xref: /kernel/linux/linux-6.6/fs/btrfs/delayed-ref.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2009 Oracle.  All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/sort.h>
9#include "messages.h"
10#include "ctree.h"
11#include "delayed-ref.h"
12#include "transaction.h"
13#include "qgroup.h"
14#include "space-info.h"
15#include "tree-mod-log.h"
16#include "fs.h"
17
18struct kmem_cache *btrfs_delayed_ref_head_cachep;
19struct kmem_cache *btrfs_delayed_tree_ref_cachep;
20struct kmem_cache *btrfs_delayed_data_ref_cachep;
21struct kmem_cache *btrfs_delayed_extent_op_cachep;
22/*
23 * delayed back reference update tracking.  For subvolume trees
24 * we queue up extent allocations and backref maintenance for
25 * delayed processing.   This avoids deep call chains where we
26 * add extents in the middle of btrfs_search_slot, and it allows
27 * us to buffer up frequently modified backrefs in an rb tree instead
28 * of hammering updates on the extent allocation tree.
29 */
30
31bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
32{
33	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
34	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
35	bool ret = false;
36	u64 reserved;
37
38	spin_lock(&global_rsv->lock);
39	reserved = global_rsv->reserved;
40	spin_unlock(&global_rsv->lock);
41
42	/*
43	 * Since the global reserve is just kind of magic we don't really want
44	 * to rely on it to save our bacon, so if our size is more than the
45	 * delayed_refs_rsv and the global rsv then it's time to think about
46	 * bailing.
47	 */
48	spin_lock(&delayed_refs_rsv->lock);
49	reserved += delayed_refs_rsv->reserved;
50	if (delayed_refs_rsv->size >= reserved)
51		ret = true;
52	spin_unlock(&delayed_refs_rsv->lock);
53	return ret;
54}
55
56/*
57 * Release a ref head's reservation.
58 *
59 * @fs_info:  the filesystem
60 * @nr:       number of items to drop
61 *
62 * Drops the delayed ref head's count from the delayed refs rsv and free any
63 * excess reservation we had.
64 */
65void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
66{
67	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
68	const u64 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr);
69	u64 released = 0;
70
71	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
72	if (released)
73		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
74					      0, released, 0);
75}
76
77/*
78 * Adjust the size of the delayed refs rsv.
79 *
80 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
81 * it'll calculate the additional size and add it to the delayed_refs_rsv.
82 */
83void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
84{
85	struct btrfs_fs_info *fs_info = trans->fs_info;
86	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
87	u64 num_bytes;
88
89	if (!trans->delayed_ref_updates)
90		return;
91
92	num_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
93						 trans->delayed_ref_updates);
94
95	spin_lock(&delayed_rsv->lock);
96	delayed_rsv->size += num_bytes;
97	delayed_rsv->full = false;
98	spin_unlock(&delayed_rsv->lock);
99	trans->delayed_ref_updates = 0;
100}
101
102/*
103 * Transfer bytes to our delayed refs rsv.
104 *
105 * @fs_info:   the filesystem
106 * @num_bytes: number of bytes to transfer
107 *
108 * This transfers up to the num_bytes amount, previously reserved, to the
109 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
110 */
111void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
112				       u64 num_bytes)
113{
114	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
115	u64 to_free = 0;
116
117	spin_lock(&delayed_refs_rsv->lock);
118	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
119		u64 delta = delayed_refs_rsv->size -
120			delayed_refs_rsv->reserved;
121		if (num_bytes > delta) {
122			to_free = num_bytes - delta;
123			num_bytes = delta;
124		}
125	} else {
126		to_free = num_bytes;
127		num_bytes = 0;
128	}
129
130	if (num_bytes)
131		delayed_refs_rsv->reserved += num_bytes;
132	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
133		delayed_refs_rsv->full = true;
134	spin_unlock(&delayed_refs_rsv->lock);
135
136	if (num_bytes)
137		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
138					      0, num_bytes, 1);
139	if (to_free)
140		btrfs_space_info_free_bytes_may_use(fs_info,
141				delayed_refs_rsv->space_info, to_free);
142}
143
144/*
145 * Refill based on our delayed refs usage.
146 *
147 * @fs_info: the filesystem
148 * @flush:   control how we can flush for this reservation.
149 *
150 * This will refill the delayed block_rsv up to 1 items size worth of space and
151 * will return -ENOSPC if we can't make the reservation.
152 */
153int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
154				  enum btrfs_reserve_flush_enum flush)
155{
156	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
157	u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
158	u64 num_bytes = 0;
159	u64 refilled_bytes;
160	u64 to_free;
161	int ret = -ENOSPC;
162
163	spin_lock(&block_rsv->lock);
164	if (block_rsv->reserved < block_rsv->size) {
165		num_bytes = block_rsv->size - block_rsv->reserved;
166		num_bytes = min(num_bytes, limit);
167	}
168	spin_unlock(&block_rsv->lock);
169
170	if (!num_bytes)
171		return 0;
172
173	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
174	if (ret)
175		return ret;
176
177	/*
178	 * We may have raced with someone else, so check again if we the block
179	 * reserve is still not full and release any excess space.
180	 */
181	spin_lock(&block_rsv->lock);
182	if (block_rsv->reserved < block_rsv->size) {
183		u64 needed = block_rsv->size - block_rsv->reserved;
184
185		if (num_bytes >= needed) {
186			block_rsv->reserved += needed;
187			block_rsv->full = true;
188			to_free = num_bytes - needed;
189			refilled_bytes = needed;
190		} else {
191			block_rsv->reserved += num_bytes;
192			to_free = 0;
193			refilled_bytes = num_bytes;
194		}
195	} else {
196		to_free = num_bytes;
197		refilled_bytes = 0;
198	}
199	spin_unlock(&block_rsv->lock);
200
201	if (to_free > 0)
202		btrfs_space_info_free_bytes_may_use(fs_info, block_rsv->space_info,
203						    to_free);
204
205	if (refilled_bytes > 0)
206		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
207					      refilled_bytes, 1);
208	return 0;
209}
210
211/*
212 * compare two delayed tree backrefs with same bytenr and type
213 */
214static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
215			  struct btrfs_delayed_tree_ref *ref2)
216{
217	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
218		if (ref1->root < ref2->root)
219			return -1;
220		if (ref1->root > ref2->root)
221			return 1;
222	} else {
223		if (ref1->parent < ref2->parent)
224			return -1;
225		if (ref1->parent > ref2->parent)
226			return 1;
227	}
228	return 0;
229}
230
231/*
232 * compare two delayed data backrefs with same bytenr and type
233 */
234static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
235			  struct btrfs_delayed_data_ref *ref2)
236{
237	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
238		if (ref1->root < ref2->root)
239			return -1;
240		if (ref1->root > ref2->root)
241			return 1;
242		if (ref1->objectid < ref2->objectid)
243			return -1;
244		if (ref1->objectid > ref2->objectid)
245			return 1;
246		if (ref1->offset < ref2->offset)
247			return -1;
248		if (ref1->offset > ref2->offset)
249			return 1;
250	} else {
251		if (ref1->parent < ref2->parent)
252			return -1;
253		if (ref1->parent > ref2->parent)
254			return 1;
255	}
256	return 0;
257}
258
259static int comp_refs(struct btrfs_delayed_ref_node *ref1,
260		     struct btrfs_delayed_ref_node *ref2,
261		     bool check_seq)
262{
263	int ret = 0;
264
265	if (ref1->type < ref2->type)
266		return -1;
267	if (ref1->type > ref2->type)
268		return 1;
269	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
270	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
271		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
272				     btrfs_delayed_node_to_tree_ref(ref2));
273	else
274		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
275				     btrfs_delayed_node_to_data_ref(ref2));
276	if (ret)
277		return ret;
278	if (check_seq) {
279		if (ref1->seq < ref2->seq)
280			return -1;
281		if (ref1->seq > ref2->seq)
282			return 1;
283	}
284	return 0;
285}
286
287/* insert a new ref to head ref rbtree */
288static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
289						   struct rb_node *node)
290{
291	struct rb_node **p = &root->rb_root.rb_node;
292	struct rb_node *parent_node = NULL;
293	struct btrfs_delayed_ref_head *entry;
294	struct btrfs_delayed_ref_head *ins;
295	u64 bytenr;
296	bool leftmost = true;
297
298	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
299	bytenr = ins->bytenr;
300	while (*p) {
301		parent_node = *p;
302		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
303				 href_node);
304
305		if (bytenr < entry->bytenr) {
306			p = &(*p)->rb_left;
307		} else if (bytenr > entry->bytenr) {
308			p = &(*p)->rb_right;
309			leftmost = false;
310		} else {
311			return entry;
312		}
313	}
314
315	rb_link_node(node, parent_node, p);
316	rb_insert_color_cached(node, root, leftmost);
317	return NULL;
318}
319
320static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
321		struct btrfs_delayed_ref_node *ins)
322{
323	struct rb_node **p = &root->rb_root.rb_node;
324	struct rb_node *node = &ins->ref_node;
325	struct rb_node *parent_node = NULL;
326	struct btrfs_delayed_ref_node *entry;
327	bool leftmost = true;
328
329	while (*p) {
330		int comp;
331
332		parent_node = *p;
333		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
334				 ref_node);
335		comp = comp_refs(ins, entry, true);
336		if (comp < 0) {
337			p = &(*p)->rb_left;
338		} else if (comp > 0) {
339			p = &(*p)->rb_right;
340			leftmost = false;
341		} else {
342			return entry;
343		}
344	}
345
346	rb_link_node(node, parent_node, p);
347	rb_insert_color_cached(node, root, leftmost);
348	return NULL;
349}
350
351static struct btrfs_delayed_ref_head *find_first_ref_head(
352		struct btrfs_delayed_ref_root *dr)
353{
354	struct rb_node *n;
355	struct btrfs_delayed_ref_head *entry;
356
357	n = rb_first_cached(&dr->href_root);
358	if (!n)
359		return NULL;
360
361	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
362
363	return entry;
364}
365
366/*
367 * Find a head entry based on bytenr. This returns the delayed ref head if it
368 * was able to find one, or NULL if nothing was in that spot.  If return_bigger
369 * is given, the next bigger entry is returned if no exact match is found.
370 */
371static struct btrfs_delayed_ref_head *find_ref_head(
372		struct btrfs_delayed_ref_root *dr, u64 bytenr,
373		bool return_bigger)
374{
375	struct rb_root *root = &dr->href_root.rb_root;
376	struct rb_node *n;
377	struct btrfs_delayed_ref_head *entry;
378
379	n = root->rb_node;
380	entry = NULL;
381	while (n) {
382		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
383
384		if (bytenr < entry->bytenr)
385			n = n->rb_left;
386		else if (bytenr > entry->bytenr)
387			n = n->rb_right;
388		else
389			return entry;
390	}
391	if (entry && return_bigger) {
392		if (bytenr > entry->bytenr) {
393			n = rb_next(&entry->href_node);
394			if (!n)
395				return NULL;
396			entry = rb_entry(n, struct btrfs_delayed_ref_head,
397					 href_node);
398		}
399		return entry;
400	}
401	return NULL;
402}
403
404int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
405			   struct btrfs_delayed_ref_head *head)
406{
407	lockdep_assert_held(&delayed_refs->lock);
408	if (mutex_trylock(&head->mutex))
409		return 0;
410
411	refcount_inc(&head->refs);
412	spin_unlock(&delayed_refs->lock);
413
414	mutex_lock(&head->mutex);
415	spin_lock(&delayed_refs->lock);
416	if (RB_EMPTY_NODE(&head->href_node)) {
417		mutex_unlock(&head->mutex);
418		btrfs_put_delayed_ref_head(head);
419		return -EAGAIN;
420	}
421	btrfs_put_delayed_ref_head(head);
422	return 0;
423}
424
425static inline void drop_delayed_ref(struct btrfs_delayed_ref_root *delayed_refs,
426				    struct btrfs_delayed_ref_head *head,
427				    struct btrfs_delayed_ref_node *ref)
428{
429	lockdep_assert_held(&head->lock);
430	rb_erase_cached(&ref->ref_node, &head->ref_tree);
431	RB_CLEAR_NODE(&ref->ref_node);
432	if (!list_empty(&ref->add_list))
433		list_del(&ref->add_list);
434	btrfs_put_delayed_ref(ref);
435	atomic_dec(&delayed_refs->num_entries);
436}
437
438static bool merge_ref(struct btrfs_delayed_ref_root *delayed_refs,
439		      struct btrfs_delayed_ref_head *head,
440		      struct btrfs_delayed_ref_node *ref,
441		      u64 seq)
442{
443	struct btrfs_delayed_ref_node *next;
444	struct rb_node *node = rb_next(&ref->ref_node);
445	bool done = false;
446
447	while (!done && node) {
448		int mod;
449
450		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
451		node = rb_next(node);
452		if (seq && next->seq >= seq)
453			break;
454		if (comp_refs(ref, next, false))
455			break;
456
457		if (ref->action == next->action) {
458			mod = next->ref_mod;
459		} else {
460			if (ref->ref_mod < next->ref_mod) {
461				swap(ref, next);
462				done = true;
463			}
464			mod = -next->ref_mod;
465		}
466
467		drop_delayed_ref(delayed_refs, head, next);
468		ref->ref_mod += mod;
469		if (ref->ref_mod == 0) {
470			drop_delayed_ref(delayed_refs, head, ref);
471			done = true;
472		} else {
473			/*
474			 * Can't have multiples of the same ref on a tree block.
475			 */
476			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
477				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
478		}
479	}
480
481	return done;
482}
483
484void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
485			      struct btrfs_delayed_ref_root *delayed_refs,
486			      struct btrfs_delayed_ref_head *head)
487{
488	struct btrfs_delayed_ref_node *ref;
489	struct rb_node *node;
490	u64 seq = 0;
491
492	lockdep_assert_held(&head->lock);
493
494	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
495		return;
496
497	/* We don't have too many refs to merge for data. */
498	if (head->is_data)
499		return;
500
501	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
502again:
503	for (node = rb_first_cached(&head->ref_tree); node;
504	     node = rb_next(node)) {
505		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
506		if (seq && ref->seq >= seq)
507			continue;
508		if (merge_ref(delayed_refs, head, ref, seq))
509			goto again;
510	}
511}
512
513int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
514{
515	int ret = 0;
516	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
517
518	if (min_seq != 0 && seq >= min_seq) {
519		btrfs_debug(fs_info,
520			    "holding back delayed_ref %llu, lowest is %llu",
521			    seq, min_seq);
522		ret = 1;
523	}
524
525	return ret;
526}
527
528struct btrfs_delayed_ref_head *btrfs_select_ref_head(
529		struct btrfs_delayed_ref_root *delayed_refs)
530{
531	struct btrfs_delayed_ref_head *head;
532
533	lockdep_assert_held(&delayed_refs->lock);
534again:
535	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
536			     true);
537	if (!head && delayed_refs->run_delayed_start != 0) {
538		delayed_refs->run_delayed_start = 0;
539		head = find_first_ref_head(delayed_refs);
540	}
541	if (!head)
542		return NULL;
543
544	while (head->processing) {
545		struct rb_node *node;
546
547		node = rb_next(&head->href_node);
548		if (!node) {
549			if (delayed_refs->run_delayed_start == 0)
550				return NULL;
551			delayed_refs->run_delayed_start = 0;
552			goto again;
553		}
554		head = rb_entry(node, struct btrfs_delayed_ref_head,
555				href_node);
556	}
557
558	head->processing = true;
559	WARN_ON(delayed_refs->num_heads_ready == 0);
560	delayed_refs->num_heads_ready--;
561	delayed_refs->run_delayed_start = head->bytenr +
562		head->num_bytes;
563	return head;
564}
565
566void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
567			   struct btrfs_delayed_ref_head *head)
568{
569	lockdep_assert_held(&delayed_refs->lock);
570	lockdep_assert_held(&head->lock);
571
572	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
573	RB_CLEAR_NODE(&head->href_node);
574	atomic_dec(&delayed_refs->num_entries);
575	delayed_refs->num_heads--;
576	if (!head->processing)
577		delayed_refs->num_heads_ready--;
578}
579
580/*
581 * Helper to insert the ref_node to the tail or merge with tail.
582 *
583 * Return false if the ref was inserted.
584 * Return true if the ref was merged into an existing one (and therefore can be
585 * freed by the caller).
586 */
587static bool insert_delayed_ref(struct btrfs_delayed_ref_root *root,
588			       struct btrfs_delayed_ref_head *href,
589			       struct btrfs_delayed_ref_node *ref)
590{
591	struct btrfs_delayed_ref_node *exist;
592	int mod;
593
594	spin_lock(&href->lock);
595	exist = tree_insert(&href->ref_tree, ref);
596	if (!exist) {
597		if (ref->action == BTRFS_ADD_DELAYED_REF)
598			list_add_tail(&ref->add_list, &href->ref_add_list);
599		atomic_inc(&root->num_entries);
600		spin_unlock(&href->lock);
601		return false;
602	}
603
604	/* Now we are sure we can merge */
605	if (exist->action == ref->action) {
606		mod = ref->ref_mod;
607	} else {
608		/* Need to change action */
609		if (exist->ref_mod < ref->ref_mod) {
610			exist->action = ref->action;
611			mod = -exist->ref_mod;
612			exist->ref_mod = ref->ref_mod;
613			if (ref->action == BTRFS_ADD_DELAYED_REF)
614				list_add_tail(&exist->add_list,
615					      &href->ref_add_list);
616			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
617				ASSERT(!list_empty(&exist->add_list));
618				list_del(&exist->add_list);
619			} else {
620				ASSERT(0);
621			}
622		} else
623			mod = -ref->ref_mod;
624	}
625	exist->ref_mod += mod;
626
627	/* remove existing tail if its ref_mod is zero */
628	if (exist->ref_mod == 0)
629		drop_delayed_ref(root, href, exist);
630	spin_unlock(&href->lock);
631	return true;
632}
633
634/*
635 * helper function to update the accounting in the head ref
636 * existing and update must have the same bytenr
637 */
638static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
639			 struct btrfs_delayed_ref_head *existing,
640			 struct btrfs_delayed_ref_head *update)
641{
642	struct btrfs_delayed_ref_root *delayed_refs =
643		&trans->transaction->delayed_refs;
644	struct btrfs_fs_info *fs_info = trans->fs_info;
645	int old_ref_mod;
646
647	BUG_ON(existing->is_data != update->is_data);
648
649	spin_lock(&existing->lock);
650	if (update->must_insert_reserved) {
651		/* if the extent was freed and then
652		 * reallocated before the delayed ref
653		 * entries were processed, we can end up
654		 * with an existing head ref without
655		 * the must_insert_reserved flag set.
656		 * Set it again here
657		 */
658		existing->must_insert_reserved = update->must_insert_reserved;
659
660		/*
661		 * update the num_bytes so we make sure the accounting
662		 * is done correctly
663		 */
664		existing->num_bytes = update->num_bytes;
665
666	}
667
668	if (update->extent_op) {
669		if (!existing->extent_op) {
670			existing->extent_op = update->extent_op;
671		} else {
672			if (update->extent_op->update_key) {
673				memcpy(&existing->extent_op->key,
674				       &update->extent_op->key,
675				       sizeof(update->extent_op->key));
676				existing->extent_op->update_key = true;
677			}
678			if (update->extent_op->update_flags) {
679				existing->extent_op->flags_to_set |=
680					update->extent_op->flags_to_set;
681				existing->extent_op->update_flags = true;
682			}
683			btrfs_free_delayed_extent_op(update->extent_op);
684		}
685	}
686	/*
687	 * update the reference mod on the head to reflect this new operation,
688	 * only need the lock for this case cause we could be processing it
689	 * currently, for refs we just added we know we're a-ok.
690	 */
691	old_ref_mod = existing->total_ref_mod;
692	existing->ref_mod += update->ref_mod;
693	existing->total_ref_mod += update->ref_mod;
694
695	/*
696	 * If we are going to from a positive ref mod to a negative or vice
697	 * versa we need to make sure to adjust pending_csums accordingly.
698	 */
699	if (existing->is_data) {
700		u64 csum_leaves =
701			btrfs_csum_bytes_to_leaves(fs_info,
702						   existing->num_bytes);
703
704		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
705			delayed_refs->pending_csums -= existing->num_bytes;
706			btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
707		}
708		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
709			delayed_refs->pending_csums += existing->num_bytes;
710			trans->delayed_ref_updates += csum_leaves;
711		}
712	}
713
714	spin_unlock(&existing->lock);
715}
716
717static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
718				  struct btrfs_qgroup_extent_record *qrecord,
719				  u64 bytenr, u64 num_bytes, u64 ref_root,
720				  u64 reserved, int action, bool is_data,
721				  bool is_system)
722{
723	int count_mod = 1;
724	bool must_insert_reserved = false;
725
726	/* If reserved is provided, it must be a data extent. */
727	BUG_ON(!is_data && reserved);
728
729	switch (action) {
730	case BTRFS_UPDATE_DELAYED_HEAD:
731		count_mod = 0;
732		break;
733	case BTRFS_DROP_DELAYED_REF:
734		/*
735		 * The head node stores the sum of all the mods, so dropping a ref
736		 * should drop the sum in the head node by one.
737		 */
738		count_mod = -1;
739		break;
740	case BTRFS_ADD_DELAYED_EXTENT:
741		/*
742		 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the
743		 * reserved accounting when the extent is finally added, or if a
744		 * later modification deletes the delayed ref without ever
745		 * inserting the extent into the extent allocation tree.
746		 * ref->must_insert_reserved is the flag used to record that
747		 * accounting mods are required.
748		 *
749		 * Once we record must_insert_reserved, switch the action to
750		 * BTRFS_ADD_DELAYED_REF because other special casing is not
751		 * required.
752		 */
753		must_insert_reserved = true;
754		break;
755	}
756
757	refcount_set(&head_ref->refs, 1);
758	head_ref->bytenr = bytenr;
759	head_ref->num_bytes = num_bytes;
760	head_ref->ref_mod = count_mod;
761	head_ref->must_insert_reserved = must_insert_reserved;
762	head_ref->is_data = is_data;
763	head_ref->is_system = is_system;
764	head_ref->ref_tree = RB_ROOT_CACHED;
765	INIT_LIST_HEAD(&head_ref->ref_add_list);
766	RB_CLEAR_NODE(&head_ref->href_node);
767	head_ref->processing = false;
768	head_ref->total_ref_mod = count_mod;
769	spin_lock_init(&head_ref->lock);
770	mutex_init(&head_ref->mutex);
771
772	if (qrecord) {
773		if (ref_root && reserved) {
774			qrecord->data_rsv = reserved;
775			qrecord->data_rsv_refroot = ref_root;
776		}
777		qrecord->bytenr = bytenr;
778		qrecord->num_bytes = num_bytes;
779		qrecord->old_roots = NULL;
780	}
781}
782
783/*
784 * helper function to actually insert a head node into the rbtree.
785 * this does all the dirty work in terms of maintaining the correct
786 * overall modification count.
787 */
788static noinline struct btrfs_delayed_ref_head *
789add_delayed_ref_head(struct btrfs_trans_handle *trans,
790		     struct btrfs_delayed_ref_head *head_ref,
791		     struct btrfs_qgroup_extent_record *qrecord,
792		     int action, bool *qrecord_inserted_ret)
793{
794	struct btrfs_delayed_ref_head *existing;
795	struct btrfs_delayed_ref_root *delayed_refs;
796	bool qrecord_inserted = false;
797
798	delayed_refs = &trans->transaction->delayed_refs;
799
800	/* Record qgroup extent info if provided */
801	if (qrecord) {
802		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
803					delayed_refs, qrecord))
804			kfree(qrecord);
805		else
806			qrecord_inserted = true;
807	}
808
809	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
810
811	existing = htree_insert(&delayed_refs->href_root,
812				&head_ref->href_node);
813	if (existing) {
814		update_existing_head_ref(trans, existing, head_ref);
815		/*
816		 * we've updated the existing ref, free the newly
817		 * allocated ref
818		 */
819		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
820		head_ref = existing;
821	} else {
822		if (head_ref->is_data && head_ref->ref_mod < 0) {
823			delayed_refs->pending_csums += head_ref->num_bytes;
824			trans->delayed_ref_updates +=
825				btrfs_csum_bytes_to_leaves(trans->fs_info,
826							   head_ref->num_bytes);
827		}
828		delayed_refs->num_heads++;
829		delayed_refs->num_heads_ready++;
830		atomic_inc(&delayed_refs->num_entries);
831		trans->delayed_ref_updates++;
832	}
833	if (qrecord_inserted_ret)
834		*qrecord_inserted_ret = qrecord_inserted;
835
836	return head_ref;
837}
838
839/*
840 * init_delayed_ref_common - Initialize the structure which represents a
841 *			     modification to a an extent.
842 *
843 * @fs_info:    Internal to the mounted filesystem mount structure.
844 *
845 * @ref:	The structure which is going to be initialized.
846 *
847 * @bytenr:	The logical address of the extent for which a modification is
848 *		going to be recorded.
849 *
850 * @num_bytes:  Size of the extent whose modification is being recorded.
851 *
852 * @ref_root:	The id of the root where this modification has originated, this
853 *		can be either one of the well-known metadata trees or the
854 *		subvolume id which references this extent.
855 *
856 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
857 *		BTRFS_ADD_DELAYED_EXTENT
858 *
859 * @ref_type:	Holds the type of the extent which is being recorded, can be
860 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
861 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
862 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
863 */
864static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
865				    struct btrfs_delayed_ref_node *ref,
866				    u64 bytenr, u64 num_bytes, u64 ref_root,
867				    int action, u8 ref_type)
868{
869	u64 seq = 0;
870
871	if (action == BTRFS_ADD_DELAYED_EXTENT)
872		action = BTRFS_ADD_DELAYED_REF;
873
874	if (is_fstree(ref_root))
875		seq = atomic64_read(&fs_info->tree_mod_seq);
876
877	refcount_set(&ref->refs, 1);
878	ref->bytenr = bytenr;
879	ref->num_bytes = num_bytes;
880	ref->ref_mod = 1;
881	ref->action = action;
882	ref->seq = seq;
883	ref->type = ref_type;
884	RB_CLEAR_NODE(&ref->ref_node);
885	INIT_LIST_HEAD(&ref->add_list);
886}
887
888/*
889 * add a delayed tree ref.  This does all of the accounting required
890 * to make sure the delayed ref is eventually processed before this
891 * transaction commits.
892 */
893int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
894			       struct btrfs_ref *generic_ref,
895			       struct btrfs_delayed_extent_op *extent_op)
896{
897	struct btrfs_fs_info *fs_info = trans->fs_info;
898	struct btrfs_delayed_tree_ref *ref;
899	struct btrfs_delayed_ref_head *head_ref;
900	struct btrfs_delayed_ref_root *delayed_refs;
901	struct btrfs_qgroup_extent_record *record = NULL;
902	bool qrecord_inserted;
903	bool is_system;
904	bool merged;
905	int action = generic_ref->action;
906	int level = generic_ref->tree_ref.level;
907	u64 bytenr = generic_ref->bytenr;
908	u64 num_bytes = generic_ref->len;
909	u64 parent = generic_ref->parent;
910	u8 ref_type;
911
912	is_system = (generic_ref->tree_ref.owning_root == BTRFS_CHUNK_TREE_OBJECTID);
913
914	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
915	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
916	if (!ref)
917		return -ENOMEM;
918
919	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
920	if (!head_ref) {
921		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
922		return -ENOMEM;
923	}
924
925	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
926	    !generic_ref->skip_qgroup) {
927		record = kzalloc(sizeof(*record), GFP_NOFS);
928		if (!record) {
929			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
930			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
931			return -ENOMEM;
932		}
933	}
934
935	if (parent)
936		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
937	else
938		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
939
940	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
941				generic_ref->tree_ref.owning_root, action,
942				ref_type);
943	ref->root = generic_ref->tree_ref.owning_root;
944	ref->parent = parent;
945	ref->level = level;
946
947	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
948			      generic_ref->tree_ref.owning_root, 0, action,
949			      false, is_system);
950	head_ref->extent_op = extent_op;
951
952	delayed_refs = &trans->transaction->delayed_refs;
953	spin_lock(&delayed_refs->lock);
954
955	/*
956	 * insert both the head node and the new ref without dropping
957	 * the spin lock
958	 */
959	head_ref = add_delayed_ref_head(trans, head_ref, record,
960					action, &qrecord_inserted);
961
962	merged = insert_delayed_ref(delayed_refs, head_ref, &ref->node);
963	spin_unlock(&delayed_refs->lock);
964
965	/*
966	 * Need to update the delayed_refs_rsv with any changes we may have
967	 * made.
968	 */
969	btrfs_update_delayed_refs_rsv(trans);
970
971	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
972				   action == BTRFS_ADD_DELAYED_EXTENT ?
973				   BTRFS_ADD_DELAYED_REF : action);
974	if (merged)
975		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
976
977	if (qrecord_inserted)
978		btrfs_qgroup_trace_extent_post(trans, record);
979
980	return 0;
981}
982
983/*
984 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
985 */
986int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
987			       struct btrfs_ref *generic_ref,
988			       u64 reserved)
989{
990	struct btrfs_fs_info *fs_info = trans->fs_info;
991	struct btrfs_delayed_data_ref *ref;
992	struct btrfs_delayed_ref_head *head_ref;
993	struct btrfs_delayed_ref_root *delayed_refs;
994	struct btrfs_qgroup_extent_record *record = NULL;
995	bool qrecord_inserted;
996	int action = generic_ref->action;
997	bool merged;
998	u64 bytenr = generic_ref->bytenr;
999	u64 num_bytes = generic_ref->len;
1000	u64 parent = generic_ref->parent;
1001	u64 ref_root = generic_ref->data_ref.owning_root;
1002	u64 owner = generic_ref->data_ref.ino;
1003	u64 offset = generic_ref->data_ref.offset;
1004	u8 ref_type;
1005
1006	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1007	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1008	if (!ref)
1009		return -ENOMEM;
1010
1011	if (parent)
1012	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1013	else
1014	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1015	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1016				ref_root, action, ref_type);
1017	ref->root = ref_root;
1018	ref->parent = parent;
1019	ref->objectid = owner;
1020	ref->offset = offset;
1021
1022
1023	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1024	if (!head_ref) {
1025		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1026		return -ENOMEM;
1027	}
1028
1029	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1030	    !generic_ref->skip_qgroup) {
1031		record = kzalloc(sizeof(*record), GFP_NOFS);
1032		if (!record) {
1033			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1034			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1035					head_ref);
1036			return -ENOMEM;
1037		}
1038	}
1039
1040	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1041			      reserved, action, true, false);
1042	head_ref->extent_op = NULL;
1043
1044	delayed_refs = &trans->transaction->delayed_refs;
1045	spin_lock(&delayed_refs->lock);
1046
1047	/*
1048	 * insert both the head node and the new ref without dropping
1049	 * the spin lock
1050	 */
1051	head_ref = add_delayed_ref_head(trans, head_ref, record,
1052					action, &qrecord_inserted);
1053
1054	merged = insert_delayed_ref(delayed_refs, head_ref, &ref->node);
1055	spin_unlock(&delayed_refs->lock);
1056
1057	/*
1058	 * Need to update the delayed_refs_rsv with any changes we may have
1059	 * made.
1060	 */
1061	btrfs_update_delayed_refs_rsv(trans);
1062
1063	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1064				   action == BTRFS_ADD_DELAYED_EXTENT ?
1065				   BTRFS_ADD_DELAYED_REF : action);
1066	if (merged)
1067		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1068
1069
1070	if (qrecord_inserted)
1071		return btrfs_qgroup_trace_extent_post(trans, record);
1072	return 0;
1073}
1074
1075int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1076				u64 bytenr, u64 num_bytes,
1077				struct btrfs_delayed_extent_op *extent_op)
1078{
1079	struct btrfs_delayed_ref_head *head_ref;
1080	struct btrfs_delayed_ref_root *delayed_refs;
1081
1082	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1083	if (!head_ref)
1084		return -ENOMEM;
1085
1086	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1087			      BTRFS_UPDATE_DELAYED_HEAD, false, false);
1088	head_ref->extent_op = extent_op;
1089
1090	delayed_refs = &trans->transaction->delayed_refs;
1091	spin_lock(&delayed_refs->lock);
1092
1093	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1094			     NULL);
1095
1096	spin_unlock(&delayed_refs->lock);
1097
1098	/*
1099	 * Need to update the delayed_refs_rsv with any changes we may have
1100	 * made.
1101	 */
1102	btrfs_update_delayed_refs_rsv(trans);
1103	return 0;
1104}
1105
1106/*
1107 * This does a simple search for the head node for a given extent.  Returns the
1108 * head node if found, or NULL if not.
1109 */
1110struct btrfs_delayed_ref_head *
1111btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1112{
1113	lockdep_assert_held(&delayed_refs->lock);
1114
1115	return find_ref_head(delayed_refs, bytenr, false);
1116}
1117
1118void __cold btrfs_delayed_ref_exit(void)
1119{
1120	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1121	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1122	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1123	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1124}
1125
1126int __init btrfs_delayed_ref_init(void)
1127{
1128	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1129				"btrfs_delayed_ref_head",
1130				sizeof(struct btrfs_delayed_ref_head), 0,
1131				SLAB_MEM_SPREAD, NULL);
1132	if (!btrfs_delayed_ref_head_cachep)
1133		goto fail;
1134
1135	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1136				"btrfs_delayed_tree_ref",
1137				sizeof(struct btrfs_delayed_tree_ref), 0,
1138				SLAB_MEM_SPREAD, NULL);
1139	if (!btrfs_delayed_tree_ref_cachep)
1140		goto fail;
1141
1142	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1143				"btrfs_delayed_data_ref",
1144				sizeof(struct btrfs_delayed_data_ref), 0,
1145				SLAB_MEM_SPREAD, NULL);
1146	if (!btrfs_delayed_data_ref_cachep)
1147		goto fail;
1148
1149	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1150				"btrfs_delayed_extent_op",
1151				sizeof(struct btrfs_delayed_extent_op), 0,
1152				SLAB_MEM_SPREAD, NULL);
1153	if (!btrfs_delayed_extent_op_cachep)
1154		goto fail;
1155
1156	return 0;
1157fail:
1158	btrfs_delayed_ref_exit();
1159	return -ENOMEM;
1160}
1161