xref: /kernel/linux/linux-6.6/fs/btrfs/defrag.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include "ctree.h"
8#include "disk-io.h"
9#include "print-tree.h"
10#include "transaction.h"
11#include "locking.h"
12#include "accessors.h"
13#include "messages.h"
14#include "delalloc-space.h"
15#include "subpage.h"
16#include "defrag.h"
17#include "file-item.h"
18#include "super.h"
19
20static struct kmem_cache *btrfs_inode_defrag_cachep;
21
22/*
23 * When auto defrag is enabled we queue up these defrag structs to remember
24 * which inodes need defragging passes.
25 */
26struct inode_defrag {
27	struct rb_node rb_node;
28	/* Inode number */
29	u64 ino;
30	/*
31	 * Transid where the defrag was added, we search for extents newer than
32	 * this.
33	 */
34	u64 transid;
35
36	/* Root objectid */
37	u64 root;
38
39	/*
40	 * The extent size threshold for autodefrag.
41	 *
42	 * This value is different for compressed/non-compressed extents, thus
43	 * needs to be passed from higher layer.
44	 * (aka, inode_should_defrag())
45	 */
46	u32 extent_thresh;
47};
48
49static int __compare_inode_defrag(struct inode_defrag *defrag1,
50				  struct inode_defrag *defrag2)
51{
52	if (defrag1->root > defrag2->root)
53		return 1;
54	else if (defrag1->root < defrag2->root)
55		return -1;
56	else if (defrag1->ino > defrag2->ino)
57		return 1;
58	else if (defrag1->ino < defrag2->ino)
59		return -1;
60	else
61		return 0;
62}
63
64/*
65 * Pop a record for an inode into the defrag tree.  The lock must be held
66 * already.
67 *
68 * If you're inserting a record for an older transid than an existing record,
69 * the transid already in the tree is lowered.
70 *
71 * If an existing record is found the defrag item you pass in is freed.
72 */
73static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
74				    struct inode_defrag *defrag)
75{
76	struct btrfs_fs_info *fs_info = inode->root->fs_info;
77	struct inode_defrag *entry;
78	struct rb_node **p;
79	struct rb_node *parent = NULL;
80	int ret;
81
82	p = &fs_info->defrag_inodes.rb_node;
83	while (*p) {
84		parent = *p;
85		entry = rb_entry(parent, struct inode_defrag, rb_node);
86
87		ret = __compare_inode_defrag(defrag, entry);
88		if (ret < 0)
89			p = &parent->rb_left;
90		else if (ret > 0)
91			p = &parent->rb_right;
92		else {
93			/*
94			 * If we're reinserting an entry for an old defrag run,
95			 * make sure to lower the transid of our existing
96			 * record.
97			 */
98			if (defrag->transid < entry->transid)
99				entry->transid = defrag->transid;
100			entry->extent_thresh = min(defrag->extent_thresh,
101						   entry->extent_thresh);
102			return -EEXIST;
103		}
104	}
105	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
106	rb_link_node(&defrag->rb_node, parent, p);
107	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
108	return 0;
109}
110
111static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
112{
113	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
114		return 0;
115
116	if (btrfs_fs_closing(fs_info))
117		return 0;
118
119	return 1;
120}
121
122/*
123 * Insert a defrag record for this inode if auto defrag is enabled.
124 */
125int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
126			   struct btrfs_inode *inode, u32 extent_thresh)
127{
128	struct btrfs_root *root = inode->root;
129	struct btrfs_fs_info *fs_info = root->fs_info;
130	struct inode_defrag *defrag;
131	u64 transid;
132	int ret;
133
134	if (!__need_auto_defrag(fs_info))
135		return 0;
136
137	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
138		return 0;
139
140	if (trans)
141		transid = trans->transid;
142	else
143		transid = inode->root->last_trans;
144
145	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
146	if (!defrag)
147		return -ENOMEM;
148
149	defrag->ino = btrfs_ino(inode);
150	defrag->transid = transid;
151	defrag->root = root->root_key.objectid;
152	defrag->extent_thresh = extent_thresh;
153
154	spin_lock(&fs_info->defrag_inodes_lock);
155	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
156		/*
157		 * If we set IN_DEFRAG flag and evict the inode from memory,
158		 * and then re-read this inode, this new inode doesn't have
159		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
160		 */
161		ret = __btrfs_add_inode_defrag(inode, defrag);
162		if (ret)
163			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
164	} else {
165		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
166	}
167	spin_unlock(&fs_info->defrag_inodes_lock);
168	return 0;
169}
170
171/*
172 * Pick the defragable inode that we want, if it doesn't exist, we will get the
173 * next one.
174 */
175static struct inode_defrag *btrfs_pick_defrag_inode(
176			struct btrfs_fs_info *fs_info, u64 root, u64 ino)
177{
178	struct inode_defrag *entry = NULL;
179	struct inode_defrag tmp;
180	struct rb_node *p;
181	struct rb_node *parent = NULL;
182	int ret;
183
184	tmp.ino = ino;
185	tmp.root = root;
186
187	spin_lock(&fs_info->defrag_inodes_lock);
188	p = fs_info->defrag_inodes.rb_node;
189	while (p) {
190		parent = p;
191		entry = rb_entry(parent, struct inode_defrag, rb_node);
192
193		ret = __compare_inode_defrag(&tmp, entry);
194		if (ret < 0)
195			p = parent->rb_left;
196		else if (ret > 0)
197			p = parent->rb_right;
198		else
199			goto out;
200	}
201
202	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
203		parent = rb_next(parent);
204		if (parent)
205			entry = rb_entry(parent, struct inode_defrag, rb_node);
206		else
207			entry = NULL;
208	}
209out:
210	if (entry)
211		rb_erase(parent, &fs_info->defrag_inodes);
212	spin_unlock(&fs_info->defrag_inodes_lock);
213	return entry;
214}
215
216void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
217{
218	struct inode_defrag *defrag;
219	struct rb_node *node;
220
221	spin_lock(&fs_info->defrag_inodes_lock);
222	node = rb_first(&fs_info->defrag_inodes);
223	while (node) {
224		rb_erase(node, &fs_info->defrag_inodes);
225		defrag = rb_entry(node, struct inode_defrag, rb_node);
226		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
227
228		cond_resched_lock(&fs_info->defrag_inodes_lock);
229
230		node = rb_first(&fs_info->defrag_inodes);
231	}
232	spin_unlock(&fs_info->defrag_inodes_lock);
233}
234
235#define BTRFS_DEFRAG_BATCH	1024
236
237static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
238				    struct inode_defrag *defrag)
239{
240	struct btrfs_root *inode_root;
241	struct inode *inode;
242	struct btrfs_ioctl_defrag_range_args range;
243	int ret = 0;
244	u64 cur = 0;
245
246again:
247	if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
248		goto cleanup;
249	if (!__need_auto_defrag(fs_info))
250		goto cleanup;
251
252	/* Get the inode */
253	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
254	if (IS_ERR(inode_root)) {
255		ret = PTR_ERR(inode_root);
256		goto cleanup;
257	}
258
259	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
260	btrfs_put_root(inode_root);
261	if (IS_ERR(inode)) {
262		ret = PTR_ERR(inode);
263		goto cleanup;
264	}
265
266	if (cur >= i_size_read(inode)) {
267		iput(inode);
268		goto cleanup;
269	}
270
271	/* Do a chunk of defrag */
272	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
273	memset(&range, 0, sizeof(range));
274	range.len = (u64)-1;
275	range.start = cur;
276	range.extent_thresh = defrag->extent_thresh;
277
278	sb_start_write(fs_info->sb);
279	ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
280				       BTRFS_DEFRAG_BATCH);
281	sb_end_write(fs_info->sb);
282	iput(inode);
283
284	if (ret < 0)
285		goto cleanup;
286
287	cur = max(cur + fs_info->sectorsize, range.start);
288	goto again;
289
290cleanup:
291	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
292	return ret;
293}
294
295/*
296 * Run through the list of inodes in the FS that need defragging.
297 */
298int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
299{
300	struct inode_defrag *defrag;
301	u64 first_ino = 0;
302	u64 root_objectid = 0;
303
304	atomic_inc(&fs_info->defrag_running);
305	while (1) {
306		/* Pause the auto defragger. */
307		if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
308			break;
309
310		if (!__need_auto_defrag(fs_info))
311			break;
312
313		/* find an inode to defrag */
314		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
315		if (!defrag) {
316			if (root_objectid || first_ino) {
317				root_objectid = 0;
318				first_ino = 0;
319				continue;
320			} else {
321				break;
322			}
323		}
324
325		first_ino = defrag->ino + 1;
326		root_objectid = defrag->root;
327
328		__btrfs_run_defrag_inode(fs_info, defrag);
329	}
330	atomic_dec(&fs_info->defrag_running);
331
332	/*
333	 * During unmount, we use the transaction_wait queue to wait for the
334	 * defragger to stop.
335	 */
336	wake_up(&fs_info->transaction_wait);
337	return 0;
338}
339
340/*
341 * Defrag all the leaves in a given btree.
342 * Read all the leaves and try to get key order to
343 * better reflect disk order
344 */
345
346int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
347			struct btrfs_root *root)
348{
349	struct btrfs_path *path = NULL;
350	struct btrfs_key key;
351	int ret = 0;
352	int wret;
353	int level;
354	int next_key_ret = 0;
355	u64 last_ret = 0;
356
357	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
358		goto out;
359
360	path = btrfs_alloc_path();
361	if (!path) {
362		ret = -ENOMEM;
363		goto out;
364	}
365
366	level = btrfs_header_level(root->node);
367
368	if (level == 0)
369		goto out;
370
371	if (root->defrag_progress.objectid == 0) {
372		struct extent_buffer *root_node;
373		u32 nritems;
374
375		root_node = btrfs_lock_root_node(root);
376		nritems = btrfs_header_nritems(root_node);
377		root->defrag_max.objectid = 0;
378		/* from above we know this is not a leaf */
379		btrfs_node_key_to_cpu(root_node, &root->defrag_max,
380				      nritems - 1);
381		btrfs_tree_unlock(root_node);
382		free_extent_buffer(root_node);
383		memset(&key, 0, sizeof(key));
384	} else {
385		memcpy(&key, &root->defrag_progress, sizeof(key));
386	}
387
388	path->keep_locks = 1;
389
390	ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
391	if (ret < 0)
392		goto out;
393	if (ret > 0) {
394		ret = 0;
395		goto out;
396	}
397	btrfs_release_path(path);
398	/*
399	 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all
400	 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later
401	 * a deadlock (attempting to write lock an already write locked leaf).
402	 */
403	path->lowest_level = 1;
404	wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
405
406	if (wret < 0) {
407		ret = wret;
408		goto out;
409	}
410	if (!path->nodes[1]) {
411		ret = 0;
412		goto out;
413	}
414	/*
415	 * The node at level 1 must always be locked when our path has
416	 * keep_locks set and lowest_level is 1, regardless of the value of
417	 * path->slots[1].
418	 */
419	BUG_ON(path->locks[1] == 0);
420	ret = btrfs_realloc_node(trans, root,
421				 path->nodes[1], 0,
422				 &last_ret,
423				 &root->defrag_progress);
424	if (ret) {
425		WARN_ON(ret == -EAGAIN);
426		goto out;
427	}
428	/*
429	 * Now that we reallocated the node we can find the next key. Note that
430	 * btrfs_find_next_key() can release our path and do another search
431	 * without COWing, this is because even with path->keep_locks = 1,
432	 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
433	 * node when path->slots[node_level - 1] does not point to the last
434	 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
435	 * we search for the next key after reallocating our node.
436	 */
437	path->slots[1] = btrfs_header_nritems(path->nodes[1]);
438	next_key_ret = btrfs_find_next_key(root, path, &key, 1,
439					   BTRFS_OLDEST_GENERATION);
440	if (next_key_ret == 0) {
441		memcpy(&root->defrag_progress, &key, sizeof(key));
442		ret = -EAGAIN;
443	}
444out:
445	btrfs_free_path(path);
446	if (ret == -EAGAIN) {
447		if (root->defrag_max.objectid > root->defrag_progress.objectid)
448			goto done;
449		if (root->defrag_max.type > root->defrag_progress.type)
450			goto done;
451		if (root->defrag_max.offset > root->defrag_progress.offset)
452			goto done;
453		ret = 0;
454	}
455done:
456	if (ret != -EAGAIN)
457		memset(&root->defrag_progress, 0,
458		       sizeof(root->defrag_progress));
459
460	return ret;
461}
462
463/*
464 * Defrag specific helper to get an extent map.
465 *
466 * Differences between this and btrfs_get_extent() are:
467 *
468 * - No extent_map will be added to inode->extent_tree
469 *   To reduce memory usage in the long run.
470 *
471 * - Extra optimization to skip file extents older than @newer_than
472 *   By using btrfs_search_forward() we can skip entire file ranges that
473 *   have extents created in past transactions, because btrfs_search_forward()
474 *   will not visit leaves and nodes with a generation smaller than given
475 *   minimal generation threshold (@newer_than).
476 *
477 * Return valid em if we find a file extent matching the requirement.
478 * Return NULL if we can not find a file extent matching the requirement.
479 *
480 * Return ERR_PTR() for error.
481 */
482static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
483					    u64 start, u64 newer_than)
484{
485	struct btrfs_root *root = inode->root;
486	struct btrfs_file_extent_item *fi;
487	struct btrfs_path path = { 0 };
488	struct extent_map *em;
489	struct btrfs_key key;
490	u64 ino = btrfs_ino(inode);
491	int ret;
492
493	em = alloc_extent_map();
494	if (!em) {
495		ret = -ENOMEM;
496		goto err;
497	}
498
499	key.objectid = ino;
500	key.type = BTRFS_EXTENT_DATA_KEY;
501	key.offset = start;
502
503	if (newer_than) {
504		ret = btrfs_search_forward(root, &key, &path, newer_than);
505		if (ret < 0)
506			goto err;
507		/* Can't find anything newer */
508		if (ret > 0)
509			goto not_found;
510	} else {
511		ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
512		if (ret < 0)
513			goto err;
514	}
515	if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
516		/*
517		 * If btrfs_search_slot() makes path to point beyond nritems,
518		 * we should not have an empty leaf, as this inode must at
519		 * least have its INODE_ITEM.
520		 */
521		ASSERT(btrfs_header_nritems(path.nodes[0]));
522		path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
523	}
524	btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
525	/* Perfect match, no need to go one slot back */
526	if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
527	    key.offset == start)
528		goto iterate;
529
530	/* We didn't find a perfect match, needs to go one slot back */
531	if (path.slots[0] > 0) {
532		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
533		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
534			path.slots[0]--;
535	}
536
537iterate:
538	/* Iterate through the path to find a file extent covering @start */
539	while (true) {
540		u64 extent_end;
541
542		if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
543			goto next;
544
545		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
546
547		/*
548		 * We may go one slot back to INODE_REF/XATTR item, then
549		 * need to go forward until we reach an EXTENT_DATA.
550		 * But we should still has the correct ino as key.objectid.
551		 */
552		if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
553			goto next;
554
555		/* It's beyond our target range, definitely not extent found */
556		if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
557			goto not_found;
558
559		/*
560		 *	|	|<- File extent ->|
561		 *	\- start
562		 *
563		 * This means there is a hole between start and key.offset.
564		 */
565		if (key.offset > start) {
566			em->start = start;
567			em->orig_start = start;
568			em->block_start = EXTENT_MAP_HOLE;
569			em->len = key.offset - start;
570			break;
571		}
572
573		fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
574				    struct btrfs_file_extent_item);
575		extent_end = btrfs_file_extent_end(&path);
576
577		/*
578		 *	|<- file extent ->|	|
579		 *				\- start
580		 *
581		 * We haven't reached start, search next slot.
582		 */
583		if (extent_end <= start)
584			goto next;
585
586		/* Now this extent covers @start, convert it to em */
587		btrfs_extent_item_to_extent_map(inode, &path, fi, em);
588		break;
589next:
590		ret = btrfs_next_item(root, &path);
591		if (ret < 0)
592			goto err;
593		if (ret > 0)
594			goto not_found;
595	}
596	btrfs_release_path(&path);
597	return em;
598
599not_found:
600	btrfs_release_path(&path);
601	free_extent_map(em);
602	return NULL;
603
604err:
605	btrfs_release_path(&path);
606	free_extent_map(em);
607	return ERR_PTR(ret);
608}
609
610static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
611					       u64 newer_than, bool locked)
612{
613	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
614	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
615	struct extent_map *em;
616	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
617
618	/*
619	 * Hopefully we have this extent in the tree already, try without the
620	 * full extent lock.
621	 */
622	read_lock(&em_tree->lock);
623	em = lookup_extent_mapping(em_tree, start, sectorsize);
624	read_unlock(&em_tree->lock);
625
626	/*
627	 * We can get a merged extent, in that case, we need to re-search
628	 * tree to get the original em for defrag.
629	 *
630	 * If @newer_than is 0 or em::generation < newer_than, we can trust
631	 * this em, as either we don't care about the generation, or the
632	 * merged extent map will be rejected anyway.
633	 */
634	if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
635	    newer_than && em->generation >= newer_than) {
636		free_extent_map(em);
637		em = NULL;
638	}
639
640	if (!em) {
641		struct extent_state *cached = NULL;
642		u64 end = start + sectorsize - 1;
643
644		/* Get the big lock and read metadata off disk. */
645		if (!locked)
646			lock_extent(io_tree, start, end, &cached);
647		em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
648		if (!locked)
649			unlock_extent(io_tree, start, end, &cached);
650
651		if (IS_ERR(em))
652			return NULL;
653	}
654
655	return em;
656}
657
658static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
659				   const struct extent_map *em)
660{
661	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
662		return BTRFS_MAX_COMPRESSED;
663	return fs_info->max_extent_size;
664}
665
666static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
667				     u32 extent_thresh, u64 newer_than, bool locked)
668{
669	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
670	struct extent_map *next;
671	bool ret = false;
672
673	/* This is the last extent */
674	if (em->start + em->len >= i_size_read(inode))
675		return false;
676
677	/*
678	 * Here we need to pass @newer_then when checking the next extent, or
679	 * we will hit a case we mark current extent for defrag, but the next
680	 * one will not be a target.
681	 * This will just cause extra IO without really reducing the fragments.
682	 */
683	next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
684	/* No more em or hole */
685	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
686		goto out;
687	if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
688		goto out;
689	/*
690	 * If the next extent is at its max capacity, defragging current extent
691	 * makes no sense, as the total number of extents won't change.
692	 */
693	if (next->len >= get_extent_max_capacity(fs_info, em))
694		goto out;
695	/* Skip older extent */
696	if (next->generation < newer_than)
697		goto out;
698	/* Also check extent size */
699	if (next->len >= extent_thresh)
700		goto out;
701
702	ret = true;
703out:
704	free_extent_map(next);
705	return ret;
706}
707
708/*
709 * Prepare one page to be defragged.
710 *
711 * This will ensure:
712 *
713 * - Returned page is locked and has been set up properly.
714 * - No ordered extent exists in the page.
715 * - The page is uptodate.
716 *
717 * NOTE: Caller should also wait for page writeback after the cluster is
718 * prepared, here we don't do writeback wait for each page.
719 */
720static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, pgoff_t index)
721{
722	struct address_space *mapping = inode->vfs_inode.i_mapping;
723	gfp_t mask = btrfs_alloc_write_mask(mapping);
724	u64 page_start = (u64)index << PAGE_SHIFT;
725	u64 page_end = page_start + PAGE_SIZE - 1;
726	struct extent_state *cached_state = NULL;
727	struct page *page;
728	int ret;
729
730again:
731	page = find_or_create_page(mapping, index, mask);
732	if (!page)
733		return ERR_PTR(-ENOMEM);
734
735	/*
736	 * Since we can defragment files opened read-only, we can encounter
737	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
738	 * can't do I/O using huge pages yet, so return an error for now.
739	 * Filesystem transparent huge pages are typically only used for
740	 * executables that explicitly enable them, so this isn't very
741	 * restrictive.
742	 */
743	if (PageCompound(page)) {
744		unlock_page(page);
745		put_page(page);
746		return ERR_PTR(-ETXTBSY);
747	}
748
749	ret = set_page_extent_mapped(page);
750	if (ret < 0) {
751		unlock_page(page);
752		put_page(page);
753		return ERR_PTR(ret);
754	}
755
756	/* Wait for any existing ordered extent in the range */
757	while (1) {
758		struct btrfs_ordered_extent *ordered;
759
760		lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
761		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
762		unlock_extent(&inode->io_tree, page_start, page_end,
763			      &cached_state);
764		if (!ordered)
765			break;
766
767		unlock_page(page);
768		btrfs_start_ordered_extent(ordered);
769		btrfs_put_ordered_extent(ordered);
770		lock_page(page);
771		/*
772		 * We unlocked the page above, so we need check if it was
773		 * released or not.
774		 */
775		if (page->mapping != mapping || !PagePrivate(page)) {
776			unlock_page(page);
777			put_page(page);
778			goto again;
779		}
780	}
781
782	/*
783	 * Now the page range has no ordered extent any more.  Read the page to
784	 * make it uptodate.
785	 */
786	if (!PageUptodate(page)) {
787		btrfs_read_folio(NULL, page_folio(page));
788		lock_page(page);
789		if (page->mapping != mapping || !PagePrivate(page)) {
790			unlock_page(page);
791			put_page(page);
792			goto again;
793		}
794		if (!PageUptodate(page)) {
795			unlock_page(page);
796			put_page(page);
797			return ERR_PTR(-EIO);
798		}
799	}
800	return page;
801}
802
803struct defrag_target_range {
804	struct list_head list;
805	u64 start;
806	u64 len;
807};
808
809/*
810 * Collect all valid target extents.
811 *
812 * @start:	   file offset to lookup
813 * @len:	   length to lookup
814 * @extent_thresh: file extent size threshold, any extent size >= this value
815 *		   will be ignored
816 * @newer_than:    only defrag extents newer than this value
817 * @do_compress:   whether the defrag is doing compression
818 *		   if true, @extent_thresh will be ignored and all regular
819 *		   file extents meeting @newer_than will be targets.
820 * @locked:	   if the range has already held extent lock
821 * @target_list:   list of targets file extents
822 */
823static int defrag_collect_targets(struct btrfs_inode *inode,
824				  u64 start, u64 len, u32 extent_thresh,
825				  u64 newer_than, bool do_compress,
826				  bool locked, struct list_head *target_list,
827				  u64 *last_scanned_ret)
828{
829	struct btrfs_fs_info *fs_info = inode->root->fs_info;
830	bool last_is_target = false;
831	u64 cur = start;
832	int ret = 0;
833
834	while (cur < start + len) {
835		struct extent_map *em;
836		struct defrag_target_range *new;
837		bool next_mergeable = true;
838		u64 range_len;
839
840		last_is_target = false;
841		em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
842		if (!em)
843			break;
844
845		/*
846		 * If the file extent is an inlined one, we may still want to
847		 * defrag it (fallthrough) if it will cause a regular extent.
848		 * This is for users who want to convert inline extents to
849		 * regular ones through max_inline= mount option.
850		 */
851		if (em->block_start == EXTENT_MAP_INLINE &&
852		    em->len <= inode->root->fs_info->max_inline)
853			goto next;
854
855		/* Skip hole/delalloc/preallocated extents */
856		if (em->block_start == EXTENT_MAP_HOLE ||
857		    em->block_start == EXTENT_MAP_DELALLOC ||
858		    test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
859			goto next;
860
861		/* Skip older extent */
862		if (em->generation < newer_than)
863			goto next;
864
865		/* This em is under writeback, no need to defrag */
866		if (em->generation == (u64)-1)
867			goto next;
868
869		/*
870		 * Our start offset might be in the middle of an existing extent
871		 * map, so take that into account.
872		 */
873		range_len = em->len - (cur - em->start);
874		/*
875		 * If this range of the extent map is already flagged for delalloc,
876		 * skip it, because:
877		 *
878		 * 1) We could deadlock later, when trying to reserve space for
879		 *    delalloc, because in case we can't immediately reserve space
880		 *    the flusher can start delalloc and wait for the respective
881		 *    ordered extents to complete. The deadlock would happen
882		 *    because we do the space reservation while holding the range
883		 *    locked, and starting writeback, or finishing an ordered
884		 *    extent, requires locking the range;
885		 *
886		 * 2) If there's delalloc there, it means there's dirty pages for
887		 *    which writeback has not started yet (we clean the delalloc
888		 *    flag when starting writeback and after creating an ordered
889		 *    extent). If we mark pages in an adjacent range for defrag,
890		 *    then we will have a larger contiguous range for delalloc,
891		 *    very likely resulting in a larger extent after writeback is
892		 *    triggered (except in a case of free space fragmentation).
893		 */
894		if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
895				   EXTENT_DELALLOC, 0, NULL))
896			goto next;
897
898		/*
899		 * For do_compress case, we want to compress all valid file
900		 * extents, thus no @extent_thresh or mergeable check.
901		 */
902		if (do_compress)
903			goto add;
904
905		/* Skip too large extent */
906		if (em->len >= extent_thresh)
907			goto next;
908
909		/*
910		 * Skip extents already at its max capacity, this is mostly for
911		 * compressed extents, which max cap is only 128K.
912		 */
913		if (em->len >= get_extent_max_capacity(fs_info, em))
914			goto next;
915
916		/*
917		 * Normally there are no more extents after an inline one, thus
918		 * @next_mergeable will normally be false and not defragged.
919		 * So if an inline extent passed all above checks, just add it
920		 * for defrag, and be converted to regular extents.
921		 */
922		if (em->block_start == EXTENT_MAP_INLINE)
923			goto add;
924
925		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
926						extent_thresh, newer_than, locked);
927		if (!next_mergeable) {
928			struct defrag_target_range *last;
929
930			/* Empty target list, no way to merge with last entry */
931			if (list_empty(target_list))
932				goto next;
933			last = list_entry(target_list->prev,
934					  struct defrag_target_range, list);
935			/* Not mergeable with last entry */
936			if (last->start + last->len != cur)
937				goto next;
938
939			/* Mergeable, fall through to add it to @target_list. */
940		}
941
942add:
943		last_is_target = true;
944		range_len = min(extent_map_end(em), start + len) - cur;
945		/*
946		 * This one is a good target, check if it can be merged into
947		 * last range of the target list.
948		 */
949		if (!list_empty(target_list)) {
950			struct defrag_target_range *last;
951
952			last = list_entry(target_list->prev,
953					  struct defrag_target_range, list);
954			ASSERT(last->start + last->len <= cur);
955			if (last->start + last->len == cur) {
956				/* Mergeable, enlarge the last entry */
957				last->len += range_len;
958				goto next;
959			}
960			/* Fall through to allocate a new entry */
961		}
962
963		/* Allocate new defrag_target_range */
964		new = kmalloc(sizeof(*new), GFP_NOFS);
965		if (!new) {
966			free_extent_map(em);
967			ret = -ENOMEM;
968			break;
969		}
970		new->start = cur;
971		new->len = range_len;
972		list_add_tail(&new->list, target_list);
973
974next:
975		cur = extent_map_end(em);
976		free_extent_map(em);
977	}
978	if (ret < 0) {
979		struct defrag_target_range *entry;
980		struct defrag_target_range *tmp;
981
982		list_for_each_entry_safe(entry, tmp, target_list, list) {
983			list_del_init(&entry->list);
984			kfree(entry);
985		}
986	}
987	if (!ret && last_scanned_ret) {
988		/*
989		 * If the last extent is not a target, the caller can skip to
990		 * the end of that extent.
991		 * Otherwise, we can only go the end of the specified range.
992		 */
993		if (!last_is_target)
994			*last_scanned_ret = max(cur, *last_scanned_ret);
995		else
996			*last_scanned_ret = max(start + len, *last_scanned_ret);
997	}
998	return ret;
999}
1000
1001#define CLUSTER_SIZE	(SZ_256K)
1002static_assert(PAGE_ALIGNED(CLUSTER_SIZE));
1003
1004/*
1005 * Defrag one contiguous target range.
1006 *
1007 * @inode:	target inode
1008 * @target:	target range to defrag
1009 * @pages:	locked pages covering the defrag range
1010 * @nr_pages:	number of locked pages
1011 *
1012 * Caller should ensure:
1013 *
1014 * - Pages are prepared
1015 *   Pages should be locked, no ordered extent in the pages range,
1016 *   no writeback.
1017 *
1018 * - Extent bits are locked
1019 */
1020static int defrag_one_locked_target(struct btrfs_inode *inode,
1021				    struct defrag_target_range *target,
1022				    struct page **pages, int nr_pages,
1023				    struct extent_state **cached_state)
1024{
1025	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1026	struct extent_changeset *data_reserved = NULL;
1027	const u64 start = target->start;
1028	const u64 len = target->len;
1029	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1030	unsigned long start_index = start >> PAGE_SHIFT;
1031	unsigned long first_index = page_index(pages[0]);
1032	int ret = 0;
1033	int i;
1034
1035	ASSERT(last_index - first_index + 1 <= nr_pages);
1036
1037	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1038	if (ret < 0)
1039		return ret;
1040	clear_extent_bit(&inode->io_tree, start, start + len - 1,
1041			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1042			 EXTENT_DEFRAG, cached_state);
1043	set_extent_bit(&inode->io_tree, start, start + len - 1,
1044		       EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state);
1045
1046	/* Update the page status */
1047	for (i = start_index - first_index; i <= last_index - first_index; i++) {
1048		ClearPageChecked(pages[i]);
1049		btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1050	}
1051	btrfs_delalloc_release_extents(inode, len);
1052	extent_changeset_free(data_reserved);
1053
1054	return ret;
1055}
1056
1057static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1058			    u32 extent_thresh, u64 newer_than, bool do_compress,
1059			    u64 *last_scanned_ret)
1060{
1061	struct extent_state *cached_state = NULL;
1062	struct defrag_target_range *entry;
1063	struct defrag_target_range *tmp;
1064	LIST_HEAD(target_list);
1065	struct page **pages;
1066	const u32 sectorsize = inode->root->fs_info->sectorsize;
1067	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1068	u64 start_index = start >> PAGE_SHIFT;
1069	unsigned int nr_pages = last_index - start_index + 1;
1070	int ret = 0;
1071	int i;
1072
1073	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1074	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1075
1076	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1077	if (!pages)
1078		return -ENOMEM;
1079
1080	/* Prepare all pages */
1081	for (i = 0; i < nr_pages; i++) {
1082		pages[i] = defrag_prepare_one_page(inode, start_index + i);
1083		if (IS_ERR(pages[i])) {
1084			ret = PTR_ERR(pages[i]);
1085			pages[i] = NULL;
1086			goto free_pages;
1087		}
1088	}
1089	for (i = 0; i < nr_pages; i++)
1090		wait_on_page_writeback(pages[i]);
1091
1092	/* Lock the pages range */
1093	lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1094		    (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1095		    &cached_state);
1096	/*
1097	 * Now we have a consistent view about the extent map, re-check
1098	 * which range really needs to be defragged.
1099	 *
1100	 * And this time we have extent locked already, pass @locked = true
1101	 * so that we won't relock the extent range and cause deadlock.
1102	 */
1103	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1104				     newer_than, do_compress, true,
1105				     &target_list, last_scanned_ret);
1106	if (ret < 0)
1107		goto unlock_extent;
1108
1109	list_for_each_entry(entry, &target_list, list) {
1110		ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1111					       &cached_state);
1112		if (ret < 0)
1113			break;
1114	}
1115
1116	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1117		list_del_init(&entry->list);
1118		kfree(entry);
1119	}
1120unlock_extent:
1121	unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1122		      (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1123		      &cached_state);
1124free_pages:
1125	for (i = 0; i < nr_pages; i++) {
1126		if (pages[i]) {
1127			unlock_page(pages[i]);
1128			put_page(pages[i]);
1129		}
1130	}
1131	kfree(pages);
1132	return ret;
1133}
1134
1135static int defrag_one_cluster(struct btrfs_inode *inode,
1136			      struct file_ra_state *ra,
1137			      u64 start, u32 len, u32 extent_thresh,
1138			      u64 newer_than, bool do_compress,
1139			      unsigned long *sectors_defragged,
1140			      unsigned long max_sectors,
1141			      u64 *last_scanned_ret)
1142{
1143	const u32 sectorsize = inode->root->fs_info->sectorsize;
1144	struct defrag_target_range *entry;
1145	struct defrag_target_range *tmp;
1146	LIST_HEAD(target_list);
1147	int ret;
1148
1149	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1150				     newer_than, do_compress, false,
1151				     &target_list, NULL);
1152	if (ret < 0)
1153		goto out;
1154
1155	list_for_each_entry(entry, &target_list, list) {
1156		u32 range_len = entry->len;
1157
1158		/* Reached or beyond the limit */
1159		if (max_sectors && *sectors_defragged >= max_sectors) {
1160			ret = 1;
1161			break;
1162		}
1163
1164		if (max_sectors)
1165			range_len = min_t(u32, range_len,
1166				(max_sectors - *sectors_defragged) * sectorsize);
1167
1168		/*
1169		 * If defrag_one_range() has updated last_scanned_ret,
1170		 * our range may already be invalid (e.g. hole punched).
1171		 * Skip if our range is before last_scanned_ret, as there is
1172		 * no need to defrag the range anymore.
1173		 */
1174		if (entry->start + range_len <= *last_scanned_ret)
1175			continue;
1176
1177		if (ra)
1178			page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1179				ra, NULL, entry->start >> PAGE_SHIFT,
1180				((entry->start + range_len - 1) >> PAGE_SHIFT) -
1181				(entry->start >> PAGE_SHIFT) + 1);
1182		/*
1183		 * Here we may not defrag any range if holes are punched before
1184		 * we locked the pages.
1185		 * But that's fine, it only affects the @sectors_defragged
1186		 * accounting.
1187		 */
1188		ret = defrag_one_range(inode, entry->start, range_len,
1189				       extent_thresh, newer_than, do_compress,
1190				       last_scanned_ret);
1191		if (ret < 0)
1192			break;
1193		*sectors_defragged += range_len >>
1194				      inode->root->fs_info->sectorsize_bits;
1195	}
1196out:
1197	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1198		list_del_init(&entry->list);
1199		kfree(entry);
1200	}
1201	if (ret >= 0)
1202		*last_scanned_ret = max(*last_scanned_ret, start + len);
1203	return ret;
1204}
1205
1206/*
1207 * Entry point to file defragmentation.
1208 *
1209 * @inode:	   inode to be defragged
1210 * @ra:		   readahead state (can be NUL)
1211 * @range:	   defrag options including range and flags
1212 * @newer_than:	   minimum transid to defrag
1213 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1214 *		   will be defragged.
1215 *
1216 * Return <0 for error.
1217 * Return >=0 for the number of sectors defragged, and range->start will be updated
1218 * to indicate the file offset where next defrag should be started at.
1219 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1220 *  defragging all the range).
1221 */
1222int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1223		      struct btrfs_ioctl_defrag_range_args *range,
1224		      u64 newer_than, unsigned long max_to_defrag)
1225{
1226	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1227	unsigned long sectors_defragged = 0;
1228	u64 isize = i_size_read(inode);
1229	u64 cur;
1230	u64 last_byte;
1231	bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
1232	bool ra_allocated = false;
1233	int compress_type = BTRFS_COMPRESS_ZLIB;
1234	int ret = 0;
1235	u32 extent_thresh = range->extent_thresh;
1236	pgoff_t start_index;
1237
1238	if (isize == 0)
1239		return 0;
1240
1241	if (range->start >= isize)
1242		return -EINVAL;
1243
1244	if (do_compress) {
1245		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1246			return -EINVAL;
1247		if (range->compress_type)
1248			compress_type = range->compress_type;
1249	}
1250
1251	if (extent_thresh == 0)
1252		extent_thresh = SZ_256K;
1253
1254	if (range->start + range->len > range->start) {
1255		/* Got a specific range */
1256		last_byte = min(isize, range->start + range->len);
1257	} else {
1258		/* Defrag until file end */
1259		last_byte = isize;
1260	}
1261
1262	/* Align the range */
1263	cur = round_down(range->start, fs_info->sectorsize);
1264	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1265
1266	/*
1267	 * If we were not given a ra, allocate a readahead context. As
1268	 * readahead is just an optimization, defrag will work without it so
1269	 * we don't error out.
1270	 */
1271	if (!ra) {
1272		ra_allocated = true;
1273		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1274		if (ra)
1275			file_ra_state_init(ra, inode->i_mapping);
1276	}
1277
1278	/*
1279	 * Make writeback start from the beginning of the range, so that the
1280	 * defrag range can be written sequentially.
1281	 */
1282	start_index = cur >> PAGE_SHIFT;
1283	if (start_index < inode->i_mapping->writeback_index)
1284		inode->i_mapping->writeback_index = start_index;
1285
1286	while (cur < last_byte) {
1287		const unsigned long prev_sectors_defragged = sectors_defragged;
1288		u64 last_scanned = cur;
1289		u64 cluster_end;
1290
1291		if (btrfs_defrag_cancelled(fs_info)) {
1292			ret = -EAGAIN;
1293			break;
1294		}
1295
1296		/* We want the cluster end at page boundary when possible */
1297		cluster_end = (((cur >> PAGE_SHIFT) +
1298			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1299		cluster_end = min(cluster_end, last_byte);
1300
1301		btrfs_inode_lock(BTRFS_I(inode), 0);
1302		if (IS_SWAPFILE(inode)) {
1303			ret = -ETXTBSY;
1304			btrfs_inode_unlock(BTRFS_I(inode), 0);
1305			break;
1306		}
1307		if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1308			btrfs_inode_unlock(BTRFS_I(inode), 0);
1309			break;
1310		}
1311		if (do_compress)
1312			BTRFS_I(inode)->defrag_compress = compress_type;
1313		ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1314				cluster_end + 1 - cur, extent_thresh,
1315				newer_than, do_compress, &sectors_defragged,
1316				max_to_defrag, &last_scanned);
1317
1318		if (sectors_defragged > prev_sectors_defragged)
1319			balance_dirty_pages_ratelimited(inode->i_mapping);
1320
1321		btrfs_inode_unlock(BTRFS_I(inode), 0);
1322		if (ret < 0)
1323			break;
1324		cur = max(cluster_end + 1, last_scanned);
1325		if (ret > 0) {
1326			ret = 0;
1327			break;
1328		}
1329		cond_resched();
1330	}
1331
1332	if (ra_allocated)
1333		kfree(ra);
1334	/*
1335	 * Update range.start for autodefrag, this will indicate where to start
1336	 * in next run.
1337	 */
1338	range->start = cur;
1339	if (sectors_defragged) {
1340		/*
1341		 * We have defragged some sectors, for compression case they
1342		 * need to be written back immediately.
1343		 */
1344		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1345			filemap_flush(inode->i_mapping);
1346			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1347				     &BTRFS_I(inode)->runtime_flags))
1348				filemap_flush(inode->i_mapping);
1349		}
1350		if (range->compress_type == BTRFS_COMPRESS_LZO)
1351			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1352		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1353			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1354		ret = sectors_defragged;
1355	}
1356	if (do_compress) {
1357		btrfs_inode_lock(BTRFS_I(inode), 0);
1358		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1359		btrfs_inode_unlock(BTRFS_I(inode), 0);
1360	}
1361	return ret;
1362}
1363
1364void __cold btrfs_auto_defrag_exit(void)
1365{
1366	kmem_cache_destroy(btrfs_inode_defrag_cachep);
1367}
1368
1369int __init btrfs_auto_defrag_init(void)
1370{
1371	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
1372					sizeof(struct inode_defrag), 0,
1373					SLAB_MEM_SPREAD,
1374					NULL);
1375	if (!btrfs_inode_defrag_cachep)
1376		return -ENOMEM;
1377
1378	return 0;
1379}
1380