1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu.  All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include "ctree.h"
10#include "fs.h"
11#include "messages.h"
12#include "misc.h"
13#include "delayed-inode.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "qgroup.h"
17#include "locking.h"
18#include "inode-item.h"
19#include "space-info.h"
20#include "accessors.h"
21#include "file-item.h"
22
23#define BTRFS_DELAYED_WRITEBACK		512
24#define BTRFS_DELAYED_BACKGROUND	128
25#define BTRFS_DELAYED_BATCH		16
26
27static struct kmem_cache *delayed_node_cache;
28
29int __init btrfs_delayed_inode_init(void)
30{
31	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
32					sizeof(struct btrfs_delayed_node),
33					0,
34					SLAB_MEM_SPREAD,
35					NULL);
36	if (!delayed_node_cache)
37		return -ENOMEM;
38	return 0;
39}
40
41void __cold btrfs_delayed_inode_exit(void)
42{
43	kmem_cache_destroy(delayed_node_cache);
44}
45
46static inline void btrfs_init_delayed_node(
47				struct btrfs_delayed_node *delayed_node,
48				struct btrfs_root *root, u64 inode_id)
49{
50	delayed_node->root = root;
51	delayed_node->inode_id = inode_id;
52	refcount_set(&delayed_node->refs, 0);
53	delayed_node->ins_root = RB_ROOT_CACHED;
54	delayed_node->del_root = RB_ROOT_CACHED;
55	mutex_init(&delayed_node->mutex);
56	INIT_LIST_HEAD(&delayed_node->n_list);
57	INIT_LIST_HEAD(&delayed_node->p_list);
58}
59
60static struct btrfs_delayed_node *btrfs_get_delayed_node(
61		struct btrfs_inode *btrfs_inode)
62{
63	struct btrfs_root *root = btrfs_inode->root;
64	u64 ino = btrfs_ino(btrfs_inode);
65	struct btrfs_delayed_node *node;
66
67	node = READ_ONCE(btrfs_inode->delayed_node);
68	if (node) {
69		refcount_inc(&node->refs);
70		return node;
71	}
72
73	spin_lock(&root->inode_lock);
74	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
75
76	if (node) {
77		if (btrfs_inode->delayed_node) {
78			refcount_inc(&node->refs);	/* can be accessed */
79			BUG_ON(btrfs_inode->delayed_node != node);
80			spin_unlock(&root->inode_lock);
81			return node;
82		}
83
84		/*
85		 * It's possible that we're racing into the middle of removing
86		 * this node from the radix tree.  In this case, the refcount
87		 * was zero and it should never go back to one.  Just return
88		 * NULL like it was never in the radix at all; our release
89		 * function is in the process of removing it.
90		 *
91		 * Some implementations of refcount_inc refuse to bump the
92		 * refcount once it has hit zero.  If we don't do this dance
93		 * here, refcount_inc() may decide to just WARN_ONCE() instead
94		 * of actually bumping the refcount.
95		 *
96		 * If this node is properly in the radix, we want to bump the
97		 * refcount twice, once for the inode and once for this get
98		 * operation.
99		 */
100		if (refcount_inc_not_zero(&node->refs)) {
101			refcount_inc(&node->refs);
102			btrfs_inode->delayed_node = node;
103		} else {
104			node = NULL;
105		}
106
107		spin_unlock(&root->inode_lock);
108		return node;
109	}
110	spin_unlock(&root->inode_lock);
111
112	return NULL;
113}
114
115/* Will return either the node or PTR_ERR(-ENOMEM) */
116static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
117		struct btrfs_inode *btrfs_inode)
118{
119	struct btrfs_delayed_node *node;
120	struct btrfs_root *root = btrfs_inode->root;
121	u64 ino = btrfs_ino(btrfs_inode);
122	int ret;
123
124again:
125	node = btrfs_get_delayed_node(btrfs_inode);
126	if (node)
127		return node;
128
129	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130	if (!node)
131		return ERR_PTR(-ENOMEM);
132	btrfs_init_delayed_node(node, root, ino);
133
134	/* cached in the btrfs inode and can be accessed */
135	refcount_set(&node->refs, 2);
136
137	ret = radix_tree_preload(GFP_NOFS);
138	if (ret) {
139		kmem_cache_free(delayed_node_cache, node);
140		return ERR_PTR(ret);
141	}
142
143	spin_lock(&root->inode_lock);
144	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145	if (ret == -EEXIST) {
146		spin_unlock(&root->inode_lock);
147		kmem_cache_free(delayed_node_cache, node);
148		radix_tree_preload_end();
149		goto again;
150	}
151	btrfs_inode->delayed_node = node;
152	spin_unlock(&root->inode_lock);
153	radix_tree_preload_end();
154
155	return node;
156}
157
158/*
159 * Call it when holding delayed_node->mutex
160 *
161 * If mod = 1, add this node into the prepared list.
162 */
163static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164				     struct btrfs_delayed_node *node,
165				     int mod)
166{
167	spin_lock(&root->lock);
168	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169		if (!list_empty(&node->p_list))
170			list_move_tail(&node->p_list, &root->prepare_list);
171		else if (mod)
172			list_add_tail(&node->p_list, &root->prepare_list);
173	} else {
174		list_add_tail(&node->n_list, &root->node_list);
175		list_add_tail(&node->p_list, &root->prepare_list);
176		refcount_inc(&node->refs);	/* inserted into list */
177		root->nodes++;
178		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
179	}
180	spin_unlock(&root->lock);
181}
182
183/* Call it when holding delayed_node->mutex */
184static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185				       struct btrfs_delayed_node *node)
186{
187	spin_lock(&root->lock);
188	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
189		root->nodes--;
190		refcount_dec(&node->refs);	/* not in the list */
191		list_del_init(&node->n_list);
192		if (!list_empty(&node->p_list))
193			list_del_init(&node->p_list);
194		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
195	}
196	spin_unlock(&root->lock);
197}
198
199static struct btrfs_delayed_node *btrfs_first_delayed_node(
200			struct btrfs_delayed_root *delayed_root)
201{
202	struct list_head *p;
203	struct btrfs_delayed_node *node = NULL;
204
205	spin_lock(&delayed_root->lock);
206	if (list_empty(&delayed_root->node_list))
207		goto out;
208
209	p = delayed_root->node_list.next;
210	node = list_entry(p, struct btrfs_delayed_node, n_list);
211	refcount_inc(&node->refs);
212out:
213	spin_unlock(&delayed_root->lock);
214
215	return node;
216}
217
218static struct btrfs_delayed_node *btrfs_next_delayed_node(
219						struct btrfs_delayed_node *node)
220{
221	struct btrfs_delayed_root *delayed_root;
222	struct list_head *p;
223	struct btrfs_delayed_node *next = NULL;
224
225	delayed_root = node->root->fs_info->delayed_root;
226	spin_lock(&delayed_root->lock);
227	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228		/* not in the list */
229		if (list_empty(&delayed_root->node_list))
230			goto out;
231		p = delayed_root->node_list.next;
232	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
233		goto out;
234	else
235		p = node->n_list.next;
236
237	next = list_entry(p, struct btrfs_delayed_node, n_list);
238	refcount_inc(&next->refs);
239out:
240	spin_unlock(&delayed_root->lock);
241
242	return next;
243}
244
245static void __btrfs_release_delayed_node(
246				struct btrfs_delayed_node *delayed_node,
247				int mod)
248{
249	struct btrfs_delayed_root *delayed_root;
250
251	if (!delayed_node)
252		return;
253
254	delayed_root = delayed_node->root->fs_info->delayed_root;
255
256	mutex_lock(&delayed_node->mutex);
257	if (delayed_node->count)
258		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
259	else
260		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261	mutex_unlock(&delayed_node->mutex);
262
263	if (refcount_dec_and_test(&delayed_node->refs)) {
264		struct btrfs_root *root = delayed_node->root;
265
266		spin_lock(&root->inode_lock);
267		/*
268		 * Once our refcount goes to zero, nobody is allowed to bump it
269		 * back up.  We can delete it now.
270		 */
271		ASSERT(refcount_read(&delayed_node->refs) == 0);
272		radix_tree_delete(&root->delayed_nodes_tree,
273				  delayed_node->inode_id);
274		spin_unlock(&root->inode_lock);
275		kmem_cache_free(delayed_node_cache, delayed_node);
276	}
277}
278
279static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280{
281	__btrfs_release_delayed_node(node, 0);
282}
283
284static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285					struct btrfs_delayed_root *delayed_root)
286{
287	struct list_head *p;
288	struct btrfs_delayed_node *node = NULL;
289
290	spin_lock(&delayed_root->lock);
291	if (list_empty(&delayed_root->prepare_list))
292		goto out;
293
294	p = delayed_root->prepare_list.next;
295	list_del_init(p);
296	node = list_entry(p, struct btrfs_delayed_node, p_list);
297	refcount_inc(&node->refs);
298out:
299	spin_unlock(&delayed_root->lock);
300
301	return node;
302}
303
304static inline void btrfs_release_prepared_delayed_node(
305					struct btrfs_delayed_node *node)
306{
307	__btrfs_release_delayed_node(node, 1);
308}
309
310static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
311					   struct btrfs_delayed_node *node,
312					   enum btrfs_delayed_item_type type)
313{
314	struct btrfs_delayed_item *item;
315
316	item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
317	if (item) {
318		item->data_len = data_len;
319		item->type = type;
320		item->bytes_reserved = 0;
321		item->delayed_node = node;
322		RB_CLEAR_NODE(&item->rb_node);
323		INIT_LIST_HEAD(&item->log_list);
324		item->logged = false;
325		refcount_set(&item->refs, 1);
326	}
327	return item;
328}
329
330/*
331 * __btrfs_lookup_delayed_item - look up the delayed item by key
332 * @delayed_node: pointer to the delayed node
333 * @index:	  the dir index value to lookup (offset of a dir index key)
334 *
335 * Note: if we don't find the right item, we will return the prev item and
336 * the next item.
337 */
338static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
339				struct rb_root *root,
340				u64 index)
341{
342	struct rb_node *node = root->rb_node;
343	struct btrfs_delayed_item *delayed_item = NULL;
344
345	while (node) {
346		delayed_item = rb_entry(node, struct btrfs_delayed_item,
347					rb_node);
348		if (delayed_item->index < index)
349			node = node->rb_right;
350		else if (delayed_item->index > index)
351			node = node->rb_left;
352		else
353			return delayed_item;
354	}
355
356	return NULL;
357}
358
359static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
360				    struct btrfs_delayed_item *ins)
361{
362	struct rb_node **p, *node;
363	struct rb_node *parent_node = NULL;
364	struct rb_root_cached *root;
365	struct btrfs_delayed_item *item;
366	bool leftmost = true;
367
368	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
369		root = &delayed_node->ins_root;
370	else
371		root = &delayed_node->del_root;
372
373	p = &root->rb_root.rb_node;
374	node = &ins->rb_node;
375
376	while (*p) {
377		parent_node = *p;
378		item = rb_entry(parent_node, struct btrfs_delayed_item,
379				 rb_node);
380
381		if (item->index < ins->index) {
382			p = &(*p)->rb_right;
383			leftmost = false;
384		} else if (item->index > ins->index) {
385			p = &(*p)->rb_left;
386		} else {
387			return -EEXIST;
388		}
389	}
390
391	rb_link_node(node, parent_node, p);
392	rb_insert_color_cached(node, root, leftmost);
393
394	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
395	    ins->index >= delayed_node->index_cnt)
396		delayed_node->index_cnt = ins->index + 1;
397
398	delayed_node->count++;
399	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
400	return 0;
401}
402
403static void finish_one_item(struct btrfs_delayed_root *delayed_root)
404{
405	int seq = atomic_inc_return(&delayed_root->items_seq);
406
407	/* atomic_dec_return implies a barrier */
408	if ((atomic_dec_return(&delayed_root->items) <
409	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
410		cond_wake_up_nomb(&delayed_root->wait);
411}
412
413static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
414{
415	struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
416	struct rb_root_cached *root;
417	struct btrfs_delayed_root *delayed_root;
418
419	/* Not inserted, ignore it. */
420	if (RB_EMPTY_NODE(&delayed_item->rb_node))
421		return;
422
423	/* If it's in a rbtree, then we need to have delayed node locked. */
424	lockdep_assert_held(&delayed_node->mutex);
425
426	delayed_root = delayed_node->root->fs_info->delayed_root;
427
428	BUG_ON(!delayed_root);
429
430	if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
431		root = &delayed_node->ins_root;
432	else
433		root = &delayed_node->del_root;
434
435	rb_erase_cached(&delayed_item->rb_node, root);
436	RB_CLEAR_NODE(&delayed_item->rb_node);
437	delayed_node->count--;
438
439	finish_one_item(delayed_root);
440}
441
442static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
443{
444	if (item) {
445		__btrfs_remove_delayed_item(item);
446		if (refcount_dec_and_test(&item->refs))
447			kfree(item);
448	}
449}
450
451static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
452					struct btrfs_delayed_node *delayed_node)
453{
454	struct rb_node *p;
455	struct btrfs_delayed_item *item = NULL;
456
457	p = rb_first_cached(&delayed_node->ins_root);
458	if (p)
459		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
460
461	return item;
462}
463
464static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
465					struct btrfs_delayed_node *delayed_node)
466{
467	struct rb_node *p;
468	struct btrfs_delayed_item *item = NULL;
469
470	p = rb_first_cached(&delayed_node->del_root);
471	if (p)
472		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
473
474	return item;
475}
476
477static struct btrfs_delayed_item *__btrfs_next_delayed_item(
478						struct btrfs_delayed_item *item)
479{
480	struct rb_node *p;
481	struct btrfs_delayed_item *next = NULL;
482
483	p = rb_next(&item->rb_node);
484	if (p)
485		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
486
487	return next;
488}
489
490static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
491					       struct btrfs_delayed_item *item)
492{
493	struct btrfs_block_rsv *src_rsv;
494	struct btrfs_block_rsv *dst_rsv;
495	struct btrfs_fs_info *fs_info = trans->fs_info;
496	u64 num_bytes;
497	int ret;
498
499	if (!trans->bytes_reserved)
500		return 0;
501
502	src_rsv = trans->block_rsv;
503	dst_rsv = &fs_info->delayed_block_rsv;
504
505	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
506
507	/*
508	 * Here we migrate space rsv from transaction rsv, since have already
509	 * reserved space when starting a transaction.  So no need to reserve
510	 * qgroup space here.
511	 */
512	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
513	if (!ret) {
514		trace_btrfs_space_reservation(fs_info, "delayed_item",
515					      item->delayed_node->inode_id,
516					      num_bytes, 1);
517		/*
518		 * For insertions we track reserved metadata space by accounting
519		 * for the number of leaves that will be used, based on the delayed
520		 * node's index_items_size field.
521		 */
522		if (item->type == BTRFS_DELAYED_DELETION_ITEM)
523			item->bytes_reserved = num_bytes;
524	}
525
526	return ret;
527}
528
529static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
530						struct btrfs_delayed_item *item)
531{
532	struct btrfs_block_rsv *rsv;
533	struct btrfs_fs_info *fs_info = root->fs_info;
534
535	if (!item->bytes_reserved)
536		return;
537
538	rsv = &fs_info->delayed_block_rsv;
539	/*
540	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
541	 * to release/reserve qgroup space.
542	 */
543	trace_btrfs_space_reservation(fs_info, "delayed_item",
544				      item->delayed_node->inode_id,
545				      item->bytes_reserved, 0);
546	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
547}
548
549static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
550					      unsigned int num_leaves)
551{
552	struct btrfs_fs_info *fs_info = node->root->fs_info;
553	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
554
555	/* There are no space reservations during log replay, bail out. */
556	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
557		return;
558
559	trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
560				      bytes, 0);
561	btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
562}
563
564static int btrfs_delayed_inode_reserve_metadata(
565					struct btrfs_trans_handle *trans,
566					struct btrfs_root *root,
567					struct btrfs_delayed_node *node)
568{
569	struct btrfs_fs_info *fs_info = root->fs_info;
570	struct btrfs_block_rsv *src_rsv;
571	struct btrfs_block_rsv *dst_rsv;
572	u64 num_bytes;
573	int ret;
574
575	src_rsv = trans->block_rsv;
576	dst_rsv = &fs_info->delayed_block_rsv;
577
578	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
579
580	/*
581	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
582	 * which doesn't reserve space for speed.  This is a problem since we
583	 * still need to reserve space for this update, so try to reserve the
584	 * space.
585	 *
586	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
587	 * we always reserve enough to update the inode item.
588	 */
589	if (!src_rsv || (!trans->bytes_reserved &&
590			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
591		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
592					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
593		if (ret < 0)
594			return ret;
595		ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
596					  BTRFS_RESERVE_NO_FLUSH);
597		/* NO_FLUSH could only fail with -ENOSPC */
598		ASSERT(ret == 0 || ret == -ENOSPC);
599		if (ret)
600			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
601	} else {
602		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
603	}
604
605	if (!ret) {
606		trace_btrfs_space_reservation(fs_info, "delayed_inode",
607					      node->inode_id, num_bytes, 1);
608		node->bytes_reserved = num_bytes;
609	}
610
611	return ret;
612}
613
614static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
615						struct btrfs_delayed_node *node,
616						bool qgroup_free)
617{
618	struct btrfs_block_rsv *rsv;
619
620	if (!node->bytes_reserved)
621		return;
622
623	rsv = &fs_info->delayed_block_rsv;
624	trace_btrfs_space_reservation(fs_info, "delayed_inode",
625				      node->inode_id, node->bytes_reserved, 0);
626	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
627	if (qgroup_free)
628		btrfs_qgroup_free_meta_prealloc(node->root,
629				node->bytes_reserved);
630	else
631		btrfs_qgroup_convert_reserved_meta(node->root,
632				node->bytes_reserved);
633	node->bytes_reserved = 0;
634}
635
636/*
637 * Insert a single delayed item or a batch of delayed items, as many as possible
638 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
639 * in the rbtree, and if there's a gap between two consecutive dir index items,
640 * then it means at some point we had delayed dir indexes to add but they got
641 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
642 * into the subvolume tree. Dir index keys also have their offsets coming from a
643 * monotonically increasing counter, so we can't get new keys with an offset that
644 * fits within a gap between delayed dir index items.
645 */
646static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
647				     struct btrfs_root *root,
648				     struct btrfs_path *path,
649				     struct btrfs_delayed_item *first_item)
650{
651	struct btrfs_fs_info *fs_info = root->fs_info;
652	struct btrfs_delayed_node *node = first_item->delayed_node;
653	LIST_HEAD(item_list);
654	struct btrfs_delayed_item *curr;
655	struct btrfs_delayed_item *next;
656	const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
657	struct btrfs_item_batch batch;
658	struct btrfs_key first_key;
659	const u32 first_data_size = first_item->data_len;
660	int total_size;
661	char *ins_data = NULL;
662	int ret;
663	bool continuous_keys_only = false;
664
665	lockdep_assert_held(&node->mutex);
666
667	/*
668	 * During normal operation the delayed index offset is continuously
669	 * increasing, so we can batch insert all items as there will not be any
670	 * overlapping keys in the tree.
671	 *
672	 * The exception to this is log replay, where we may have interleaved
673	 * offsets in the tree, so our batch needs to be continuous keys only in
674	 * order to ensure we do not end up with out of order items in our leaf.
675	 */
676	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
677		continuous_keys_only = true;
678
679	/*
680	 * For delayed items to insert, we track reserved metadata bytes based
681	 * on the number of leaves that we will use.
682	 * See btrfs_insert_delayed_dir_index() and
683	 * btrfs_delayed_item_reserve_metadata()).
684	 */
685	ASSERT(first_item->bytes_reserved == 0);
686
687	list_add_tail(&first_item->tree_list, &item_list);
688	batch.total_data_size = first_data_size;
689	batch.nr = 1;
690	total_size = first_data_size + sizeof(struct btrfs_item);
691	curr = first_item;
692
693	while (true) {
694		int next_size;
695
696		next = __btrfs_next_delayed_item(curr);
697		if (!next)
698			break;
699
700		/*
701		 * We cannot allow gaps in the key space if we're doing log
702		 * replay.
703		 */
704		if (continuous_keys_only && (next->index != curr->index + 1))
705			break;
706
707		ASSERT(next->bytes_reserved == 0);
708
709		next_size = next->data_len + sizeof(struct btrfs_item);
710		if (total_size + next_size > max_size)
711			break;
712
713		list_add_tail(&next->tree_list, &item_list);
714		batch.nr++;
715		total_size += next_size;
716		batch.total_data_size += next->data_len;
717		curr = next;
718	}
719
720	if (batch.nr == 1) {
721		first_key.objectid = node->inode_id;
722		first_key.type = BTRFS_DIR_INDEX_KEY;
723		first_key.offset = first_item->index;
724		batch.keys = &first_key;
725		batch.data_sizes = &first_data_size;
726	} else {
727		struct btrfs_key *ins_keys;
728		u32 *ins_sizes;
729		int i = 0;
730
731		ins_data = kmalloc(batch.nr * sizeof(u32) +
732				   batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
733		if (!ins_data) {
734			ret = -ENOMEM;
735			goto out;
736		}
737		ins_sizes = (u32 *)ins_data;
738		ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
739		batch.keys = ins_keys;
740		batch.data_sizes = ins_sizes;
741		list_for_each_entry(curr, &item_list, tree_list) {
742			ins_keys[i].objectid = node->inode_id;
743			ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
744			ins_keys[i].offset = curr->index;
745			ins_sizes[i] = curr->data_len;
746			i++;
747		}
748	}
749
750	ret = btrfs_insert_empty_items(trans, root, path, &batch);
751	if (ret)
752		goto out;
753
754	list_for_each_entry(curr, &item_list, tree_list) {
755		char *data_ptr;
756
757		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
758		write_extent_buffer(path->nodes[0], &curr->data,
759				    (unsigned long)data_ptr, curr->data_len);
760		path->slots[0]++;
761	}
762
763	/*
764	 * Now release our path before releasing the delayed items and their
765	 * metadata reservations, so that we don't block other tasks for more
766	 * time than needed.
767	 */
768	btrfs_release_path(path);
769
770	ASSERT(node->index_item_leaves > 0);
771
772	/*
773	 * For normal operations we will batch an entire leaf's worth of delayed
774	 * items, so if there are more items to process we can decrement
775	 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
776	 *
777	 * However for log replay we may not have inserted an entire leaf's
778	 * worth of items, we may have not had continuous items, so decrementing
779	 * here would mess up the index_item_leaves accounting.  For this case
780	 * only clean up the accounting when there are no items left.
781	 */
782	if (next && !continuous_keys_only) {
783		/*
784		 * We inserted one batch of items into a leaf a there are more
785		 * items to flush in a future batch, now release one unit of
786		 * metadata space from the delayed block reserve, corresponding
787		 * the leaf we just flushed to.
788		 */
789		btrfs_delayed_item_release_leaves(node, 1);
790		node->index_item_leaves--;
791	} else if (!next) {
792		/*
793		 * There are no more items to insert. We can have a number of
794		 * reserved leaves > 1 here - this happens when many dir index
795		 * items are added and then removed before they are flushed (file
796		 * names with a very short life, never span a transaction). So
797		 * release all remaining leaves.
798		 */
799		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
800		node->index_item_leaves = 0;
801	}
802
803	list_for_each_entry_safe(curr, next, &item_list, tree_list) {
804		list_del(&curr->tree_list);
805		btrfs_release_delayed_item(curr);
806	}
807out:
808	kfree(ins_data);
809	return ret;
810}
811
812static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
813				      struct btrfs_path *path,
814				      struct btrfs_root *root,
815				      struct btrfs_delayed_node *node)
816{
817	int ret = 0;
818
819	while (ret == 0) {
820		struct btrfs_delayed_item *curr;
821
822		mutex_lock(&node->mutex);
823		curr = __btrfs_first_delayed_insertion_item(node);
824		if (!curr) {
825			mutex_unlock(&node->mutex);
826			break;
827		}
828		ret = btrfs_insert_delayed_item(trans, root, path, curr);
829		mutex_unlock(&node->mutex);
830	}
831
832	return ret;
833}
834
835static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
836				    struct btrfs_root *root,
837				    struct btrfs_path *path,
838				    struct btrfs_delayed_item *item)
839{
840	const u64 ino = item->delayed_node->inode_id;
841	struct btrfs_fs_info *fs_info = root->fs_info;
842	struct btrfs_delayed_item *curr, *next;
843	struct extent_buffer *leaf = path->nodes[0];
844	LIST_HEAD(batch_list);
845	int nitems, slot, last_slot;
846	int ret;
847	u64 total_reserved_size = item->bytes_reserved;
848
849	ASSERT(leaf != NULL);
850
851	slot = path->slots[0];
852	last_slot = btrfs_header_nritems(leaf) - 1;
853	/*
854	 * Our caller always gives us a path pointing to an existing item, so
855	 * this can not happen.
856	 */
857	ASSERT(slot <= last_slot);
858	if (WARN_ON(slot > last_slot))
859		return -ENOENT;
860
861	nitems = 1;
862	curr = item;
863	list_add_tail(&curr->tree_list, &batch_list);
864
865	/*
866	 * Keep checking if the next delayed item matches the next item in the
867	 * leaf - if so, we can add it to the batch of items to delete from the
868	 * leaf.
869	 */
870	while (slot < last_slot) {
871		struct btrfs_key key;
872
873		next = __btrfs_next_delayed_item(curr);
874		if (!next)
875			break;
876
877		slot++;
878		btrfs_item_key_to_cpu(leaf, &key, slot);
879		if (key.objectid != ino ||
880		    key.type != BTRFS_DIR_INDEX_KEY ||
881		    key.offset != next->index)
882			break;
883		nitems++;
884		curr = next;
885		list_add_tail(&curr->tree_list, &batch_list);
886		total_reserved_size += curr->bytes_reserved;
887	}
888
889	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
890	if (ret)
891		return ret;
892
893	/* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
894	if (total_reserved_size > 0) {
895		/*
896		 * Check btrfs_delayed_item_reserve_metadata() to see why we
897		 * don't need to release/reserve qgroup space.
898		 */
899		trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
900					      total_reserved_size, 0);
901		btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
902					total_reserved_size, NULL);
903	}
904
905	list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
906		list_del(&curr->tree_list);
907		btrfs_release_delayed_item(curr);
908	}
909
910	return 0;
911}
912
913static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
914				      struct btrfs_path *path,
915				      struct btrfs_root *root,
916				      struct btrfs_delayed_node *node)
917{
918	struct btrfs_key key;
919	int ret = 0;
920
921	key.objectid = node->inode_id;
922	key.type = BTRFS_DIR_INDEX_KEY;
923
924	while (ret == 0) {
925		struct btrfs_delayed_item *item;
926
927		mutex_lock(&node->mutex);
928		item = __btrfs_first_delayed_deletion_item(node);
929		if (!item) {
930			mutex_unlock(&node->mutex);
931			break;
932		}
933
934		key.offset = item->index;
935		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
936		if (ret > 0) {
937			/*
938			 * There's no matching item in the leaf. This means we
939			 * have already deleted this item in a past run of the
940			 * delayed items. We ignore errors when running delayed
941			 * items from an async context, through a work queue job
942			 * running btrfs_async_run_delayed_root(), and don't
943			 * release delayed items that failed to complete. This
944			 * is because we will retry later, and at transaction
945			 * commit time we always run delayed items and will
946			 * then deal with errors if they fail to run again.
947			 *
948			 * So just release delayed items for which we can't find
949			 * an item in the tree, and move to the next item.
950			 */
951			btrfs_release_path(path);
952			btrfs_release_delayed_item(item);
953			ret = 0;
954		} else if (ret == 0) {
955			ret = btrfs_batch_delete_items(trans, root, path, item);
956			btrfs_release_path(path);
957		}
958
959		/*
960		 * We unlock and relock on each iteration, this is to prevent
961		 * blocking other tasks for too long while we are being run from
962		 * the async context (work queue job). Those tasks are typically
963		 * running system calls like creat/mkdir/rename/unlink/etc which
964		 * need to add delayed items to this delayed node.
965		 */
966		mutex_unlock(&node->mutex);
967	}
968
969	return ret;
970}
971
972static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
973{
974	struct btrfs_delayed_root *delayed_root;
975
976	if (delayed_node &&
977	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
978		BUG_ON(!delayed_node->root);
979		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
980		delayed_node->count--;
981
982		delayed_root = delayed_node->root->fs_info->delayed_root;
983		finish_one_item(delayed_root);
984	}
985}
986
987static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
988{
989
990	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
991		struct btrfs_delayed_root *delayed_root;
992
993		ASSERT(delayed_node->root);
994		delayed_node->count--;
995
996		delayed_root = delayed_node->root->fs_info->delayed_root;
997		finish_one_item(delayed_root);
998	}
999}
1000
1001static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1002					struct btrfs_root *root,
1003					struct btrfs_path *path,
1004					struct btrfs_delayed_node *node)
1005{
1006	struct btrfs_fs_info *fs_info = root->fs_info;
1007	struct btrfs_key key;
1008	struct btrfs_inode_item *inode_item;
1009	struct extent_buffer *leaf;
1010	int mod;
1011	int ret;
1012
1013	key.objectid = node->inode_id;
1014	key.type = BTRFS_INODE_ITEM_KEY;
1015	key.offset = 0;
1016
1017	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1018		mod = -1;
1019	else
1020		mod = 1;
1021
1022	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1023	if (ret > 0)
1024		ret = -ENOENT;
1025	if (ret < 0)
1026		goto out;
1027
1028	leaf = path->nodes[0];
1029	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1030				    struct btrfs_inode_item);
1031	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1032			    sizeof(struct btrfs_inode_item));
1033	btrfs_mark_buffer_dirty(trans, leaf);
1034
1035	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1036		goto out;
1037
1038	path->slots[0]++;
1039	if (path->slots[0] >= btrfs_header_nritems(leaf))
1040		goto search;
1041again:
1042	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1043	if (key.objectid != node->inode_id)
1044		goto out;
1045
1046	if (key.type != BTRFS_INODE_REF_KEY &&
1047	    key.type != BTRFS_INODE_EXTREF_KEY)
1048		goto out;
1049
1050	/*
1051	 * Delayed iref deletion is for the inode who has only one link,
1052	 * so there is only one iref. The case that several irefs are
1053	 * in the same item doesn't exist.
1054	 */
1055	ret = btrfs_del_item(trans, root, path);
1056out:
1057	btrfs_release_delayed_iref(node);
1058	btrfs_release_path(path);
1059err_out:
1060	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1061	btrfs_release_delayed_inode(node);
1062
1063	/*
1064	 * If we fail to update the delayed inode we need to abort the
1065	 * transaction, because we could leave the inode with the improper
1066	 * counts behind.
1067	 */
1068	if (ret && ret != -ENOENT)
1069		btrfs_abort_transaction(trans, ret);
1070
1071	return ret;
1072
1073search:
1074	btrfs_release_path(path);
1075
1076	key.type = BTRFS_INODE_EXTREF_KEY;
1077	key.offset = -1;
1078
1079	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1080	if (ret < 0)
1081		goto err_out;
1082	ASSERT(ret);
1083
1084	ret = 0;
1085	leaf = path->nodes[0];
1086	path->slots[0]--;
1087	goto again;
1088}
1089
1090static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1091					     struct btrfs_root *root,
1092					     struct btrfs_path *path,
1093					     struct btrfs_delayed_node *node)
1094{
1095	int ret;
1096
1097	mutex_lock(&node->mutex);
1098	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1099		mutex_unlock(&node->mutex);
1100		return 0;
1101	}
1102
1103	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1104	mutex_unlock(&node->mutex);
1105	return ret;
1106}
1107
1108static inline int
1109__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1110				   struct btrfs_path *path,
1111				   struct btrfs_delayed_node *node)
1112{
1113	int ret;
1114
1115	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1116	if (ret)
1117		return ret;
1118
1119	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1120	if (ret)
1121		return ret;
1122
1123	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1124	return ret;
1125}
1126
1127/*
1128 * Called when committing the transaction.
1129 * Returns 0 on success.
1130 * Returns < 0 on error and returns with an aborted transaction with any
1131 * outstanding delayed items cleaned up.
1132 */
1133static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1134{
1135	struct btrfs_fs_info *fs_info = trans->fs_info;
1136	struct btrfs_delayed_root *delayed_root;
1137	struct btrfs_delayed_node *curr_node, *prev_node;
1138	struct btrfs_path *path;
1139	struct btrfs_block_rsv *block_rsv;
1140	int ret = 0;
1141	bool count = (nr > 0);
1142
1143	if (TRANS_ABORTED(trans))
1144		return -EIO;
1145
1146	path = btrfs_alloc_path();
1147	if (!path)
1148		return -ENOMEM;
1149
1150	block_rsv = trans->block_rsv;
1151	trans->block_rsv = &fs_info->delayed_block_rsv;
1152
1153	delayed_root = fs_info->delayed_root;
1154
1155	curr_node = btrfs_first_delayed_node(delayed_root);
1156	while (curr_node && (!count || nr--)) {
1157		ret = __btrfs_commit_inode_delayed_items(trans, path,
1158							 curr_node);
1159		if (ret) {
1160			btrfs_abort_transaction(trans, ret);
1161			break;
1162		}
1163
1164		prev_node = curr_node;
1165		curr_node = btrfs_next_delayed_node(curr_node);
1166		/*
1167		 * See the comment below about releasing path before releasing
1168		 * node. If the commit of delayed items was successful the path
1169		 * should always be released, but in case of an error, it may
1170		 * point to locked extent buffers (a leaf at the very least).
1171		 */
1172		ASSERT(path->nodes[0] == NULL);
1173		btrfs_release_delayed_node(prev_node);
1174	}
1175
1176	/*
1177	 * Release the path to avoid a potential deadlock and lockdep splat when
1178	 * releasing the delayed node, as that requires taking the delayed node's
1179	 * mutex. If another task starts running delayed items before we take
1180	 * the mutex, it will first lock the mutex and then it may try to lock
1181	 * the same btree path (leaf).
1182	 */
1183	btrfs_free_path(path);
1184
1185	if (curr_node)
1186		btrfs_release_delayed_node(curr_node);
1187	trans->block_rsv = block_rsv;
1188
1189	return ret;
1190}
1191
1192int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1193{
1194	return __btrfs_run_delayed_items(trans, -1);
1195}
1196
1197int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1198{
1199	return __btrfs_run_delayed_items(trans, nr);
1200}
1201
1202int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1203				     struct btrfs_inode *inode)
1204{
1205	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1206	struct btrfs_path *path;
1207	struct btrfs_block_rsv *block_rsv;
1208	int ret;
1209
1210	if (!delayed_node)
1211		return 0;
1212
1213	mutex_lock(&delayed_node->mutex);
1214	if (!delayed_node->count) {
1215		mutex_unlock(&delayed_node->mutex);
1216		btrfs_release_delayed_node(delayed_node);
1217		return 0;
1218	}
1219	mutex_unlock(&delayed_node->mutex);
1220
1221	path = btrfs_alloc_path();
1222	if (!path) {
1223		btrfs_release_delayed_node(delayed_node);
1224		return -ENOMEM;
1225	}
1226
1227	block_rsv = trans->block_rsv;
1228	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1229
1230	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1231
1232	btrfs_release_delayed_node(delayed_node);
1233	btrfs_free_path(path);
1234	trans->block_rsv = block_rsv;
1235
1236	return ret;
1237}
1238
1239int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1240{
1241	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1242	struct btrfs_trans_handle *trans;
1243	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1244	struct btrfs_path *path;
1245	struct btrfs_block_rsv *block_rsv;
1246	int ret;
1247
1248	if (!delayed_node)
1249		return 0;
1250
1251	mutex_lock(&delayed_node->mutex);
1252	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1253		mutex_unlock(&delayed_node->mutex);
1254		btrfs_release_delayed_node(delayed_node);
1255		return 0;
1256	}
1257	mutex_unlock(&delayed_node->mutex);
1258
1259	trans = btrfs_join_transaction(delayed_node->root);
1260	if (IS_ERR(trans)) {
1261		ret = PTR_ERR(trans);
1262		goto out;
1263	}
1264
1265	path = btrfs_alloc_path();
1266	if (!path) {
1267		ret = -ENOMEM;
1268		goto trans_out;
1269	}
1270
1271	block_rsv = trans->block_rsv;
1272	trans->block_rsv = &fs_info->delayed_block_rsv;
1273
1274	mutex_lock(&delayed_node->mutex);
1275	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1276		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1277						   path, delayed_node);
1278	else
1279		ret = 0;
1280	mutex_unlock(&delayed_node->mutex);
1281
1282	btrfs_free_path(path);
1283	trans->block_rsv = block_rsv;
1284trans_out:
1285	btrfs_end_transaction(trans);
1286	btrfs_btree_balance_dirty(fs_info);
1287out:
1288	btrfs_release_delayed_node(delayed_node);
1289
1290	return ret;
1291}
1292
1293void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1294{
1295	struct btrfs_delayed_node *delayed_node;
1296
1297	delayed_node = READ_ONCE(inode->delayed_node);
1298	if (!delayed_node)
1299		return;
1300
1301	inode->delayed_node = NULL;
1302	btrfs_release_delayed_node(delayed_node);
1303}
1304
1305struct btrfs_async_delayed_work {
1306	struct btrfs_delayed_root *delayed_root;
1307	int nr;
1308	struct btrfs_work work;
1309};
1310
1311static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1312{
1313	struct btrfs_async_delayed_work *async_work;
1314	struct btrfs_delayed_root *delayed_root;
1315	struct btrfs_trans_handle *trans;
1316	struct btrfs_path *path;
1317	struct btrfs_delayed_node *delayed_node = NULL;
1318	struct btrfs_root *root;
1319	struct btrfs_block_rsv *block_rsv;
1320	int total_done = 0;
1321
1322	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1323	delayed_root = async_work->delayed_root;
1324
1325	path = btrfs_alloc_path();
1326	if (!path)
1327		goto out;
1328
1329	do {
1330		if (atomic_read(&delayed_root->items) <
1331		    BTRFS_DELAYED_BACKGROUND / 2)
1332			break;
1333
1334		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1335		if (!delayed_node)
1336			break;
1337
1338		root = delayed_node->root;
1339
1340		trans = btrfs_join_transaction(root);
1341		if (IS_ERR(trans)) {
1342			btrfs_release_path(path);
1343			btrfs_release_prepared_delayed_node(delayed_node);
1344			total_done++;
1345			continue;
1346		}
1347
1348		block_rsv = trans->block_rsv;
1349		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1350
1351		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1352
1353		trans->block_rsv = block_rsv;
1354		btrfs_end_transaction(trans);
1355		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1356
1357		btrfs_release_path(path);
1358		btrfs_release_prepared_delayed_node(delayed_node);
1359		total_done++;
1360
1361	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1362		 || total_done < async_work->nr);
1363
1364	btrfs_free_path(path);
1365out:
1366	wake_up(&delayed_root->wait);
1367	kfree(async_work);
1368}
1369
1370
1371static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1372				     struct btrfs_fs_info *fs_info, int nr)
1373{
1374	struct btrfs_async_delayed_work *async_work;
1375
1376	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1377	if (!async_work)
1378		return -ENOMEM;
1379
1380	async_work->delayed_root = delayed_root;
1381	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1382			NULL);
1383	async_work->nr = nr;
1384
1385	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1386	return 0;
1387}
1388
1389void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1390{
1391	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1392}
1393
1394static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1395{
1396	int val = atomic_read(&delayed_root->items_seq);
1397
1398	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1399		return 1;
1400
1401	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1402		return 1;
1403
1404	return 0;
1405}
1406
1407void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1408{
1409	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1410
1411	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1412		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1413		return;
1414
1415	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1416		int seq;
1417		int ret;
1418
1419		seq = atomic_read(&delayed_root->items_seq);
1420
1421		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1422		if (ret)
1423			return;
1424
1425		wait_event_interruptible(delayed_root->wait,
1426					 could_end_wait(delayed_root, seq));
1427		return;
1428	}
1429
1430	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1431}
1432
1433static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1434{
1435	struct btrfs_fs_info *fs_info = trans->fs_info;
1436	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1437
1438	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1439		return;
1440
1441	/*
1442	 * Adding the new dir index item does not require touching another
1443	 * leaf, so we can release 1 unit of metadata that was previously
1444	 * reserved when starting the transaction. This applies only to
1445	 * the case where we had a transaction start and excludes the
1446	 * transaction join case (when replaying log trees).
1447	 */
1448	trace_btrfs_space_reservation(fs_info, "transaction",
1449				      trans->transid, bytes, 0);
1450	btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1451	ASSERT(trans->bytes_reserved >= bytes);
1452	trans->bytes_reserved -= bytes;
1453}
1454
1455/* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
1456int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1457				   const char *name, int name_len,
1458				   struct btrfs_inode *dir,
1459				   struct btrfs_disk_key *disk_key, u8 flags,
1460				   u64 index)
1461{
1462	struct btrfs_fs_info *fs_info = trans->fs_info;
1463	const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1464	struct btrfs_delayed_node *delayed_node;
1465	struct btrfs_delayed_item *delayed_item;
1466	struct btrfs_dir_item *dir_item;
1467	bool reserve_leaf_space;
1468	u32 data_len;
1469	int ret;
1470
1471	delayed_node = btrfs_get_or_create_delayed_node(dir);
1472	if (IS_ERR(delayed_node))
1473		return PTR_ERR(delayed_node);
1474
1475	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1476						delayed_node,
1477						BTRFS_DELAYED_INSERTION_ITEM);
1478	if (!delayed_item) {
1479		ret = -ENOMEM;
1480		goto release_node;
1481	}
1482
1483	delayed_item->index = index;
1484
1485	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1486	dir_item->location = *disk_key;
1487	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1488	btrfs_set_stack_dir_data_len(dir_item, 0);
1489	btrfs_set_stack_dir_name_len(dir_item, name_len);
1490	btrfs_set_stack_dir_flags(dir_item, flags);
1491	memcpy((char *)(dir_item + 1), name, name_len);
1492
1493	data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1494
1495	mutex_lock(&delayed_node->mutex);
1496
1497	/*
1498	 * First attempt to insert the delayed item. This is to make the error
1499	 * handling path simpler in case we fail (-EEXIST). There's no risk of
1500	 * any other task coming in and running the delayed item before we do
1501	 * the metadata space reservation below, because we are holding the
1502	 * delayed node's mutex and that mutex must also be locked before the
1503	 * node's delayed items can be run.
1504	 */
1505	ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1506	if (unlikely(ret)) {
1507		btrfs_err(trans->fs_info,
1508"error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1509			  name_len, name, index, btrfs_root_id(delayed_node->root),
1510			  delayed_node->inode_id, dir->index_cnt,
1511			  delayed_node->index_cnt, ret);
1512		btrfs_release_delayed_item(delayed_item);
1513		btrfs_release_dir_index_item_space(trans);
1514		mutex_unlock(&delayed_node->mutex);
1515		goto release_node;
1516	}
1517
1518	if (delayed_node->index_item_leaves == 0 ||
1519	    delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1520		delayed_node->curr_index_batch_size = data_len;
1521		reserve_leaf_space = true;
1522	} else {
1523		delayed_node->curr_index_batch_size += data_len;
1524		reserve_leaf_space = false;
1525	}
1526
1527	if (reserve_leaf_space) {
1528		ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1529		/*
1530		 * Space was reserved for a dir index item insertion when we
1531		 * started the transaction, so getting a failure here should be
1532		 * impossible.
1533		 */
1534		if (WARN_ON(ret)) {
1535			btrfs_release_delayed_item(delayed_item);
1536			mutex_unlock(&delayed_node->mutex);
1537			goto release_node;
1538		}
1539
1540		delayed_node->index_item_leaves++;
1541	} else {
1542		btrfs_release_dir_index_item_space(trans);
1543	}
1544	mutex_unlock(&delayed_node->mutex);
1545
1546release_node:
1547	btrfs_release_delayed_node(delayed_node);
1548	return ret;
1549}
1550
1551static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1552					       struct btrfs_delayed_node *node,
1553					       u64 index)
1554{
1555	struct btrfs_delayed_item *item;
1556
1557	mutex_lock(&node->mutex);
1558	item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1559	if (!item) {
1560		mutex_unlock(&node->mutex);
1561		return 1;
1562	}
1563
1564	/*
1565	 * For delayed items to insert, we track reserved metadata bytes based
1566	 * on the number of leaves that we will use.
1567	 * See btrfs_insert_delayed_dir_index() and
1568	 * btrfs_delayed_item_reserve_metadata()).
1569	 */
1570	ASSERT(item->bytes_reserved == 0);
1571	ASSERT(node->index_item_leaves > 0);
1572
1573	/*
1574	 * If there's only one leaf reserved, we can decrement this item from the
1575	 * current batch, otherwise we can not because we don't know which leaf
1576	 * it belongs to. With the current limit on delayed items, we rarely
1577	 * accumulate enough dir index items to fill more than one leaf (even
1578	 * when using a leaf size of 4K).
1579	 */
1580	if (node->index_item_leaves == 1) {
1581		const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1582
1583		ASSERT(node->curr_index_batch_size >= data_len);
1584		node->curr_index_batch_size -= data_len;
1585	}
1586
1587	btrfs_release_delayed_item(item);
1588
1589	/* If we now have no more dir index items, we can release all leaves. */
1590	if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1591		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1592		node->index_item_leaves = 0;
1593	}
1594
1595	mutex_unlock(&node->mutex);
1596	return 0;
1597}
1598
1599int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1600				   struct btrfs_inode *dir, u64 index)
1601{
1602	struct btrfs_delayed_node *node;
1603	struct btrfs_delayed_item *item;
1604	int ret;
1605
1606	node = btrfs_get_or_create_delayed_node(dir);
1607	if (IS_ERR(node))
1608		return PTR_ERR(node);
1609
1610	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
1611	if (!ret)
1612		goto end;
1613
1614	item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1615	if (!item) {
1616		ret = -ENOMEM;
1617		goto end;
1618	}
1619
1620	item->index = index;
1621
1622	ret = btrfs_delayed_item_reserve_metadata(trans, item);
1623	/*
1624	 * we have reserved enough space when we start a new transaction,
1625	 * so reserving metadata failure is impossible.
1626	 */
1627	if (ret < 0) {
1628		btrfs_err(trans->fs_info,
1629"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1630		btrfs_release_delayed_item(item);
1631		goto end;
1632	}
1633
1634	mutex_lock(&node->mutex);
1635	ret = __btrfs_add_delayed_item(node, item);
1636	if (unlikely(ret)) {
1637		btrfs_err(trans->fs_info,
1638			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1639			  index, node->root->root_key.objectid,
1640			  node->inode_id, ret);
1641		btrfs_delayed_item_release_metadata(dir->root, item);
1642		btrfs_release_delayed_item(item);
1643	}
1644	mutex_unlock(&node->mutex);
1645end:
1646	btrfs_release_delayed_node(node);
1647	return ret;
1648}
1649
1650int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1651{
1652	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1653
1654	if (!delayed_node)
1655		return -ENOENT;
1656
1657	/*
1658	 * Since we have held i_mutex of this directory, it is impossible that
1659	 * a new directory index is added into the delayed node and index_cnt
1660	 * is updated now. So we needn't lock the delayed node.
1661	 */
1662	if (!delayed_node->index_cnt) {
1663		btrfs_release_delayed_node(delayed_node);
1664		return -EINVAL;
1665	}
1666
1667	inode->index_cnt = delayed_node->index_cnt;
1668	btrfs_release_delayed_node(delayed_node);
1669	return 0;
1670}
1671
1672bool btrfs_readdir_get_delayed_items(struct inode *inode,
1673				     u64 last_index,
1674				     struct list_head *ins_list,
1675				     struct list_head *del_list)
1676{
1677	struct btrfs_delayed_node *delayed_node;
1678	struct btrfs_delayed_item *item;
1679
1680	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1681	if (!delayed_node)
1682		return false;
1683
1684	/*
1685	 * We can only do one readdir with delayed items at a time because of
1686	 * item->readdir_list.
1687	 */
1688	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
1689	btrfs_inode_lock(BTRFS_I(inode), 0);
1690
1691	mutex_lock(&delayed_node->mutex);
1692	item = __btrfs_first_delayed_insertion_item(delayed_node);
1693	while (item && item->index <= last_index) {
1694		refcount_inc(&item->refs);
1695		list_add_tail(&item->readdir_list, ins_list);
1696		item = __btrfs_next_delayed_item(item);
1697	}
1698
1699	item = __btrfs_first_delayed_deletion_item(delayed_node);
1700	while (item && item->index <= last_index) {
1701		refcount_inc(&item->refs);
1702		list_add_tail(&item->readdir_list, del_list);
1703		item = __btrfs_next_delayed_item(item);
1704	}
1705	mutex_unlock(&delayed_node->mutex);
1706	/*
1707	 * This delayed node is still cached in the btrfs inode, so refs
1708	 * must be > 1 now, and we needn't check it is going to be freed
1709	 * or not.
1710	 *
1711	 * Besides that, this function is used to read dir, we do not
1712	 * insert/delete delayed items in this period. So we also needn't
1713	 * requeue or dequeue this delayed node.
1714	 */
1715	refcount_dec(&delayed_node->refs);
1716
1717	return true;
1718}
1719
1720void btrfs_readdir_put_delayed_items(struct inode *inode,
1721				     struct list_head *ins_list,
1722				     struct list_head *del_list)
1723{
1724	struct btrfs_delayed_item *curr, *next;
1725
1726	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1727		list_del(&curr->readdir_list);
1728		if (refcount_dec_and_test(&curr->refs))
1729			kfree(curr);
1730	}
1731
1732	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1733		list_del(&curr->readdir_list);
1734		if (refcount_dec_and_test(&curr->refs))
1735			kfree(curr);
1736	}
1737
1738	/*
1739	 * The VFS is going to do up_read(), so we need to downgrade back to a
1740	 * read lock.
1741	 */
1742	downgrade_write(&inode->i_rwsem);
1743}
1744
1745int btrfs_should_delete_dir_index(struct list_head *del_list,
1746				  u64 index)
1747{
1748	struct btrfs_delayed_item *curr;
1749	int ret = 0;
1750
1751	list_for_each_entry(curr, del_list, readdir_list) {
1752		if (curr->index > index)
1753			break;
1754		if (curr->index == index) {
1755			ret = 1;
1756			break;
1757		}
1758	}
1759	return ret;
1760}
1761
1762/*
1763 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1764 *
1765 */
1766int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1767				    struct list_head *ins_list)
1768{
1769	struct btrfs_dir_item *di;
1770	struct btrfs_delayed_item *curr, *next;
1771	struct btrfs_key location;
1772	char *name;
1773	int name_len;
1774	int over = 0;
1775	unsigned char d_type;
1776
1777	/*
1778	 * Changing the data of the delayed item is impossible. So
1779	 * we needn't lock them. And we have held i_mutex of the
1780	 * directory, nobody can delete any directory indexes now.
1781	 */
1782	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1783		list_del(&curr->readdir_list);
1784
1785		if (curr->index < ctx->pos) {
1786			if (refcount_dec_and_test(&curr->refs))
1787				kfree(curr);
1788			continue;
1789		}
1790
1791		ctx->pos = curr->index;
1792
1793		di = (struct btrfs_dir_item *)curr->data;
1794		name = (char *)(di + 1);
1795		name_len = btrfs_stack_dir_name_len(di);
1796
1797		d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1798		btrfs_disk_key_to_cpu(&location, &di->location);
1799
1800		over = !dir_emit(ctx, name, name_len,
1801			       location.objectid, d_type);
1802
1803		if (refcount_dec_and_test(&curr->refs))
1804			kfree(curr);
1805
1806		if (over)
1807			return 1;
1808		ctx->pos++;
1809	}
1810	return 0;
1811}
1812
1813static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1814				  struct btrfs_inode_item *inode_item,
1815				  struct inode *inode)
1816{
1817	u64 flags;
1818
1819	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1820	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1821	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1822	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1823	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1824	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1825	btrfs_set_stack_inode_generation(inode_item,
1826					 BTRFS_I(inode)->generation);
1827	btrfs_set_stack_inode_sequence(inode_item,
1828				       inode_peek_iversion(inode));
1829	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1830	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1831	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1832					  BTRFS_I(inode)->ro_flags);
1833	btrfs_set_stack_inode_flags(inode_item, flags);
1834	btrfs_set_stack_inode_block_group(inode_item, 0);
1835
1836	btrfs_set_stack_timespec_sec(&inode_item->atime,
1837				     inode->i_atime.tv_sec);
1838	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1839				      inode->i_atime.tv_nsec);
1840
1841	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1842				     inode->i_mtime.tv_sec);
1843	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1844				      inode->i_mtime.tv_nsec);
1845
1846	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1847				     inode_get_ctime(inode).tv_sec);
1848	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1849				      inode_get_ctime(inode).tv_nsec);
1850
1851	btrfs_set_stack_timespec_sec(&inode_item->otime,
1852				     BTRFS_I(inode)->i_otime.tv_sec);
1853	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1854				     BTRFS_I(inode)->i_otime.tv_nsec);
1855}
1856
1857int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1858{
1859	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1860	struct btrfs_delayed_node *delayed_node;
1861	struct btrfs_inode_item *inode_item;
1862
1863	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1864	if (!delayed_node)
1865		return -ENOENT;
1866
1867	mutex_lock(&delayed_node->mutex);
1868	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1869		mutex_unlock(&delayed_node->mutex);
1870		btrfs_release_delayed_node(delayed_node);
1871		return -ENOENT;
1872	}
1873
1874	inode_item = &delayed_node->inode_item;
1875
1876	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1877	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1878	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1879	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1880			round_up(i_size_read(inode), fs_info->sectorsize));
1881	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1882	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1883	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1884	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1885        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1886
1887	inode_set_iversion_queried(inode,
1888				   btrfs_stack_inode_sequence(inode_item));
1889	inode->i_rdev = 0;
1890	*rdev = btrfs_stack_inode_rdev(inode_item);
1891	btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1892				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1893
1894	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1895	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1896
1897	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1898	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1899
1900	inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1901			btrfs_stack_timespec_nsec(&inode_item->ctime));
1902
1903	BTRFS_I(inode)->i_otime.tv_sec =
1904		btrfs_stack_timespec_sec(&inode_item->otime);
1905	BTRFS_I(inode)->i_otime.tv_nsec =
1906		btrfs_stack_timespec_nsec(&inode_item->otime);
1907
1908	inode->i_generation = BTRFS_I(inode)->generation;
1909	BTRFS_I(inode)->index_cnt = (u64)-1;
1910
1911	mutex_unlock(&delayed_node->mutex);
1912	btrfs_release_delayed_node(delayed_node);
1913	return 0;
1914}
1915
1916int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1917			       struct btrfs_root *root,
1918			       struct btrfs_inode *inode)
1919{
1920	struct btrfs_delayed_node *delayed_node;
1921	int ret = 0;
1922
1923	delayed_node = btrfs_get_or_create_delayed_node(inode);
1924	if (IS_ERR(delayed_node))
1925		return PTR_ERR(delayed_node);
1926
1927	mutex_lock(&delayed_node->mutex);
1928	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1929		fill_stack_inode_item(trans, &delayed_node->inode_item,
1930				      &inode->vfs_inode);
1931		goto release_node;
1932	}
1933
1934	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1935	if (ret)
1936		goto release_node;
1937
1938	fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1939	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1940	delayed_node->count++;
1941	atomic_inc(&root->fs_info->delayed_root->items);
1942release_node:
1943	mutex_unlock(&delayed_node->mutex);
1944	btrfs_release_delayed_node(delayed_node);
1945	return ret;
1946}
1947
1948int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1949{
1950	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1951	struct btrfs_delayed_node *delayed_node;
1952
1953	/*
1954	 * we don't do delayed inode updates during log recovery because it
1955	 * leads to enospc problems.  This means we also can't do
1956	 * delayed inode refs
1957	 */
1958	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1959		return -EAGAIN;
1960
1961	delayed_node = btrfs_get_or_create_delayed_node(inode);
1962	if (IS_ERR(delayed_node))
1963		return PTR_ERR(delayed_node);
1964
1965	/*
1966	 * We don't reserve space for inode ref deletion is because:
1967	 * - We ONLY do async inode ref deletion for the inode who has only
1968	 *   one link(i_nlink == 1), it means there is only one inode ref.
1969	 *   And in most case, the inode ref and the inode item are in the
1970	 *   same leaf, and we will deal with them at the same time.
1971	 *   Since we are sure we will reserve the space for the inode item,
1972	 *   it is unnecessary to reserve space for inode ref deletion.
1973	 * - If the inode ref and the inode item are not in the same leaf,
1974	 *   We also needn't worry about enospc problem, because we reserve
1975	 *   much more space for the inode update than it needs.
1976	 * - At the worst, we can steal some space from the global reservation.
1977	 *   It is very rare.
1978	 */
1979	mutex_lock(&delayed_node->mutex);
1980	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1981		goto release_node;
1982
1983	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1984	delayed_node->count++;
1985	atomic_inc(&fs_info->delayed_root->items);
1986release_node:
1987	mutex_unlock(&delayed_node->mutex);
1988	btrfs_release_delayed_node(delayed_node);
1989	return 0;
1990}
1991
1992static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1993{
1994	struct btrfs_root *root = delayed_node->root;
1995	struct btrfs_fs_info *fs_info = root->fs_info;
1996	struct btrfs_delayed_item *curr_item, *prev_item;
1997
1998	mutex_lock(&delayed_node->mutex);
1999	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2000	while (curr_item) {
2001		prev_item = curr_item;
2002		curr_item = __btrfs_next_delayed_item(prev_item);
2003		btrfs_release_delayed_item(prev_item);
2004	}
2005
2006	if (delayed_node->index_item_leaves > 0) {
2007		btrfs_delayed_item_release_leaves(delayed_node,
2008					  delayed_node->index_item_leaves);
2009		delayed_node->index_item_leaves = 0;
2010	}
2011
2012	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2013	while (curr_item) {
2014		btrfs_delayed_item_release_metadata(root, curr_item);
2015		prev_item = curr_item;
2016		curr_item = __btrfs_next_delayed_item(prev_item);
2017		btrfs_release_delayed_item(prev_item);
2018	}
2019
2020	btrfs_release_delayed_iref(delayed_node);
2021
2022	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2023		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2024		btrfs_release_delayed_inode(delayed_node);
2025	}
2026	mutex_unlock(&delayed_node->mutex);
2027}
2028
2029void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2030{
2031	struct btrfs_delayed_node *delayed_node;
2032
2033	delayed_node = btrfs_get_delayed_node(inode);
2034	if (!delayed_node)
2035		return;
2036
2037	__btrfs_kill_delayed_node(delayed_node);
2038	btrfs_release_delayed_node(delayed_node);
2039}
2040
2041void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2042{
2043	u64 inode_id = 0;
2044	struct btrfs_delayed_node *delayed_nodes[8];
2045	int i, n;
2046
2047	while (1) {
2048		spin_lock(&root->inode_lock);
2049		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
2050					   (void **)delayed_nodes, inode_id,
2051					   ARRAY_SIZE(delayed_nodes));
2052		if (!n) {
2053			spin_unlock(&root->inode_lock);
2054			break;
2055		}
2056
2057		inode_id = delayed_nodes[n - 1]->inode_id + 1;
2058		for (i = 0; i < n; i++) {
2059			/*
2060			 * Don't increase refs in case the node is dead and
2061			 * about to be removed from the tree in the loop below
2062			 */
2063			if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
2064				delayed_nodes[i] = NULL;
2065		}
2066		spin_unlock(&root->inode_lock);
2067
2068		for (i = 0; i < n; i++) {
2069			if (!delayed_nodes[i])
2070				continue;
2071			__btrfs_kill_delayed_node(delayed_nodes[i]);
2072			btrfs_release_delayed_node(delayed_nodes[i]);
2073		}
2074	}
2075}
2076
2077void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2078{
2079	struct btrfs_delayed_node *curr_node, *prev_node;
2080
2081	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2082	while (curr_node) {
2083		__btrfs_kill_delayed_node(curr_node);
2084
2085		prev_node = curr_node;
2086		curr_node = btrfs_next_delayed_node(curr_node);
2087		btrfs_release_delayed_node(prev_node);
2088	}
2089}
2090
2091void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2092				 struct list_head *ins_list,
2093				 struct list_head *del_list)
2094{
2095	struct btrfs_delayed_node *node;
2096	struct btrfs_delayed_item *item;
2097
2098	node = btrfs_get_delayed_node(inode);
2099	if (!node)
2100		return;
2101
2102	mutex_lock(&node->mutex);
2103	item = __btrfs_first_delayed_insertion_item(node);
2104	while (item) {
2105		/*
2106		 * It's possible that the item is already in a log list. This
2107		 * can happen in case two tasks are trying to log the same
2108		 * directory. For example if we have tasks A and task B:
2109		 *
2110		 * Task A collected the delayed items into a log list while
2111		 * under the inode's log_mutex (at btrfs_log_inode()), but it
2112		 * only releases the items after logging the inodes they point
2113		 * to (if they are new inodes), which happens after unlocking
2114		 * the log mutex;
2115		 *
2116		 * Task B enters btrfs_log_inode() and acquires the log_mutex
2117		 * of the same directory inode, before task B releases the
2118		 * delayed items. This can happen for example when logging some
2119		 * inode we need to trigger logging of its parent directory, so
2120		 * logging two files that have the same parent directory can
2121		 * lead to this.
2122		 *
2123		 * If this happens, just ignore delayed items already in a log
2124		 * list. All the tasks logging the directory are under a log
2125		 * transaction and whichever finishes first can not sync the log
2126		 * before the other completes and leaves the log transaction.
2127		 */
2128		if (!item->logged && list_empty(&item->log_list)) {
2129			refcount_inc(&item->refs);
2130			list_add_tail(&item->log_list, ins_list);
2131		}
2132		item = __btrfs_next_delayed_item(item);
2133	}
2134
2135	item = __btrfs_first_delayed_deletion_item(node);
2136	while (item) {
2137		/* It may be non-empty, for the same reason mentioned above. */
2138		if (!item->logged && list_empty(&item->log_list)) {
2139			refcount_inc(&item->refs);
2140			list_add_tail(&item->log_list, del_list);
2141		}
2142		item = __btrfs_next_delayed_item(item);
2143	}
2144	mutex_unlock(&node->mutex);
2145
2146	/*
2147	 * We are called during inode logging, which means the inode is in use
2148	 * and can not be evicted before we finish logging the inode. So we never
2149	 * have the last reference on the delayed inode.
2150	 * Also, we don't use btrfs_release_delayed_node() because that would
2151	 * requeue the delayed inode (change its order in the list of prepared
2152	 * nodes) and we don't want to do such change because we don't create or
2153	 * delete delayed items.
2154	 */
2155	ASSERT(refcount_read(&node->refs) > 1);
2156	refcount_dec(&node->refs);
2157}
2158
2159void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2160				 struct list_head *ins_list,
2161				 struct list_head *del_list)
2162{
2163	struct btrfs_delayed_node *node;
2164	struct btrfs_delayed_item *item;
2165	struct btrfs_delayed_item *next;
2166
2167	node = btrfs_get_delayed_node(inode);
2168	if (!node)
2169		return;
2170
2171	mutex_lock(&node->mutex);
2172
2173	list_for_each_entry_safe(item, next, ins_list, log_list) {
2174		item->logged = true;
2175		list_del_init(&item->log_list);
2176		if (refcount_dec_and_test(&item->refs))
2177			kfree(item);
2178	}
2179
2180	list_for_each_entry_safe(item, next, del_list, log_list) {
2181		item->logged = true;
2182		list_del_init(&item->log_list);
2183		if (refcount_dec_and_test(&item->refs))
2184			kfree(item);
2185	}
2186
2187	mutex_unlock(&node->mutex);
2188
2189	/*
2190	 * We are called during inode logging, which means the inode is in use
2191	 * and can not be evicted before we finish logging the inode. So we never
2192	 * have the last reference on the delayed inode.
2193	 * Also, we don't use btrfs_release_delayed_node() because that would
2194	 * requeue the delayed inode (change its order in the list of prepared
2195	 * nodes) and we don't want to do such change because we don't create or
2196	 * delete delayed items.
2197	 */
2198	ASSERT(refcount_read(&node->refs) > 1);
2199	refcount_dec(&node->refs);
2200}
2201