0;
2878	struct btrfs_root *gang[8];
2879	int i = 0;
2880	int err = 0;
2881	unsigned int ret = 0;
2882
2883	while (1) {
2884		spin_lock(&fs_info->fs_roots_radix_lock);
2885		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2886					     (void **)gang, root_objectid,
2887					     ARRAY_SIZE(gang));
2888		if (!ret) {
2889			spin_unlock(&fs_info->fs_roots_radix_lock);
2890			break;
2891		}
2892		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2893
2894		for (i = 0; i < ret; i++) {
2895			/* Avoid to grab roots in dead_roots. */
2896			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2897				gang[i] = NULL;
2898				continue;
2899			}
2900			/* Grab all the search result for later use. */
2901			gang[i] = btrfs_grab_root(gang[i]);
2902		}
2903		spin_unlock(&fs_info->fs_roots_radix_lock);
2904
2905		for (i = 0; i < ret; i++) {
2906			if (!gang[i])
2907				continue;
2908			root_objectid = gang[i]->root_key.objectid;
2909			err = btrfs_orphan_cleanup(gang[i]);
2910			if (err)
2911				goto out;
2912			btrfs_put_root(gang[i]);
2913		}
2914		root_objectid++;
2915	}
2916out:
2917	/* Release the uncleaned roots due to error. */
2918	for (; i < ret; i++) {
2919		if (gang[i])
2920			btrfs_put_root(gang[i]);
2921	}
2922	return err;
2923}
2924
2925/*
2926 * Some options only have meaning at mount time and shouldn't persist across
2927 * remounts, or be displayed. Clear these at the end of mount and remount
2928 * code paths.
2929 */
2930void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2931{
2932	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
2933	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
2934}
2935
2936/*
2937 * Mounting logic specific to read-write file systems. Shared by open_ctree
2938 * and btrfs_remount when remounting from read-only to read-write.
2939 */
2940int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2941{
2942	int ret;
2943	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2944	bool rebuild_free_space_tree = false;
2945
2946	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2947	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2948		rebuild_free_space_tree = true;
2949	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2950		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2951		btrfs_warn(fs_info, "free space tree is invalid");
2952		rebuild_free_space_tree = true;
2953	}
2954
2955	if (rebuild_free_space_tree) {
2956		btrfs_info(fs_info, "rebuilding free space tree");
2957		ret = btrfs_rebuild_free_space_tree(fs_info);
2958		if (ret) {
2959			btrfs_warn(fs_info,
2960				   "failed to rebuild free space tree: %d", ret);
2961			goto out;
2962		}
2963	}
2964
2965	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2966	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
2967		btrfs_info(fs_info, "disabling free space tree");
2968		ret = btrfs_delete_free_space_tree(fs_info);
2969		if (ret) {
2970			btrfs_warn(fs_info,
2971				   "failed to disable free space tree: %d", ret);
2972			goto out;
2973		}
2974	}
2975
2976	/*
2977	 * btrfs_find_orphan_roots() is responsible for finding all the dead
2978	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
2979	 * them into the fs_info->fs_roots_radix tree. This must be done before
2980	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
2981	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
2982	 * item before the root's tree is deleted - this means that if we unmount
2983	 * or crash before the deletion completes, on the next mount we will not
2984	 * delete what remains of the tree because the orphan item does not
2985	 * exists anymore, which is what tells us we have a pending deletion.
2986	 */
2987	ret = btrfs_find_orphan_roots(fs_info);
2988	if (ret)
2989		goto out;
2990
2991	ret = btrfs_cleanup_fs_roots(fs_info);
2992	if (ret)
2993		goto out;
2994
2995	down_read(&fs_info->cleanup_work_sem);
2996	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2997	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2998		up_read(&fs_info->cleanup_work_sem);
2999		goto out;
3000	}
3001	up_read(&fs_info->cleanup_work_sem);
3002
3003	mutex_lock(&fs_info->cleaner_mutex);
3004	ret = btrfs_recover_relocation(fs_info);
3005	mutex_unlock(&fs_info->cleaner_mutex);
3006	if (ret < 0) {
3007		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3008		goto out;
3009	}
3010
3011	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3012	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3013		btrfs_info(fs_info, "creating free space tree");
3014		ret = btrfs_create_free_space_tree(fs_info);
3015		if (ret) {
3016			btrfs_warn(fs_info,
3017				"failed to create free space tree: %d", ret);
3018			goto out;
3019		}
3020	}
3021
3022	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3023		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3024		if (ret)
3025			goto out;
3026	}
3027
3028	ret = btrfs_resume_balance_async(fs_info);
3029	if (ret)
3030		goto out;
3031
3032	ret = btrfs_resume_dev_replace_async(fs_info);
3033	if (ret) {
3034		btrfs_warn(fs_info, "failed to resume dev_replace");
3035		goto out;
3036	}
3037
3038	btrfs_qgroup_rescan_resume(fs_info);
3039
3040	if (!fs_info->uuid_root) {
3041		btrfs_info(fs_info, "creating UUID tree");
3042		ret = btrfs_create_uuid_tree(fs_info);
3043		if (ret) {
3044			btrfs_warn(fs_info,
3045				   "failed to create the UUID tree %d", ret);
3046			goto out;
3047		}
3048	}
3049
3050out:
3051	return ret;
3052}
3053
3054/*
3055 * Do various sanity and dependency checks of different features.
3056 *
3057 * @is_rw_mount:	If the mount is read-write.
3058 *
3059 * This is the place for less strict checks (like for subpage or artificial
3060 * feature dependencies).
3061 *
3062 * For strict checks or possible corruption detection, see
3063 * btrfs_validate_super().
3064 *
3065 * This should be called after btrfs_parse_options(), as some mount options
3066 * (space cache related) can modify on-disk format like free space tree and
3067 * screw up certain feature dependencies.
3068 */
3069int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3070{
3071	struct btrfs_super_block *disk_super = fs_info->super_copy;
3072	u64 incompat = btrfs_super_incompat_flags(disk_super);
3073	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3074	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3075
3076	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3077		btrfs_err(fs_info,
3078		"cannot mount because of unknown incompat features (0x%llx)",
3079		    incompat);
3080		return -EINVAL;
3081	}
3082
3083	/* Runtime limitation for mixed block groups. */
3084	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3085	    (fs_info->sectorsize != fs_info->nodesize)) {
3086		btrfs_err(fs_info,
3087"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3088			fs_info->nodesize, fs_info->sectorsize);
3089		return -EINVAL;
3090	}
3091
3092	/* Mixed backref is an always-enabled feature. */
3093	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3094
3095	/* Set compression related flags just in case. */
3096	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3097		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3098	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3099		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3100
3101	/*
3102	 * An ancient flag, which should really be marked deprecated.
3103	 * Such runtime limitation doesn't really need a incompat flag.
3104	 */
3105	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3106		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3107
3108	if (compat_ro_unsupp && is_rw_mount) {
3109		btrfs_err(fs_info,
3110	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3111		       compat_ro);
3112		return -EINVAL;
3113	}
3114
3115	/*
3116	 * We have unsupported RO compat features, although RO mounted, we
3117	 * should not cause any metadata writes, including log replay.
3118	 * Or we could screw up whatever the new feature requires.
3119	 */
3120	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3121	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3122		btrfs_err(fs_info,
3123"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3124			  compat_ro);
3125		return -EINVAL;
3126	}
3127
3128	/*
3129	 * Artificial limitations for block group tree, to force
3130	 * block-group-tree to rely on no-holes and free-space-tree.
3131	 */
3132	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3133	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3134	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3135		btrfs_err(fs_info,
3136"block-group-tree feature requires no-holes and free-space-tree features");
3137		return -EINVAL;
3138	}
3139
3140	/*
3141	 * Subpage runtime limitation on v1 cache.
3142	 *
3143	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3144	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3145	 * going to be deprecated anyway.
3146	 */
3147	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3148		btrfs_warn(fs_info,
3149	"v1 space cache is not supported for page size %lu with sectorsize %u",
3150			   PAGE_SIZE, fs_info->sectorsize);
3151		return -EINVAL;
3152	}
3153
3154	/* This can be called by remount, we need to protect the super block. */
3155	spin_lock(&fs_info->super_lock);
3156	btrfs_set_super_incompat_flags(disk_super, incompat);
3157	spin_unlock(&fs_info->super_lock);
3158
3159	return 0;
3160}
3161
3162int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3163		      char *options)
3164{
3165	u32 sectorsize;
3166	u32 nodesize;
3167	u32 stripesize;
3168	u64 generation;
3169	u64 features;
3170	u16 csum_type;
3171	struct btrfs_super_block *disk_super;
3172	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3173	struct btrfs_root *tree_root;
3174	struct btrfs_root *chunk_root;
3175	int ret;
3176	int level;
3177
3178	ret = init_mount_fs_info(fs_info, sb);
3179	if (ret)
3180		goto fail;
3181
3182	/* These need to be init'ed before we start creating inodes and such. */
3183	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3184				     GFP_KERNEL);
3185	fs_info->tree_root = tree_root;
3186	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3187				      GFP_KERNEL);
3188	fs_info->chunk_root = chunk_root;
3189	if (!tree_root || !chunk_root) {
3190		ret = -ENOMEM;
3191		goto fail;
3192	}
3193
3194	ret = btrfs_init_btree_inode(sb);
3195	if (ret)
3196		goto fail;
3197
3198	invalidate_bdev(fs_devices->latest_dev->bdev);
3199
3200	/*
3201	 * Read super block and check the signature bytes only
3202	 */
3203	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3204	if (IS_ERR(disk_super)) {
3205		ret = PTR_ERR(disk_super);
3206		goto fail_alloc;
3207	}
3208
3209	btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3210	/*
3211	 * Verify the type first, if that or the checksum value are
3212	 * corrupted, we'll find out
3213	 */
3214	csum_type = btrfs_super_csum_type(disk_super);
3215	if (!btrfs_supported_super_csum(csum_type)) {
3216		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3217			  csum_type);
3218		ret = -EINVAL;
3219		btrfs_release_disk_super(disk_super);
3220		goto fail_alloc;
3221	}
3222
3223	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3224
3225	ret = btrfs_init_csum_hash(fs_info, csum_type);
3226	if (ret) {
3227		btrfs_release_disk_super(disk_super);
3228		goto fail_alloc;
3229	}
3230
3231	/*
3232	 * We want to check superblock checksum, the type is stored inside.
3233	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3234	 */
3235	if (btrfs_check_super_csum(fs_info, disk_super)) {
3236		btrfs_err(fs_info, "superblock checksum mismatch");
3237		ret = -EINVAL;
3238		btrfs_release_disk_super(disk_super);
3239		goto fail_alloc;
3240	}
3241
3242	/*
3243	 * super_copy is zeroed at allocation time and we never touch the
3244	 * following bytes up to INFO_SIZE, the checksum is calculated from
3245	 * the whole block of INFO_SIZE
3246	 */
3247	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3248	btrfs_release_disk_super(disk_super);
3249
3250	disk_super = fs_info->super_copy;
3251
3252
3253	features = btrfs_super_flags(disk_super);
3254	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3255		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3256		btrfs_set_super_flags(disk_super, features);
3257		btrfs_info(fs_info,
3258			"found metadata UUID change in progress flag, clearing");
3259	}
3260
3261	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3262	       sizeof(*fs_info->super_for_commit));
3263
3264	ret = btrfs_validate_mount_super(fs_info);
3265	if (ret) {
3266		btrfs_err(fs_info, "superblock contains fatal errors");
3267		ret = -EINVAL;
3268		goto fail_alloc;
3269	}
3270
3271	if (!btrfs_super_root(disk_super)) {
3272		btrfs_err(fs_info, "invalid superblock tree root bytenr");
3273		ret = -EINVAL;
3274		goto fail_alloc;
3275	}
3276
3277	/* check FS state, whether FS is broken. */
3278	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3279		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3280
3281	/*
3282	 * In the long term, we'll store the compression type in the super
3283	 * block, and it'll be used for per file compression control.
3284	 */
3285	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3286
3287
3288	/* Set up fs_info before parsing mount options */
3289	nodesize = btrfs_super_nodesize(disk_super);
3290	sectorsize = btrfs_super_sectorsize(disk_super);
3291	stripesize = sectorsize;
3292	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3293	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3294
3295	fs_info->nodesize = nodesize;
3296	fs_info->sectorsize = sectorsize;
3297	fs_info->sectorsize_bits = ilog2(sectorsize);
3298	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3299	fs_info->stripesize = stripesize;
3300
3301	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3302	if (ret)
3303		goto fail_alloc;
3304
3305	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3306	if (ret < 0)
3307		goto fail_alloc;
3308
3309	if (sectorsize < PAGE_SIZE) {
3310		struct btrfs_subpage_info *subpage_info;
3311
3312		/*
3313		 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3314		 * going to be deprecated.
3315		 *
3316		 * Force to use v2 cache for subpage case.
3317		 */
3318		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3319		btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3320			"forcing free space tree for sector size %u with page size %lu",
3321			sectorsize, PAGE_SIZE);
3322
3323		btrfs_warn(fs_info,
3324		"read-write for sector size %u with page size %lu is experimental",
3325			   sectorsize, PAGE_SIZE);
3326		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3327		if (!subpage_info) {
3328			ret = -ENOMEM;
3329			goto fail_alloc;
3330		}
3331		btrfs_init_subpage_info(subpage_info, sectorsize);
3332		fs_info->subpage_info = subpage_info;
3333	}
3334
3335	ret = btrfs_init_workqueues(fs_info);
3336	if (ret)
3337		goto fail_sb_buffer;
3338
3339	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3340	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3341
3342	sb->s_blocksize = sectorsize;
3343	sb->s_blocksize_bits = blksize_bits(sectorsize);
3344	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3345
3346	mutex_lock(&fs_info->chunk_mutex);
3347	ret = btrfs_read_sys_array(fs_info);
3348	mutex_unlock(&fs_info->chunk_mutex);
3349	if (ret) {
3350		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3351		goto fail_sb_buffer;
3352	}
3353
3354	generation = btrfs_super_chunk_root_generation(disk_super);
3355	level = btrfs_super_chunk_root_level(disk_super);
3356	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3357			      generation, level);
3358	if (ret) {
3359		btrfs_err(fs_info, "failed to read chunk root");
3360		goto fail_tree_roots;
3361	}
3362
3363	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3364			   offsetof(struct btrfs_header, chunk_tree_uuid),
3365			   BTRFS_UUID_SIZE);
3366
3367	ret = btrfs_read_chunk_tree(fs_info);
3368	if (ret) {
3369		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3370		goto fail_tree_roots;
3371	}
3372
3373	/*
3374	 * At this point we know all the devices that make this filesystem,
3375	 * including the seed devices but we don't know yet if the replace
3376	 * target is required. So free devices that are not part of this
3377	 * filesystem but skip the replace target device which is checked
3378	 * below in btrfs_init_dev_replace().
3379	 */
3380	btrfs_free_extra_devids(fs_devices);
3381	if (!fs_devices->latest_dev->bdev) {
3382		btrfs_err(fs_info, "failed to read devices");
3383		ret = -EIO;
3384		goto fail_tree_roots;
3385	}
3386
3387	ret = init_tree_roots(fs_info);
3388	if (ret)
3389		goto fail_tree_roots;
3390
3391	/*
3392	 * Get zone type information of zoned block devices. This will also
3393	 * handle emulation of a zoned filesystem if a regular device has the
3394	 * zoned incompat feature flag set.
3395	 */
3396	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3397	if (ret) {
3398		btrfs_err(fs_info,
3399			  "zoned: failed to read device zone info: %d", ret);
3400		goto fail_block_groups;
3401	}
3402
3403	/*
3404	 * If we have a uuid root and we're not being told to rescan we need to
3405	 * check the generation here so we can set the
3406	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3407	 * transaction during a balance or the log replay without updating the
3408	 * uuid generation, and then if we crash we would rescan the uuid tree,
3409	 * even though it was perfectly fine.
3410	 */
3411	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3412	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3413		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3414
3415	ret = btrfs_verify_dev_extents(fs_info);
3416	if (ret) {
3417		btrfs_err(fs_info,
3418			  "failed to verify dev extents against chunks: %d",
3419			  ret);
3420		goto fail_block_groups;
3421	}
3422	ret = btrfs_recover_balance(fs_info);
3423	if (ret) {
3424		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3425		goto fail_block_groups;
3426	}
3427
3428	ret = btrfs_init_dev_stats(fs_info);
3429	if (ret) {
3430		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3431		goto fail_block_groups;
3432	}
3433
3434	ret = btrfs_init_dev_replace(fs_info);
3435	if (ret) {
3436		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3437		goto fail_block_groups;
3438	}
3439
3440	ret = btrfs_check_zoned_mode(fs_info);
3441	if (ret) {
3442		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3443			  ret);
3444		goto fail_block_groups;
3445	}
3446
3447	ret = btrfs_sysfs_add_fsid(fs_devices);
3448	if (ret) {
3449		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3450				ret);
3451		goto fail_block_groups;
3452	}
3453
3454	ret = btrfs_sysfs_add_mounted(fs_info);
3455	if (ret) {
3456		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3457		goto fail_fsdev_sysfs;
3458	}
3459
3460	ret = btrfs_init_space_info(fs_info);
3461	if (ret) {
3462		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3463		goto fail_sysfs;
3464	}
3465
3466	ret = btrfs_read_block_groups(fs_info);
3467	if (ret) {
3468		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3469		goto fail_sysfs;
3470	}
3471
3472	btrfs_free_zone_cache(fs_info);
3473
3474	btrfs_check_active_zone_reservation(fs_info);
3475
3476	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3477	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3478		btrfs_warn(fs_info,
3479		"writable mount is not allowed due to too many missing devices");
3480		ret = -EINVAL;
3481		goto fail_sysfs;
3482	}
3483
3484	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3485					       "btrfs-cleaner");
3486	if (IS_ERR(fs_info->cleaner_kthread)) {
3487		ret = PTR_ERR(fs_info->cleaner_kthread);
3488		goto fail_sysfs;
3489	}
3490
3491	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3492						   tree_root,
3493						   "btrfs-transaction");
3494	if (IS_ERR(fs_info->transaction_kthread)) {
3495		ret = PTR_ERR(fs_info->transaction_kthread);
3496		goto fail_cleaner;
3497	}
3498
3499	if (!btrfs_test_opt(fs_info, NOSSD) &&
3500	    !fs_info->fs_devices->rotating) {
3501		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3502	}
3503
3504	/*
3505	 * For devices supporting discard turn on discard=async automatically,
3506	 * unless it's already set or disabled. This could be turned off by
3507	 * nodiscard for the same mount.
3508	 *
3509	 * The zoned mode piggy backs on the discard functionality for
3510	 * resetting a zone. There is no reason to delay the zone reset as it is
3511	 * fast enough. So, do not enable async discard for zoned mode.
3512	 */
3513	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3514	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3515	      btrfs_test_opt(fs_info, NODISCARD)) &&
3516	    fs_info->fs_devices->discardable &&
3517	    !btrfs_is_zoned(fs_info)) {
3518		btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3519				   "auto enabling async discard");
3520	}
3521
3522#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3523	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3524		ret = btrfsic_mount(fs_info, fs_devices,
3525				    btrfs_test_opt(fs_info,
3526					CHECK_INTEGRITY_DATA) ? 1 : 0,
3527				    fs_info->check_integrity_print_mask);
3528		if (ret)
3529			btrfs_warn(fs_info,
3530				"failed to initialize integrity check module: %d",
3531				ret);
3532	}
3533#endif
3534	ret = btrfs_read_qgroup_config(fs_info);
3535	if (ret)
3536		goto fail_trans_kthread;
3537
3538	if (btrfs_build_ref_tree(fs_info))
3539		btrfs_err(fs_info, "couldn't build ref tree");
3540
3541	/* do not make disk changes in broken FS or nologreplay is given */
3542	if (btrfs_super_log_root(disk_super) != 0 &&
3543	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3544		btrfs_info(fs_info, "start tree-log replay");
3545		ret = btrfs_replay_log(fs_info, fs_devices);
3546		if (ret)
3547			goto fail_qgroup;
3548	}
3549
3550	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3551	if (IS_ERR(fs_info->fs_root)) {
3552		ret = PTR_ERR(fs_info->fs_root);
3553		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3554		fs_info->fs_root = NULL;
3555		goto fail_qgroup;
3556	}
3557
3558	if (sb_rdonly(sb))
3559		goto clear_oneshot;
3560
3561	ret = btrfs_start_pre_rw_mount(fs_info);
3562	if (ret) {
3563		close_ctree(fs_info);
3564		return ret;
3565	}
3566	btrfs_discard_resume(fs_info);
3567
3568	if (fs_info->uuid_root &&
3569	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3570	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3571		btrfs_info(fs_info, "checking UUID tree");
3572		ret = btrfs_check_uuid_tree(fs_info);
3573		if (ret) {
3574			btrfs_warn(fs_info,
3575				"failed to check the UUID tree: %d", ret);
3576			close_ctree(fs_info);
3577			return ret;
3578		}
3579	}
3580
3581	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3582
3583	/* Kick the cleaner thread so it'll start deleting snapshots. */
3584	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3585		wake_up_process(fs_info->cleaner_kthread);
3586
3587clear_oneshot:
3588	btrfs_clear_oneshot_options(fs_info);
3589	return 0;
3590
3591fail_qgroup:
3592	btrfs_free_qgroup_config(fs_info);
3593fail_trans_kthread:
3594	kthread_stop(fs_info->transaction_kthread);
3595	btrfs_cleanup_transaction(fs_info);
3596	btrfs_free_fs_roots(fs_info);
3597fail_cleaner:
3598	kthread_stop(fs_info->cleaner_kthread);
3599
3600	/*
3601	 * make sure we're done with the btree inode before we stop our
3602	 * kthreads
3603	 */
3604	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3605
3606fail_sysfs:
3607	btrfs_sysfs_remove_mounted(fs_info);
3608
3609fail_fsdev_sysfs:
3610	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3611
3612fail_block_groups:
3613	btrfs_put_block_group_cache(fs_info);
3614
3615fail_tree_roots:
3616	if (fs_info->data_reloc_root)
3617		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3618	free_root_pointers(fs_info, true);
3619	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3620
3621fail_sb_buffer:
3622	btrfs_stop_all_workers(fs_info);
3623	btrfs_free_block_groups(fs_info);
3624fail_alloc:
3625	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3626
3627	iput(fs_info->btree_inode);
3628fail:
3629	btrfs_close_devices(fs_info->fs_devices);
3630	ASSERT(ret < 0);
3631	return ret;
3632}
3633ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3634
3635static void btrfs_end_super_write(struct bio *bio)
3636{
3637	struct btrfs_device *device = bio->bi_private;
3638	struct bio_vec *bvec;
3639	struct bvec_iter_all iter_all;
3640	struct page *page;
3641
3642	bio_for_each_segment_all(bvec, bio, iter_all) {
3643		page = bvec->bv_page;
3644
3645		if (bio->bi_status) {
3646			btrfs_warn_rl_in_rcu(device->fs_info,
3647				"lost page write due to IO error on %s (%d)",
3648				btrfs_dev_name(device),
3649				blk_status_to_errno(bio->bi_status));
3650			ClearPageUptodate(page);
3651			SetPageError(page);
3652			btrfs_dev_stat_inc_and_print(device,
3653						     BTRFS_DEV_STAT_WRITE_ERRS);
3654		} else {
3655			SetPageUptodate(page);
3656		}
3657
3658		put_page(page);
3659		unlock_page(page);
3660	}
3661
3662	bio_put(bio);
3663}
3664
3665struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3666						   int copy_num, bool drop_cache)
3667{
3668	struct btrfs_super_block *super;
3669	struct page *page;
3670	u64 bytenr, bytenr_orig;
3671	struct address_space *mapping = bdev->bd_inode->i_mapping;
3672	int ret;
3673
3674	bytenr_orig = btrfs_sb_offset(copy_num);
3675	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3676	if (ret == -ENOENT)
3677		return ERR_PTR(-EINVAL);
3678	else if (ret)
3679		return ERR_PTR(ret);
3680
3681	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3682		return ERR_PTR(-EINVAL);
3683
3684	if (drop_cache) {
3685		/* This should only be called with the primary sb. */
3686		ASSERT(copy_num == 0);
3687
3688		/*
3689		 * Drop the page of the primary superblock, so later read will
3690		 * always read from the device.
3691		 */
3692		invalidate_inode_pages2_range(mapping,
3693				bytenr >> PAGE_SHIFT,
3694				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3695	}
3696
3697	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3698	if (IS_ERR(page))
3699		return ERR_CAST(page);
3700
3701	super = page_address(page);
3702	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3703		btrfs_release_disk_super(super);
3704		return ERR_PTR(-ENODATA);
3705	}
3706
3707	if (btrfs_super_bytenr(super) != bytenr_orig) {
3708		btrfs_release_disk_super(super);
3709		return ERR_PTR(-EINVAL);
3710	}
3711
3712	return super;
3713}
3714
3715
3716struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3717{
3718	struct btrfs_super_block *super, *latest = NULL;
3719	int i;
3720	u64 transid = 0;
3721
3722	/* we would like to check all the supers, but that would make
3723	 * a btrfs mount succeed after a mkfs from a different FS.
3724	 * So, we need to add a special mount option to scan for
3725	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3726	 */
3727	for (i = 0; i < 1; i++) {
3728		super = btrfs_read_dev_one_super(bdev, i, false);
3729		if (IS_ERR(super))
3730			continue;
3731
3732		if (!latest || btrfs_super_generation(super) > transid) {
3733			if (latest)
3734				btrfs_release_disk_super(super);
3735
3736			latest = super;
3737			transid = btrfs_super_generation(super);
3738		}
3739	}
3740
3741	return super;
3742}
3743
3744/*
3745 * Write superblock @sb to the @device. Do not wait for completion, all the
3746 * pages we use for writing are locked.
3747 *
3748 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3749 * the expected device size at commit time. Note that max_mirrors must be
3750 * same for write and wait phases.
3751 *
3752 * Return number of errors when page is not found or submission fails.
3753 */
3754static int write_dev_supers(struct btrfs_device *device,
3755			    struct btrfs_super_block *sb, int max_mirrors)
3756{
3757	struct btrfs_fs_info *fs_info = device->fs_info;
3758	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3759	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3760	int i;
3761	int errors = 0;
3762	int ret;
3763	u64 bytenr, bytenr_orig;
3764
3765	if (max_mirrors == 0)
3766		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3767
3768	shash->tfm = fs_info->csum_shash;
3769
3770	for (i = 0; i < max_mirrors; i++) {
3771		struct page *page;
3772		struct bio *bio;
3773		struct btrfs_super_block *disk_super;
3774
3775		bytenr_orig = btrfs_sb_offset(i);
3776		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3777		if (ret == -ENOENT) {
3778			continue;
3779		} else if (ret < 0) {
3780			btrfs_err(device->fs_info,
3781				"couldn't get super block location for mirror %d",
3782				i);
3783			errors++;
3784			continue;
3785		}
3786		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3787		    device->commit_total_bytes)
3788			break;
3789
3790		btrfs_set_super_bytenr(sb, bytenr_orig);
3791
3792		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3793				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3794				    sb->csum);
3795
3796		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3797					   GFP_NOFS);
3798		if (!page) {
3799			btrfs_err(device->fs_info,
3800			    "couldn't get super block page for bytenr %llu",
3801			    bytenr);
3802			errors++;
3803			continue;
3804		}
3805
3806		/* Bump the refcount for wait_dev_supers() */
3807		get_page(page);
3808
3809		disk_super = page_address(page);
3810		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3811
3812		/*
3813		 * Directly use bios here instead of relying on the page cache
3814		 * to do I/O, so we don't lose the ability to do integrity
3815		 * checking.
3816		 */
3817		bio = bio_alloc(device->bdev, 1,
3818				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3819				GFP_NOFS);
3820		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3821		bio->bi_private = device;
3822		bio->bi_end_io = btrfs_end_super_write;
3823		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3824			       offset_in_page(bytenr));
3825
3826		/*
3827		 * We FUA only the first super block.  The others we allow to
3828		 * go down lazy and there's a short window where the on-disk
3829		 * copies might still contain the older version.
3830		 */
3831		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3832			bio->bi_opf |= REQ_FUA;
3833
3834		btrfsic_check_bio(bio);
3835		submit_bio(bio);
3836
3837		if (btrfs_advance_sb_log(device, i))
3838			errors++;
3839	}
3840	return errors < i ? 0 : -1;
3841}
3842
3843/*
3844 * Wait for write completion of superblocks done by write_dev_supers,
3845 * @max_mirrors same for write and wait phases.
3846 *
3847 * Return number of errors when page is not found or not marked up to
3848 * date.
3849 */
3850static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3851{
3852	int i;
3853	int errors = 0;
3854	bool primary_failed = false;
3855	int ret;
3856	u64 bytenr;
3857
3858	if (max_mirrors == 0)
3859		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3860
3861	for (i = 0; i < max_mirrors; i++) {
3862		struct page *page;
3863
3864		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3865		if (ret == -ENOENT) {
3866			break;
3867		} else if (ret < 0) {
3868			errors++;
3869			if (i == 0)
3870				primary_failed = true;
3871			continue;
3872		}
3873		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3874		    device->commit_total_bytes)
3875			break;
3876
3877		page = find_get_page(device->bdev->bd_inode->i_mapping,
3878				     bytenr >> PAGE_SHIFT);
3879		if (!page) {
3880			errors++;
3881			if (i == 0)
3882				primary_failed = true;
3883			continue;
3884		}
3885		/* Page is submitted locked and unlocked once the IO completes */
3886		wait_on_page_locked(page);
3887		if (PageError(page)) {
3888			errors++;
3889			if (i == 0)
3890				primary_failed = true;
3891		}
3892
3893		/* Drop our reference */
3894		put_page(page);
3895
3896		/* Drop the reference from the writing run */
3897		put_page(page);
3898	}
3899
3900	/* log error, force error return */
3901	if (primary_failed) {
3902		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3903			  device->devid);
3904		return -1;
3905	}
3906
3907	return errors < i ? 0 : -1;
3908}
3909
3910/*
3911 * endio for the write_dev_flush, this will wake anyone waiting
3912 * for the barrier when it is done
3913 */
3914static void btrfs_end_empty_barrier(struct bio *bio)
3915{
3916	bio_uninit(bio);
3917	complete(bio->bi_private);
3918}
3919
3920/*
3921 * Submit a flush request to the device if it supports it. Error handling is
3922 * done in the waiting counterpart.
3923 */
3924static void write_dev_flush(struct btrfs_device *device)
3925{
3926	struct bio *bio = &device->flush_bio;
3927
3928	device->last_flush_error = BLK_STS_OK;
3929
3930#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3931	/*
3932	 * When a disk has write caching disabled, we skip submission of a bio
3933	 * with flush and sync requests before writing the superblock, since
3934	 * it's not needed. However when the integrity checker is enabled, this
3935	 * results in reports that there are metadata blocks referred by a
3936	 * superblock that were not properly flushed. So don't skip the bio
3937	 * submission only when the integrity checker is enabled for the sake
3938	 * of simplicity, since this is a debug tool and not meant for use in
3939	 * non-debug builds.
3940	 */
3941	if (!bdev_write_cache(device->bdev))
3942		return;
3943#endif
3944
3945	bio_init(bio, device->bdev, NULL, 0,
3946		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3947	bio->bi_end_io = btrfs_end_empty_barrier;
3948	init_completion(&device->flush_wait);
3949	bio->bi_private = &device->flush_wait;
3950
3951	btrfsic_check_bio(bio);
3952	submit_bio(bio);
3953	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3954}
3955
3956/*
3957 * If the flush bio has been submitted by write_dev_flush, wait for it.
3958 * Return true for any error, and false otherwise.
3959 */
3960static bool wait_dev_flush(struct btrfs_device *device)
3961{
3962	struct bio *bio = &device->flush_bio;
3963
3964	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3965		return false;
3966
3967	wait_for_completion_io(&device->flush_wait);
3968
3969	if (bio->bi_status) {
3970		device->last_flush_error = bio->bi_status;
3971		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3972		return true;
3973	}
3974
3975	return false;
3976}
3977
3978/*
3979 * send an empty flush down to each device in parallel,
3980 * then wait for them
3981 */
3982static int barrier_all_devices(struct btrfs_fs_info *info)
3983{
3984	struct list_head *head;
3985	struct btrfs_device *dev;
3986	int errors_wait = 0;
3987
3988	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3989	/* send down all the barriers */
3990	head = &info->fs_devices->devices;
3991	list_for_each_entry(dev, head, dev_list) {
3992		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3993			continue;
3994		if (!dev->bdev)
3995			continue;
3996		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3997		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3998			continue;
3999
4000		write_dev_flush(dev);
4001	}
4002
4003	/* wait for all the barriers */
4004	list_for_each_entry(dev, head, dev_list) {
4005		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4006			continue;
4007		if (!dev->bdev) {
4008			errors_wait++;
4009			continue;
4010		}
4011		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4012		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4013			continue;
4014
4015		if (wait_dev_flush(dev))
4016			errors_wait++;
4017	}
4018
4019	/*
4020	 * Checks last_flush_error of disks in order to determine the device
4021	 * state.
4022	 */
4023	if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
4024		return -EIO;
4025
4026	return 0;
4027}
4028
4029int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4030{
4031	int raid_type;
4032	int min_tolerated = INT_MAX;
4033
4034	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4035	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4036		min_tolerated = min_t(int, min_tolerated,
4037				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4038				    tolerated_failures);
4039
4040	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4041		if (raid_type == BTRFS_RAID_SINGLE)
4042			continue;
4043		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4044			continue;
4045		min_tolerated = min_t(int, min_tolerated,
4046				    btrfs_raid_array[raid_type].
4047				    tolerated_failures);
4048	}
4049
4050	if (min_tolerated == INT_MAX) {
4051		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4052		min_tolerated = 0;
4053	}
4054
4055	return min_tolerated;
4056}
4057
4058int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4059{
4060	struct list_head *head;
4061	struct btrfs_device *dev;
4062	struct btrfs_super_block *sb;
4063	struct btrfs_dev_item *dev_item;
4064	int ret;
4065	int do_barriers;
4066	int max_errors;
4067	int total_errors = 0;
4068	u64 flags;
4069
4070	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4071
4072	/*
4073	 * max_mirrors == 0 indicates we're from commit_transaction,
4074	 * not from fsync where the tree roots in fs_info have not
4075	 * been consistent on disk.
4076	 */
4077	if (max_mirrors == 0)
4078		backup_super_roots(fs_info);
4079
4080	sb = fs_info->super_for_commit;
4081	dev_item = &sb->dev_item;
4082
4083	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4084	head = &fs_info->fs_devices->devices;
4085	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4086
4087	if (do_barriers) {
4088		ret = barrier_all_devices(fs_info);
4089		if (ret) {
4090			mutex_unlock(
4091				&fs_info->fs_devices->device_list_mutex);
4092			btrfs_handle_fs_error(fs_info, ret,
4093					      "errors while submitting device barriers.");
4094			return ret;
4095		}
4096	}
4097
4098	list_for_each_entry(dev, head, dev_list) {
4099		if (!dev->bdev) {
4100			total_errors++;
4101			continue;
4102		}
4103		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4104		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4105			continue;
4106
4107		btrfs_set_stack_device_generation(dev_item, 0);
4108		btrfs_set_stack_device_type(dev_item, dev->type);
4109		btrfs_set_stack_device_id(dev_item, dev->devid);
4110		btrfs_set_stack_device_total_bytes(dev_item,
4111						   dev->commit_total_bytes);
4112		btrfs_set_stack_device_bytes_used(dev_item,
4113						  dev->commit_bytes_used);
4114		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4115		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4116		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4117		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4118		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4119		       BTRFS_FSID_SIZE);
4120
4121		flags = btrfs_super_flags(sb);
4122		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4123
4124		ret = btrfs_validate_write_super(fs_info, sb);
4125		if (ret < 0) {
4126			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4127			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4128				"unexpected superblock corruption detected");
4129			return -EUCLEAN;
4130		}
4131
4132		ret = write_dev_supers(dev, sb, max_mirrors);
4133		if (ret)
4134			total_errors++;
4135	}
4136	if (total_errors > max_errors) {
4137		btrfs_err(fs_info, "%d errors while writing supers",
4138			  total_errors);
4139		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4140
4141		/* FUA is masked off if unsupported and can't be the reason */
4142		btrfs_handle_fs_error(fs_info, -EIO,
4143				      "%d errors while writing supers",
4144				      total_errors);
4145		return -EIO;
4146	}
4147
4148	total_errors = 0;
4149	list_for_each_entry(dev, head, dev_list) {
4150		if (!dev->bdev)
4151			continue;
4152		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4153		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4154			continue;
4155
4156		ret = wait_dev_supers(dev, max_mirrors);
4157		if (ret)
4158			total_errors++;
4159	}
4160	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4161	if (total_errors > max_errors) {
4162		btrfs_handle_fs_error(fs_info, -EIO,
4163				      "%d errors while writing supers",
4164				      total_errors);
4165		return -EIO;
4166	}
4167	return 0;
4168}
4169
4170/* Drop a fs root from the radix tree and free it. */
4171void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4172				  struct btrfs_root *root)
4173{
4174	bool drop_ref = false;
4175
4176	spin_lock(&fs_info->fs_roots_radix_lock);
4177	radix_tree_delete(&fs_info->fs_roots_radix,
4178			  (unsigned long)root->root_key.objectid);
4179	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4180		drop_ref = true;
4181	spin_unlock(&fs_info->fs_roots_radix_lock);
4182
4183	if (BTRFS_FS_ERROR(fs_info)) {
4184		ASSERT(root->log_root == NULL);
4185		if (root->reloc_root) {
4186			btrfs_put_root(root->reloc_root);
4187			root->reloc_root = NULL;
4188		}
4189	}
4190
4191	if (drop_ref)
4192		btrfs_put_root(root);
4193}
4194
4195int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4196{
4197	struct btrfs_root *root = fs_info->tree_root;
4198	struct btrfs_trans_handle *trans;
4199
4200	mutex_lock(&fs_info->cleaner_mutex);
4201	btrfs_run_delayed_iputs(fs_info);
4202	mutex_unlock(&fs_info->cleaner_mutex);
4203	wake_up_process(fs_info->cleaner_kthread);
4204
4205	/* wait until ongoing cleanup work done */
4206	down_write(&fs_info->cleanup_work_sem);
4207	up_write(&fs_info->cleanup_work_sem);
4208
4209	trans = btrfs_join_transaction(root);
4210	if (IS_ERR(trans))
4211		return PTR_ERR(trans);
4212	return btrfs_commit_transaction(trans);
4213}
4214
4215static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4216{
4217	struct btrfs_transaction *trans;
4218	struct btrfs_transaction *tmp;
4219	bool found = false;
4220
4221	if (list_empty(&fs_info->trans_list))
4222		return;
4223
4224	/*
4225	 * This function is only called at the very end of close_ctree(),
4226	 * thus no other running transaction, no need to take trans_lock.
4227	 */
4228	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4229	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4230		struct extent_state *cached = NULL;
4231		u64 dirty_bytes = 0;
4232		u64 cur = 0;
4233		u64 found_start;
4234		u64 found_end;
4235
4236		found = true;
4237		while (find_first_extent_bit(&trans->dirty_pages, cur,
4238			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4239			dirty_bytes += found_end + 1 - found_start;
4240			cur = found_end + 1;
4241		}
4242		btrfs_warn(fs_info,
4243	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4244			   trans->transid, dirty_bytes);
4245		btrfs_cleanup_one_transaction(trans, fs_info);
4246
4247		if (trans == fs_info->running_transaction)
4248			fs_info->running_transaction = NULL;
4249		list_del_init(&trans->list);
4250
4251		btrfs_put_transaction(trans);
4252		trace_btrfs_transaction_commit(fs_info);
4253	}
4254	ASSERT(!found);
4255}
4256
4257void __cold close_ctree(struct btrfs_fs_info *fs_info)
4258{
4259	int ret;
4260
4261	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4262
4263	/*
4264	 * If we had UNFINISHED_DROPS we could still be processing them, so
4265	 * clear that bit and wake up relocation so it can stop.
4266	 * We must do this before stopping the block group reclaim task, because
4267	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4268	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4269	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4270	 * return 1.
4271	 */
4272	btrfs_wake_unfinished_drop(fs_info);
4273
4274	/*
4275	 * We may have the reclaim task running and relocating a data block group,
4276	 * in which case it may create delayed iputs. So stop it before we park
4277	 * the cleaner kthread otherwise we can get new delayed iputs after
4278	 * parking the cleaner, and that can make the async reclaim task to hang
4279	 * if it's waiting for delayed iputs to complete, since the cleaner is
4280	 * parked and can not run delayed iputs - this will make us hang when
4281	 * trying to stop the async reclaim task.
4282	 */
4283	cancel_work_sync(&fs_info->reclaim_bgs_work);
4284	/*
4285	 * We don't want the cleaner to start new transactions, add more delayed
4286	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4287	 * because that frees the task_struct, and the transaction kthread might
4288	 * still try to wake up the cleaner.
4289	 */
4290	kthread_park(fs_info->cleaner_kthread);
4291
4292	/* wait for the qgroup rescan worker to stop */
4293	btrfs_qgroup_wait_for_completion(fs_info, false);
4294
4295	/* wait for the uuid_scan task to finish */
4296	down(&fs_info->uuid_tree_rescan_sem);
4297	/* avoid complains from lockdep et al., set sem back to initial state */
4298	up(&fs_info->uuid_tree_rescan_sem);
4299
4300	/* pause restriper - we want to resume on mount */
4301	btrfs_pause_balance(fs_info);
4302
4303	btrfs_dev_replace_suspend_for_unmount(fs_info);
4304
4305	btrfs_scrub_cancel(fs_info);
4306
4307	/* wait for any defraggers to finish */
4308	wait_event(fs_info->transaction_wait,
4309		   (atomic_read(&fs_info->defrag_running) == 0));
4310
4311	/* clear out the rbtree of defraggable inodes */
4312	btrfs_cleanup_defrag_inodes(fs_info);
4313
4314	/*
4315	 * After we parked the cleaner kthread, ordered extents may have
4316	 * completed and created new delayed iputs. If one of the async reclaim
4317	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4318	 * can hang forever trying to stop it, because if a delayed iput is
4319	 * added after it ran btrfs_run_delayed_iputs() and before it called
4320	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4321	 * no one else to run iputs.
4322	 *
4323	 * So wait for all ongoing ordered extents to complete and then run
4324	 * delayed iputs. This works because once we reach this point no one
4325	 * can either create new ordered extents nor create delayed iputs
4326	 * through some other means.
4327	 *
4328	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4329	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4330	 * but the delayed iput for the respective inode is made only when doing
4331	 * the final btrfs_put_ordered_extent() (which must happen at
4332	 * btrfs_finish_ordered_io() when we are unmounting).
4333	 */
4334	btrfs_flush_workqueue(fs_info->endio_write_workers);
4335	/* Ordered extents for free space inodes. */
4336	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4337	btrfs_run_delayed_iputs(fs_info);
4338
4339	cancel_work_sync(&fs_info->async_reclaim_work);
4340	cancel_work_sync(&fs_info->async_data_reclaim_work);
4341	cancel_work_sync(&fs_info->preempt_reclaim_work);
4342
4343	/* Cancel or finish ongoing discard work */
4344	btrfs_discard_cleanup(fs_info);
4345
4346	if (!sb_rdonly(fs_info->sb)) {
4347		/*
4348		 * The cleaner kthread is stopped, so do one final pass over
4349		 * unused block groups.
4350		 */
4351		btrfs_delete_unused_bgs(fs_info);
4352
4353		/*
4354		 * There might be existing delayed inode workers still running
4355		 * and holding an empty delayed inode item. We must wait for
4356		 * them to complete first because they can create a transaction.
4357		 * This happens when someone calls btrfs_balance_delayed_items()
4358		 * and then a transaction commit runs the same delayed nodes
4359		 * before any delayed worker has done something with the nodes.
4360		 * We must wait for any worker here and not at transaction
4361		 * commit time since that could cause a deadlock.
4362		 * This is a very rare case.
4363		 */
4364		btrfs_flush_workqueue(fs_info->delayed_workers);
4365
4366		ret = btrfs_commit_super(fs_info);
4367		if (ret)
4368			btrfs_err(fs_info, "commit super ret %d", ret);
4369	}
4370
4371	if (BTRFS_FS_ERROR(fs_info))
4372		btrfs_error_commit_super(fs_info);
4373
4374	kthread_stop(fs_info->transaction_kthread);
4375	kthread_stop(fs_info->cleaner_kthread);
4376
4377	ASSERT(list_empty(&fs_info->delayed_iputs));
4378	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4379
4380	if (btrfs_check_quota_leak(fs_info)) {
4381		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4382		btrfs_err(fs_info, "qgroup reserved space leaked");
4383	}
4384
4385	btrfs_free_qgroup_config(fs_info);
4386	ASSERT(list_empty(&fs_info->delalloc_roots));
4387
4388	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4389		btrfs_info(fs_info, "at unmount delalloc count %lld",
4390		       percpu_counter_sum(&fs_info->delalloc_bytes));
4391	}
4392
4393	if (percpu_counter_sum(&fs_info->ordered_bytes))
4394		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4395			   percpu_counter_sum(&fs_info->ordered_bytes));
4396
4397	btrfs_sysfs_remove_mounted(fs_info);
4398	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4399
4400	btrfs_put_block_group_cache(fs_info);
4401
4402	/*
4403	 * we must make sure there is not any read request to
4404	 * submit after we stopping all workers.
4405	 */
4406	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4407	btrfs_stop_all_workers(fs_info);
4408
4409	/* We shouldn't have any transaction open at this point */
4410	warn_about_uncommitted_trans(fs_info);
4411
4412	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4413	free_root_pointers(fs_info, true);
4414	btrfs_free_fs_roots(fs_info);
4415
4416	/*
4417	 * We must free the block groups after dropping the fs_roots as we could
4418	 * have had an IO error and have left over tree log blocks that aren't
4419	 * cleaned up until the fs roots are freed.  This makes the block group
4420	 * accounting appear to be wrong because there's pending reserved bytes,
4421	 * so make sure we do the block group cleanup afterwards.
4422	 */
4423	btrfs_free_block_groups(fs_info);
4424
4425	iput(fs_info->btree_inode);
4426
4427#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4428	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4429		btrfsic_unmount(fs_info->fs_devices);
4430#endif
4431
4432	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4433	btrfs_close_devices(fs_info->fs_devices);
4434}
4435
4436void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4437			     struct extent_buffer *buf)
4438{
4439	struct btrfs_fs_info *fs_info = buf->fs_info;
4440	u64 transid = btrfs_header_generation(buf);
4441
4442#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4443	/*
4444	 * This is a fast path so only do this check if we have sanity tests
4445	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4446	 * outside of the sanity tests.
4447	 */
4448	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4449		return;
4450#endif
4451	/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4452	ASSERT(trans->transid == fs_info->generation);
4453	btrfs_assert_tree_write_locked(buf);
4454	if (transid != fs_info->generation) {
4455		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4456			buf->start, transid, fs_info->generation);
4457		btrfs_abort_transaction(trans, -EUCLEAN);
4458	}
4459	set_extent_buffer_dirty(buf);
4460#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4461	/*
4462	 * btrfs_check_leaf() won't check item data if we don't have WRITTEN
4463	 * set, so this will only validate the basic structure of the items.
4464	 */
4465	if (btrfs_header_level(buf) == 0 && btrfs_check_leaf(buf)) {
4466		btrfs_print_leaf(buf);
4467		ASSERT(0);
4468	}
4469#endif
4470}
4471
4472static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4473					int flush_delayed)
4474{
4475	/*
4476	 * looks as though older kernels can get into trouble with
4477	 * this code, they end up stuck in balance_dirty_pages forever
4478	 */
4479	int ret;
4480
4481	if (current->flags & PF_MEMALLOC)
4482		return;
4483
4484	if (flush_delayed)
4485		btrfs_balance_delayed_items(fs_info);
4486
4487	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4488				     BTRFS_DIRTY_METADATA_THRESH,
4489				     fs_info->dirty_metadata_batch);
4490	if (ret > 0) {
4491		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4492	}
4493}
4494
4495void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4496{
4497	__btrfs_btree_balance_dirty(fs_info, 1);
4498}
4499
4500void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4501{
4502	__btrfs_btree_balance_dirty(fs_info, 0);
4503}
4504
4505static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4506{
4507	/* cleanup FS via transaction */
4508	btrfs_cleanup_transaction(fs_info);
4509
4510	mutex_lock(&fs_info->cleaner_mutex);
4511	btrfs_run_delayed_iputs(fs_info);
4512	mutex_unlock(&fs_info->cleaner_mutex);
4513
4514	down_write(&fs_info->cleanup_work_sem);
4515	up_write(&fs_info->cleanup_work_sem);
4516}
4517
4518static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4519{
4520	struct btrfs_root *gang[8];
4521	u64 root_objectid = 0;
4522	int ret;
4523
4524	spin_lock(&fs_info->fs_roots_radix_lock);
4525	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4526					     (void **)gang, root_objectid,
4527					     ARRAY_SIZE(gang))) != 0) {
4528		int i;
4529
4530		for (i = 0; i < ret; i++)
4531			gang[i] = btrfs_grab_root(gang[i]);
4532		spin_unlock(&fs_info->fs_roots_radix_lock);
4533
4534		for (i = 0; i < ret; i++) {
4535			if (!gang[i])
4536				continue;
4537			root_objectid = gang[i]->root_key.objectid;
4538			btrfs_free_log(NULL, gang[i]);
4539			btrfs_put_root(gang[i]);
4540		}
4541		root_objectid++;
4542		spin_lock(&fs_info->fs_roots_radix_lock);
4543	}
4544	spin_unlock(&fs_info->fs_roots_radix_lock);
4545	btrfs_free_log_root_tree(NULL, fs_info);
4546}
4547
4548static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4549{
4550	struct btrfs_ordered_extent *ordered;
4551
4552	spin_lock(&root->ordered_extent_lock);
4553	/*
4554	 * This will just short circuit the ordered completion stuff which will
4555	 * make sure the ordered extent gets properly cleaned up.
4556	 */
4557	list_for_each_entry(ordered, &root->ordered_extents,
4558			    root_extent_list)
4559		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4560	spin_unlock(&root->ordered_extent_lock);
4561}
4562
4563static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4564{
4565	struct btrfs_root *root;
4566	LIST_HEAD(splice);
4567
4568	spin_lock(&fs_info->ordered_root_lock);
4569	list_splice_init(&fs_info->ordered_roots, &splice);
4570	while (!list_empty(&splice)) {
4571		root = list_first_entry(&splice, struct btrfs_root,
4572					ordered_root);
4573		list_move_tail(&root->ordered_root,
4574			       &fs_info->ordered_roots);
4575
4576		spin_unlock(&fs_info->ordered_root_lock);
4577		btrfs_destroy_ordered_extents(root);
4578
4579		cond_resched();
4580		spin_lock(&fs_info->ordered_root_lock);
4581	}
4582	spin_unlock(&fs_info->ordered_root_lock);
4583
4584	/*
4585	 * We need this here because if we've been flipped read-only we won't
4586	 * get sync() from the umount, so we need to make sure any ordered
4587	 * extents that haven't had their dirty pages IO start writeout yet
4588	 * actually get run and error out properly.
4589	 */
4590	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4591}
4592
4593static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4594				       struct btrfs_fs_info *fs_info)
4595{
4596	struct rb_node *node;
4597	struct btrfs_delayed_ref_root *delayed_refs;
4598	struct btrfs_delayed_ref_node *ref;
4599
4600	delayed_refs = &trans->delayed_refs;
4601
4602	spin_lock(&delayed_refs->lock);
4603	if (atomic_read(&delayed_refs->num_entries) == 0) {
4604		spin_unlock(&delayed_refs->lock);
4605		btrfs_debug(fs_info, "delayed_refs has NO entry");
4606		return;
4607	}
4608
4609	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4610		struct btrfs_delayed_ref_head *head;
4611		struct rb_node *n;
4612		bool pin_bytes = false;
4613
4614		head = rb_entry(node, struct btrfs_delayed_ref_head,
4615				href_node);
4616		if (btrfs_delayed_ref_lock(delayed_refs, head))
4617			continue;
4618
4619		spin_lock(&head->lock);
4620		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4621			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4622				       ref_node);
4623			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4624			RB_CLEAR_NODE(&ref->ref_node);
4625			if (!list_empty(&ref->add_list))
4626				list_del(&ref->add_list);
4627			atomic_dec(&delayed_refs->num_entries);
4628			btrfs_put_delayed_ref(ref);
4629		}
4630		if (head->must_insert_reserved)
4631			pin_bytes = true;
4632		btrfs_free_delayed_extent_op(head->extent_op);
4633		btrfs_delete_ref_head(delayed_refs, head);
4634		spin_unlock(&head->lock);
4635		spin_unlock(&delayed_refs->lock);
4636		mutex_unlock(&head->mutex);
4637
4638		if (pin_bytes) {
4639			struct btrfs_block_group *cache;
4640
4641			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4642			BUG_ON(!cache);
4643
4644			spin_lock(&cache->space_info->lock);
4645			spin_lock(&cache->lock);
4646			cache->pinned += head->num_bytes;
4647			btrfs_space_info_update_bytes_pinned(fs_info,
4648				cache->space_info, head->num_bytes);
4649			cache->reserved -= head->num_bytes;
4650			cache->space_info->bytes_reserved -= head->num_bytes;
4651			spin_unlock(&cache->lock);
4652			spin_unlock(&cache->space_info->lock);
4653
4654			btrfs_put_block_group(cache);
4655
4656			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4657				head->bytenr + head->num_bytes - 1);
4658		}
4659		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4660		btrfs_put_delayed_ref_head(head);
4661		cond_resched();
4662		spin_lock(&delayed_refs->lock);
4663	}
4664	btrfs_qgroup_destroy_extent_records(trans);
4665
4666	spin_unlock(&delayed_refs->lock);
4667}
4668
4669static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4670{
4671	struct btrfs_inode *btrfs_inode;
4672	LIST_HEAD(splice);
4673
4674	spin_lock(&root->delalloc_lock);
4675	list_splice_init(&root->delalloc_inodes, &splice);
4676
4677	while (!list_empty(&splice)) {
4678		struct inode *inode = NULL;
4679		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4680					       delalloc_inodes);
4681		__btrfs_del_delalloc_inode(root, btrfs_inode);
4682		spin_unlock(&root->delalloc_lock);
4683
4684		/*
4685		 * Make sure we get a live inode and that it'll not disappear
4686		 * meanwhile.
4687		 */
4688		inode = igrab(&btrfs_inode->vfs_inode);
4689		if (inode) {
4690			unsigned int nofs_flag;
4691
4692			nofs_flag = memalloc_nofs_save();
4693			invalidate_inode_pages2(inode->i_mapping);
4694			memalloc_nofs_restore(nofs_flag);
4695			iput(inode);
4696		}
4697		spin_lock(&root->delalloc_lock);
4698	}
4699	spin_unlock(&root->delalloc_lock);
4700}
4701
4702static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4703{
4704	struct btrfs_root *root;
4705	LIST_HEAD(splice);
4706
4707	spin_lock(&fs_info->delalloc_root_lock);
4708	list_splice_init(&fs_info->delalloc_roots, &splice);
4709	while (!list_empty(&splice)) {
4710		root = list_first_entry(&splice, struct btrfs_root,
4711					 delalloc_root);
4712		root = btrfs_grab_root(root);
4713		BUG_ON(!root);
4714		spin_unlock(&fs_info->delalloc_root_lock);
4715
4716		btrfs_destroy_delalloc_inodes(root);
4717		btrfs_put_root(root);
4718
4719		spin_lock(&fs_info->delalloc_root_lock);
4720	}
4721	spin_unlock(&fs_info->delalloc_root_lock);
4722}
4723
4724static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4725					 struct extent_io_tree *dirty_pages,
4726					 int mark)
4727{
4728	struct extent_buffer *eb;
4729	u64 start = 0;
4730	u64 end;
4731
4732	while (find_first_extent_bit(dirty_pages, start, &start, &end,
4733				     mark, NULL)) {
4734		clear_extent_bits(dirty_pages, start, end, mark);
4735		while (start <= end) {
4736			eb = find_extent_buffer(fs_info, start);
4737			start += fs_info->nodesize;
4738			if (!eb)
4739				continue;
4740
4741			btrfs_tree_lock(eb);
4742			wait_on_extent_buffer_writeback(eb);
4743			btrfs_clear_buffer_dirty(NULL, eb);
4744			btrfs_tree_unlock(eb);
4745
4746			free_extent_buffer_stale(eb);
4747		}
4748	}
4749}
4750
4751static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4752					struct extent_io_tree *unpin)
4753{
4754	u64 start;
4755	u64 end;
4756
4757	while (1) {
4758		struct extent_state *cached_state = NULL;
4759
4760		/*
4761		 * The btrfs_finish_extent_commit() may get the same range as
4762		 * ours between find_first_extent_bit and clear_extent_dirty.
4763		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4764		 * the same extent range.
4765		 */
4766		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4767		if (!find_first_extent_bit(unpin, 0, &start, &end,
4768					   EXTENT_DIRTY, &cached_state)) {
4769			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4770			break;
4771		}
4772
4773		clear_extent_dirty(unpin, start, end, &cached_state);
4774		free_extent_state(cached_state);
4775		btrfs_error_unpin_extent_range(fs_info, start, end);
4776		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4777		cond_resched();
4778	}
4779}
4780
4781static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4782{
4783	struct inode *inode;
4784
4785	inode = cache->io_ctl.inode;
4786	if (inode) {
4787		unsigned int nofs_flag;
4788
4789		nofs_flag = memalloc_nofs_save();
4790		invalidate_inode_pages2(inode->i_mapping);
4791		memalloc_nofs_restore(nofs_flag);
4792
4793		BTRFS_I(inode)->generation = 0;
4794		cache->io_ctl.inode = NULL;
4795		iput(inode);
4796	}
4797	ASSERT(cache->io_ctl.pages == NULL);
4798	btrfs_put_block_group(cache);
4799}
4800
4801void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4802			     struct btrfs_fs_info *fs_info)
4803{
4804	struct btrfs_block_group *cache;
4805
4806	spin_lock(&cur_trans->dirty_bgs_lock);
4807	while (!list_empty(&cur_trans->dirty_bgs)) {
4808		cache = list_first_entry(&cur_trans->dirty_bgs,
4809					 struct btrfs_block_group,
4810					 dirty_list);
4811
4812		if (!list_empty(&cache->io_list)) {
4813			spin_unlock(&cur_trans->dirty_bgs_lock);
4814			list_del_init(&cache->io_list);
4815			btrfs_cleanup_bg_io(cache);
4816			spin_lock(&cur_trans->dirty_bgs_lock);
4817		}
4818
4819		list_del_init(&cache->dirty_list);
4820		spin_lock(&cache->lock);
4821		cache->disk_cache_state = BTRFS_DC_ERROR;
4822		spin_unlock(&cache->lock);
4823
4824		spin_unlock(&cur_trans->dirty_bgs_lock);
4825		btrfs_put_block_group(cache);
4826		btrfs_delayed_refs_rsv_release(fs_info, 1);
4827		spin_lock(&cur_trans->dirty_bgs_lock);
4828	}
4829	spin_unlock(&cur_trans->dirty_bgs_lock);
4830
4831	/*
4832	 * Refer to the definition of io_bgs member for details why it's safe
4833	 * to use it without any locking
4834	 */
4835	while (!list_empty(&cur_trans->io_bgs)) {
4836		cache = list_first_entry(&cur_trans->io_bgs,
4837					 struct btrfs_block_group,
4838					 io_list);
4839
4840		list_del_init(&cache->io_list);
4841		spin_lock(&cache->lock);
4842		cache->disk_cache_state = BTRFS_DC_ERROR;
4843		spin_unlock(&cache->lock);
4844		btrfs_cleanup_bg_io(cache);
4845	}
4846}
4847
4848static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4849{
4850	struct btrfs_root *gang[8];
4851	int i;
4852	int ret;
4853
4854	spin_lock(&fs_info->fs_roots_radix_lock);
4855	while (1) {
4856		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4857						 (void **)gang, 0,
4858						 ARRAY_SIZE(gang),
4859						 BTRFS_ROOT_TRANS_TAG);
4860		if (ret == 0)
4861			break;
4862		for (i = 0; i < ret; i++) {
4863			struct btrfs_root *root = gang[i];
4864
4865			btrfs_qgroup_free_meta_all_pertrans(root);
4866			radix_tree_tag_clear(&fs_info->fs_roots_radix,
4867					(unsigned long)root->root_key.objectid,
4868					BTRFS_ROOT_TRANS_TAG);
4869		}
4870	}
4871	spin_unlock(&fs_info->fs_roots_radix_lock);
4872}
4873
4874void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4875				   struct btrfs_fs_info *fs_info)
4876{
4877	struct btrfs_device *dev, *tmp;
4878
4879	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4880	ASSERT(list_empty(&cur_trans->dirty_bgs));
4881	ASSERT(list_empty(&cur_trans->io_bgs));
4882
4883	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4884				 post_commit_list) {
4885		list_del_init(&dev->post_commit_list);
4886	}
4887
4888	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4889
4890	cur_trans->state = TRANS_STATE_COMMIT_START;
4891	wake_up(&fs_info->transaction_blocked_wait);
4892
4893	cur_trans->state = TRANS_STATE_UNBLOCKED;
4894	wake_up(&fs_info->transaction_wait);
4895
4896	btrfs_destroy_delayed_inodes(fs_info);
4897
4898	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4899				     EXTENT_DIRTY);
4900	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4901
4902	btrfs_free_all_qgroup_pertrans(fs_info);
4903
4904	cur_trans->state =TRANS_STATE_COMPLETED;
4905	wake_up(&cur_trans->commit_wait);
4906}
4907
4908static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4909{
4910	struct btrfs_transaction *t;
4911
4912	mutex_lock(&fs_info->transaction_kthread_mutex);
4913
4914	spin_lock(&fs_info->trans_lock);
4915	while (!list_empty(&fs_info->trans_list)) {
4916		t = list_first_entry(&fs_info->trans_list,
4917				     struct btrfs_transaction, list);
4918		if (t->state >= TRANS_STATE_COMMIT_PREP) {
4919			refcount_inc(&t->use_count);
4920			spin_unlock(&fs_info->trans_lock);
4921			btrfs_wait_for_commit(fs_info, t->transid);
4922			btrfs_put_transaction(t);
4923			spin_lock(&fs_info->trans_lock);
4924			continue;
4925		}
4926		if (t == fs_info->running_transaction) {
4927			t->state = TRANS_STATE_COMMIT_DOING;
4928			spin_unlock(&fs_info->trans_lock);
4929			/*
4930			 * We wait for 0 num_writers since we don't hold a trans
4931			 * handle open currently for this transaction.
4932			 */
4933			wait_event(t->writer_wait,
4934				   atomic_read(&t->num_writers) == 0);
4935		} else {
4936			spin_unlock(&fs_info->trans_lock);
4937		}
4938		btrfs_cleanup_one_transaction(t, fs_info);
4939
4940		spin_lock(&fs_info->trans_lock);
4941		if (t == fs_info->running_transaction)
4942			fs_info->running_transaction = NULL;
4943		list_del_init(&t->list);
4944		spin_unlock(&fs_info->trans_lock);
4945
4946		btrfs_put_transaction(t);
4947		trace_btrfs_transaction_commit(fs_info);
4948		spin_lock(&fs_info->trans_lock);
4949	}
4950	spin_unlock(&fs_info->trans_lock);
4951	btrfs_destroy_all_ordered_extents(fs_info);
4952	btrfs_destroy_delayed_inodes(fs_info);
4953	btrfs_assert_delayed_root_empty(fs_info);
4954	btrfs_destroy_all_delalloc_inodes(fs_info);
4955	btrfs_drop_all_logs(fs_info);
4956	mutex_unlock(&fs_info->transaction_kthread_mutex);
4957
4958	return 0;
4959}
4960
4961int btrfs_init_root_free_objectid(struct btrfs_root *root)
4962{
4963	struct btrfs_path *path;
4964	int ret;
4965	struct extent_buffer *l;
4966	struct btrfs_key search_key;
4967	struct btrfs_key found_key;
4968	int slot;
4969
4970	path = btrfs_alloc_path();
4971	if (!path)
4972		return -ENOMEM;
4973
4974	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4975	search_key.type = -1;
4976	search_key.offset = (u64)-1;
4977	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4978	if (ret < 0)
4979		goto error;
4980	BUG_ON(ret == 0); /* Corruption */
4981	if (path->slots[0] > 0) {
4982		slot = path->slots[0] - 1;
4983		l = path->nodes[0];
4984		btrfs_item_key_to_cpu(l, &found_key, slot);
4985		root->free_objectid = max_t(u64, found_key.objectid + 1,
4986					    BTRFS_FIRST_FREE_OBJECTID);
4987	} else {
4988		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4989	}
4990	ret = 0;
4991error:
4992	btrfs_free_path(path);
4993	return ret;
4994}
4995
4996int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4997{
4998	int ret;
4999	mutex_lock(&root->objectid_mutex);
5000
5001	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5002		btrfs_warn(root->fs_info,
5003			   "the objectid of root %llu reaches its highest value",
5004			   root->root_key.objectid);
5005		ret = -ENOSPC;
5006		goto out;
5007	}
5008
5009	*objectid = root->free_objectid++;
5010	ret = 0;
5011out:
5012	mutex_unlock(&root->objectid_mutex);
5013	return ret;
5014}
5015